
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 2, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: ElateMe: Backend II.

 Student: Lukáš Hrachovina

 Supervisor: Ing. Petr Pauš, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

The goal of this Bachelor thesis is to expand the ElateMe API service so that it can be used in a production
environment. This thesis is an iteration upon the ElateMe - backend thesis by Bc. Yevhen Kuzmovych.
Analyze (Use UML diagrams, where appropriate):
- New endpoints and enhancements required, based on the
expansion of the application’s client side,
- API security standards,
- Payment Request API,
- User administration mechanism.
Design:
- API versioning mechanism,
- Credit payment,
- Product suggestions,
- User administration mechanism,
- Monitoring and alerting system.
Implement:
- Push notifications for mobile devices,
- API service expansion,
- Credit payment,
- User and users’ wishes management,
- User administration mechanism,
- Monitoring and alerting system.
Test:
- Cover the codebase with tests.

References

Will be provided by the supervisor.

Bachelor’s thesis

ElateMe: Backend II.

Lukáš Hrachovina

Department of Software Engineering
Supervisor: Ing. Petr Pauš Ph.D.

May 15, 2018

Acknowledgements

I would like to thank my supervisor, Ing. Petr Pauš Ph.D. for providing help
and consultation in the process of writing this thesis. Also I owe big thanks to
Michal Maněna for bringing ElateMe to us and providing technical supervision
throughout the whole development process.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Lukáš Hrachovina. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hrachovina, Lukáš. ElateMe: Backend II.. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2018.

Abstrakt

ElateMe je pracovńı název nové crowdfundingové platformy, kde narozd́ıl od
ostatńıch platforem, komerčńı nebo inovativńı projekty jsou nahrazeny os-
obńımi přáńı uživatel̊u. Uživatelé mohou použ́ıvat mobilńı Android nebo iOS,
ale také webovou verzi aplikace.

Mobilńı i webové aplikace použ́ıvaj́ı stejný backend, který je předmětem
této práce. Konkrétně RESTové API, napsané s použit́ım Django REST
frameworku nad Pythonem 3. Ćılem je analyzovat, navrhnout a implemen-
tovat rozš́ı̌reńı funkcionality API. Tato práce navazuje na Bakalářskou práci
Yevhena Kuzmovyče ElateMe Backend I.

Kĺıčová slova ElateMe, crowdfunding, REST API, Django, Python, Post-
greSQL

vii

Abstract

ElateMe is working name for a new crowdfunding platform, where typical
commercial or innovative projects are replaced with personal wishes. The
whole platform is delivered to the users in the form of Android and iOS mobile
applications and a web version of the application.

Both mobile and web applications connect to the same backend, which is
this thesis’ focus. In particular the REST API written using Django REST
framework on Python 3. The aim is to analyze, desing and implement ex-
pansion of the API’s functionality. This thesis is a continuation of Yevhen
Kuzmovych’s Bachelor thesis ElateMe Backend I.

Keywords ElateMe, crowdfunding, REST API, Django, Python, PostgreSQL

viii

Contents

Introduction 1
ElateMe . 1
Aim of the thesis . 1
Motivation . 2

1 Analysis 3
1.1 Background . 3
1.2 API Expansion . 5
1.3 API security standards . 8
1.4 Payment request API . 11
1.5 User administration . 12

2 Design 13
2.1 Used technologies . 13
2.2 API versioning . 15
2.3 Administration . 19
2.4 Credit payment . 20
2.5 Product suggestions . 21
2.6 Monitoring and alerting . 24

3 Implementation 27
3.1 Project apps . 27
3.2 Settings . 28
3.3 API service expansion . 29
3.4 Administration . 31
3.5 Credit payment . 31
3.6 Push notifications . 32
3.7 Monitoring and alerting . 33

4 Testing 35

ix

4.1 Unit tests . 35

Conclusion 37
Contribution . 37
Future outlook . 38

Bibliography 39

A Acronyms 43

B Contents of enclosed SD card 45

C Installation guide 47
C.1 Requirements . 47
C.2 Setup . 47

x

List of Figures

1.1 Domain model . 4
1.2 Component diagram . 5
1.3 Facebook long lived token . 7
1.4 Payment request process . 12

2.1 Versioned API project structure 18
2.2 Custom admin dashboard . 20
2.3 Credit class diagram . 21
2.4 Product suggestion dropdown . 22
2.5 Product suggestion structure . 24

xi

Introduction

ElateMe

ElateMe is working name for a new crowdfunding platform, where one’s poten-
tial benefactors are not strangers, but their friends. This causes the subjects of
funding, simply called “Wishes”, to be more personal rather than commercial
projects as is often the case with other established crowdfunding platforms.
Many elements of a typical social network are included, such as comments and
friend groups. Users can access the platform using Android and iOS mobile
applications or use a web version. As of now, there isn’t any other widespread
service on the market, providing this functionality.

Users can post wishes, publicly or only for their friends to see, in order to
raise money and fund them. Or on the contrary a group of friends may want
to fund a secret surprise present for their mutual friend, which is something
ElateMe can help with.

A platform like this could not possibly work on frontend alone, since plenty
of data need to be stored in database and accessed. Therefore with both mobile
and web applications, a REST (Representational State Transfer) API (Appli-
cation Programming Interface) is the best choice for providing communication
between the frontend and a database.

Aim of the thesis

This thesis is a continuation of Yevhen Kuzmovych’s Bachelor thesis ElateMe
Backend I. It can be split into three major parts: Analysis, Design and Im-
plementation, as is often the case with software engineering theses.

The aim is to move towards improving the API’s functionality so that the
product can be launched in early testing mode for potential users. In the
Design and Analysis chapters these changes are documented alongside some
foundation for the future expansion and full production usage.

1

Introduction

Motivation

I have been working on the project for the past three semesters during Software
project 1 and 2, starting on the frontend in ReactJS and for the second run
moving on to work on the backend API.

It is a challenging project with real world application, using modern tech-
nologies and following the latest trends. Also it was a good opportunity to
work on a complex backend system, which certainly is a good practice for
professional life. I was given enough freedom, enabling me to come up with
my own solutions.

2

Chapter 1
Analysis

This chapter focuses on analyzing the project current state in terms of its back-
ground and structure, new requirements and challenges related to improving
the API’s functionality.

1.1 Background

ElateMe is a brand new platform, developed here at FIT CTU in Prague, with
Michal Maněna being the head of the project. Development started two years
ago and now a second team of students is working on the platform. ElateMe
has recently rebranded with a new name in place Wowee. Because this change
is quite recent and in order to keep consistency, for the purpose of this thesis,
the name ElateMe will be used.

The API service is specifically tailored to the needs of the frontend. The
basic functionality is already in place, with plenty of endpoints covering wish
creation and management, Facebook friends integration, comments etc. Elate-
Me API communicates over HTTPS, with OAuth2 user authentication, which
is compliant with current standard [1].

Naturally many components of the application have been reworked over
the past year. These changes will be pointed out further in this thesis.

1.1.1 Domain model

A domain model is an abstract model of the domain, where both data and
behaviour are represented [2]. Its objects usually cannot be translated directly
to programming language objects, as domain models tend to be simplified and
not bound by the programming language constraints and conventions. It is
more closely related to the database model, with the biggest difference that it
combines data with processes [2].

3

1. Analysis

The domain model for ElateMe can be seen in 1.1. Due to the sheer
size of the project only the most important entities are displayed to help in
understanding relations in the project.

Figure 1.1: Domain model

1.1.2 Project structure

The project structure is visualized in the component diagram in 1.2.
The whole application stack is split into Android and iOS applications, a

web application and the backend server. Backend consists of a PostgreSQL
database keeping the data and REST API. The API itself is written in Django
REST framework, which is a REST variant of the Django Web framework.

Django projects are often split into more modules, simply called applica-
tions. They are standalone, yet can easily interact and be combined together.
This makes the project easier to navigate. Also they have separate database
migration scripts, which helps separate the changes to the database structure
and data. For example in the case of ElateMe, User management is separated
from Wish related operations and models etc.

ORM (Object relational mapping) is achieved using Django models. These
make use of the Django database API to communicate with the database.

The backend server provides an API for the client applications to con-
nect to. Also the diagram 1.2 shows the Facebook Graph API used for User
authentication and getting information about the user from Facebook. For
payment processing Fio Banka is used to process card payments. Along with
it the application will accept payments using Braintree and Bitcoin.

4

1.2. API Expansion

Figure 1.2: Component diagram

1.2 API Expansion

As the needs of the application evolve, the API has to reflect this. These
necessary changes and additions to the backend are best documented as re-
quirements. Requirements can functional or non-functional.

5

1. Analysis

1.2.1 New functional requirements

In [3] functional requirements are described as statements of services the sys-
tem should provide, how the system should react to particular inputs and how
the system should behave in particular situations. It is also said that in some
cases, the functional requirements may also define what the system in fact
should not do.

1. Banks and currencies
The application shall support several currencies for payments. Users
should be able to choose their preferred currency out of the supported
ones.

2. User state
Users should be able to deactivate their account or request the admin-
istrator to delete it. Deactivated user’s Wishes are no longer visible in
the feed, but their comments on other Wishes still are. Deleted user’s
comments are no longer visible and their personal data is anonymised.

3. Access to Wish
User outside of my friends should be able to ask the author to make the
wish visible for them. If this permission is granted the Wish becomes
visible and the user can post comments as well.

4. User groups permissions
When creating a Wish a user should be able to select a group of his
friends, that are granted access to the Wish. Should this group get
updated, these changes should be reflected in the Wish visibility as well.

5. User language
Users shall be able to select a preferred application language.

6. Credit payment
As an incentive to use the application users can be given free credits,
that they can then use to fund wishes. In order to enable this a credit
payment system needs to be implemented. User will be given credits
through the user administration.

7. Push notifications
A modern push notification system needs to be implemented using Google
Firebase messaging service.

8. Long lived Facebook token
Due to the short term Facebook token, users were logged out after two
hours and had to go through the whole login flow again, which is not
a great example of good user experience. In order to fix that a long
lived Facebook token, that expires in 60 days, needs to be generated. In
Figure 1.3 the process of the generation is described.

6

1.2. API Expansion

Figure 1.3: Long lived token generation [4]

9. Birthday endpoint
In order to reduce the load on the API a new endpoint returning up-
coming birthdays is needed.

10. Administration
A complex user administration needs to be introduced, where users can
be modified. Also lists of supported banks, currencies and languages
need to be editable without having to directly interact with the database.

1.2.2 Non-functional requirements

Non-functional requirements include constraints set on the system, perfor-
mance requirements, security requirements, implementation requirements, such
as programming language etc. They usually apply to the whole system rather
than just parts of it [3].

1. Python3 Django REST framework
The author will use the same technology as his predecessor to expand
and improve the API.

7

1. Analysis

2. REST
API will continue to follow REST API design style.

3. PostgreSQL
A PostgreSQL database will be used for data storage.

4. git
Project source code will be subject to version control using git. All new
features will be on a separate feature branch.

5. Zabbix
ElateMe backend server will be monitored using the Zabbix monitoring
solution.

1.3 API security standards

In order to run a platform like ElateMe, one has ensure that it is secure.
Especially because online payments are processed, therefore user confidential
data is exchanged and some of it stored as well. Also plenty of users’ private
data is kept in the database.

In short, API security is vital, as it serves as a gateway to the data stored
and also plays a role in payment processing.

1.3.1 Principles

There are several universal principles one should adhere to when designing a
REST API service, well documented in [5].

• Stateless authentication
REST service should by by principle stateless, therefore every request
should include authentication credentials.

• Least privilege
By default every user should have every resource denied unless they were
granted permission for it. Also users should have only the permissions
they truly need.

• Separation of privilege
A combination of conditions should be used to grant access to resources,
rather than single universal one. For example a user has to be authen-
ticated and allowed to post comments on my Wishes.

1.3.2 HTTPS

HTTPS or HTTP Secure is a secure version of the HTTP (Hypertext Transfer
Protocol). It uses TLS (Transport Layer Security) to encrypt the connection

8

1.3. API security standards

providing confidentiality, authenticity (user is connecting to the desired des-
tination) and integrity (data has not been tampered with) [6].

This is important because it means that even when the communication
between the user and the API gets intercepted, it cannot be decrypted. Also
users can be certain that the data they received from the API is truly sent by
ElateMe API. This enables us to send sensitive data over the internet.

1.3.3 Authentication

Authentication is a process when user credentials are verified. These creden-
tials are sent with each request using the “Authorization” header. There are
several ways to authenticate users to an API, with the most simple one called
Basic authentication [7].

It is a simple login and password pair sent along with the request. Because
the credentials are sent in plain text, it is necessary to use basic authentication
only with HTTPS connection. An improved version is the HMAC (Hash Based
Message Authentication) which sends over the hashed version of the password
[7].

1.3.3.1 Basic Authentication

Basic authentication is not very well suited to an application like ElateMe.
There are two main reasons for that. Firstly user credentials have to be
stored on the client to be sent along with each request, which is a security
risk. Also there is the possibility of brute force attacks, which could, even
when unsuccessful, heavily impair the service performance.

With the inclusion of Facebook into ElateMe the decision was to use
OAuth2.0, as it is what the Facebook interface for third-party application
uses [1]. This way the authentication and much of the burden coming with it
was “outsourced” to Facebook.

1.3.3.2 OAuth2

OAuth offers a solution to sharing information with third party services, where
the typical login-password based approach is risky due to the problems de-
scribed above.

OAuth2 is an improved version of the original OAuth1 protocol. Innitially
OAuth1 brought more security, but at a cost of difficult implementation. The
second version moved towards easier implementation with some compromises
at the security level. Today the trend is to use OAuth2 with cryptographic
extensions for additional security [7].

One of the basic concepts in OAuth is separating the party that requests
access to the data from the party that owns the data [8]. ElateMe uses Face-
book not only to authenticate its users, but also to get their friends, their
contact info, profile pictures etc. In order to achieve this once a user clicks on

9

1. Analysis

“Login via Facebook” they authenticate to Facebook, get a token in return,
which is sent over to ElateMe server. This user token is then used, along with
the App secret to requests user data from Facebook.

1.3.4 Authorization

Authorization determines whether an authenticated user has permission to
perform a given action [7]. In Django REST framework this is achieved using
permission classes. The basic ones are provided by the framework, but it is
easily possible to write custom functionality by inheriting the BasePermission
class. By default every user has to be authenticated to use ElateMe API calls
except for the login call.

1.3.5 Best practices

According to [9] REST API security can be broken down to following these
best practices:

• Use HTTPS
Always use HTTPS for API communication.

• OAuth authentication
For large scale applications OAuth based authentication is better than
basic auth.

• No sensitive information in URLs
It is vital not to include any user sensitive information, such as passwords
and login in the URL itself, use an “Authorization” header instead.

• Hash IDs
Using a hash to identify entities, rather than sequential integer id pre-
vents the potential attacker from guessing the next number in the se-
quence.

• Administration security
If there is an administration page present, naturally it has to be ad-
equately secured. Using two factor authentication and good, secure
passwords.

• Data validation
In order to prevent cross site scripting, it is advised to validate content
types, validate method parameters and restrict them where possible.

• Method restriction
API enpoints should accept only allowed methods (GET, POST, PUT,
DELETE).

10

1.4. Payment request API

• CORS
Cross-origin resource sharing is a standard to specify what cross domain
resources are accepted. Default policy should be to dismiss any non-
whitelisted domains.

1.4 Payment request API

As the main purpose of ElateMe is to raise money, to fund its users’ wishes, a
wide variety of payment methods is needed. The following payment methods
will be supported by the application:

• Credit card

• Google Pay

• Braintree payment

• Bitcoin payment

In order to make payments as comfortable as possible, it was decided to
opt for the most recent standard in online payments, the Payment request.

1.4.1 Concepts

Paying on the internet is often frustrating. Filling out long forms can be
off-putting for many users, especially on mobile devices, which is the reason
a purchase is often abandoned right before the checkout. Moreover for each
payment method supported, the checkout form gets even more complicated
and tedious to fill out [10].

The Payment Request API aims to make this process simpler and comes
up with a new standard. It’s goal is to minimize checkout forms and there-
fore improve user experience. Also it can be used regardless of the payment
method, because it does not directly interact with the payment provider (a
credit card vendor, PayPal etc.). Instead a web browser is used as an inter-
mediary between the application and the payment provider. This way the
necessary information can be stored in the browser, without the user having
to type it in every time they want to pay [10].

Using Payment Requests is possible with Google Pay, Braintree and credit
card payments.

1.4.2 Payment process

The merchant, in this case ElateMe application, creates a new PaymentRequest
and passes this information to the browser. The browser checks the compati-
bility between supported payment methods and presents a payment UI to the

11

1. Analysis

user. Once authorized the information is then passed to the payment provider,
with the result returned back to the application.

Figure 1.4: Payment request process [10]

1.4.3 Server side implementation

Once the payment process has been completed, it is necessary to pass on
the information to ElateMe API. Then a Donation record is created in the
database and thus the donation process is concluded.

1.5 User administration

A complex application like ElateMe needs an administration mechanism, where
administrator users can modify database entities. Preferably without having
to directly interact with the database, as was the case until now, which is
much more prone to error. Also often times programming language objects
can not be directly mapped to database entities, especially with M:N relations
etc.

Django web framework has an administration application built-in, simply
called “Admin”. Admin makes use of the models defined to build a site, where
one can easily create, update or delete database records. It is recommended to
be used for internal data management, because a certain level of understanding
of the underlying data is required [11].

This is exactly the case with ElateMe, where the major use cases are,
adding credits to a user and managing supported currencies, languages and
banks. Also with the current legislature, users can ask for their user data to be
deleted or anonymized, which is another good use case for the administration.

12

Chapter 2
Design

This chapter begins with an overview of the technologies used in the project,
followed by proposed designs of new functionality for the API. These designs
make use of open source libraries, incorporating them into the ElateMe back-
end application.

2.1 Used technologies

2.1.1 Python

ElateMe API is written in Python3, which is a modern, object-oriented lan-
guage. It is easily readable and with plenty of users.

2.1.2 PostgreSQL

PostgreSQL is a powerful, open source object-relational database. It serves as
a storage for ElateMe’s data. Django supports many other database backends,
however Postgres is well established as a stable and powerful database to use
with Django projects.

2.1.3 uWSGI

uWSGI is a popular web server that implements the WSGI (Web Server Gate-
way Interface) standard, which is an interface between a web server and a
Python application. Also it makes use of the uwsgi protocol to communicate
with other web server software such as Nginx, which is often used in front of
uWSGI to improve static content throughput [12].

2.1.4 Docker

Docker is an open source container platform, aimed at helping developers
develop, deploy and run applications. Its key features are flexibility, scalability

13

2. Design

and portability. Containers are lightweight virtual machines created from a
base image. These containers share kernel with the host machine, running as
a process on it [13].

ElateMe’s REST API is deployed in a Docker container. The definition of a
Docker container is specified in a Dockerfile. Dockerfile contains a base image
definition, a sequence of commands that are to be executed and which ports
should be exposed. The base image usually contains a lightweight operating
system image and the runtime environment for your application [13]. In our
case that is Python 3. There is plenty of community created and maintained
Docker images for all kinds of applications.

2.1.5 Docker compose

Docker compose is a tool for running a multi container Docker setup. A YAML
(YAML Ain’t Markup Language) file is used to define multiple different Docker
applications and their interaction [13].

In the case of ElateMe there are two Docker applications, the API and
the Postgres database. They each have a separate Dockerfile, with Docker
compose being used to combine them together and deploy as a single stack.

2.1.6 Django REST framework

Django REST framework is an open source framework for REST APIs, built
upon the popular Django Web framework. It contains additional tools, such
as API endpoint URL definitions, resource permissions and serializers [14].

2.1.6.1 Architecture

However Django Web framework does not follow the MVC (Model View Con-
troller) pattern fully, which is why it is often referred to as an MTV framework,
which stands for Model, Template, View. In Django Models are the same as
in MVC, but the what the user sees is described by Templates, with Views
handling the business logic, thus filling the role of Controllers [15]. Because
Django REST framework is built upon the web version, it follows the MTV
pattern as well. However it needs not serve web pages to a browser, which
makes Django templates obsolete.

2.1.6.2 Models

Models are the definitions of data handled by the application [16]. They are all
a subclass of django.db.models.Model [16]. Each model attribute represents
a database field, with some exceptions, such as M:N relationships, which are
handled by creating an additional table.

Each Django object, represented in the database, is an instance of its
Model. Model instances are identified by a primary key field. If not specified.

14

2.2. API versioning

Django will automatically create an id field. Naturally, Djago supports foreign
keys, many-to-one and many-to-many relationships [16].

Changes to the Model are propagated into the database using the so called
migration scripts. These can be automatically generated or written from
scratch. Model metadata, such as database table name, string representa-
tion etc. can be edited using the inner Meta class.

2.1.6.3 Views

Views represent the business logic of the application. They take a request and
return a response.

Django REST Views are different from Django Web Views in several ways.
First off they handle Request instances instead of HttpRequest, similarly the
response is a Response instance instead of a HttpResponse [14]. Each API
endpoint (URL) has a Django View associated with it, that is handling the
incoming requests. Django REST also provides so called generic APIViews,
which serve to make the implementation of common actions and patterns
easier [14]. For example a generic ListCreateApiView allows only the GET
and POST methods.

Views, through their attributes, are also responsible for checking permis-
sions, pagination and importantly selecting the Serializer class.

2.1.6.4 Serializers

Serializers convert Django querysets and model instances, often passed from
View classes, to be converted to native Python datatypes and then rendered
into JSON, XML or other [14]. The oposite process is called deserialization,
where parsed data is converted back into Django objects [14].

Serializers also provide request data validation and often fill in information
not included in the request.

2.2 API versioning

API versioning is running several versions of the same API simultaneously.
This comes especially useful when one has multiple different clients, as is
the case of ElateMe. As was said, there is a web application, an Android
application and an iOS one. Oftentimes the development cannot progress on
each of them at the same time, which is when different versioned API comes
useful.

With API versioning in Django REST, the changes will be most often
made to the business logic, represented by the Views and the data that gets
sent or processed, which is managed by Serializer classes.

When it comes to making truly significant changes, where the database
schema is heavily altered, one has to decide between keeping backwards com-

15

2. Design

patibility, for the older versions to use, and deploying another database in
parallel.

API versioning is disabled by default and currently there is no versioning
on ElateMe API. The most suitable approach to API versioning boils down
to the required scale. Both smaller and larger scale possible approaches to
versioning are documented bellow.

2.2.1 Versioning schemes

There are several versioning schemes supported by the REST framework. In
principle they can be broken down to two categories, URL based and request
header based. In all cases the versioning scheme passes on the selected version
as a request attribute.

• Accept Header Versioning
The client has to specify the version as part of the media type in the
Accept HTTP header. It is included as a media type parameter, addi-
tionally to the main media type. It is considered to be the best practice
when it comes to versioning [14]. An example of the request header can
be seen in 2.1, where the version is set to 1.0.

1 GET / wishes / HTTP/1 .1
2 Host : ap i . e lateme . com
3 Accept : a p p l i c a t i o n / j son ; v e r s i o n =1.0

Listing 2.1: Accept header example

• URL Path Versioning
URL path versioning is a process, where the client connects to a different
version of the API depending on the version specified in the URL [14].
Usually version specification is the first part of the URL.

There are two different approaches to implementation of URL versioning
in Django. They are the same from the client’s perspective, however in
one case the version is matched as a keyword in Django application URL
configuration file, as shown in 2.2. The other approach is namespace
based, where the urls are namespaced by the selected version.

1 u r l p a t t e r n s = [
2 u r l (
3 r ’ ˆ(?P<vers ion >(v1 | v2)) / wishes /$ ’ ,
4 wishes ,
5 name=’ wishes− l i s t ’
6)
7]

Listing 2.2: URL configuration example

16

2.2. API versioning

• Query Base Versioning
Query based versioning is probably the simplest one, where the requested
version is specified as a request query parameter, as shown in 2.3 [14].

1 GET / wishes /? v e r s i o n =1.0 HTTP/1 .1
2 Host : ap i . e lateme . com
3 Accept : a p p l i c a t i o n / j son

Listing 2.3: Query versioning example

2.2.2 Smaller scale

In small scale projects or when not all endpoint are required to be subjected to
versioning, the best approach would be to use the simple URL path versioning
scheme. When the versioning scheme is selected, the request that is passed
on to the view has an attribute named version. This attribute is matched
based on the process described in listing and can be used to make decisions
on how to handle the incoming request. An example of varying behaviour can
be selecting a different serializer or permission class. An example of selecting
a serializer by overriding the get serializer class method is in listing 2.4.

As of now this is an acceptable approach to ElateMe’s API versioning,
robust enough to handle client differences, while maintaining lower complexity
and high readability. A great advantage with ElateMe is that all the clients
are developed “in-house” along with the API. More problems arise, when one
enables their API to be used by third parties.

1 c l a s s CurrentUserDonationsView (g e n e r i c s . ListAPIView) :
2 r e n d e r e r c l a s s e s = (r e n d e r e r s . JSONRenderer ,)
3 p e r m i s s i o n c l a s s e s = [pe rmi s s i ons . I sAuthent icated ,]
4
5 de f g e t s e r i a l i z e r c l a s s (s e l f) :
6 i f s e l f . r eque s t . v e r s i o n == ’ 1 .0 ’ :
7 re turn D o n a t i o n s S e r i a l i z e r V e r s i o n 1
8 re turn D o n a t i o n s S e r i a l i z e r B a s e

Listing 2.4: Serializer selection based on version

2.2.3 Large scale

A complex versioning system is mostly used in large APIs, which are often
publicly accessible. An example of this is Facebook’s GraphAPI, which is
versioned by URL and currently running 8 versions concurrently [17].

Regardless of which versioning scheme one opts for, when running more
than two versions and multiple versioned endpoints, it is required to come up
with a system to manage the overhead. There are some best practices related
to running a large scale versioned API in Django REST framework.

17

2. Design

The first thing is to set up a maintainable project structure, to make
project easier to navigate. An example of a good structure is figure 2.1. Each
Django application, subjected to versioning should have base classes, prefer-
ably in a directory named base or default. This directory should contain
default views and serializers, with basic functionality that can be inherited
from by the versioned ones.

default
init.py
router.py
views.py
serializers.py

versions
v1

init.py
router.py
views.py
serializers.py

v2

Figure 2.1: Versioned API project structure

Also to make the routing (process of matching the right serializer/view to
the desired version) easier ViewSet and Router classes can be used. These
reduce the if branching of the code and enforce consistent URL style.

2.2.3.1 ViewSet

ViewSets can be used to group together related views in a single class [14].
They are often used alongside Routers to automatically generate URL con-
figuration.

2.2.3.2 Router

Routers are used to automatically map views to URLs [14]. One just registers
desired views and their prefix and the configuration gets generated .

2.2.4 Caveats

Supporting multiple API versions comes with a price. Especially when an
API is publicly accessible and widely used, discontinuing outdated versions
requires prior announcements, upgrade plans and proper documentation in
general.

18

2.3. Administration

Also in every case it makes the code harder to understand with an added
layer of branching. This effect should be mitigated by using inheritance wher-
ever possible to make as much behaviour universal and predictable.

When maintaining multiple versions, say one for each client platform, there
is a danger of increasing the differences between the platforms, which makes
more and more of the API code platform specific. This usually causes problems
down the line and requires extensive refactoring to solve.

2.3 Administration

ElateMe’s administration is implemented using the built-in Django admin.
Administrators can authenticate to the application using a login (email) and
password pair. In order to be able to use application’s users with the admin, it
was necessary for ElateMe’s User class to inherit from Django’s Permissions
Mixin class. This adds additional permissions, such as superuser permission,
group membership and custom user permissions.

In each Django application, that needs to have an admin interface a file
admin.py is created. The required models are then registered into the Django
Admin. In order to customize the administration view, add searchable fields
and filters a subclass of admin.ModelAdmin can be created, which is then
registered alongside the model.

2.3.1 Admin security

Because the Django Admin gives direct access to the data stored in the
database, it is important to secure the site properly. As an addition to the
security best practices described above, a strong administrator password is re-
quired. Also it should be considered moving the admin to a less obvious URL,
rather than standard /admin. It is possible to make the admin site accessible
only from the local network and connect to it using a VPN from the outside.

Additionally, as documented in [18], it is possible to set up a two-factor
authentication using the django otp package and overriding the default admin
site with OTPAdminSite.

2.3.2 Dashboard

Django admin site can be also used as a lightweight dashboard to display some
metrics about the application. For example it could be convenient to have a
visualization of the average donation amount, wishes in the funding phase etc.

This can be achieved by taking the model class of the entity to be used
in the dashboard and creating a proxy subclass. Proxy model classes add
functionality, however are not represented as new tables in the database [14].
This proxy class can be then used as a data source for a new ModelAdmin

19

2. Design

class. This is done so that there are two separate admin sites. One where we
can actually edit the individual records and one for the dashboard purposes.

The whole process is well documented in [19]. By overriding the changelist
view method it is possible to edit the view that would normally be rendered

in the admin site. A custom HTML template can be then created to visualize
the data sent from the changelist view method. A very simple table show-
ing the amount of money donated by each user in different time periods can
be seen in figure 2.2.

Figure 2.2: Custom admin dashboard

2.4 Credit payment

Credits were implemented to ElateMe as an incentive for users to fund wishes.
Credits are given to the users by the administrator using Django Admin.

With a credit account it is necessary to keep track of each user’s credit
balance, their transactions and which donations were executed using credit
funding. Diagram 2.3 shows the model classes related to credit payments.

Users can later get a list of their own credit transactions using the endpoint
credit/transactions. This is realized using the UserTransactionsView
class, which automatically returns transactions of the same user that sent the
request.

When posting a credit donation, user makes a POST request on /credit/
WISH ID/ URL. With each payment aCreditTransaction is created, as long
as the user has sufficient amount of credits in their account. It is also possi-
ble to get an overview of credit donations to a certain wish using the same

20

2.5. Product suggestions

credit/WISH ID/ endpoint, but the user requesting this information has to be
the author of the wish. This functionality is handled by the CreditTransaction
View class, which responds both to GET and POST requests.

Each view has different permission classes and a different serializer class.
This is because the post request has to go through validation, to check payee’s
credit balance.

Figure 2.3: Credit class diagram

2.5 Product suggestions

During creation there are two ways a user can select the subject of their wish.
Either create a custom wish, where they specify what the wish is, optionally
upload a picture and set the amount of money they want to raise. The other
option is that while typing in the wish title, they select one of the products

21

2. Design

suggested by the product drop down selection. This behaviour is demonstrated
in figure 2.4.

While typing in the wish title the client issues a GET request on the
/wishes/suggested endpoint sending along the user’s input as a query string.
The backend server then performs a search on Zbozi.cz and Alza.cz sites and
returns a JSON object composed of possible products to the client. The
backend first tries to search on Zbozi.cz and if unsuccessful queries Alza.

As ElateMe aims at the global market, Zbozi.cz and Alza are not ideal as
the only stores to be present in the application. It was decided that a more
widespread product marketplace search has to be implemented. Also the
application could generate additional revenue using various affiliate programs.

Figure 2.4: Product suggestion dropdown

It was decided to opt for inclusion of either Amazon or eBay in the product
suggestions as they both have a global reach and provide an API for product
lookup.

2.5.1 Amazon

In order to use Amazon’s Product search API one needs an Amazon account.
Each account has an associate tag assigned, which is used to identify look

22

2.5. Product suggestions

ups and get a commission. Each account is localized so each locale requires a
separate registration [20].

Once registered one can use the Product search API which has two relevant
methods ItemSearch and ItemLookup. There is a nice open source pacakge
python-amazon-simple-product-api developed by Yoav Aviram providing
an interface around Amazon’s API [21]. Once installed it provides two im-
portant methods, lookup and search [21]. These match the Amazon’s textt-
tItemSearch and ItemLookup with lookup being able to look up products
based on their Amazon ItemID, whereas search working as a keyword based
search engine.

Both methods return an iterbale object, which can be then passed to a
parser method to be turned into a JSON. This is then returned as a response
to the client.

This process can be either incorporated under the current /wisges/
suggested/ endpoint and SuggestedWishesView or a new endpoint specific
to Amazon will be created. This is advantageous as clients could connect to
different endpoints based on their location.

2.5.2 eBay

With eBay the process is quite similar. After registering the application in
eBay developers account, one is able to make use of the powerful eBay product
API. There is an official open source Python SDK maintained by Tim Keefer
[22]. It provides a thorough interface to eBay API functionality, while being
fairly easy to use.

After authentication and establishing a Connection to the eBay api, one
can use methods like findItemsAdvanced to find products listed on eBay [22].

It would make sense to combine results both from Amazon and eBay into
one endpoint, as they are both international. A suggestion of the final result
is visualized in diagram 2.5. Using the Python SDK it is not needed to parse
the data ourselves, as it has a built in methon json() which converts the data
to JSON automatically.

23

2. Design

Figure 2.5: Product suggestion structure

2.6 Monitoring and alerting

When running a platform like ElateMe in production it is absolutely vital to
detect problems with the platform as soon as possible. This is solved by a
monitoring system, that can monitor all the parts of the backend server, which
in our case is the PostgreSQL database and the API. Zabbix was chosen as
the monitoring system for ElateMe.

2.6.1 Zabbix

Zabbix is an open source distributed monitoring system. It works on a client–
server principle, with clients collecting data and reporting to the central server.
It allows for email alerts to be sent based on user defined criteria. All the
information is accessible using a web frontend, which can be accessed from
anywhere.

Instances monitored by the Zabbix agents are called hosts which can be
either polled for information or they actively send it themselves.

2.6.2 Server deployment

As was already said, both the Postgres server and the API run inside Docker
containers on a single Virtual Machine. Therefore it makes sense to have
the monitoring in Docker as well. The main reasons for this is there isn’t a
production environment for ElateMe set up yet. Docker containers are quick
to set up and tear down, so there won’t be too much work wasted, should
ElateMe move to a different server.

24

2.6. Monitoring and alerting

First a Zabbix server is needed. It will be deployed using the Dockbix
docker image. It is a preconfigured Docker image for Zabbix server deploy-
ment, maintained by Monitoring Artist. It uses a mySQL database for data
storage, which can be deployed inside a Docker container as well.

As for the monitoring itself a Dockbix-agent will be used, which is yet
another Docker-deployed application. It contains Docker monitoring for all
containers running on the host as well as host monitoring. This agent will be
configured to send data to the Zabbix server, port 10051.

25

Chapter 3
Implementation

This chapter contains a description of the API’s implementation. First the
project implementation will be described in general and secondly the newly
implemented parts will be covered.

3.1 Project apps

The project is split into the following Django applications:

• Account
Account handles Users, their data and related objects such as user’s
credit account, profile pictures etc. Also it has two nested applications,
Authorization and Social. Authorization handles user login and authen-
tication, with Social providing the social API connected to Facebook’s
GraphAPI [1].

• Banking
Banking takes care of credit transactions and provides models for sup-
ported countries, card transactions and data transactions that are then
used in the Donation app.

• Currencies
Currencies is a very small, simple application which handles only sup-
ported currencies.

• Donations
All the payments and donation overview is handled by the Donations
app. It covers Braintree payments and card payments, with Bitcoin
payments coming in the future.

• Feed
Feed is another simpler application with the main functionality being
returning a list of wishes to be displayed in the frontend feed.

27

3. Implementation

• Friendship
Friendship application processes the Friendship relations between users.

• Notifications Currently this application provides a list of user’s notifi-
cation and provides an interface called NotificationManager for send-
ing notifications.

• Wishes
The Wishes app handles wish creation, product suggestion, access to
wishes, wish image upload and various wish views. Also the Comments
application is nested within, handling wish comments.

• Server API
This is the central application tying all the others together.

Interaction between different applications is handled mostly by importing
Models in order to create ForeignKey relationships and create database en-
tries belonging to a different application. Each application contains its own
migration scripts, which are used to make changes to the database model or
seed it with new data.

3.2 Settings

Application settings are handled in the server api application. In the central
urls.py file the main routing decisions are defined, where the top-level URLs
are listed as in listing 3.1.

The universal settings are defined in the settings.py file, where all the
applications are tied together, along with other applications used, such as
the rest framework itself and all the middleware used. Based on the envi-
ronment the application is running in, additional settings are imported from
ENV settings.py files. The runtime environment is defined at application
startup.

1 u r l p a t t e r n s = [
2 u r l (r ’ ˆ account / ’ ,\
3 i n c lude (’ account . u r l s ’ , namespace=” account ”)) ,
4 u r l (r ’ ˆ wishes / ’ ,\
5 (’ wishes . u r l s ’ , namespace=” wishes ”)) ,
6 u r l (r ’ ˆ donat ions / ’ ,\
7 i n c lude (’ donat ions . u r l s ’ , namespace=” donat ions ”)) ,

Listing 3.1: Top level URL config

28

3.3. API service expansion

3.3 API service expansion

In this section some of the new more interesting minor additions to the API
will be described.

3.3.1 Banks and Currencies

In order to be able to match Account transactions to particular bank carrying
out the payment, the supported banks had to be added to the application.
Also because payments can be a carried out in any of the supported currencies,
which are currently: Czech Crown, United States Dollar and Euro, models
representing these had to be added.

3.3.2 Wish access

A situation could arise, when someone who is not my friend on Facebook, but
uses ElateMe as well, might want to donate to one of my wishes. For example
our mutual friend sent him a link to it, but he cannot see the wish contents.
In order to enable users outside of friends to see certain wishes a wish access
request has been implemented.

When a user comes upon a wish they are not authorized to see, a button
“Request access to Wish” is displayed to them. Upon clicking on it a POST
request is sent to the API server on endpoint /access/request/ with the wish
ID in the payload. This is handled by the WishAccessRequestView seen in
listing 3.2. In the serializer handling this request a WishAccessRequest object
is created, where the status of the request is recorded. The view then sends
a notification to the wish author, that a user has requested access, which can
be either granted or denied using a POST request to the /access/WISH ID/
endpoint. Once granted the petitioner is given notification that they can visit
the wish.

1 # Handles Wish a c c e s s grant /deny
2 c l a s s WishAccessView (g e n e r i c s . UpdateAPIView) :
3 p e r m i s s i o n c l a s s e s = [pe rmi s s i ons . I sAuthent icated ,\
4 custom permiss ions . IsWishAuthor]
5 s e r i a l i z e r c l a s s = s e r i a l i z e r s . WishAcces sGrantSer ia l i z e r
6 queryset = WishAccessRequest . o b j e c t s . a l l ()
7 l ookup ur l kwarg = ’ r e q u e s t i d ’
8
9 de f perform update (s e l f , s e r i a l i z e r) :

10 s e r i a l i z e r . save ()
11 i f s e r i a l i z e r . data [’ s t a t u s ’] == ’ granted ’ :
12 r e q u e s t i d = s e l f . kwargs [’ r e q u e s t i d ’]
13 r eque s t = WishAccessRequest . o b j e c t s . get (id=r e q u e s t i d)
14 wish = Wish . o b j e c t s . get (id=reques t . w i sh id)
15 wish . a l l o w e d u s e r s . add (r eques t . p e t i t i o n e r)
16 Manager . add revea l g rant ed (r eque s t . p e t i t i o n e r , wish)

29

3. Implementation

17
18 # Handles Wish a c c e s s r eque s t
19 c l a s s WishAccessRequestView (g e n e r i c s . ListCreateAPIView) :
20 p e r m i s s i o n c l a s s e s = [pe rmi s s i ons . I sAuthent i cated]
21 s e r i a l i z e r c l a s s = s e r i a l i z e r s . WishAcces sReques tSer ia l i z e r
22
23 de f pe r f o rm crea t e (s e l f , s e r i a l i z e r) :
24 s e r i a l i z e r . save ()
25 p e t i t i o n e r = g e t o b j e c t o r 4 0 4 (User , \
26 id=s e r i a l i z e r . data [’ p e t i t i o n e r ’])
27 wish = g e t o b j e c t o r 4 0 4 (Wish , id=s e r i a l i z e r . data [’ wish ’])
28 i n f l u e n c e r = g e t o b j e c t o r 4 0 4 (User , \
29 id=s e r i a l i z e r . data [’ author ’])
30 Manager . a d d r e v e a l r e q u e s t (p e t i t i o n e r , wish , i n f l u e n c e r)
31
32 de f g e t q u e r y s e t (s e l f) :
33 c u r r e n t u s e r = s e l f . r eque s t . user
34 re turn WishAccessRequest . o b j e c t s . f i l t e r (p e t i t i o n e r=

c u r r e n t u s e r)

Listing 3.2: Wish access handling

3.3.3 Group permissions

Because users can group their friends into groups it would be practical to be
able to use the groups for giving access to wishes. During creation a user can
choose between making his wish public, visible to all friends or just to certain
people. And the last case is where groups come in, as it could be quite tedious
having to manually select many friends. With groups one can just select one
or more groups.

Each Wish instance has an attribute allowed users, which could be used
to propagate users from groups during wish creation. However this would
not reflect later changes made to the groups. In order to solve this a new
attribute allowed groups has been added and users’ permissions are cross-
checked against the allowed group as seen in listing 3.3.

1 de f UserInGroup (user , wish) :
2 f o r w in wish . a l l owed groups . a l l () :
3 i f u ser in w. members . a l l () :
4 re turn True
5 re turn Fal se
6 de f has pe rmi s s i on (s e l f , request , view) :
7 . . .
8 i f wish . i s p u b l i c :
9 re turn True

10 re turn wish i s None or \
11 r eque s t . user == wish . author or \
12 (r eque s t . method in pe rmi s s i ons .SAFE METHODS and \
13 (r eque s t . user in wish . a l l o w e d u s e r s . a l l ()) or \
14 UserInGroup (r eques t . user , wish))

Listing 3.3: Group permissions check

30

3.4. Administration

3.4 Administration

ElateMe administration is realized using the built-in Django administration.
Admin provides the administration of Users, Wishes, Banks, Currencies, Coun-
tries and Donations. A two factor authentication into the admin site is im-
plemented using the django opt package, yet currently disabled.

The administration can be further adjusted to the evolving needs of the
frontend by adding models and other functionality. Each registered model can
be customized using a admin.ModelAdmin subclass, as shown in listing 3.4. In
this example user’s credit account is inserted into user administration, despite
being a separate model using the inlines attribute.

This can be also used to create additional dashboards and graphs by pro-
viding a HTML template to render the data sent from the ModelAdmin class.

1 c l a s s UserCreditAdmin (admin . Tabu la r In l ine) :
2 model = UserCreditAccount
3
4 c l a s s UserAdmin (admin . ModelAdmin) :
5 i n l i n e s = (UserCreditAdmin ,)
6 l i s t d i s p l a y = (’ emai l ’ , ’ last name ’ , ’ f i r s t n a m e ’ , ’ s t a t e ’)
7 l i s t f i l t e r = (’ s t a t e ’ , ’ language ’ , ’ currency ’)
8 r e a d o n l y f i e l d s = (’ f i r s t n a m e ’ , ’ last name ’ , ’ d a t e o f b i r t h ’ ,

’ d a t e c r ea t e d ’)
9 s e a r c h f i e l d s = (’ last name ’ , ’ f i r s t n a m e ’ , ’ emai l ’)

Listing 3.4: User administration customization

3.5 Credit payment

Credit payment is mostly handled by CreditTransactionView with most of
the logic happening in the serializer as seen in listing 3.5. Data that wasn’t
part of the request is filled in, user’s credit balance is checked, a transaction
record object is created and the balance is adjusted accordingly.

In order to make Donations tracking easier, a Donation object ties to either
an AccountMovement or CreditTransaction using a foreign key. This way
all the donations are kept track of in a single place.

1 de f c r e a t e (s e l f , v a l i d a t e d d a t a) :
2 payee = s e l f . context [’ r eque s t ’] . u ser
3 v a l i d a t e d d a t a [’ payee ’] = payee
4 kwargs = s e l f . context [’ view ’] . kwargs
5 wish id = kwargs [’ w i sh id ’]
6 account = payee . c r e d i t a c c o u n t
7 v a l i d a t e d d a t a [’ account ’] = account
8 i f f l o a t (abs (v a l i d a t e d d a t a [’ amount ’])) > account . ba lance :
9 r a i s e s e r i a l i z e r s \

10 . Va l idat i onError (’ I n s u f f i c i e n t c r e d i t ba lance . ’)
11 wish = g e t o b j e c t o r 4 0 4 (Wish , pk=wi sh id)

31

3. Implementation

12 t r a n s a c t i o n = wish . c r e d i t t r a n s a c t i o n s \
13 . c r e a t e (∗∗ v a l i d a t e d d a t a)
14 account . ba lance −= f l o a t (abs (v a l i d a t e d d a t a [’ amount ’]))
15 account . save ()
16 # Manager . add thank you for donat ion (payee , wish)
17 re turn t r a n s a c t i o n

Listing 3.5: Credit payment serializer

3.6 Push notifications

Mobile devices push notifications will be handled using the Google Firebase
Messaging (GFM). GFM is a continuation of the Google Cloud Messaging
service with expanded functionality.

Firebase is a complex service providing not only messaging, but also au-
thentication, a simple backend service, analytics and others. ElateMe needs
only the messaging part, therefore it wasn’t necessary to include the complete
Python SDK for FCM and implement everything ourselves [23]. Rather than
that an open source package fcm-django [24], maintained by Mojca Rojko,
provides all the required functionality. It makes use of FCMDevice objects
which can in our case matched with users we want to send messages to using
the send message method [25].

Currently the client side of Firebase cloud messaging is not implemented,
so the functionality hasn’t been tested yet. However there can be some pre-
liminary functionality implemented on the backend. For example it would be
needed to have an endpoint where user devices can be registered and the re-
spective FCMDevice objects created. They also need to be paired up with users,
to enable message sending. For this purpose and endpoint /notifications/
fcmdevices has been created, which either gives a list of current user’s devices
or enables them to register a new one.

Messages can be then sent out either to singular devices or multiple us-
ing the send message method. Both the registration view and messaging is
showcased in listing 3.6

1 c l a s s FCMDeviceView(g e n e r i c s . ListCreateAPIView) :
2 p e r m i s s i o n c l a s s e s = [pe rmi s s i ons . I sAuthent icated ,]
3 s e r i a l i z e r c l a s s = FCMDeviceSer ia l izer
4
5 de f g e t q u e r y s e t (s e l f) :
6 re turn FCMDevice . o b j e c t s . f i l t e r (user=s e l f . r eque s t . user)
7
8 # sending messages
9 d e v i c e s = FCMDevice . o b j e c t s . f i l t e r (user=s e l f . user . id)

10 d e v i c e s . send message (t i t l e=” T i t l e ” , body=” Message ”)

Listing 3.6: Firebase cloud messaging support

32

3.7. Monitoring and alerting

3.7 Monitoring and alerting

Monitoring shall be implemented using the Dockbix system described in sec-
tion 2.6. As described in [26], the Zabbix environment can be started up using
the commands in 3.7. The first initiates the server, while the second starts
the actual monitoring agents, which then report to the server. In order for
the server to run, it needs a connection to a database. A current database
can be used or a new one deployed.

The server accepts connections from agents on port 10051, while the fron-
tend runs on port 8080. This is due to the fact that 443 is used for the api
itself. The frontend can be accessed on api.elateme.com:8080 with creden-
tials admin : zabbix.

1 docker run \
2 −d \
3 −−name dockbix \
4 −p 8080:443 \
5 −p 10051:10051 \
6 −v / e tc / l o c a l t i m e : / e t c / l o c a l t i m e : ro \
7 −v / e tc / l e t s e n c r y p t / l i v e / api . e lateme . com/ c e r t . pem: / e tc / nginx /

s s l /dummy. c r t : ro \
8 −v / e tc / l e t s e n c r y p t / l i v e / api . e lateme . com/ pr ivkey . pem: / e tc /

nginx / s s l /dummy. key : ro \
9 −−l i n k dockbix−db : dockbix . db \

10 −−env=”ZS DBHost=dockbix . db” \
11 −−env=”ZS DBUser=zabbix ” \
12 −−env=”ZS DBPassword=elateM3Rules ” \
13 −−env=”XXL zapix=true ” \
14 −−env=”XXL grapher=true ” \
15 m o n i t o r i n g a r t i s t / dockbix−xxl : l a t e s t
16
17 docker run \
18 −−name=dockbix−agent−xxl \
19 −−net=host \
20 −−p r i v i l e g e d \
21 −v / :/ r o o t f s \
22 −v / var /run : / var /run \
23 −−r e s t a r t un les s−stopped \
24 −e ” ZA Server=api . e lateme . com” \
25 −e ” ZA ServerActive=api . e lateme . com” \
26 −d m o n i t o r i n g a r t i s t / dockbix−agent−xxl−l i m i t e d : l a t e s t

Listing 3.7: Dockbix startup

33

Chapter 4
Testing

Application functionality is ensured by thorough testing. It can be split into
two parts: unit testing and acceptance tests.

Unit tests should be always written by the code authors. They are so called
“white-box” tests, in the sense that the person writing the test is familiar with
the inner workings of the tested software. Acceptance tests are usually testing
the application like a black box, with the outcome the only important thing.
ElateMe quality assurance (QA) is more in-depth covered in my colleague’s
thesis [27].

4.1 Unit tests

Django REST unit tests are realized using the APITestCase class [14]. Using
a production database to run tests would be impractical and potentially dan-
gerous. Therefore the framework defines a new database, creates it, applies
all migrations and runs the tests defined in tests.py files. This requires all
data seeds to be present in the migrations, for the application to function.

Each test case is split up into a setUp phase, defined in a method of the
same name, where all the prerequisite data is created [14]. This is then used
in the testing methods, followed by a tearDown method which deletes it all.

It was necessary to adjust the tests to the changed database structure,
remove unused methods and add new ones. In listing 4.1 is an example of a
test using APITestCase.

1 c c l a s s CreditTest (APITestCase) :
2 de f setUp (s e l f) :
3 s e l f . user1 = UserManager () . c r e a t e u s e r (’ t e s t 1@te s t . com ’ ,\
4 ’ t e s t ’)
5 s e l f . user2 = UserManager () . c r e a t e u s e r (’ t e s t 2@te s t . com ’ ,\
6 ’ t e s t ’)
7 s e l f . user2 . c r e d i t a c c o u n t . ba lance = 100
8 s e l f . user2 . save ()
9 wish = {

35

4. Testing

10 ’ t i t l e ’ : ” iPhone X” ,
11 ’ d e s c r i p t i o n ’ : ” I l ove cracked g l a s s ” ,
12 ’ amount needed ’ : 29999 ,
13 ’ author ’ : s e l f . user1 ,
14 ’ u s e r money rece ive r ’ : s e l f . user1 ,
15 }
16 s e l f . wish = Wish . o b j e c t s . c r e a t e (∗∗wish)
17
18 de f t e s t d o n a t i o n (s e l f) :
19 u r l = r e v e r s e (’ banking : c r e d i t−t r a n s a c t i o n ’ ,\
20 kwargs={ ’ w i sh id ’ : s e l f . wish . id })
21 data = {
22 ’ amount ’ : 50 ,
23 }
24 s ta tus code , data = post (u r l=ur l , user=s e l f . user2 ,\
25 data=data)
26 s e l f . a s s e r tEqua l (s ta tus code , s t a t u s .HTTP 201 CREATED)
27 s e l f . a s s e r tEqua l (data [’ wish ’] , s e l f . wish . id)
28
29 de f t e s t i n s u f f i c i e n t c r e d i t s (s e l f) :
30 u r l = r e v e r s e (’ banking : c r e d i t−t r a n s a c t i o n ’ ,\
31 kwargs={ ’ w i sh id ’ : s e l f . wish . id })
32 data = {
33 ’ amount ’ : 150 ,
34 }
35 s ta tus code , data = post (u r l=ur l , user=s e l f . user2 ,\
36 data=data)
37 s e l f . a s s e r tEqua l (s ta tus code , s t a t u s .HTTP 400 BAD REQUEST)

Listing 4.1: API Test case example

There were plenty of unit tests already written as described in [1], however
virtually all had to be rewritten to reflect changes to the models and permis-
sions. Not all of them are currently passing as there are some errors in the
application. Some functionality cannot really be tested, especially payment
related methods, which calls for manual testing.

Overall the test coverage should improve as the application will near pro-
duction release. Tests should also be run on every application build as part
of Continuous Integration.

36

Conclusion

This thesis is very practical and industry oriented. The aim was to iterate on
the work laid out by my predecessor and improve the API functionality.

The first part was analyzing the topic, new functional requirements and
some additional challenges coming with running such a complex backend sys-
tem in production environment. It was necessary for me to familiarize with
the Django framework and the code already written.

In the design chapter the application structure and used technologies were
covered, along with laying a foundation for the future expansion and improve-
ment. It contains a description of a possible solutions to various components
of the system, some which are already implemented or will be in the future. I
put an emphasis on trying to integrate existing open source solutions, as they
provide the desired functionality, while being easier to maintain as the project
further expands. The topics covered include API versioning problems both
in smaller and larger scale, product suggestions using Amazon an eBay APIs
etc.

The implementation chapter covers the new functionality implemented as
part of the thesis, including code snippets. I strove to include the reasoning
behind my approach to these problems as well as the solution itself. The way
unit tests are handled, using built in REST frameworks tools, is covered in
the Testing chapter.

Contribution

Potential readers are given an insight into the structure and challenges of
a larger scale REST API. They can familiarize themselves with recent best
practices regarding API security and payment handling.

This thesis can also serve as a valuable document for future developers
working on ElateMe.

37

Conclusion

Future outlook

In my opinion in order to close in on production readiness it is required to
gradually put more effort into unifying and testing the current functionality,
while reducing the amount of new to-be-implemented functionality.

However a very important step is the inclusion of international product
suggestors, using Amazon and eBay APIs. This is a vital step in making sure
the platform has a true global reach.

38

Bibliography

[1] Kuzmovych, Y. ElateMe Backend I. Bachelor’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2017.

[2] Fowler, M.; Rice, D. Patterns of Enterprise Application Architec-
ture. A Martin Fowler signature book, Addison-Wesley, 2003, ISBN
9780321127426. Available from: https://books.google.cz/books?id=
Jl5rkQnbfAIC

[3] Sommerville, I. Software Engineering. International computer science se-
ries Software engineering, Addison-Wesley, 2007, ISBN 9780321313799.
Available from: https://books.google.cz/books?id=B7idKfL0H64C

[4] Facebook. Refreshing User Access Tokens. Docs, 2018, [online], [cit.
2018-04-23]. Available from: https://developers.facebook.com/docs/
facebook-login/access-tokens/refreshing/

[5] Gupta, L. REST API Security Essentials. REST API Tutorial, [online],
[cit. 2018-04-29]. Available from: https://restfulapi.net/security-
essentials/

[6] Google. Secure your site with HTTPS. Google Search Console, 2018, [on-
line], [cit. 2018-04-29]. Available from: https://support.google.com/
webmasters/answer/6073543?hl=en

[7] Levin, G. RESTful API Authentication Basics. RestCase Blog, 2016,
[online], [cit. 2018-04-29]. Available from: https://blog.restcase.com/
restful-api-authentication-basics/

[8] Reference. The OAuth 2.0 Authorization Framework. OAuth, 2012, [on-
line], [cit. 2018-04-30]. Available from: https://tools.ietf.org/html/
rfc6749

39

https://books.google.cz/books?id=Jl5rkQnbfAIC
https://books.google.cz/books?id=Jl5rkQnbfAIC
https://books.google.cz/books?id=B7idKfL0H64C
https://developers.facebook.com/docs/facebook-login/access-tokens/refreshing/
https://developers.facebook.com/docs/facebook-login/access-tokens/refreshing/
https://restfulapi.net/security-essentials/
https://restfulapi.net/security-essentials/
https://support.google.com/webmasters/answer/6073543?hl=en
https://support.google.com/webmasters/answer/6073543?hl=en
https://blog.restcase.com/restful-api-authentication-basics/
https://blog.restcase.com/restful-api-authentication-basics/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

Bibliography

[9] Reference. REST Security Cheat Sheet. OWASP, 2018, [online], [cit.
2018-04-30]. Available from: https://www.owasp.org/index.php/REST_
Security_Cheat_Sheet

[10] Kitamura, E.; Gash, D.; et al. Introducing the Payment Request API.
Web Fundamentals, 2018, [online], [cit. 2018-04-23]. Available from:
https://developers.google.com/web/fundamentals/payments/

[11] Mozilla; individual contributors. Django admin site. MDN web
docs, 2018, [online], [cit. 2018-04-23]. Available from: https://
developer.mozilla.org/en-US/docs/Learn/Server-side/Django

[12] Land, D. An introduction into the WSGI ecosystem. Ultravio-
let software studios blog, 2017, [online], [cit. 2018-05-01]. Available
from: http://www.ultravioletsoftware.com/single-post/2017/03/
23/An-introduction-into-the-WSGI-ecosystem

[13] Reference. Docker overview. Docker docs, 2018, [online], [cit. 2018-05-04].
Available from: https://docs.docker.com/

[14] Reference. API Guide. Django REST framework, 2018, [online], [cit. 2018-
05-10]. Available from: http://www.django-rest-framework.org/api-
guide/

[15] Oyom, A. N. Understanding the MVC pattern in Django. She
Code Africa, 2017, [online], [cit. 2018-03-29]. Available from:
https://medium.com/shecodeafrica/understanding-the-mvc-
pattern-in-django-edda05b9f43f

[16] Reference. Models. Django documentation, 2018, [online], [cit. 2018-05-
01]. Available from: https://docs.djangoproject.com/en/2.0/topics/
db/models/

[17] Facebook. Graph API. Docs, 2018, [online], [cit. 2018-05-12]. Available
from: https://developers.facebook.com/docs/graph-api

[18] Reference. django-otp. 2017, [online], [cit. 2018-05-01]. Available from:
http://django-otp-official.readthedocs.io/en/latest/

[19] Benita, H. How to turn Django Admin into a lightweight dash-
board. Medium, 2017, [online], [cit. 2018-05-02]. Available from:
https://medium.com/@hakibenita/how-to-turn-django-admin-
into-a-lightweight-dashboard-a0e0bbf609ad

[20] Reference. Product Advertising API. Developer Guide, 2018, [on-
line], [cit. 2018-05-04]. Available from: https://docs.aws.amazon.com/
AWSECommerceService/latest/DG/Welcome.html

40

https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://developers.google.com/web/fundamentals/payments/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
http://www.ultravioletsoftware.com/single-post/2017/03/23/An-introduction-into-the-WSGI-ecosystem
http://www.ultravioletsoftware.com/single-post/2017/03/23/An-introduction-into-the-WSGI-ecosystem
https://docs.docker.com/
http://www.django-rest-framework.org/api-guide/
http://www.django-rest-framework.org/api-guide/
https://medium.com/shecodeafrica/understanding-the-mvc-pattern-in-django-edda05b9f43f
https://medium.com/shecodeafrica/understanding-the-mvc-pattern-in-django-edda05b9f43f
https://docs.djangoproject.com/en/2.0/topics/db/models/
https://docs.djangoproject.com/en/2.0/topics/db/models/
https://developers.facebook.com/docs/graph-api
http://django-otp-official.readthedocs.io/en/latest/
https://medium.com/@hakibenita/how-to-turn-django-admin-into-a-lightweight-dashboard-a0e0bbf609ad
https://medium.com/@hakibenita/how-to-turn-django-admin-into-a-lightweight-dashboard-a0e0bbf609ad
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/Welcome.html
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/Welcome.html

Bibliography

[21] Aviram, Y. Amazon Simple Product API. 2017, v2.2.11. Avail-
able from: https://github.com/yoavaviram/python-amazon-simple-
product-api

[22] Keefer, T. python ebaysdk. 2017, v2.1.4. Available from: https://
github.com/timotheus/ebaysdk-python/releases

[23] Google. Add the Firebase Admin SDK to Your Server. Firebase
Guides, 2018, [online], [cit. 2018-05-04]. Available from: https://
firebase.google.com/docs/admin/setup

[24] Rojko, M. fcm-django. 2018, v0.2.18. Available from: https://
github.com/xtrinch/fcm-django

[25] Reference. fcm-django. Docs, 2018, [online], [cit. 2018-05-12]. Available
from: http://fcm-django.readthedocs.io/en/latest/

[26] monitoringartist. Dockbix XXL. 2018, [online], [cit. 2018-05-01]. Available
from: https://hub.docker.com/r/monitoringartist/dockbix-xxl/

[27] Grofek, T. ElateMe - QA v multiplatformńıch aplikaćıch. Bachelor’s the-
sis, Czech Technical University in Prague, Faculty of Information Tech-
nology, 2018.

41

https://github.com/yoavaviram/python-amazon-simple-product-api
https://github.com/yoavaviram/python-amazon-simple-product-api
https://github.com/timotheus/ebaysdk-python/releases
https://github.com/timotheus/ebaysdk-python/releases
https://firebase.google.com/docs/admin/setup
https://firebase.google.com/docs/admin/setup
https://github.com/xtrinch/fcm-django
https://github.com/xtrinch/fcm-django
http://fcm-django.readthedocs.io/en/latest/
https://hub.docker.com/r/monitoringartist/dockbix-xxl/

Appendix A
Acronyms

API Application Programming Interface

REST Representational State Transfer

ORM Object Relational Mapping

WSGI Web Server Gateway Interface

MVC Model View Controller

MTV Model Template View

URL Uniform Resource Locator

JSON JavaScript Object Notation

CRUD Create Read Update Delete

UI User Interface

HMAC Hash Based Message Authentication

CORS Cross-origin resource sharing

YAML YAML Ain’t Markup Language

QA Quality assurance

43

Appendix B
Contents of enclosed SD card

readme.txt the file with CD contents description
setup.md ... setup guide
src.......................................the directory of source codes

server-api the directory containing application source code
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
BP Hrachovina 2018.pdf..............the thesis text in PDF format

45

Appendix C
Installation guide

Project setup guide is also in the setup.md file on the enclosed SD card.

C.1 Requirements

• Python 3

• Python pip

• PostgreSQL database server version 9.6.x

C.2 Setup

1. Create database

2. cd src/server api

3. Fill in connection details in server api/dev settings.py

4. Make sure database is accessible

5. Install dependencies using:
pip install -r requirements.txt

6. Either run migrations using:
python manage.py migrate
or import database data from dump.sql using:
psql -h HOST -u USER -d DATABASE -p PASSWORD < dump.sql

7. Run API server by:
python manage.py runserver

8. Run Tests by :
python manage.py test

47

	Introduction
	ElateMe
	Aim of the thesis
	Motivation

	Analysis
	Background
	API Expansion
	API security standards
	Payment request API
	User administration

	Design
	 Used technologies
	API versioning
	Administration
	Credit payment
	Product suggestions
	Monitoring and alerting

	Implementation
	Project apps
	Settings
	API service expansion
	Administration
	Credit payment
	Push notifications
	Monitoring and alerting

	Testing
	Unit tests

	Conclusion
	Contribution
	Future outlook

	Bibliography
	Acronyms
	Contents of enclosed SD card
	Installation guide
	Requirements
	Setup

