Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Progressive spatiotemporal variance-based
path tracing filtering

Bc. Jan Dundr

Supervisor: doc. Ing. Jiti Bittner, Ph.D.
Field of study: Computer graphics
May 2018

ctuthesis t1606152353

ii

|cvuT ZADANI DIPLOMOVE PRACE

ZESKEVYSOKE
UCENITECHNICKE

l. OSOBNi A STUDIJNi UDAJE
= : ™
PFijmeni: Dundr Jméno: Jan Osobni ¢islo: 406761

Fakulta/Gstav: Fakulta elektrotechnicka
Zadavajici katedra/lUstav: Katedra pocitacové grafiky a interakce

Studijni program: Oteviena informatika

L Studijni obor: Pocitacova grafika a interakce

b
Il. UDAJE K DIPLOMOVE PRACI
4 N\

Nézev diplomové prace:

Flltrovanl globalmho osvetlem pro mteraktlvm apllkace

Nazev diplomové prace anglicky:

Global Illummatlon Flltermg for Interactlve Apphcat:ons

Pokyny pro vypracovani:

Prostudujte existujici metody pro filtrovani globalmho osvetlenl pouzﬁelne v lnteraktlvnich aphkac:lch a vytvoﬂe resersi
téchto metod. Nasledné implementujte nedavno publikovanou metodu pro filtrovani globalniho osvétleni vyuzivajici odhadu
variance a reprojekce [1]. Implementaci realizujte v systému Virtual Reality Universal Toolkit (VRUT) jako rozsifeni stavajici
implementace metody sledovani cest. Provedte dlikladné testovani implementace na nejméné dvou testovacich scénach. |
Zamerte se na rychlost atgontmu schopnost odstranenl stochastlckeho Sumu a v:zualm anefakty zpusobene fi Itrovamm

Seznam doporucene literatury:

: [11 Christoph Schied, Anton Kaplanyan, Chris Wyman An]ul Patney, Chakravarty R AIIa Chaitanya, John Burgess Shuqlu

_Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. Spatiotemporal variance-guided filtering: real-time reconstructlon
for path-traced global illumination. In Proceedings of High Performance Graphics (HPG '17).

' [2] Mathias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep
Sen, Cyril Soler, and S-E Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo
Rendering. Computer Graphics Forum 34, 2 (2015), 6677681.

' [3] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan Kautz. 2012. The State of the Artin Interactive Global
1llum|nat|on Comput Graph Forum 31 1 (February 2012) 160-188.

Jméno a pracovisté vedouci(ho) dlpfomove prace:

doc Ing Jn"'i Bittner, Ph.D., Katedra pocltacove graflky a mterakce

Jméno a pracowste druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomove prace:

Datum zadani diplomové prace: 15.02.2018 Termin odevzdani diplomové prace:
Platnost zadani diplomové prace: 30.09.2019 ra
/ Lr e 37
doc. Ing. Jifi Bittner, Ph.D. podpis vedpuci(ho) tstavukatedry prof. Ing. Pavel ﬁipka, CSc.
padpis vedouci(ho) prace “ podpis dékana(ky}
. /

1,
lll. PREVZETi ZADANI /

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci sambstatné. bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZité literatury, jinych prament a jmen konzultant(je tfeba uvést v diplomové praci.

2505 9048 Joo, h,«—/C,(

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

ctuthesis t1606152353

iv

Acknowledgements

Dékuji velice Jifimu Bittnerovi i An-
toninu Miskovi za skvélé rady a porady
a za moznost vyzkoouset filtr na VRUTu.
Vielé diky také patii rodiné a vSem
spriznénym dusim v okoli, bez Vés bych
opravdu nic nenapsal! :)

Dodatecné také dékuji pantim Marko
Dabrovic a Frank Meinl za model Sponzy,
uzivateli “Leo” z lhttps://archive3d!
za model zidle, ktery jsem vlozil
do Sponzy, nezndmému studentovi, opét
Tondovi Miskovi a Matéjovi Vydrovi za
3D scénu krizovatky, na které porad a
neustédle testuji (jsou to tu ty obrazky
s autem) a nakonec také Standovi Stér-
bovi za naméteni rychlosti na své bleskové
NVidii 1060.

Prosté diky!

Declaration

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, ze jsem uvedl
veskerou pouzitou literaturu a ze jsem
na sebe pri psani vylil kafe jen dvakrat.

V Praze, 28. kvétna 2018

ctuthesis t1606152353

https://archive3d.net
https://archive3d.net

Abstract

Rendering 3D scenes with both fast and
accurate global illumination is still a very
tough problem: there is a large number
of methods giving approximate results,
each one with different compromise. Path
tracing is, given it’s accurate and unbi-
ased nature, often the method of choice
here. It is still, however, very hard to do
in real-time due to its complex recursive
light interactions: even the newest GPUs
struggle to keep real-time frame rates for
more than just a few samples per pixel,
which can lead to a very noisy output or
even no useful data for some more prob-
lematic areas.

A recent approach to processing the
resulting image is described and exper-
imented with in this thesis: diffuse
light samples are accumulated from pre-
vious frames using reprojection and sub-
sequently filtered by a fast bilateral filter
constrained by normals, depth, and vari-
ance (which will stop blurring valuable
details). This results in a temporally sta-
ble noise-free output which converges in
a few frames.

We implemented the method using
OpenGL and incorporated it in an ex-
isting high-performance CPU-based path
tracer VRUT. We extended the approach
by putting it in the progressive rendering
framework, where initially less than one
sample per pixel is shot to increase interac-
tivity. We evaluate the performance and
visual quality of this algorithm in several
test cases with diffuse illumination.

Keywords: computer graphics, path
tracing, global illumination, real-time
rendering, bilateral filtering, temporal
filtering, OpenGL

ctuthesis t1606152353

Supervisor:
Ph.D.

doc. Ing. Jifi Bittner,

Abstrakt

Vykreslovani 3D scén se zaroven rychle vy-
pocitatelnym a presnym globalnim osvét-
lenim je jesté pordd komplikovany pro-
blém: existuje mnoho metod, které jsou
schopny vysledek v urcitych situacich od-
hadnout velmi presné a v jinych zase se-
lhat. Sledovéani cest (path tracing) je diky
své presnosti a nevychylenosti ¢asto pou-
zivana metoda, stile je ale ptilis pomala
pro vypocet v realném case kvuli vel-
kému mnozstvi komplikovaych interakeci
paprskill se scénou: i nejnoveési GPU maji
problém udrzet si rychlost vypoctu v real-
ném case pro vic nez jen nékolik snimku
za sekundu. To znamend, Ze obrazovy vy-
stup je vsude z velké miry zatizen Sumem
a misty ani nemusi obsahovat zadnou in-
formaci.

V této praci je popsana a otestovana
jedna z novéjsich metod: vzorky diftzni
slozky svétla jsou s pomoci reprojekce
nashromézdény z minulych snimku a na-
sledné je na né aplikovan bilateralni filtr
vyuzivajici normélu, hloubku a rozptyl v
daném misté k zastaveni rozmazani cen-
nych detaiti napt. kolem hran a okraju
stind. Timto zpuisobem dostaneme Casoveé
stabilni vystup bez Sumu (ktery ndm do-
konverguje hned po nékolika snimcich).

Tudo metodu jsme implementovali po-
moci OpenGL jako soucést existujiciho
rychlého vykreslovaciho systému na CPU
postaveného na sledovani cest. Metodu
jsme upravili tak, aby si poradila i se vstu-
pem, kde v kazdém pixelu jesté nemusi byt
pritomen vzorek z vystieleného paprsku
(kvili udrzeni interaktivni snimkové frek-
vence). Nakonec jsme zhodnotili kvalitu a
rychlost vystupu tohoto algoritmu.

Kli¢ova slova: pocitacova grafika,
sledovani cest, globalni osvétleni,
vykreslovani v redlném case, bilateralni

vii

filtr, ¢asovy filtr, OpenGl

ctuthesis t1606152353

Contents

1 Introduction 1l
1.1 Summary
2 Theory 5
2.1 Global INlumination [5]

2.2 Methods simulating light transport 6]
2.2.1 Path tracing.
2.2.1.1 Different versions.........
2.2.2 Photon mapping
2.2.2.1 Instant radiosity

2.2.3 Finite elements

2.3 Methods in rasterization pipeline

2.3.1 Ambient light
2.3.2 Prebaked diffuse lighting
2.3.3 Light probes
2.3.4 Screen-space methods
2.3.5 Voxel methods............. 12
2.3.5.1 Voxel cone tracing.

3 Related work 17
4 Algorithm 19
4.1 Basic algorithm...............
4.1.1 Quick summary............
412 Input ...
4.1.3 Accumulation 20
4.1.3.1 Variance 22
4.1.4 Spatial filtering
4.1.4.1 Bilateral filter

4.1.4.2 Normal weighting function

ctuthesis t1606152353

viii

4.1.4.3 Depth weighting function.
4.1.4.4 Luminance weighting
function..................... 27
4.1.4.5 Combining the weights . . .
4.1.4.6 Edge-Avoiding A-Trous
Wavelets 28]
4.1.5 Final bledning
4.1.6 Tuning the algorithm
4.2 Fewer samples per pixel
4.2.1 Missing normal and depth
information 34

4.2.2 Overblurring from first wavelet
level accumulation

4.2.3 Overblurring caused by too high

EM WL oo ve i [35]
4.2.4 Reprojecting a fraction of
samples per pixel
4.2.5 Handling occlusions with holes
4.2.6 Temporal AA..............
4.3 More samples per pixel
4.4 Spatial variance estimate
5 Implementation and results
6 Conclusion 51
6.1 Limitation: no scene or light
movement 51
6.2 Limitation: diffuse component
only..... .o
6.3 Limitation: no transparency. . ..
6.4 Discussion %

A Bibliography

Figures

1.1 Tennis for two was a first visual
videogame running on an osciloscope
(1957), image source:
http://nr.news-republic.comn|. ..

1.2 Juggler was a first real-time
raytracing demo running on Amiga
(1987), image source:
https://commons.wikimedia.org.

1.3 We can see how our filter (in red)
fits into a path tracing pipeline as a
post-processing filter: it works purely
with image buffers as its input. The
green parts are optional: additional
normal, depth and albedo buffers
might be generated by a rasterizer
instead of coming straight from the
path tracer and any kind of
post-processing might be additionally
performed on the output of our filter.

1.4 Before and after our algorithm is
applied: the noise is gone!

2.1 The camera (eye) is looking at a
point X on the surface with a normal
N, the incoming vector between the
eye and the point on the surface is
DO0. The incoming ray D0 can reflect
in any direction around hemisphere
H with a probability given by BRDF
(see [Nic65]) at a given point. Two
examples of possible outgoing
directions are D1 and D2. 6l

2.2 rendering equation is valid for
every point on the surface: every
surface affects all other surfaces. ... [7

2.3 path tracing approximates
rendering equation recursively: rays
that hit a surface continue reflecting
around the scene up to some depth,
image source: http://blender3d.cz

ix

2.4 bidirectional path tracing connects
subpaths from camera and light and
converges faster, image source:
http://www.maw.dk|

2.5 Metropolis light transport is able
to converge in short time even very
complex cases of light transport,
image source:
https://cg.tuwien.ac.at/|......

2.6 Two cropped parts of path-traced
Sponza images are shown. The first
column shows a shadow under a chair
formed by direct light from a small
sphere-shaped light; the second
column represents an area with
indirect light. The four rows
represent images after 1,4, 16, 64
samples. The image is still noisy even
after 64 samples and many features
in indirect lighting are missing before
that point. Most GPUs are only
capable of rendering around 1 sample

per pixel in real-time today.
2.7 PM has two passes: photon
distribution trough the scene and
querying photon map for photon
density

2.8 pixel brightness in simple lighting
in rasterization pipeline is calculated
as cosine of angle between light’s
direction and surface normal clamped
at zero

2.9 First SSAO implementation as it
appeared in Crysis. Note the middle
gray areas which shouldn’t get
occluded: the hemisphere visibility
term wasn’t implemented correctly,
halos around borders and distance
scaling. More modern SSAO
implementations don’t have these
issues. Image source:
https://en.wikipedia.org|.....

ctuthesis t1606152353

http://nr.news-republic.com
https://commons.wikimedia.org
http://blender3d.cz
http://www.maw.dk
https://cg.tuwien.ac.at/
https://en.wikipedia.org

2.10 Voxel cone tracing rasterizes the
scene into a mipmapped 3D voxel
grid, image source:
http://leifnode.com

3.1 Architecture overview of a Deep
Recurrent Neural Network used by
Chaitanya et al. Image source:

......................

3.2 Screenshot from NVidia’s realtime
raytracing Volta demo Reflections.
Image source: NVidia, Youtube. ..

4.1 This diagram illustrates the inner
workings of the algorithm (it zooms
out on the red “filter” part of the
diagram |1.3)): the blue numbers
relate to the three stages described in

the section 4.1.11................

4.2 Additional input buffers, together
forming something similar to a
GBuffer. They are normal, depth (in
top row) and albedo buffer (depth
buffer has been scaled for preview).
Normal buffer is packed into
2-component form using a spheremap
transform (discussed later in section
to allow both linear
interpolation and memory-friendly
storage of normalized normals.
Additional optical flow or in-pixel
variance buffers might be required,
depending on the version of the
algorithm.

4.3 A single frame of our
one-sample-per-pixel input. The
scene is lit by a singe sphehe-shaped
light source. Shadow of the chair
formed by a direct lighting is noisy,
but discernible, the soft indirect
bounces on the lion and in the back
are, however, only very sparsely

ctuthesis t1606152353

4.4 The same scene as in after a
few frames of accumulation: new
detail emerges, but there’s still a lot
of noise. The noise would start to
disappear only after seconds into the
accumulation (as we saw in figure

4.5 Some pixels weren’t visible in
previous frame and it isn’t possible to
blend them with a prpevious frame.
This creates visible artifacts in the
accumulation: there are some places
along edges with visibly less
accumulated samples. This
additional noise gets filtered by our
spatial bilateral filter during the next
algorithm stage |4.1.4.

4.6 The accumulated scene is filtered
by our bilateral filter with normal
and depth weights driven by normal
and depth buffers pictured below the
image. We can see the
geometry-based edges have been
preserved, but all important
structure introduced by path tracing
has been lost by too much blurring
(like the chair’s shadow)..........

4.7 Variance buffer: lighter color
represents more variance at the
currect pixel. Variance highly
correates with luminence, but differs
in important places: the floor is very
bright, but with smaller variance
(most rays simply hit the light) and
shadow edges have higher variance
than their surroundings because
secondary rays at their pixels ended
up in more different places. More
noise is present in these images
compared to accumulated diffuse
because variance is calculated using
terms with a square power,
amplifying all errors.

http://leifnode.com

4.8 The result after applying our
bilateral filter with weights calculated
using normal, depth and variance
buffers (pictured below the image).
Our bilateral filter blurs more values
of high variance together (such as the
shadow borders) resulting in sharp

4.9 Hlustration of multi-scale
convolution used for accelerating the
bilateral filtering: a wide convolution
kernel is approximated by multiple
smaller, faster convolutions in
exponentially decreasing skip size
(22 -1,2' -1,2°-1=3,1,0
pictured).o oo

4.10 A few stages from bilateral
filtering of a car model. Top left
image is unfiltered, next three in
reading order are three stages from
our 6-stage bilateral filter. The scales
are applied in a decreasing order to
subsequently filter high-frequency
artifacts introduced in a past
low-frequency stage. These artifacts
can be seen as “boxy” patterns in the
noise. It can happen the pixel is
filtered only by earlier stages and the
artifact patern appears in the output:
this is, however, noticeable only at
very low sample counts and right
after disocclusions, when one sample
distributes too far.

4.11 The hierarchical wavelet filter was
applied in increasing order of scales
(high-frequency first, low frequency
later). The resulting artifacts are
clearly visible as repeated borders
along edges.

xi

4.12 Default accumulation buffer is
shown on the top and the
accumulation buffer with first-wavelet
previous frame lookup on the bottom.
The bottom one certainly has much
less noise and speeds up convergence
this way. It, however, increases bias
as we can see in form of a slightly
blurred shadow edges in the
magnified area around the chair’s
legs. The bright speckles are new, yet
un-spatially-filtered samples:
technique using less samples per pixel
was used (more about this version of
the algorithm is described in section

4.13 Variance buffer after being filtered
by bilateral filter’s weights two times.
Only prominent areas are weighted
significantly at this stage: only pixels
with high variance are allowed to be
filtered in later scales of the bilateral
filtering to prevent overblurring (the
variance weighting is scale-awave).

4.14 Temporal antialiasing smooths
both jagged lines (easily visible with
complex geometry) and noisy
low-sampled areas (like the han rail
here). Top image is without temporal
antialiasing, bottom one with it. ..

4.15 Accumulation ratio r is important
for detail preservation. Top image is
rendered using 16 samples/pixel with
our filter off, second one using
unbounded r and the third one with
age = 5. The shadow’s shape is
correct even in the third row, but
penumbra detail has been lost due to
too aggresive blending. The missing
slight brown tint in the middle
picture is caused by changing
material properties.

ctuthesis t1606152353

4.16 The result after the final blending
phase: albedo is multiplied back in
and themporal antialiasing is applied
by blending with a previous frame.

4.17 This diagram illustrates the
changes (highlighted in red) we need
to make to our algorithm to support
even less than one sample per pixel
as input. All modifications are
discussed in section 4.2

4.18 GLSL code implementing
encoding and decoding normal
between its normalized 3-component
and packed 2-component form. Code
source: |

4.19 Tt can occur previous frame gets
reprojected under new sparse samples
that are actually closer to the camera
and should cover the old ones,
resulting in holes in objects cleaning
up only after many new frames. Our
solution is using a min-filter-based
rejection described in section [4.2.5]

4.20 Hlustration of a eroded depth
buffer: all holes with incorrect
surfaces (much further compared to
the eroded depth buffer) get
rejected. il

6.1 This is what would the
accumulation buffer look like without
any reprojection applied (the camera
is moving to the left). A similar
smearing effect would be visible on
shadows in a scenario a light or an
object would move: uncorrelated
pixels would get blended unless
rejected using some other
mechanism.

ctuthesis t1606152353

Xii

6.2 Implementing the algorithm and
ignoring reflections yields incorrect
resuls. Top image shows a correctly
pathtraced car with a reflection, the
bottom one the same scene when our
filter is applied: reflection is
overblurred and it has albedo’s color
instead of a reflected one. The path
to the correct solution is described in
section(6.2L...........,

Chapter 1

Introduction

People were interested in computer graphics ever since there were computers
(or at least very early on): having something visually nice and interactive
on the screen was always very appealing. One of the first visually fully
interactive experience appeared already in the 1950s: American physicist
William Higinbotham developed a sports video game Tennis for two in 1958
(see figure [1.1). It ran on an oscilloscope as a fun attraction at an exhibition,
and its circuitry took up space as big as a microwave oven.

The popularity of computer graphics gained a lot of momentum afterward:
a lot of arcade games with better and better graphics appeared in the 70s and
80s, interactive computer graphics became mainstream with home computers.
Ray tracing (like a juggler in figure |1.2)), path tracing, rendering equation
and other crucial 3D rendering concepts appeared at that time as well. GPUs
with hardware Transform and Lighting accelerators were introduced in the
late 90s later developing in vertex and pixel shaders, enabling a large number
of graphics algorithms. They keep evolving to this day: we can render more
and more elaborate lighting phenomena in real-time.

It’s slowly narrowing, but there is still a significant quality gap between
offline-rendered and real-time computer graphics. Shading models are be-
coming more physically accurate, but most production real-time rendering
pipelines heavily depend on rasterization and a few additional manually-coded
visual approximations (shadow maps, screen-space lighting, light probes, etc.).
Offline rendering for visualization and movies, on the other hand, keeps
using path tracing: its convergence gets better and better by using smarter
probability distributions and accelerated tree structures, but the basic con-
cept stayed the same for a long time. GPUs can be used to accelerate path
tracing performance rapidly (mostly for coherent rays and scenes that fit
in their video memory), but we are still not able to produce anything near
noise-less images in real-time (at least 30 fps). Some approaches raytracing
screen-space or mipmapped voxel data are emerging even in the rasterization
world (raytracing reflections, shadows, GI, etc.), but their use case is either

1 ctuthesis t1606152353

1. Introduction

Figure 1.1: Tennis for two was a first visual videogame running on an osciloscope
(1957), image source: http://nr.news-republic.com

very limited in scope compared to accurate path-traced result or too slow for
current hardware.

Recently, another approach to tackling the real-time path tracing problem
surfaced: using the quickly computed noisy data and approximate global
illumination using only them, essentially rapidly denoising the image in
some clever way. Different approaches like this include a machine learning
approach ([CKST17]) using a pre-trained neural network, real-time indirect
light approximation using light probes ([SL17]) and spatiotemporal filter
([SKW*17]) with emphasis to sample variance experimented with in this
thesis. We will talk about these works in more detail in chapter

The filter is applied as a post-processing filter: it needs only a few image
buffers generated by path tracing as an input and is in no way dependent
on 3D scene complexity or exact path tracing implementation, as we can see
in a diagram The resulting rendering pipeline could, if functional, have
advantages of both worlds: accurate (based on path tracing) and fast (only a
small number of samples is rendered and quickly filtered each frame). The
noise/detail ratio can be balanced using three simple parameters introduced
in section

B 1 Summary

The chapter Theory is going to focus on fundamental concepts used in
3D global illumination rendering, some of which are input to this filter or
are used as a part of it. Chapter Related work goes through similar

ctuthesis t1606152353 2

http://nr.news-republic.com

IIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIII1.1.5ummary

Figure 1.2: Juggler was a first real-time raytracing demo running on Amiga
(1987), image source: https://commons.wikimedia.org

published approaches. Next, I will go through the elementary stages of the
filter and later dive deeper into it in a chapter Algorithm . I’ll talk about
the implementation and summarize the algorithm’s quality and speed in
the Implementation and results . Finally, I will go through the filter’s
limitations and possible future extensions in the chapter Conclusion @

3 ctuthesis t1606152353

https://commons.wikimedia.org

1. Introduction

path ‘

tracer

diffuse

irradiance filter post-

process

raste- normal
rizer albedo
depth

Figure 1.3: We can see how our filter (in red) fits into a path tracing pipeline
as a post-processing filter: it works purely with image buffers as its input. The
green parts are optional: additional normal, depth and albedo buffers might be
generated by a rasterizer instead of coming straight from the path tracer and
any kind of post-processing might be additionally performed on the output of
our filter.

Figure 1.4: Before and after our algorithm is applied: the noise is gone!

ctuthesis t1606152353 4

Chapter 2

Theory

. 2.1 Global Hlumination

The term Global Illumination ([RDGKI12]) (GI) applies to any rendering
technique that attempts to produce realistic looking images using not only
direct interaction between light and a surface but also light propagating and
bouncing through the whole scene. All of them follow the idea of rendering

equation ([Kaj86]):

Lo(x,d) = Le(x,d) + Ly (z,d)

It states that outgoing radiance L, from location x in direction d is sum of
emitted (L.) and reflected (L,) radiance. We can find the reflected radiance
at our point by shooting a ray into the scene. The amount of light is then
adjusted by a cosine of an angle between the ray and out surface normal
(dot product) and by a special per-material function describing how much
light is transferred depending on incoming and outgoing ray directions. More
formally, reflected radiance is computed as:

Lo(x,d) = / Lo, dy) f(x, di, dymaz(0,n - d;)dd;
h

where h is hemisphere on a location x oriented by its normal n, L; is
incident radiance determined by shooting a ray into the scene and f, is Bidi-
rectional Reflectance Distribution Function (BRDF, see [Nic65]) determining
the amount of light for different incoming and outcoming directions. Dot
product describing angle between normal and incoming light direction is
clamped at zero so that directions facing each other add up light and they
never subtract it. We can see the illustrative situation on figure 2.1}

5 ctuthesis t1606152353

2. Theory

Figure 2.1: The camera (eye) is looking at a point X on the surface with a
normal N, the incoming vector between the eye and the point on the surface
is DO. The incoming ray DO can reflect in any direction around hemisphere H
with a probability given by BRDF (see [Nic65]) at a given point. Two examples
of possible outgoing directions are D1 and D2.

This is not a straightforward or easy problem to solve. There are many
possible locations in every 3D scene where rendering equation has to be valid,
and they all depend on each other recursively, as illustrated in figure [2.2]

B 22 Methods simulating light transport

B 2.2.1 Path tracing

Path tracing ([Kaj86]) approximates integral from the rendering equation by
Monte Carlo sampling. Primary rays are shot from camera origin through
the screen, and all the surface’s rendering equations are solved by randomly
sampling rays through their hemispheres. A probability of a ray being shot
in a certain direction respects the rendering equation with its cosine law and
BRDF (importance sampling) and continues evaluating other surfaces it hits
in the scene recursively, as seen on figure |2.3.

The solution is initially very noisy but converges to a correct solution
after enough rays have been propagated through the scene. It’s an unbiased
method: the result it gives us is always exact with some amount of noise.
Path tracing is a golden standard method for computing a high-quality GI, a
significant advantage of this method is its generality and robustness: a lot
of otherwise complicated light phenomena appear from the relationship of
rendering equation and BRDF by themselves, there is no need to add them
manually.

ctuthesis t1606152353 6

2.2. Methods simulating light transport

N

Figure 2.2: rendering equation is valid for every point on the surface: every
surface affects all other surfaces

/

\ /

M

_ -l
— -

e
)
x|

Figure 2.3: path tracing approximates rendering equation recursively: rays that
hit a surface continue reflecting around the scene up to some depth, image source:
http://blender3d.cz]

B 2.2.1.1 Different versions

While the naive path tracing is correct in its essence, some lighting situations
might need a very long time to converge due to the structure of the algorithm:
sending rays from the screen and letting them bounce around randomly. A
small, but bright source of light (like a light bulb or a sun (which we might
indeed consider small by its angular size)) would have a very minuscule
probability of being hit by an incoming ray. It would, however, have a large
impact on an amount of reflected light: the output could get noisy to the
point of not hitting the light at all for thousands of samples per pixel. Next
event estimation solves this problem by sampling predetermined bright light
sources more often: all known lights are usually tested for visibility at every
bounce.

7 ctuthesis t1606152353

http://blender3d.cz

2. Theory

Figure 2.4: bidirectional path tracing connects subpaths from camera and light
and converges faster, image source: http://www.maw . dk|

Figure 2.5: Metropolis light transport is able to converge in short time even very
complex cases of light transport, image source: https://cg.tuwien.ac.at/|

Caustics (bright spots light likes to make when traveling through a medium
with a high refractive index like glass or water) converge very slowly as well
because traditional path tracers trace the rays from the eye rather than from
a light source. Bidirectional path tracing ([LW93|) is something like next
event estimation on steroids: it traces a few light bounces both from a surface
and light and connects each hit point on the surface with each other by
shooting additional rays (as seen on figure . Both next level estimation
and bidirectional path tracing need to be carefully weighted by probabilities
the light will travel in the ray’s direction: too much noise would be introduced
into the output otherwise.

Many new methods for faster converging path tracing emerge all the time.
There are probabilistic connections for bidirectional path tracing ([PRDDI5])
reusing lighting subpaths and introducing caching. Metropolis light transport
([Veads], see 2.5) converges quickly even with scenes with very hard to find
light paths. Adaptive sampling based on the remaining variance (noise) in
the image at a given pixel ([T.J97]) is possible, same as milking temporal

ctuthesis t1606152353 8

http://www.maw.dk
https://cg.tuwien.ac.at/

2.2. Methods simulating light transport

coherence ([HDMSO03]) and many more. The performance of any ray tracing
approach depends on the acceleration structure used: that’s a whole another
universe of problems we will not tackle in this thesis.

Any of the path tracing versions could be used as an input to our filter:
we experimented with a simple next level estimation path tracer with sample
order given by a Halton sequence to fill up space quickly and nicely.

While path tracing is beautiful, unbiased and widespread in offline rendering,
it’s still very slow for real-time usage today (how quickly a very simple path
tracer converges can be seen in figure 2.6). It can take a lot of time to
converge, depending on the exact algorithm used and scene complexity:
seconds, minutes or hours. That’s why a plethora of other GI solutions exist:
each one is suitable for a specific GI feature but less for others.

Bl 2.2.2 Photon mapping

Photon mapping ([Jen96]) (PM) is similar to a bidirectional path tracing in
its concept. It computes the result in two passes refsk2: a large number of
photons is shot from the light sources, bounced around the scene and stored
into a photon map at each hitpoint. Pixel brightness is then computed in
a second pass by shooting one ray and estimating photon density using a
quick search in a photon map. This approach can in some conditions get very
close to real-time by using smart search structures (like KD-trees) and is an
excellent solution for caustics simulation because of its direct “from light to
scene” approach. It’s biased, but the bias disappears with more samples used.

B 2.2.2.1 Instant radiosity

The first pass of instant radiosity ([Kel97]) is identical to photon mapping: but
the second pass doesn’t lookup photon density, but treats prominent photons
as a virtual point light (VPL). The scene is then lit by these VPLs with
imperfect shadow maps. These shadow maps are only imperfectly sampled
and a very low resolution (32x32) so many of them can be processed at once.

B 2.2.3 Finite elements

Finite elements method by Goral et al. (|[GTGB84]) is based on a basic
idea from the rendering equation: every surface affects every other surface
(triangles in a scene expressed by a mesh, for example). We can construct a
linear system of equations representing these relationships and solve it by a
least squares method.

9 ctuthesis t1606152353

2. Theory

Not every surface needs to be directly linked to every other: we can skip
links for surfaces that are not directly visible. The resulting system is easier
to solve, and light will propagate to them anyway. This method can only
approximate smooth diffuse lighting; no sharp reflections are taken into
account. Deep GBuffers can be used to implement this method in real-time
on GPU: there is no linear system being solved there, light propagation is
iterated temporally between frames.

B 2.3 Methods in rasterization pipeline

Real-time GPU accelerated rendering tackles the rendering problem differently
from the methods we talked about until now: we’re not shooting rays into
the scene and the geometry is rendered directly: triangles are drawn on the
screen by rasterization. GPU has special hardware just for this task and is
capable of rasterizing millions of triangles in a very short time. Simple direct
lighting model computation for a directional light can look like this (see figure
2.8):

val(P) = XL:max(O, N - D)
=1

where val(P) is a resulting brightness of a pixel P. It’s computed as a sum
over all lights [from L lights as a dot product between triangle normal N
and light direction D so that surface is wholly lit when its normal is precisely
opposite to the light direction and not lit at all when perpendicular to it. The
value is clamped to zero so that facing away from the light source doesn’t
subtract light. An additional shadow map might be pre-rendered and looked
up to check if the light is visible at the current surface.

Implementing a practical GI approach in this constrained real-time envi-
ronment has always been a challenge, the algorithms can be very simple or
mightily complex.

B 2.3.1 Ambient light

Sometimes, an ambient light is sufficient. It (quite crudely) approximates GI
by lighting every fragment by a constant value: there can never be an unlit
place in a scene. This technique works best with textures: the contrast is lost
otherwise.

ctuthesis t1606152353 10

2.3. Methods in rasterization pipeline

Bl 2.3.2 Prebaked diffuse lighting

GI can be computed by any slow but accurate method beforehand and baked
into the scene as a part of a texture or another texture channel ([LTH™13]).
This approach supports only static light but enables quality lighting for
virtually no additional cost, that’s why it has been widely used.

B 2.3.3 Light probes

Light probes ([MMNL17]) can be stored at some important locations through
the scene: they capture indirect lighting information that is later used to
light objects by interpolating between the probes. It can be combined with a
similar probe-using approach for reflection using environment maps. Probes
can be placed by an artist or automatically, even generated on-the-fly. This
approach is popular but suffers from poor spatial resolution.

Many-light approach presents a light probe extension using the same VPL
algorithm as is described in the Instant radiosity section ([Kel97]).

B 2.3.4 Screen-space methods

Screen-space methods, mainly Screen Space Ambient Occlusion (SSAO)
(IRGS09]) gained a massive popularity since it was used in Crysis (see figure
2.9) for the first time since it’s a simple method with a good visual appearance.
It was, however, very often overused and its effect exaggerated too much.

Ambient occlusion is a simple, yet nicely-looking approximation to true
GI: the point on the surface is darker if it’s occluded from incoming light by
its surroundings. The screen-space variant works with a depth buffer and
optionally a normal buffer: it searches a small neighborhood around current
point and approximates occlusion of the current fragment by its surroundings.
The fragment is darker when it has a lot of occluding pixels around it. SSAO
is often sampled at half resolution and filtered in multiple passes to reduce
noise since it’s technically an approximate form of screen-space raytracing.

Many modifications of the basic methods were implemented during the
years to mitigate disocclusion artifacts (even using two-layered GBuffer by
Mara et al. [MMNLI6]), increase directionality, bounce colors (JRGS09]) and
even approximate accurate GI ([MMNLIG6]). It’s, however, always limited to
the on-screen information: any attempt to sample further points would result
in a visible pop-in.

11 ctuthesis t1606152353

2. Theory
B 2.3.5 Voxel methods

GI is a very 3D spatial phenomena, so it makes sense that many voxel-based
methods exist. They usually inject the direct lighting information in a voxel
grid first, then propagate light through them in some way and then interpolate
them to light their scene. This approach is quite fast using 3D texture lookups
but, again, suffers from bad spatial resolution and light bleeding.

B 23.5.1 Voxel cone tracing

Cone tracing by Crassin et al. (JCNST11]) is a very exciting real-time
approach, similar to approximate single-bounce diffuse path tracing in the
voxel space with a twist. The scene is first rendered with direct lighting in a
voxel grid using rasterization, multiple levels of detail of this voxel grid are
computed, and cones are shot from screen fragments into the voxel grid to
determine indirect lighting. Cones are like rays, but they have an increasing
width: voxel grid is sampled at the lower level of detail according to the
cone’s diameter at the hitpoint (as seen in figure 2.10). The voxel data are
directional (6 directions for a voxel cube) to increase directional resolution.

This is a surprisingly good real-time approach to GI approximation and has
been already implemented a lot of times in a gaming world already: as a part
of Unreal Engine, for example. It, however, suffers from bleeding artifacts
(no good solution for accurate visibility at lower voxel resolutions) and use a
lot of memory for higher-resolution voxel data, which are necessary for more
complex GI phenomena. More compact tree representation would solve the
memory issue, but the lookup would become too slow.

ctuthesis t1606152353 12

2.3. Methods in rasterization pipeline

Figure 2.6: Two cropped parts of path-traced Sponza images are shown. The
first column shows a shadow under a chair formed by direct light from a small
sphere-shaped light; the second column represents an area with indirect light.
The four rows represent images after 1,4, 16, 64 samples. The image is still noisy
even after 64 samples and many features in indirect lighting are missing before
that point. Most GPUs are only capable of rendering around 1 sample per pixel
in real-time today.

13 ctuthesis t1606152353

2. Theory

Figure 2.7: PM has two passes: photon distribution trough the scene and
querying photon map for photon density

i

Figure 2.8: pixel brightness in simple lighting in rasterization pipeline is calcu-
lated as cosine of angle between light’s direction and surface normal clamped at
Zero

ctuthesis t1606152353 14

2.3. Methods in rasterization pipeline

Figure 2.9: First SSAO implementation as it appeared in Crysis. Note the

middle gray areas which shouldn’t get occluded: the hemisphere visibility term

wasn’t implemented correctly, halos around borders and distance scaling. More

modern SSAQO implementations don’t have these issues. Image source:
| //en.wikipedia.org

Figure 2.10: Voxel cone tracing rasterizes the scene into a mipmapped 3D voxel
grid, image source: http://leifnode.com|

15 ctuthesis t1606152353

https://en.wikipedia.org
https://en.wikipedia.org
http://leifnode.com

ctuthesis t1606152353

16

Chapter 3

Related work

Many methods using the low-sample quickly computed noisy data as a basis
for a noiseless biased approximation surfaced lately.

This thesis is based on an approach introduced in a paper from Shied et
al. ([SKW™17|) published in at HPC 2017: it filters path tracing output
accumulated over multiple previous frames constrained by auxiliary buffers
and sample variance. This thesis experiments with this approach, modifies
some of its parts and extends it to be able to use any number of samples per
pixel. The same technique is used by Frostbite to bake global illumination
quickly.

Machine learning approach from Chaitanya et al. (JCKS™17]) solves the
same problem, but using a different tool: machine learning, more accurately
a recurrent denoising autoencoder. A recurrent deep neural network (see|3.1)
is trained on flythroughs of three complex scenes to take a sequence of noisy
one-sample per pixel data and return a filtered result. The most significant
advantage of this method is the reduced warm-up time: the complex model
can extract more of structural information from the noisy data early on,
but our filter needs to accumulate the structure of the noise through its
variance during the first 2-3 frames. This approach is used in Optix, using
new NVidia’s tensor cores Volta hardware and some form of Al denoising is
used in Octane renderer as well.

Our filter, however, runs much faster (5)): just a few milliseconds on any
GPU compared to 54 ms on Titan Pascal (both at 720p). The execution
could be, however, faster and separate from other tasks using new NVidia’s
tensor cores: it would, however, take up space from other operations on
the tensor cores. Moreover, our filter scales to any number of samples per
pixel easily without any retraining. Some work exhaustively comparing
performance/quality tradeoffs of these two methods could be very interesting.

Another paper ([MMBJ17]) with seemingly comparable results by Mara
uses very similar methods. Their filtering is, however, limited to the use of

17 ctuthesis t1606152353

3. Related work

Recurrent convolutional block

Encoder Decoder

Figure 3.1: Architecture overview of a Deep Recurrent Neural Network used by
Chaitanya et al. Image source: [CKS*17]

Figure 3.2: Screenshot from NVidia’s realtime raytracing Volta demo Reflections.
Image source: NVidia, Youtube

a bilateral filter without using any variance: this might hurt the method’s
performance. A study comparing our algorithm with Mara’s would be very
interesting as well.

Another recent intriguing paper from Silvennoinen and Lehtinen ([SL17])
uses irradiance probes placed into a scene to approximate diffuse indirect
lighting by using very accurate mutual visibility approximations from sparse
data. Results are very similar to accurate path-traced images and available
from the first frame, where our filter needs some warm-up time. It’s, however,
constrained only to irradiance probes and it’s unclear how they would behave
under animation.

Some form of similar denoising is advertised as a part of upcoming NVidia’s
DXR real-time raytracing framework (for example , it’s unclear what
technique is used exactly. A very similar method is very likely used in an
AMD ProRender denoiser.

ctuthesis t1606152353 18

Chapter 4

Algorithm

B 41 Basic algorithm

B 4.1.1 Quick summary

The algorithm can be divided into three main stages (their relationships are
illustrated by diagram in figure :

1. Firstly, our filter accumulates the diffuse irradiance data. The current
frame is blended with a previous accumulation output reprojected using
our velocity buffer: some part might be left unblended because of disoc-
clusions. Variance is accumulated and blurred at this stage as well. This
process is described in section [4.1.3|

2. Next, a bilateral filter is applied to the accumulated result. Its weight
is driven by normal, depth, material id, and variance buffers to prevent
blurring over important image features. We go trough the workings of
this filter in section

3. Finally, albedo modulation and tonemapping is applied. The resulting
frame is blended with a reprojected previous final one once again: this
introduces some additional noise filtering and temporal antialiasing. This
operation is described in section 4.1.5

B 4.1.2 Input

Let’s assume the basic version of the algorithm, which works with an incoming
input sequence of new images. We have frames of 1 sample/pixel of diffuse
irradiance as an input, as we can see on figure (only a diffuse lighting
component will be filtered to simplify our reprojection). We have additional

19 ctuthesis t1606152353

4. Algorithm

variance filtering

' 2 albedo
path current 1 U
tracer diffuse L] spatial filtering :3
|]
accumu- final
lation 112 3 4 5 6 :|.na_
blending;
previous
diffuse previous frame
current
previous frame GBuffer

path tracer or
rasterizer

Figure 4.1: This diagram illustrates the inner workings of the algorithm (it
zooms out on the red “filter” part of the diagram |1.3): the blue numbers relate
to the three stages described in the section 4.1.1

image buffers to constrain our filtering, similar to a GBuffer in a deferred
rendering (see [ST90]): normal, depth and material id. Albedo buffer is used
to modulate our filtered diffuse lighting by color information. The buffers are
illustrated in a figure [4.2|

To summarize, we have these image-sized buffers as an input to our al-
gorithm: diffuse irradiance, albedo, material id, normal, depth and velocity
buffer.

All of these can be supplied by our path tracer, but it’s possible to use
a GPU-accelerated rasterizer take of all primary rays and output all the
additional image buffers. Computing primary rays by rasterization should be
a lot faster than raytracing in most typical cases; it can, however, become
slower for very complex scenes. And sometimes, the implementation cost of
the additional rasterizer on top of your path tracing pipeline might be too
much work.

B 4.1.3 Accumulation

Current light buffer (path tracing output) is blended with the one from
the previous frame. The previous frame is reprojected into current one
using velocity buffer, which records optical flow between two frames: it’s a
screen-space offset between last frame and current frame fragment positions.
Alternatively, one can use only current and previous frame’s matrices to
the pixel offset if there are no dynamic objects. A fragment is discarded on
disocclusion, this is determined by a difference between predicted reprojected

ctuthesis t1606152353 20

4.1. Basic algorithm

Figure 4.2: Additional input buffers, together forming something similar to a
GBuffer. They are normal, depth (in top row) and albedo buffer (depth buffer
has been scaled for preview). Normal buffer is packed into 2-component form
using a spheremap transform (discussed later in section to allow both linear
interpolation and memory-friendly storage of normalized normals. Additional
optical flow or in-pixel variance buffers might be required, depending on the
version of the algorithm.

depth and actual depth in depth buffer. Only current frame light data is
accumulated in a case of a disocclusion. Otherwise, the formula is:

c=cr+pl-r)

where c is a current frame and p is a previous one. We can control how
much of current and previous frame gets blended by a ratio r in a range 0. .. 1.
Using a constant ratio r results in a current frame being an exponential sum
of all past frames (previous contributions have an exponential decay):

c:cr+plr2+p2r3+p3r4+...

where p; is a previous frame ¢ frames past. This might be exactly what we
want, but frames blended in this way will never converge, there might be too
much current frame’s contribution. We can set up ratio r to give us a mean
value of a sequence instead like this:

21 ctuthesis t1606152353

4. Algorithm

Figure 4.3: A single frame of our one-sample-per-pixel input. The scene is lit
by a singe sphehe-shaped light source. Shadow of the chair formed by a direct
lighting is noisy, but discernible, the soft indirect bounces on the lion and in the
back are, however, only very sparsely sampled.

where age is a number of frames since disocclusion or a first frame. This
always converges to a perfect mean, but lefts oall possible reprojection errors
as a part of an image. We can combine these two approaches instead:

r = max(rg, —)
age

We can compute the age-adjusted r at first (so new samples contribute more
when there is not enough information yet), but resort to exponentially-fading
ratios later to gradually remove any potential errors by enforcing a minimum
current frame ratio ro. We can se ethe result of the accumulation in figure
4.4, with some possible reprojection artifacts seen in figure 4.5,

B 4.1.3.1 Variance

As multiple frames arrive, our path tracer always shoots a new ray in a
random direction (according to BRDF (see [Nic65]) or at least a cosine with
the surface normal). These different directions always result in a different
value in the output pixel: there are multiple probability distributions. These
distributions typically have a different variances: a completely lit surface’s
variance is close to zero (all rays ended up in a light), but a smooth, wide

shadowed area has much more variance to it (only some rays end up in a
light).

ctuthesis t1606152353 22

4.1. Basic algorithm

Figure 4.4: The same scene as in after a few frames of accumulation: new
detail emerges, but there’s still a lot of noise. The noise would start to disappear
only after seconds into the accumulation (as we saw in figure .

This variance is very important to the bilateral filter at the next stage
(it recognizes shadow boundaries and avoids blurring them), so we need to
approximate it here. We convert RGB values to luminance before computing
variance using formulas:

grayscale = 0.299R + 0.587G + 0.114B

This saves us 4 valuable float values in video memory. It’s possible this
configuration might overblur some edge cases of different-colored shadows (we
haven’t tested for that yet), but the extension to using per-channel variance
would be trivial if it’s ever needed.

The definition formula for variance computation looks like this:

var(x) = El(z - p)?]

where x are grayscale values of a pixel at different samples and g is their
mean value. This tells us what variance is: an expected value (average) of
a squared deviation of samples from their mean. However, computing this
value requires having all past grayscale values in memory while we might
have infinitely many of them. Accumulating this term is impossible (we
don’t know the p beforehand) but luckily, we can compute variance in other,
mathematically equivalent way:

23 ctuthesis t1606152353

4. Algorithm

Figure 4.5: Some pixels weren’t visible in previous frame and it isn’t possible
to blend them with a prpevious frame. This creates visible artifacts in the
accumulation: there are some places along edges with visibly less accumulated
samples. This additional noise gets filtered by our spatial bilateral filter during

the next algorithm stage

var(zx) = Z.’L‘2 - (Z z)?

We just need to store two float values this time (3 z, 3" 22) and accumulate
them using the same ratio r as with our diffuse buffer. We just need to compute
their difference later to acquire our variance.

Variance acquired this way can be very noisy, which can lead to some
artifacts. We can alleviate this problem by blurring variance buffer by a
small 3x3 kernel: we don’t lose much spatial information this way because of
the noise and the results are much better, especially around sharp shadow’s
edges.

B 4.1.4 Spatial filtering

We accumulated a number of samples from a few previous frames and com-
puted their variance; now we can filter them spatially. We will constrain the
blurring by normal, depth and variance buffers from earlier using a bilateral
filter and three similarity weight functions defined later.

ctuthesis t1606152353 24

4.1. Basic algorithm

B 4.1.4.1 Bilateral filter

Bilateral filter is an edge-preserving smoothing filter (see [TM98§]): it blurs
the image but sums similar pixels more (what is similar is defined by some
metric). Our bilateral filter uses a Gaussian window; this is what a simple
Gaussian blur looks like:

Ip(x) = > Wil;, Wi=g;
i€d(x)

where If(x) is a final image color at a pixel x, I(x) is an image color at a
pixel position z, i € w(x) are pixels ¢ in a window d around a pixel = and
finally, W(z') is a weight of a current pixel sample in a window, which is set
to some gaussian kernel g(¢). This is a Gaussian blur which simply sums a
neighboring pixel’s contributions using a Gaussian kernel.

A bilateral filter differs from Gaussian in its weighting function W (z). It
depends on the actual pixel values as well:

Wi = giwgi, », Wi=1
i€d(x)

The extra weighting factor w,; represents this dependence; it weights
similarity of two pixels w, 7 in some way. The renormalization is needed now
for the filter to preserve energy. How exactly is w,; derived is presented in
following pages. The w, ¢ might be omitted for clarity; the meaning is obvious
from the context.

B 4.1.4.2 Normal weighting function

We can use our normal buffer input to blend similarly-facing surfaces: that is,
pixels with similar normals. A good measure of angle similarity is taking their
dot product: dot products get large for same angles and zero for orthogonal.
Assuming Ny to be the first normal and N; offset normal being blended, both
of them normalized (/22 + 42 + 22 = 1):

wy = max(0, Ng - N1)°N

Fragments with similar normals are blended this way. Exponent o/N controls
how similar normals need to be to be mixed. Values around 64 work well.

25 ctuthesis t1606152353

4. Algorithm

Figure 4.6: The accumulated scene is filtered by our bilateral filter with normal
and depth weights driven by normal and depth buffers pictured below the image.
We can see the geometry-based edges have been preserved, but all important
structure introduced by path tracing has been lost by too much blurring (like
the chair’s shadow).

B 4.1.4.3 Depth weighting function

Depth information is a bit harder to weight because it can differ wildly
when sampled in screen space. We need to blend pixels together both on a
nearly flat surface and at steep slopes very collinear to camera direction, a
simple depth difference is not enough. We approximate a local slope given by
screen-space depth derivatives and define our weight function by a deviation
from this slope:

—[Do — D |
loDgrad - of f| + €

wp = exp

Dy is the first depth, D; is the offset depth being blended into it, grad is
the gradient approximated from screen-space derivatives, of f is screen-space

ctuthesis t1606152353 26

4.1. Basic algorithm

Figure 4.7: Variance buffer: lighter color represents more variance at the currect
pixel. Variance highly correates with luminence, but differs in important places:
the floor is very bright, but with smaller variance (most rays simply hit the
light) and shadow edges have higher variance than their surroundings because
secondary rays at their pixels ended up in more different places. More noise is
present in these images compared to accumulated diffuse because variance is
calculated using terms with a square power, amplifying all errors.

offset of Dy from Dy. € is a small value to avoid division by zero (depends
on the scale of depth values used, around 0.005 works fine for a normalized
depth buffer) and exponent oD controls a threshold of quantization artifacts.

This depth weight function works fine in most of the cases except very
steep and narrow sides. Very narrow and steep parts of the depth buffer
have a very little information to filter through and result in a visible noise
which is not very aesthetically blended into the following frames. That’s
why we turn off the depth weight function for too steep gradients: normal
weight is sufficient in this case. This is accomplished by setting wp = 1 when
|grad| > ¢ where c is a very small scene-dependent constant.

B 4.1.4.4 Luminance weighting function

At this stage, our image filtering respects edges given by normal and depth
weights wy, wp, but shadow detail generated by path tracing is still being
overblurred (as we can see in figure . We need some luminance weight,
where only similar colors are being blended. That’s not easy, because our
accumulated buffer still is still very noisy and boundaries aren’t readily visible.
Luckily, we have prepared our variance buffers we can blend pixels with

27 ctuthesis t1606152353

4. Algorithm

high variance together even if their colors are different (there is more noise,
so we need to blur them more). Our luminance weight looks like this:

—|Lo — L1|

oLvar +¢)’ var = min(varg, vary)

wr, = exXp

Ly is the first luminance value, L; is the offset value being blended, var is
our variance, € is a small value to avoid division by zero and offset minimal
noise (depends on input noisiness and dynamic range, typically somewhere
around 0.01 and 0.1) and exponent oL controls filtering strictness. Adjusting
the filter’s sensitivity to noise is possible by changing the e: the filter blurs
more when € is bigger. var is determined as a minimum of source varg and
destination var; because we only want to mix together two high variances:
adding a high-variance pixel to a low-variance one could result in bleeding
artifacts.

B 4.1.45 Combining the weights

Now we have all three weights wy,wp,wr and we can combine them by
simply multiplicating them:

wW = WNWDPW],

Resulting w will be used as a weight for our bilateral filter. We can see the
results when using all three of our weights in the figure [4.8|

B 4.1.4.6 Edge-Avoiding A-Trous Wavelets

Accumulated buffer we're filtering using our bilateral filter is still very noisy:
we need a very wide filter to take care of the noise. Bilateral filter is in its
brute-force version can be very slow: we are iterating over every kernel pixel
for every image pixel. We will help ourselves instead with a hierarchical
approach based on Edge-Avoiding A-Trous Wavelets introduced to noisy
image data filtering by Dammertz et al. ([DSHLI10]).

Another, albeit much less cool or French name for A-Trous Wavelets
Transform is Stationary Wavelet transform (SWT). SWT is a slightly modified
version of Discrete Wavelet Transform (DWT) with traslation invariance:
it just leaves out a downsampling/upsampling steps and interleaves the
downsampling /upsampling kernel instead. SWT processes data in this way:

1. Begin at level ¢ = 0 with input signal cg.

ctuthesis t1606152353 28

4.1. Basic algorithm

Figure 4.8: The result after applying our bilateral filter with weights calculated
using normal, depth and variance buffers (pictured below the image). Our
bilateral filter blurs more values of high variance together (such as the shadow
borders) resulting in sharp shadows.

2. ¢j+1 = ¢; x k; where x is a convolution and k; is a kernel with 2; zeros
interleaved between each pixel.

3. d; = ¢i+1 — ¢; are detail coeflicients of level q.

4. Increment ¢ and go to step 2 until the required number of iterations is
done.

5. do..n—1 and ¢y are the wavelet transform of cg.

We’re not interested in detail coefficients, we can leave out step 3. A simple
3 x 3 kernel is used as a k. A 3 x 3 kernel convolution applied a few times in
a row is a good Gaussian filter approximation: 6 levels of these convolutions
are approximately equivalent to a 77 x 77 Gaussian blur kernel, but much
faster to calculate on a GPU. The original paper used 5 levels of 5 x 5 kernels:
I found out using 6 levels of 3 x 3 kernels instead executed much faster on
lower-level GPUs and were of a better quality (larger kernel). The number of
levels is arbitrary; one can use any number of levels depending on the amount
of noise (image features begin to be a limiting factor for large kernels). The
multi-scale convolution is illustrated in figure [4.9

29 ctuthesis t1606152353

4. Algorithm

Figure 4.9: Illustration of multi-scale convolution used for accelerating the
bilateral filtering: a wide convolution kernel is approximated by multiple smaller,
faster convolutions in exponentially decreasing skip size (22 — 1,21 — 1,20 -1 =
3,1,0 pictured).

We can introduce the blending weights w into A-Trous Wavelets by applying
them at each scale. The results of later levels with large kernels can introduce
artifacts by skipping large portions of the image (where they have zeros in
their kernel). Luckily, the convolution is commutative, so we can do the
scale operations in any order (like Hanika et al. have shown in [HDLI1I]):
by doing the large scales first, the later low-scales stages clean up any high-
frequency artifacts introduced by an earlier high-scale stage. Instead of doing
convolution at scales i =0,1,2,3..., we do them at i = 5,4,3... This detail
is very important to the quality of the result but it’s somehow missing from
the original paper. The artifacts in question can be seen in figure [4.11. An
example of filtering stages at multiple scales can be seen in firuge [4.10.

Remember the reprojected last frame in our accumulation phase? It’s
beneficial to reproject the output of the first, highest-frequency wavelet first
instead of the raw last accumulated frame: convergence speed is increased at
the cost of a small bias introduced to our light, as we can see in figure 4.12 (e
of the luminance weight wy, is more impactful to the bias in practice since the
bias is largely eliminated by variance weighting). The first wavelet lookup
might make hard shadows a bit softer over time, but speeds up convergence.
It depends on our preference: we can even turn it off after enough samples
were gathered.

Our first wavelet transforms now, however, has the largest step-size of
2% = 32 and would introduce some artifacts to our accumulation buffer.
We can rearrange the highest-frequency wavelet to be the first now instead.
This might introduce some artifacts by not having it done last, but that
doesn’t happen in practice. Our wavelet filtering stages order now looks like
this: ¢ =0,5,4,3,2,1. The variance in accumulation phase still needs to be

ctuthesis t1606152353 30

4.1. Basic algorithm

Figure 4.10: A few stages from bilateral filtering of a car model. Top left
image is unfiltered, next three in reading order are three stages from our 6-stage
bilateral filter. The scales are applied in a decreasing order to subsequently filter
high-frequency artifacts introduced in a past low-frequency stage. These artifacts
can be seen as “boxy” patterns in the noise. It can happen the pixel is filtered
only by earlier stages and the artifact patern appears in the output: this is,
however, noticeable only at very low sample counts and right after disocclusions,
when one sample distributes too far.

calculated from raw accumulated data, without the first wavelet filtration:
there must be two separate buffer inputs to the accumulation phase for
variance calculation and further processing.

There is one more motivation of using a hierarchical implementation of
a bilateral filter: we can filter our variance between stages. Variance is one
order noisier compared to the diffuse lighting (it’s calculated using a squared
value) and calculating wy, based on a single, unfiltered value from variance
buffer during large-kernel stages is too inaccurate, we would like to filter over
a much larger area. Instead, we can filter our variance buffer in the same way
as our diffuse image, just using a w? (image is blended with a weight w, so
variance needs to be blended with the same weight squared):

var(L 4 1) = var(L)w?

where var(L) is a variance used for a w;, computation at a level L. We
can see an example of this bilateral-adjusted variance in figure Note
that this filtered variance only propagates trough the wavelet filtering, we

31 ctuthesis t1606152353

4. Algorithm

Figure 4.11: The hierarchical wavelet filter was applied in increasing order of
scales (high-frequency first, low frequency later). The resulting artifacts are
clearly visible as repeated borders along edges.

still have to use the raw 2-component variance in the accumulation phase.
This scale-depedent variance filtering formally transforms our purely bilateral
filter into a bit more clever one that adjusts its weight at larger scales.

B 4.1.5 Final bledning

We have much less noise in our image now, thanks to the previous accumulation
and spatial blending stages. There is, however, still a big problem with our
output: all operations were done on a one-pixel level till now, and our image
might manifest an aliased jagged edges following the same crude information
in our normal and depth buffers. Merely introducing supersampling into
these buffers doesn’t solve our problem: our blending weights used in spatial
filtering don’t behave appropriately when the input is being interpolated.

Instead, we will introduce a technique well-known in real-time deferred
rendering engines: temporal antialiasing (see [Karl4]). First, current filtered
diffuse irradiance is modulated by albedo and tone mapping is applied (we
want to filter the final appearance now). The previous frame is reprojected
and blended with current one using the same formula as in accumulation
phase:

c=cr+p(l-—r)

where ratio 7 is a constant this time (somewhere around 0.1 tends to
work nicely). Now we need a new mechanism to handle disocclusions: the

ctuthesis t1606152353 32

4.1. Basic algorithm

depth-based approach from our accumulation phase won’t work here because
it doesn’t operate on a sub-pixel level as we need and smearing would occur
without any care for disocclusions.

The industry standard to this problem is blending with a previous frame’s
value clipped to the 3 x 3 neighborhood of the current pixel:

c=rc+ (T - 1)Clamp(pa Cmin, Cmax)

where c is a current pixel’s value, p is a previous reprojected pixel’s value, r
is the two frame’s blending ratio and c¢,,in, ¢;ax are minimum and maximal
value form ¢’s 3 x 3 neighborhood. This formula implements clamping, clipping
is very similar, but depends on p’s direction and converges faster.

Some form of sub-pixel jittering is applied to the camera matrix prior
to the path tracing itself to introduce subpixel information into our buffers
temporally even when the camera is stationary: Halton sequences work very
well for that. There might not be a well-reprojectable pixel in a current pixel
neighborhood when the camera is moving: a 3 x 3 block can be searched for
a sample closest to p instead: this reduces aliasing under motion.

This form of final temporal AA reduces aliasing around edges and minimizes
all noise a bit further. A bit of wiggle room in clamping might need to be
added to account for substantial amounts of noise. It also greately reduces
remaining noise in isolated areas that didn’t have enough similar areas around
them in a spatial filtering stage (such as far away or thin objects). Additional
FXAA, SMAA or similar screen-space approaches can be used on top of
temporal AA to get rid of any other aliasing issues.

We can see how jagged lines get cleaned up in figure [4.14! and the result of
our final blending stage in figure 4.16l

B 4.1.6 Tuning the algorithm

) We can balance the detail, the noise level and reprojection error using three
parameters:

B 3 constant age in accumulation stage: setting this parameter higher
prevents reprojection error from accumulating, but we lose some detail
in shadows (as we can see on figure 4.15), it can always be se to 0 for a
static camera

B epsilon in wy, calculation’: higher values smooths shadows more, lower
values speed up convergence at the cost of some noise

33 ctuthesis t1606152353

4. Algorithm

® we can gradually turn off the spatial filtering stage 4.1.4| for a noise/detail
compromise: in practice, a low aoount of noise doesn’t hurt the visual
quality, but increases detail

The suggested values for parameters oN, oD, oL, work without any issues in
every scene to my knowledge. The steepness parameter from 4.1.4.3| depends
on the depth range of the scene (the wrong setting doesn’t break the algorithm,
only adds noise at horizon).

. 4.2 Fewer samples per pixel

The previously described algorithm works well, converges very quickly (visually
around 4 frames) and handles reprojection well. It, however, always expects
one sample per pixel. Our path tracer might not be that fast every time (a
low-end GPU, a CPU-based path tracer) but we would like to have real-time
framerates anyway. The algorithm can be modified to tackle this problem.
There are some issues we need to overcome, aside from apparent skipping of
empty values (we can mark them by -1 or NaN).

B 4.2.1 Missing normal and depth information

This applies if we’re using a path-traced normal and depth buffers: there
might be holes present when a sample wasn’t rendered during the last frame.
That is a problem because spatial filtering stage expects a full 1 sample per
pixel normal, depth and albedo buffers to constrain its filtering: it would
get restricted around the holes instead, which is undesirable. We need to
implement some changes, as we can see in diagram 4.17.

We need to somehow account for the missing information. One possible
way is raytracing the normals, depth, and albedo buffer first (before path
tracing towards the light), but our raytracer probably isn’t fast to do that
anyway. Data in diffuse irradiance buffer is very sparse at this stage as well
(only one sample per pixel, where normals and depth aren’t missing), so the
results end up very blurry anyway, and a linear approximation is enough.

We implemented a top-down pyramid downsampling of the normal, depth
and albedo buffers (inspired by Ritschel et al. [SA12]). The buffers are
downsampled to a third of their size multiple times until no holes are visible
and missing information in high-resolution buffers is then looked up from
the lower-resolution levels using linear interpolation to get smooth gradients.
That’s a crude and blurry approximation, but good enough in practice (normal,
depth and albedo buffers fill up to more meaningful values quickly afterward
anyway).

ctuthesis t1606152353 34

4.2. Fewer samples per pixel

This hole-filling stage can be useful for other parts of this algorithm as
well (such as spatial variance approximation discussed later). We’d like more
space to be available in there buffers: let’s save some space. Using three floats
for a normalized normal is wasteful, we can do the same thing with two of
them if we choose a representation valid under interpolation.

We can use a spheremap transform, first appearing in CryEngine: source
code of both conversions is in figure |4.18] encodeN converts three-component
normalized normal into a compact two-component representation, decodeN
converts them in the other way around. Both conversions are very speedy.

B 4.2.2 Overblurring from first wavelet level accumulation

Our original algorithm feedbacks the first wavelet level from spatial filtering
to the new accumulation every time: this is fine for a sample per pixel every
time, but overblurs the image if there is too little new information every
frame. One possible solution that works for us in practice is feeding back the
wavelet-filtered first level only after one full sample per pixel was accumulated:
the jump only occurs in the noise which is filtered away during the spatial
phase, so it isn’t visible at all. Blending partially between previous raw
accumulation and the smoothed wavelet wasn’t successful for us.

Bl 4.2.3 Overblurring caused by too high ¢ in w;,

Using very low amount of samples like this results in a very high noise in the
image and forces us to set € in luminance weight wy, very high, essentially
blurring our image more. But leaving the e constant for the whole time, even
when there is enough samples accumulated, actually overblurs now correct
data in our accumulation buffer: we need to adjust € according to the number
of samples at a given place in an image. This would probably need some
other pass over the image to be robust enough and wasn’t implemented in
our filter yet: € lowers with more samples per pixel, but an additional slider
is present to fine-tune the constant. It appears € can be left constant when
there are more than 3-4 samples per pixel already.

B 4.2.4 Reprojecting a fraction of samples per pixel

The extension described till now works fine for static inputs, but sad things
can happen when reprojecting. It is, again, an issue only if you have ray-
traced normal, depth and albedo buffers. It’s not, unfortunately, possible to
do the last frame reprojection the classic way: we can only reproject our new
samples, but we have no information about the pixels in between. We need
to forward reproject the old frame to the new one in some way. That’s a

35 ctuthesis t1606152353

4. Algorithm

scatter operation, but we can use atomic operations of compute shaders in
current GPU’s to implement them effectively.

One possibility is projecting every pixel from the previous frame to world
space and scattering it to the new frame from it. This solution introduces a
bit of an error by rounding up pixel positions in screen-space: some pixels
can even stay in the same space for multiple frames if their offset is less than
one pixel. That is visually very appealing, but not what we want.

We saved the pixel’s world-space position to a buffer instead of using
depth to reconstruct it. The error introduced by rounding screen-space pixel
positions is gone, but there is still a problem: there are no reprojected pixels
in some parts of the screen. This missing information can quickly build up
during camera movement: we need to approximate them somehow. We opted
for a 3 3 neighborhood average in UV-space (UV used to look up the previous
texture), but that still introduces a few-pixel jitter to the sharp shadow’s
edges and isn’t perfect. A more robust solution such as a raymarching one or
a few of the previous depth-buffers could result in a much better reprojection,
but we didn’t have time to implement something like that yet.

We need to take care to output only the topmost surface when more of
them get scattered to the same position: we use atomic operations in compute
shader to accomplish that.

B 4.2.5 Handling occlusions with holes

There is one more caveat when reprojecting images with holes (again, only
for ray-traced normals, depth and albedo buffers): surfaces further in the
distance might be visible through holes in geometry in front of it and mess
up the hierarchical hole-filling. It clears up after some time but can be very
distracting, as we can see in figure |4.19|

We look for the closest and farthest surface in our depth buffer in the 27 x 27
neighborhood (by using three 3 x 3 kernel passes) and discard any reprojected
sample that is sufficiently far away (closer to the far side than near side). The
kernel size can be bigger or smaller, depending on sample count. That solves
our problem but introduces an unfortunate half-kernel-sized border of visibly
blurred pixels in the image (all samples there were discarded), as we can see
illustrated in figure 4.20. These discarded parts could be recognized by some
edge-detecting filter and returned, but we didn’t have time to apply that.

Bl 4.2.6 Temporal AA

Final blending stage of our filter expects one sample per pixel input to
introduce a subpixel resolution to the resulting image. Nothing like that is,

ctuthesis t1606152353 36

4.3. More samples per pixel

unfortunately, achievable with such a low sample count. We didn’t implement
any approach solving this problem yet: lowering the blending ratio between
the two frames is a quick workaround which somehow works. Subpixel jittering
isn’t recommended, it would introduce even more error in our reprojection.
The right solution would be implementing an additional buffer for blending:
only new samples would get updated there.

B 43 More samples per pixel

But what if we have the exact opposite problem: more samples at a single
pixel? That shouldn’t be a problem at first glance, but we would be throwing
away a lot of information about variance by applying the basic algorithm
right away: the variance between pixels is valid, but there is an additional
variance inside a single pixel between multiple samples being blended. We
don’t want to throw this variance away.

The solution is very straightforward: the path tracer computes the variance
for us while blending the samples in a single pixel. Later, we will mix this
variance with previous frame’s one according to the sample count: all this
time using the two-component representation. We can compute the final
variance only after this blending.

Reprojection is no issue in this scenario, we can use the usual approach.
The normal, depth and albedo buffers are still a single sample per pixel: we
might be throwing a bit of information away here, but temporal antialiasing
can take care of most of it for us. The correct solution would probably be
computing the normal/depth/albedo variance and blending the neighboring
pixels accordingly.

. 4.4 Spatial variance estimate

The described algorithm works very well when there is at least some variance
estimate: in other words when there are two or more samples. That, however,
isn’t always the case: we have invalid variance information even at the first
frame with a one sample per pixel input.

We can approximate the variance spatially in this case and hope to avoid
blurring at least the contrasty direct light samples. We can easily look at
the current pixel’s neighborhood and compute a weighted variance around a
current pixel using a Gaussian-window (possibly using a hierarchical search
approach from a previous section 4.2.1). We use only as narrow windows as
possible to avoid overblurring the variance approximation and fall back to
the default variance calculation when two or more samples are available.

37 ctuthesis t1606152353

4. Algorithm

In short, filtering during first few frames depends on our preference: we
can have detailed, but noisy first frame or blurry, but noiseless one. It’s
even possible to split the filtering stages to sharp and soft direct and indirect
diffuse lighting to filter them in a controlled, separate way (thisn approach
was used in the original paper [SKW™17]).

ctuthesis t1606152353 38

4.4. Spatial variance estimate

Figure 4.12: Default accumulation buffer is shown on the top and the accu-
mulation buffer with first-wavelet previous frame lookup on the bottom. The
bottom one certainly has much less noise and speeds up convergence this way.
It, however, increases bias as we can see in form of a slightly blurred shadow
edges in the magnified area around the chair’s legs. The bright speckles are new,
yet un-spatially-filtered samples: technique using less samples per pixel was used
(more about this version of the algorithm is described in section .

39 ctuthesis t1606152353

4. Algorithm

RS TR

Figure 4.13: Variance buffer after being filtered by bilateral filter’s weights
two times. Only prominent areas are weighted significantly at this stage: only
pixels with high variance are allowed to be filtered in later scales of the bilateral
filtering to prevent overblurring (the variance weighting is scale-awave).

ctuthesis t1606152353 40

4.4. Spatial variance estimate

Figure 4.14: Temporal antialiasing smooths both jagged lines (easily visible
with complex geometry) and noisy low-sampled areas (like the han rail here).
Top image is without temporal antialiasing, bottom one with it.

41 ctuthesis t1606152353

4. Algorithm

lr‘?

Figure 4.15: Accumulation ratio r is important for detail preservation. Top
image is rendered using 16 samples/pixel with our filter off, second one using
unbounded r and the third one with age = 5. The shadow’s shape is correct
even in the third row, but penumbra detail has been lost due to too aggresive
blending. The missing slight brown tint in the middle picture is caused by
changing material properties.

ctuthesis t1606152353 42

4.4. Spatial variance estimate

Figure 4.16: The result after the final blending phase: albedo is multiplied back
in and themporal antialiasing is applied by blending with a previous frame.

variance filtering

albedo
path current spatial filtering
tracer diffuse + luminance ¢
accumu-
lation 12 3 4 5 6
previous 4‘
diffuse previous frame
) hole
previous frame filling current

GBuffer
path tracer or

rasterizer

Figure 4.17: This diagram illustrates the changes (highlighted in red) we need
to make to our algorithm to support even less than one sample per pixel as input.
All modifications are discussed in section

43 ctuthesis t1606152353

4. Algorithm

vecd encodeN(vec3 n)

{
float p = sqrt(n.zx8+8);
return vec4(n.xy/p + 0.5,0,0);

}

vec3 decodeN (vec2 enc)

{
vec2 fenc = encx4—2;
float f = dot(fenc,fenc);
float g = sqrt(1—£f/4);
vecd n;
n.xy = fencxg;
n.z = 1-1/2;
return n;

Figure 4.18: GLSL code implementing encoding and decoding normal between
its normalized 3-component and packed 2-component form. Code source:

Figure 4.19: It can occur previous frame gets reprojected under new sparse
samples that are actually closer to the camera and should cover the old ones,
resulting in holes in objects cleaning up only after many new frames. Our solution
is using a min-filter-based rejection described in section [4.2.5

ctuthesis t1606152353 44

4.4. Spatial variance estimate

Figure 4.20: Tllustration of a eroded depth buffer: all holes with incorrect
surfaces (much further compared to the eroded depth buffer) get rejected.

45 ctuthesis t1606152353

ctuthesis t1606152353

46

Chapter 5

Implementation and results

. 5.1 Performance

We implemented the algorithm into an existing CPU path tracer VRUT as a
post-processing filter implemented in OpenGL. The progressive path tracer
running on a single 6-core CPU can accomplish one sampler per pixel in 720p
in about one second, so it’s a good testing environment for our “less than one
sample per pixel” version.

The benchmarks were done on these PC configurations (notebook, desktop
and notebook):

= Intel HD 530 (2015, integrated GPU), 4-core Intel i7-6700HQ
® NVidia GeForce 720 (2013, mid-tier GPU), 4-core Intel Xeon E3-1240v3

® NVidia GeForce 1060 (2016, mid-tier GPU)

We experimentally found out that the performance wasn’t sensitive to scene
structure or amount of reprojection: inter-frame variation hid all differences.
This is not true for the original algorithm: the authors of [SKW*17] use a
more complex one-pass bilateral filter only for disoccluded pixels, so their
performance depends on the number of new pixels. We tested the algorithms
using a single scene (Sponza with a chair) in 1280 x 720 and measured the
timings using OpenGL queries GL_ TIME_ELAPSED. The performance
scales approximately linearly with the number of pixels on the screen. All
render times are in milliseconds: they are mean values from 100 measurements
with maximal deviation at 5th or 95th percentile after =+.

47 ctuthesis t1606152353

5. Implementation and results

stage Intel 530 [ms] | NV 760 [ms] | NV 1060 [ms]
>=1spp 246 +£1.01 5.92+0.24 3.7394 £ 0.1016
<1Ispp A852+£1.97 |8.00+020 |N/A

<1spp moving 52.83 £2.81 9.0299 +£0.31 | N/A

pre-reproj 4.32 4+ 0.23 0.93+0.032 | N/A
accumulation 10.46 £ 0.57 1.13+0.04 N/A

wavelet 13.66 + 0.81 4.36 £0.19 N/A

+ CPU transfer | 4.024+0.14 4.13+£0.23 N/A

But what do the weird names in the first “stage” column mean?

® >=I1spp: whole filtering stage when using one or more samples per pixel
(with or without movement).

8 <lspp: whole filtering stage when using less than one sample per pixel:
hole-filling stage (see 4.2.1)) is added.

B <lspp with movement: moving camera requires a hole-filling preprocess-
ing stage using a scatter operation (see [4.2))

® pre-reproj: only a hole-filling preprocessing stage in <1spp (see |4.2))
® accumulation: only accumulation (possibly with reprojection)
® wavelet: only spatial filtering (see 4.1.4)

B + CPU transfer: additional time spent by copying data from CPU
to GPU in our CPU-based VRUT. Seems to be the same for both
configurations.

We can see the algorithm performs very well on NVidia 760: it’s faster
than realtime (about 160 fps) at 720p and likely is at 1080p as well. <1spp
variants would attack the 60 fps threshold at 1080p. Integrated 530 performs
a bit worse: it accomplishes 30 fps at 720p.

It’s not realistic to do any fast path-tracing on integrated Intel 530, but it
shows it’s usable for CPU path tracers or less real-time applications, where
30 fps isnlt necessary. NVidia 760 or any newer GPU can realistically both
path-trace the scene and filter it afterward: the ratio gets only better with
newer GPUs. As we can see (at least by a single measured >=1spp), the
algorithm is faster on notebook 1060, but not much: there is probably a
memory transfer limit.

An interesting thing to note is a strangely long execution time of accumula-
tion stage on Intel GPU: it’s nearly as slow as a wavelet filtering stage, which
is a 6-pass bilateral filter. This has probably something to do with a substan-
tial shader length (Reproject.fsh has nearly 300 lines). The shader code is
very messy and experimental and probably could be cleaned up significantly.

ctuthesis t1606152353 48

5.2. Quality

There wasn’t any time to compare the performance of the filter with others,
but our version runs at about the same speed on NVidia 760 as the original
paper’s version (see [SKW™17]) on Titan Pascal. This has to do mainly with
a smaller bilateral kernel size (3 x 3 instead of 5 x 5) and partially with using
a simpler spatial filter (instead of their large 1-pass bilateral filter).

B 52 Quality

We tested the quality of our results by accumulating 200 samples first and then
testing structural similarity (SSIM) of the first few frames of the accumulatin
with and without our filter against the high-quality 200-sample image. Our
filter resulted in more similar results, by far.

SSIM without filter: 0.330, 0.334, 0.810 (variance) , 0.820, 0.824 0.826...
SSIM with filter: maximum 0.230

49 ctuthesis t1606152353

ctuthesis t1606152353

50

Chapter 6

Conclusion

The algorithm works, indeed! It denoises the low-sampled path tracing input
rapidly by getting clues from scene geometry and sample variance. It resolves
most of the lighting detail in images after just a few frames for one sample
and pixel and an adequate number of frames for less or more samples. The
filter takes a few milliseconds to filter the image, leaving enough time for GPU
to do the path tracing itself. The current version of the algorithm supports
opaque scenes with static diffuse lighting and a moving camera; all of these
limitations can, however, be solved to some degree by possible extensions of
the algorithm.

B 6.1 Limitation: no scene or light movement

Only camera movement is supported at the moment: any scene movement
(with correct velocity buffer) or light movement results in smeared shadows
(this smearing effect is illustrated in figure 6.1) or very gradual brightness
changes. The lazy, highly-approximate solution to this problem would be
increasing current-frame ratio of the reprojection during accumulation very
high: the trailing invalid light data would be shorter and less noticeable,
possibly blurring only a soft shadow or hidden by a motion blur in the scene.
The correct solution to this problem is straightforward: determining which
parts of the image’s lighting changed, can’t be used for reprojection anymore
and should behave the same as disoccluded pixels.

We can use variance buffer to help us determine how much of an outlier our
new value is: values laying well inside our variance range would be blended
with the previous frame a lot and pixels outside just a little or not blended
at all. Sharp shadows created by direct lighting would reject old pixels with
wildly different values quickly and soft shadows would move to new values
more gradually: this agrees with how humans perceive light.

A usable spatial variance approximation would be needed for fast-moving

51 ctuthesis t1606152353

6. Conclusion

Figure 6.1: This is what would the accumulation buffer look like without any
reprojection applied (the camera is moving to the left). A similar smearing
effect would be visible on shadows in a scenario a light or an object would
move: uncorrelated pixels would get blended unless rejected using some other
mechanism.

shadows (so they don’t get over-blurred). This modification would be very
beneficial: scenes with moving geometry, moving lights and more complex
effects such as caustics would be possible to filter. More complicated methods
could somehow attempt to reproject shadows from previous frames; that is,
however, a very complex problem.

B 6.2 Limitation: diffuse component only

The algorithm in its current state can handle only a diffuse type of light.
Specular component of light can be path-traced separately and blended
with diffuse lighting without any filtering: filtering it the same way as the
diffuse component would result in overblurring the reflections over the surface
normals and reprojection would be invalid.

We would need to introduce a second, separate filtering pipeline for treat-
ing specular lighting output. Let us consider a sharp reflection first: the
reprojection would need to be carried out in a “reflection space” (the offset
vector would indicate the reflection movement from previous to current frame).
The spatial filtering could be implemented in two ways, depending on how
important reflection detail is for us:

1. Track reflection variance over time and filter them spatially using their
variance.

ctuthesis t1606152353 52

6.2. Limitation: diffuse component only

e 5 i

Figure 6.2: Implementing the algorithm and ignoring reflections yields incorrect
resuls. Top image shows a correctly pathtraced car with a reflection, the bottom
one the same scene when our filter is applied: reflection is overblurred and it
has albedo’s color instead of a reflected one. The path to the correct solution is
described in section

2. Do the entire diffuse pipeline for the specular reflection as well: gather
specular lighting and render albedo, normal and diffuse buffers inside the
reflection. Accumulate the light buffer and filter it using both normal
and depth buffers from diffuse and specular components. Modulate with
albedo afterward.

The second approach would reproject the first specular bounce perfectly
but would fail for second, third and all more recursive bounces. These could
be handled easily for mirror-like surfaces, where the reflection is perfect,
and only the innermost reflection is filtered. The other cases would need to
fallback to the first variance-only filtering approach after a certain number
of bounces or reproject using the brightest (most visible at a given pixel)
reflection while using a more gradual frame blending, similar to the soft
variance-based rejection idea from the previous section [6.1

53 ctuthesis t1606152353

6. Conclusion

Glossy reflections (with blurred features) represent another problem: their
normal and depth aren’t clearly defined and can’t be filtered or reprojected
easily. Good approach to solving this problem could be using only variance-
based filtering: interpolated normal and depth weight is not compatible
with our wy,wp and doesn’t introduce more information than variance
anyway. Later, they would be reprojected by filtered (softened by blurring)
UV coordinates and blended, again, by a softer blending function similar to
the variance-based rejection discussed previously in section [6.1)

In short: an approach to handling specular reflection depends on how
crucial specular lighting/reflections are in the current scene. A pure variance
spatial filtering + reflection-space reprojection could be enough.

B 6.3 Limitation: no transparency

Our algorithm in its current form supports only fully opaque surfaces: it uses
a single-layered GBuffer as a single source of information about the scene.
The obvious next step is filtering the light buffer in multiple layers.

Let’s suppose our path tracer doesn’t blend all the surfaces for us and
outputs the irradiance and normal, depth and albedo information for every
layer separately, but possibly out of order. We need to use some order-
independent transparency algorithm: a lot of research has been done in this
area already.

The state-of-the-art method producing an accurate solution is probably
Order Independent Transparency with Per-Pixel Linked Lists by Barta et
al. (see [BKSSK11]) which stored the overlapping fragments and sorts them
at each pixel. That, however, requires an unbounded memory when there
are too many surfaces required to be drawn. Another popular, this time
approximative approach Weighted, Blended Order-Independent Transparency
by Morgan McGuire and Louis Bavoil (see [MB13]) uses, on the other hand,
only a fixed amount of memory: it approximates the visibility of incoming
surfaces by a heuristic calculated from depth and coverage information and
works very well after a bit of tuning.

Both of these approaches can be combined: using per-pixel linked lists
to a certain memory limit and just approximately weighting them together
afterward. The weighted-blended surfaces cannot be exactly reprojected or
filtered anymore: a soft variance-based rejection would come into play again.

ctuthesis t1606152353 54

6.4. Discussion
. 6.4 Discussion

This method overall seems to be a very intriguing approach to filtering the
noisy data acquired as an output of a path tracer. Not using any filtering
similar to this one for real-time ray tracing/path tracing would be a waste:
it can relatively easily enhance the visual quality of the output and reduce
very evident noise for a much more subtle bias (especially in a textured
environment). The filter can be used in its current form in a constrained
setting (filtering only raytraced shadow etc.) or for all the lighting later
(when specular filtering is usable as well).

One obvious alternative is a machine-learning approach: it probably has
the advantage of no warm-up time (2-3 frames for 1 sample per pixel), but
is probably more GPU-heavy and leaves less computing power or the path
tracing itself.

One thing is for sure: real-time path tracing is slowly arriving and upcoming
technologies enabling it are going to be very interesting.

55 ctuthesis t1606152353

ctuthesis t1606152353

56

Appendix A

Bibliography

[BKSSK11] P&l Barta, Balazs Kovacs, Lészl6 Szécsi, and Lészl6 Szirmay-

[CKS*17]

[CNS*11]

[DSHLI10]

[GTGBS84

[HDL11]

[HDMS03]

Kalos, Order independent transparency with per-pizel linked lists,
2011.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph
Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and
Timo Aila, Interactive reconstruction of monte carlo image se-

quences using a recurrent denoising autoencoder, ACM Trans.
Graph. 36 (2017), no. 4, 98:1-98:12.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and
Elmar Eisemann, Interactive indirect illumination using vozel
cone tracing: A preview, Symposium on Interactive 3D Graphics
and Games (New York, NY, USA), I3D '11, ACM, 2011, pp. 207-
207.

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik
P. A. Lensch, Edge-avoiding A-trous wavelet transform for fast
global illumination filtering, Proceedings of the Conference on
High Performance Graphics (Aire-la-Ville, Switzerland, Switzer-
land), HPG ’10, Eurographics Association, 2010, pp. 67-75.

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg,
and Bennett Battaile, Modeling the interaction of light between
diffuse surfaces, SSIGGRAPH Comput. Graph. 18 (1984), no. 3,
213-222.

Johannes Hanika, Holger Dammertz, and Hendrik Lensch, Edge-
optimized a-trous wavelets for local contrast enhancement with
robust denoising, 1879-1886.

Vlastimil Havran, Cyrille Damez, Karol Myszkowski, and Hans-

Peter Seidel, An efficient spatio-temporal architecture for an-
imation rendering, ACM SIGGRAPH 2003 Sketches &Amp;

57 ctuthesis t1606152353

A. Bibliography

[Jen96]

[Kaj86]

[Karl4]

[Kel97]

[LTH*13]

[LW93)]

[MB13]

[MMBJ17]

[MMNLI16]

[MMNL17]

Applications (New York, NY, USA), SIGGRAPH ’03, ACM,
2003, pp. 1-1.

Henrik Wann Jensen, Global illumination using photon maps,
Proceedings of the Eurographics Workshop on Rendering Tech-
niques ’96 (London, UK, UK), Springer-Verlag, 1996, pp. 21-30.

James T. Kajiya, The rendering equation, Proceedings of the
13th Annual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA), SIGGRAPH 86, ACM, 1986,
pp. 143-150.

Brian Karis, High-quality temporal supersampling, SIGGRAPH
Courses: Advances in Real-time Rendering in Games, SIG-
GRAPH, 2014.

Alexander Keller, Instant radiosity, Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA), SIGGRAPH 97, ACM
Press/Addison-Wesley Publishing Co., 1997, pp. 49-56.

Christian Luksch, Robert F. Tobler, Ralf Habel, Michael Schwar-
zler, and Michael Wimmer, Fast light-map computation with
virtual polygon lights, Proceedings of ACM Symposium on In-
teractive 3D Graphics and Games 2013, ACM, March 2013,
pp- 87-94.

Eric P. Lafortune and Yves D. Willems, Bi-directional path trac-
ing, PROCEEDINGS OF THIRD INTERNATIONAL CON-
FERENCE ON COMPUTATIONAL GRAPHICS AND VISU-
ALIZATION TECHNIQUES (COMPUGRAPHICS 93, 1993,
pp. 145-153.

Morgan McGuire and Louis Bavoil, Weighted blended order-
independent transparency, Journal of Computer Graphics Tech-
niques (JCGT) 2 (2013), no. 2, 122-141.

Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech
Jarosz, An efficient denoising algorithm for global illumination,

Proceedings of High Performance Graphics (New York, NY,
USA), ACM, July 2017.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke, Deep
g-buffers for stable global illumination approximation, Proceed-
ings of High Performance Graphics (Aire-la-Ville, Switzerland,
Switzerland), HPG ’16, Eurographics Association, 2016, pp. 87—
98.

Morgan McGuire, Mike Mara, Derek Nowrouzezahrai, and David
Luebke, Real-time global illumination using precomputed light

ctuthesis t1606152353 58

[Nic65]

[PRDD15]

[RDCK12

[RGS09)

[SA12]

[SKW+17]

[SL17]

[STY0]

[TJ97]

A. Bibliography

field probes, Proceedings of the 21st ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games (New York, NY,
USA), 13D ’17, ACM, 2017, pp. 2:1-2:11.

Fred E. Nicodemus, Directional reflectance and emissivity of an
opaque surface, Appl. Opt. 4 (1965), no. 7, 767-775.

Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George
Drettakis, Probabilistic connections for bidirectional path tracing,
Proceedings of the 26th Eurographics Symposium on Rendering
(Aire-la-Ville, Switzerland, Switzerland), EGSR 15, Eurograph-
ics Association, 2015, pp. 75-86.

Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and
Jan Kautz, The state of the art in interactive global illumination,
Comput. Graph. Forum 31 (2012), no. 1, 160-188.

Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel, Approz-
imating Dynamic Global Illumination in Screen Space, Proceed-
ings ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 2009.

M. Solh and G. AlRegib, Hierarchical hole-filling for depth-based
view synthesis in ftv and 3d video, IEEE Journal of Selected
Topics in Signal Processing 6 (2012), no. 5, 495-504.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Pat-
ney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu,
Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi, Spa-
tiotemporal variance-guided filtering: Real-time reconstruction
for path-traced global illumination, Proceedings of High Perfor-
mance Graphics (New York, NY, USA), HPG ’17, ACM, 2017,
pp. 2:1-2:12.

Ari Silvennoinen and Jaakko Lehtinen, Real-time global illumi-
nation by precomputed local reconstruction from sparse radiance
probes, ACM Transactions on Graphics (Proceedings of SIG-
GRAPH Asia) 36 (2017), no. 6, 230:1-230:13.

Takafumi Saito and Tokiichiro Takahashi, Comprehensible ren-
dering of 3-d shapes, Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive Techniques (New York,
NY, USA), SIGGRAPH ’90, ACM, 1990, pp. 197-206.

Rasmus Tamstorf and Henrik Wann Jensen, Adaptive sampling
and bias estimation in path tracing, Rendering Techniques '97
(Vienna) (Julie Dorsey and Philipp Slusallek, eds.), Springer
Vienna, 1997, pp. 285—295.

59 ctuthesis t1606152353

A. Bibliography

[TM9S] C. Tomasi and R. Manduchi, Bilateral filtering for gray and
color images, Proceedings of the Sixth International Conference
on Computer Vision (Washington, DC, USA), ICCV 98, IEEE
Computer Society, 1998, pp. 839-.

[Vea98] Eric Veach, Robust monte carlo methods for light transport sim-
ulation, Ph.D. thesis, Stanford, CA, USA, 1998, AAT9837162.

ctuthesis t1606152353 60

	Introduction
	Summary

	Theory
	Global Illumination
	Methods simulating light transport
	Path tracing
	Different versions

	Photon mapping
	Instant radiosity

	Finite elements

	Methods in rasterization pipeline
	Ambient light
	Prebaked diffuse lighting
	Light probes
	Screen-space methods
	Voxel methods
	Voxel cone tracing

	Related work
	Algorithm
	Basic algorithm
	Quick summary
	Input
	Accumulation
	Variance

	Spatial filtering
	Bilateral filter
	Normal weighting function
	Depth weighting function
	Luminance weighting function
	Combining the weights
	Edge-Avoiding À-Trous Wavelets

	Final bledning
	Tuning the algorithm

	Fewer samples per pixel
	Missing normal and depth information
	Overblurring from first wavelet level accumulation
	Overblurring caused by too high in wL
	Reprojecting a fraction of samples per pixel
	Handling occlusions with holes
	Temporal AA

	More samples per pixel
	Spatial variance estimate

	Implementation and results
	Conclusion
	Limitation: no scene or light movement
	Limitation: diffuse component only
	Limitation: no transparency
	Discussion

	Bibliography

