
ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

393390Osobní číslo:OscarJméno:HernándezPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Multiplatformní horizontálně škálovatelný systém pro zasílání zpráv

Název diplomové práce anglicky:

Multi-platform horizontally scalable messaging system

Pokyny pro vypracování:
Prostudujte si doporučenou literaturu. Navrhněte a implementujte horizontálně škálovatelný systém umožňující zasílání
zpráv na různé platformy pro velké množství zařízení. K implementaci použijte technologie kompatibilní s JVM. Nad
systémem implementujte vzorovou aplikaci pro demonstraci a otestování funkcionality.

Seznam doporučené literatury:
[1] Martin L. Abbott, Michael T. Fisher. The Art of Scalability: Scalable Web Architecture, Processes, and Organizations
for the Modern Enterprise. Addison-Wesley Professional, May 23, 2015. ISBN 9780134031385
[2] Cheng-Zhong Xu. Scalable and Secure Internet Services and Architecture. CRC Press, Jun 10, 2005. ISBN
9781420035209
[3] Felipe Gutierrez. Spring Boot Messaging: Messaging APIs for Enterprise and Integration Solutions. Apress, May 3,
2017. ISBN 9781484212240
[4] CraigWalls. Modular Java: Creating Flexible ApplicationsWith Osgi and Spring (Pragmatic Programmers). CreateSpace
Independent Publishing Platform, 2014. ISBN 9781503001459
[5] Bill Stonehem. Google Android Firebase: Learning the Basics. First Rank Publishing, Jun 29, 2016. ISBN 9781535004466

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Martin Mudra, Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 25.05.2018Datum zadání diplomové práce: 17.01.2018

Platnost zadání diplomové práce: 30.09.2019

_________________________________________________________________________________
prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Martin Mudra

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1



2



Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s Thesis

Multi-platform Scalable Messaging System

Bc. Oscar Hernández

Supervisor: Ing. Martin Mudra

Study Program: Open Informatics

Field of Study: Software Engineering

May 25, 2018



iv



v

Aknowledgements
I would like to thank my supervisor, Ing. Martin Mudra, for his advice and guidance.
Whenever I was struggling he always showed me the right direction, helping me find the
answer without giving it away.

I would also like to express my gratitude to my family and friends, who couldn’t have
been more supportive over the course of my studies.

Last, but definitely not least, I would like to thank my dear Zuzana, who helped me
by proof-reading my work, supported me greatly, and took care of me as I worked day and
night.



vi



vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 25, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



viii



Abstract

This diploma thesis describes a horizontally scalable server-side application that allows send-
ing messages across different platforms, with emphasis on modularity and easy expandability.
The majority of the thesis and application is focused on the scalability aspect of distributing
the system among a large number of computational nodes.

The application’s purpose is to serve as a framework and foundation to be built upon
and expanded for usage in modern applications.

Abstrakt

Tato diplomová práce popisuje horizontálně škálovatelnou serverou aplikaci, která umožňuje
zasílání zpráv napříč ruzných platforem s důrazem na modularitu a rozšiřitelnost. Drtivá
většina práce a aplikace se zaměřuje na škálování za pomoci rozdělení systému na velké
množství výpočetních zařízení.

Cílem aplikace je sloužit jako základ pro využití v moderních aplikacích.

ix



x



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Analysis 3
2.1 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Existing Similar Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 PubNub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Ably . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Pusher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 OneSignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 Similar solution comparison conclusion . . . . . . . . . . . . . . . . . . 10

2.3 Requirement Analysis (Core System) . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Non-functional Requirements . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Requirement Analysis (Sample Implementation) . . . . . . . . . . . . . . . . . 11
2.4.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Non-functional Requirements . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Platform Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Mobile platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1.1 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1.2 iOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Desktop and Server platforms . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.3 Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Analysis of Solutions for Implementation . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Spring Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Testing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2.1 JUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2.2 Spock Framework . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.3 Database technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Analysis of Solutions for Sample Implementation . . . . . . . . . . . . . . . . 18

2.7.1 Firebase Cloud Messaging . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.1.1 FcmJava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xi



xii CONTENTS

2.7.1.2 Pushraven . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2 Message Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.2.1 RabbitMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2.2 Apache ActiveMQ . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8.1 Problematic Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8.1.1 Servicing a large amount of clients . . . . . . . . . . . . . . . 21
2.8.1.2 A large amount of clients connects at the same time . . . . . 21
2.8.1.3 A large amount of messages for a single client . . . . . . . . . 21
2.8.1.4 A node dies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.1.5 A message is sent to a user group with a large amount of users 22

3 Design 23
3.1 Scalability Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Scalability Architecture Components . . . . . . . . . . . . . . . . . . . 24
3.1.1.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1.2 Node Coordinator . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1.3 Message Queue . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1.4 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Problematic Scenarios and their Handling . . . . . . . . . . . . . . . . 26
3.1.2.1 Serving a large amount of clients . . . . . . . . . . . . . . . . 26
3.1.2.2 A large amount of clients connects at the same time . . . . . 26
3.1.2.3 A large amount of messages for a single client . . . . . . . . . 27
3.1.2.4 A node dies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2.5 A message is sent to a user group with a large amount of users 27

3.2 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Data Tier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1.1 Sample Implementation Data Tier . . . . . . . . . . . . . . . 31
3.2.2 Business Tier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Collaboration Tier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Client Tier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4.1 Sample Implementation Client Tier . . . . . . . . . . . . . . 33
3.3 Modularity Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Core Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Database Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Platform Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3.1 Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.4 Message Queue Modularity . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Implementation 41
4.1 Development platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Msgr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1.1 Core Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1.2 Message-Common . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1.3 Fcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



CONTENTS xiii

4.2.1.4 Mysql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1.5 Websocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1.6 Websocket-Common . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1.7 ActiveMq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1.8 Node-Stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Java-Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.5 MsgrChattr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Testing 49
5.1 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Manual Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1.1 Testing Environment Machine Specifications . . . . . . . . . 50

5.3 Performance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Test 1: Single Node, single client. 50 messages . . . . . . . . . . . . . 51
5.3.3 Test 2: Single Node, single client. 200 messages . . . . . . . . . . . . . 51
5.3.4 Test 3: 4 Nodes, single machine. 50 messages . . . . . . . . . . . . . . 53
5.3.5 Test 4: 5 Nodes, two machines. 50 messages . . . . . . . . . . . . . . . 53
5.3.6 Test 5: Communication simulation. 50 messages, 20ms interval . . . . 55
5.3.7 Test 6: Communication simulation. 200 messages, 20ms interval . . . . 56
5.3.8 Test 7: Communication simulation. 200 messages, 100ms interval . . . 57
5.3.9 Test 8: Communication simulation. 1000 messages, 100ms interval . . 57
5.3.10 Performance Test Conclusion . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusion 61
6.1 Goal Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Suggestions for Future Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2 System Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.3 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 63

A List of abbreviations 67

B User Guide 69
B.1 Building from Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1.1 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.1.2 Software Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.1.3 Building Shared Dependencies . . . . . . . . . . . . . . . . . . . . . . . 70

B.1.3.1 Coordinator/Common Module . . . . . . . . . . . . . . . . . 70
B.1.3.2 Msgr/Message-Common Module . . . . . . . . . . . . . . . . 71

B.1.4 Building the Node and Node Coordinator Applications . . . . . . . . . 71



xiv CONTENTS

B.1.5 Building the Java-Client . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.1.6 Building the MsgrChattr Android Application . . . . . . . . . . . . . . 71
B.1.7 Building the PerformanceTester . . . . . . . . . . . . . . . . . . . . . . 71

B.2 Running the Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.2.1 Running the Node Coordinator . . . . . . . . . . . . . . . . . . . . . . 72
B.2.2 Running the Node Application . . . . . . . . . . . . . . . . . . . . . . 72
B.2.3 Running the MsgrChattr Android Application . . . . . . . . . . . . . . 74
B.2.4 Running the Chattr Web Application . . . . . . . . . . . . . . . . . . 74
B.2.5 Running the PerformanceTester Application . . . . . . . . . . . . . . . 74

C Contents of CD 75



List of Figures

2.1 Traditional client-server communication pattern . . . . . . . . . . . . . . . . . 4
2.2 Realtime client-server communication pattern . . . . . . . . . . . . . . . . . . 4
2.3 Example situation of message delivery . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Peak connections metric. Often used as a metric for pricing messaging ser-

vices. Source[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Global mobile OS market share in sales to end users. Source[15] . . . . . . . . 13
2.6 Maven and Gradle build time comparison. Source[18] . . . . . . . . . . . . . . 16

3.1 Architecture design for horizontal scalability . . . . . . . . . . . . . . . . . . . 23
3.2 Message flow for bound device . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Message flow for unbound device . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Message flow for group unfolding (flow after user processing omitted for read-

ability) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Four Tier basic system architecture . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Detailed Four Tier system architecture for sample implementation . . . . . . 30
3.7 Sample Implementation ORM Data Layer design . . . . . . . . . . . . . . . . 31
3.8 Flow of a message through the Business layer . . . . . . . . . . . . . . . . . . 32
3.9 Design of the main class components of the Java client library . . . . . . . . . 34
3.10 Module structure design of sample implementation . . . . . . . . . . . . . . . 35
3.11 Interfaces for database modules in the core.db package (Entity) . . . . . . . . 36
3.12 Interfaces for database modules in the core.db package (Repository) . . . . . . 37
3.13 Interfaces for platform modules in the core.platform package . . . . . . . . . . 38
3.14 Sequence diagram indicating the resolution process of Adapters . . . . . . . . 39
3.15 Interfaces for message queue modules in the core.mq package . . . . . . . . . 40

4.1 Modules in the Msgr project and their dependencies on each other . . . . . . 42
4.2 Node Coordinator monitor page . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Chattr web application screenshot . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 MsgrChattr Android application screenshot . . . . . . . . . . . . . . . . . . . 48

5.1 Deployment diagram of the testing environment . . . . . . . . . . . . . . . . . 50
5.2 Test 1: Delivery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Test 2: Delivery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Test 3: Delivery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Test 4: Delivery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Test 5: Delivery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xv



xvi LIST OF FIGURES

5.7 Test 6: Delivery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.8 Test 7: Delivery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.9 Test 8: Delivery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



List of Tables

2.1 Similar solutions feature comparison . . . . . . . . . . . . . . . . . . . . . . . 9

5.1 Testing environment machine specifications . . . . . . . . . . . . . . . . . . . 51
5.2 Average message delivery time for Test 1 . . . . . . . . . . . . . . . . . . . . . 52
5.3 Average message delivery time for Test 2 . . . . . . . . . . . . . . . . . . . . . 52
5.4 Average message delivery time for Test 3 . . . . . . . . . . . . . . . . . . . . . 53
5.5 Average message delivery time for Test 4 . . . . . . . . . . . . . . . . . . . . . 54
5.6 Average message delivery time for Test 5 . . . . . . . . . . . . . . . . . . . . . 55
5.7 Average message delivery time for Test 6 . . . . . . . . . . . . . . . . . . . . . 56
5.8 Average message delivery time for Test 7 . . . . . . . . . . . . . . . . . . . . . 57
5.9 Average message delivery time for Test 8 . . . . . . . . . . . . . . . . . . . . . 58

xvii



xviii LIST OF TABLES



Chapter 1

Introduction

1.1 Motivation

Our world is becoming more interconnected than ever before, with over 10 billion devices
connected to WLAN (Wireless Local Area Network) in 2017 and projections placing this
number around 20 billion by 2021[39]. The further introduction of the Internet of Things
(IoT) and many other smart devices such as home assistants, like Google Home1 or Amazon
Alexa2, along with smart home devices ranging from thermostats and light bulbs to refrig-
erators and washing machines put these predictions at over 35 billion devices connected to
the internet by 2021[38].

For the majority of people, being connected to the internet at every second of their day,
directly or indirectly, has become a matter of fact. These developments have made the need
for reliable and fast transmission of data more relevant than ever before.

The problem of real-time communication is increasingly important as bandwidth and
connections speeds increase, allowing for more interactivity between users and computer
systems. More and more systems require increasing amounts of communication in this age
of an ever increasing number of web-based applications taking the place of traditional desktop
ones. With services feeding customized content to a large number of different users in a more
interactive and immediate manner, traditional methods prove too slow and cumbersome.

1.2 Goals

The goals of this thesis are to create a system that can serve as a framework and foundation to
be built upon and expanded for usage in modern applications that need fast communication
among potentially large numbers of devices, and a simple sample application in order to test
the system’s functionality.

1Google Home <https://store.google.com/product/google_home/>
2Amazon Alexa <https://www.amazon.com/b/ref=gbpp_itr_m-2_2551_16067214?node=16067214011&

ie=UTF8>

1

https://store.google.com/product/google_home/
https://www.amazon.com/b/ref=gbpp_itr_m-2_2551_16067214?node=16067214011&ie=UTF8
https://www.amazon.com/b/ref=gbpp_itr_m-2_2551_16067214?node=16067214011&ie=UTF8


2 CHAPTER 1. INTRODUCTION

1.3 Usage Scenarios

The system designed and implemented as part of this thesis is meant to server as an exten-
sible framework for modern applications, as mentioned above. Some of the many possible
usages for the system can be instant messaging (IM), media (video or audio) streaming,
communication within IoT systems, smart devices and more.



Chapter 2

Analysis

This chapter describes the problem that this thesis addresses, as well as its comparison to
selected existing solutions. It also specifies the functional and non-functional requirements
of the system to be implemented to address the specified problem, as well as a selection of
platforms it will be implemented on in order to demonstrate its functionality.

2.1 Problem Analysis

Communication over networks is increasing greatly, not only user-to-user and user-to-machine
interactions, but a massive growth has also occurred in machine-to-machine communication
due to more automation, the usage of microservices architectures, system distribution and
software and platform provided as a service (SaaS and PaaS, respectively).

These developments have led to changing requirements in the speed, volume, and re-
liability of data delivery. The need has risen for fast, lightweight, and secure real-time
communication solutions.

The main difference between a traditional and real-time client-server1 communication is
that traditionally, the server would respond to a request from the client, be it synchronously
or asynchronously. This communication happens over what is basically a one way channel.
When the client would expect new data from the server, it would request it again, repeating
the process.

During real-time communication, on the other hand, a two way channel is kept open
between the client and server and data is sent and received both ways when needed, usually
in an asynchronous fashion. See Figures 2.1 and 2.2.

1Please note that client-server terminology is meant as someone who connects (client) to someone who
provides data (server). The client can be another server-side application.

3



4 CHAPTER 2. ANALYSIS

Figure 2.1: Traditional client-server communication pattern

Figure 2.2: Realtime client-server communication pattern



2.2. EXISTING SIMILAR SOLUTIONS 5

While the basic pattern appears simple, the situation quickly begins to complicate once
the facts that systems need to deliver realtime data to a large number of devices, often
running on different platforms (eg. mobile or web platforms) and that devices may have
periods of non-connectivity, such as a mobile device losing reception, are taken into account.

A very simple example of such a situation can be seen in Figure 2.3. A service needs
to send two different messages to two groups of users, that are using different platforms and
some of them even have multiple devices at once (eg. a web application in a browser on
their computer and a smart phone) and the message needs to be delivered to all of these.
For simplicity, only a one way message delivery is illustrated, but for true interactivity such
a system must be able to also receive data, not just send it.

Figure 2.3: Example situation of message delivery

2.2 Existing Similar Solutions

At the moment there are several products on the market that provide messaging with differing
capabilities and pricing strategies.

Henceforth will be described an overview of some of the most popular ones at the time of
writing, based on information provided in marketing materials, documentations and FAQs
(Frequently Asked Questions). An in-depth comparison of the inner workings of these is
not included, since all of the solutions in question operate on a closed-source basis and do
not disclose much information regarding the inner workings of their algorithms and data



6 CHAPTER 2. ANALYSIS

structures. Furthermore, they are all provided as a service, without a possibility of self-
deployment, so a comparison of their performance cannot be made on similar hardware.

2.2.1 PubNub

PubNub2 is a commercial realtime messaging service based on a Publish-Subscribe pat-
tern. One of the largest messaging service providers in the world, PubNub boasts, among
others, secure end-to-end encryption, unlimited number of channels and 250ms latencies
worldwide [28] and with over 70+ SDKs3 can be used on virtually any platform.

Key features:

• Unlimited Publish/Subscribe channels [28] (technically, though device and message
amounts are limited with tier-based pricing)

• 250ms latency worldwide [28]

• Push notification support for Android, iOS and Windows

• Message delivery once target device comes online (catch-up) as long as message is still
in queue. Messages are held in the queue by default for approximately 5 minutes
or 100 messages (whichever is reached first), but can be extended using the Storage
add-on. [25]

Pricing4 (monthly):

• Free: allows 100 daily active devices and 1 million total messages

• $49: 500 daily active devices

• $149: 1 500 daily active devices

• $399: 5 000 daily active devices

• $799: 20 000 daily active devices

2.2.2 Ably

Ably5 is a commercial real-time data delivery platform based on a Publish-Subscribe pattern,
similarly to PubNub. Apart from several client libraries including ones for Javascript, Java,
Python, PHP and others[4], Ably provides WebSocket and REST based APIs [3]. Just like
PubNub, Ably also provides secure end-to-end encryption.

2PubNub <https://www.pubnub.com/>
3PubNub SDK full list <https://www.pubnub.com/docs>
4As of January 3 2018
5Ably <https://www.ably.io/>

https://www.pubnub.com/
https://www.pubnub.com/docs
https://www.ably.io/


2.2. EXISTING SIMILAR SOLUTIONS 7

Key features:

• Presence awareness, ie. notification when a device becomes online or offline

• Messages are stored for redelivery for 2 minutes by default. It can however be expanded
with the channel message history where messages are stored for up to 24-72 hours [6]
with persisted history enabled.

• Binary encoded messages help reduce bandwidth and streamlines processing time for
encoding and decoding messages [2]

• Message and worker queues

• Reliable message ordering [7] - devices are guaranteed to receive messages in the order
they were sent

• WebHooks, which are essentialy HTTP callbacks

• Simple WebSocket and REST APIs allow for easy client implementation for platforms
other than officially supported

• Protocol adapters providing interoperability between other real-time and queuing pro-
tocols [1]

Pricing6 (monthly):

Unlike PubNub’s tier-based monthly pricing system, Ably provides a more flexible moneti-
zation model:

• Free: 100 peak connections(see Figure 2.4 ) and channels, 3 million monthly messages

• Self-service: $12.50 per thousand peak connections or channels, $1.25 per million mes-
sages. Volume discounts possible

• Enterprise: tailored package with premium support and no hard limits

2.2.3 Pusher

Pusher7 is a commercial real-time messaging service, also based on a Publish-Subscribe
pattern. Pusher provides WebSocket and HTTP APIs for message publishing. Like all
previously mentioned services, Pusher also supports end-to-end encryption.

Pusher provides official SDKs for both sending and receiving messages for several lan-
guages and frameworks including Go, Java, Node.js, Javascript, Swift, PHP, Python and
others[30].

There is also a range of community developed and maintained libraries including clients
for languages and frameworks such as Grails, Flash, ActionScript, Arduino, Haskell and
more[29].

6As of January 3 2018
7Pusher <https://pusher.com/>

https://pusher.com/


8 CHAPTER 2. ANALYSIS

Key features:

• WebSockets with fallbacks in case they are not available

• Client events. These include when a device becomes online or offline

• Android and iOS support

• Status API for retrieving information such as occupied channels, number of connected
devices, etc[31]

• Webhooks

Pricing8 (monthly):

Pusher offers a tier-based model similar to PubNub

• Free: 100 peak connections, unlimited channels, 200 000 messages per day (for com-
parison with Ably, this equals between 5.6 and 6.2 million messages per month, based
on the number of days in said month)

• $49: 500 peak connections, 1 million messages per day (28-31 million messages per
month)

• $99: 2 000 peak connections, 4 million messages per day (112-124 million messages per
month)

• $299: 5 000 peak connections, 10 million messages per day (280-310 million messages
per month)

• $499: 10 000 peak connections, 20 million messages per day (560-620 million messages
per month)

• Tailored: a custom pricing plan made to fit

2.2.4 OneSignal

OneSignal9 is a commercial closed-source high volume push notification delivery service.
Compared to PubNub, Ably or Pusher, OneSignal specializes in push notifications for mo-
bile apps, though it does also support web notifications. This fact restricts the amount of
platforms OneSignal can be used on in a significant manner.

While all over-the-network communication with OneSignal and then Apple/Android
servers is done over HTTPS, compared to the aforementioned services it does not sup-
port end-to-end encryption out of the box[23]. However, this can be implemented on a
server-client basis, ie. encrypt message before sending to OneSignal and then decrypt in
app on target device, although this method couldn’t be used to send notifications through
OneSignal’s useful dashboard.

OneSignal provides SDKs for many cross-platform mobile development environments
such as Unity, PhoneGap, React Native, Xamarin, and others.

8As of January 3 2018
9OneSignal <https://onesignal.com/>

https://onesignal.com/


2.2. EXISTING SIMILAR SOLUTIONS 9

Key features [22]:

• A/B Test Messages

• Scheduled notifications

• Android, iOS and WebPush notifications support

• Simple dashboard for managing notifications and users

• Default time to live for notifications when device is offline is 72 hours[24]

• Free

Pricing:

Unlike PubNub, Ably or Pusher, OneSignal offers unlimited devices and notifications for
free. Its monetization strategy is based on providing premium support.

Main feature comparison

Feature PubNub Ably Pusher OneSignal
Publish/Subscribe channels YES YES YES NO
Receive message during short disconnects YES YES NO YES
Time message is held if device is offline 5 minutes 24-72 hours N/A 72 hours
End-to-End encryption YES YES YES NO
Scheduled messages NO NO NO YES
Device online/offline events YES YES YES NO
Pricing Tier based Usage based Tier based Free
Can be self hosted NO NO NO NO
Open Source NO NO NO NO

Table 2.1: Similar solutions feature comparison

Figure 2.4: Peak connections metric. Often used as a metric for pricing messaging services.
Source[5]



10 CHAPTER 2. ANALYSIS

2.2.5 Similar solution comparison conclusion

All four aforementioned provide a service that allows sending a high volume of messages to
many connected devices, with a similar list of additional features and different language or
framework support and pricing. All have slightly different use cases and offer varying degrees
of flexibility and support options.

PubNub, Ably and Pusher provide different restrictions based on the price of their service.
Both Ably and Pusher use a peak connections metric, that is defined by the maximum
amount of concurrent connected devices (see Figure 2.4 ). PubNub, on the other hand, has
stopped using the peak connection metric[27] in favour of using Daily Active Devices. This
metric refers to the total amount of connected devices in a 24-hour period.

However, all of the compared solutions are closed source and provide no means of self
hosting. This leads to an intrinsic dependency on the companies that develop and maintain
these platforms. This can be a problem for applications using these services if, for example,
the pricing was suddenly changed, or the service was shut down entirely. A perfect example
of this is when GoInstant was shut down and its customers were forced to switch to a different
technology, one of these being PubNub, who offered a guide for migration[26].

2.3 Requirement Analysis (Core System)

After thorough analysis of what is expected of the system, the following requirements are
put in place. These requirements are split into two categories, functional and non-functional
requirements.

2.3.1 Functional Requirements

Functional requirements define the behaviour of the system.

• The system must be able to transmit messages between devices

• The system must be able to deliver a single message to a single device

• The system must be able to deliver a single message to several devices

• The system must be able to receive messages from devices

2.3.2 Non-functional Requirements

Non-functional requirements define the properties of the system.

• The server side of the system must be easily horizontally scalable, ie. scaling by adding
new instances of the application

• The server side of the system must be modular, so that methods of receiving and
sending messages can be easily replaced or added

• The server side of the system must be testable



2.4. REQUIREMENT ANALYSIS (SAMPLE IMPLEMENTATION) 11

• The server side of the system must be implemented so that it may run on the JVM10

platform

• The system must include a client library for representatives of the following platforms:
web, mobile, desktop and server

• The web platform client must support most modern browsers, including the following:
Microsoft Edge 16+, Mozilla Firefox 52+, Google Chrome 65+ and Safari 11+

• Third party software, such as libraries, used by the system must be open source

2.4 Requirement Analysis (Sample Implementation)

In order to prove the system meets its requirements and works properly, a sample implemen-
tation of the highly modular parts of the system must be provided. This sample implemen-
tation must meet the following functional and non-functional requirements:

2.4.1 Functional Requirements

Functional requirements define the behaviour of the system.

• The sample implementation must be able to deliver notifications and messages onto a
mobile platform

• The sample implementation must be able to deliver notifications and messages onto
the Web platform

• The sample implementation must be able to deliver notifications and messages onto
the a desktop platform

• The sample implementation must be able to deliver notifications and messages onto
the a server platform

• The sample implementation must contain a simple application to showcase the func-
tionality of the system

2.4.2 Non-functional Requirements

Non-functional requirements define the properties of the system.

• The sample implementation must include a module implementing database function-
ality for a relational database, eg. MySQL, PostgreSQL, MariaDB.

• The sample implementation must include a module implementing the message queue
functionality for a chosen platform, eg. ActiveMQ, RabbitMQ.

10Java Virtual Machine



12 CHAPTER 2. ANALYSIS

2.5 Platform Analysis

While the system is designed in such a way that adding or removing supported platforms
is simple, for the purposes of this thesis support is to be implemented for representatives of
the mobile, web, server and desktop platforms, one each.

2.5.1 Mobile platform

Mobile devices, such as smart phones and tablets are taking over many of the functions that
used to be exclusive to desktop computers. With this, it is a growing platform that cannot
be overlooked by any modern application.

This section compares the two most popular mobile platforms, Android and iOS, and
elaborates on the choice for the mobile platform representative implemented as part of this
thesis.

2.5.1.1 Android

Android11 is a mobile operating system developed by Google12 widely used in smart phones,
tablets, televisions, wearables such as smart watches, and even automobiles. With around
80% market share (see Figure 2.5) between mobile operating systems, it is indisputably one
of the most important platforms on the market.

While development is lead mostly by Google, Android is an open source project. Its
wide adoption by many manufacturers for different purposes is a direct result of this. The
Android platform is based on a Linux kernel and apps are run using Android Runtime
(ART)13 created specifically for Android and uses the Dalvik Executable (Dex) bytecode
specification.

Development for Android can be done using the Android SDK, which allows the use
of Java and Kotlin languages. While ART and the Android SDK closely mimic the Java
Runtime Environment (JRE) and Java Development Kit (JDK) respectively, it has some
slight differences.

2.5.1.2 iOS

iOS14 is a mobile operating system developed by Apple15 used in smart phones, tablets,
wearables such as smart watches, and other devices. Unlike Google’s Android, iOS is a
completely proprietary and closed source platform and can only be found on devices directly
developed and sold by Apple. It is the second most popular mobile operating system (see
Figure 2.5).

11Android <https://www.android.com/>
12Google <https://www.google.com/>
13ART <https://source.android.com/devices/tech/dalvik/>
14iOS <https://www.apple.com/lae/ios/ios-11/>
15Apple <https://www.apple.com/>

https://www.android.com/
https://www.google.com/
https://source.android.com/devices/tech/dalvik/
https://www.apple.com/lae/ios/ios-11/
https://www.apple.com/


2.5. PLATFORM ANALYSIS 13

Figure 2.5: Global mobile OS market share in sales to end users. Source[15]

Development for iOS can be done using Xcode, Apple’s Integrated Development Environ-
ment (IDE). While previously iOS apps were built mostly using Objective-C, Apple has been
pushing forward their Swift16 language as the future of iOS (and MacOS) app development.

Choice of mobile platform for implementation

The mobile platform chosen for the implementation is Android. Not only does Android
possess the majority share of the market, its accessibility and openness to developers is
a great advantage. In order to develop an application for Andorid, the developer only
needs to download the Android Studio IDE and Android SDK, which are both available
for Windows, Mac, and Linux. No physical device is needed for running the application
during development, as the SDK contains a powerful emulator. For developing on a physical
Android device, the developer can easily turn the device into development mode in the
device’s settings.

Developing Android applications and distributing them through own means is completely
free. However, most applications are published to Google’s official marketplace, Google Play,
for which Google has a one time $25 USD registration fee[16], after which the developer may
publish any number of applications on the marketplace.

Developing applications for iOS, however, is much more complicated due to Apple’s closed
ecosystem. iOS applications may only be developed on Mac devices[9] and an iOS device is
needed to run the application during development. Apple also requires all developers to be

16Swift <https://developer.apple.com/swift/>

https://developer.apple.com/swift/


14 CHAPTER 2. ANALYSIS

enrolled in their Apple Developer Program, which has an annual fee of $99 USD, or $299
USD for their Apple Developer Enterprise Program[10].

2.5.2 Desktop and Server platforms

2.5.2.1 Java

Java17 is a popular language owned by Oracle18 that is compiled into Java bytecode, which
can be run on any Java Virtual Machine (JVM), regardless of the underlying platform that
the JVM is running on.

Although nowadays it is one of the most popular platforms for developing enterprise server
applications, owing to its large community support including extensive libraries, frameworks
and platform independence, it can also be used to develop traditional desktop applications,
both console based and with a Graphical User Interface (GUI).

2.5.3 Web

Frontend web applications based on HTML, CSS and JavaScript19 as more full fledged and
interactive applications, compared to the static web sites of the past, have been gaining on
popularity. This is partly due to modern browsers and faster internet bandwidths and speeds
and partly due to a boom in powerful JavaScript-based frameworks and libraries facilitating
the development of extensive, interactive applications that run inside a user’s web browser.

A large number of applications have been moving some and in cases even most of their
application logic from backend servers to clients in web browsers. In order for these appli-
cations to be responsive and interactive, it is key to have real-time reliable communication
with any components that are on a remote server.

2.6 Analysis of Solutions for Implementation

In order for the implementation of the core system to meet all of its requirements, a careful
and well-informed choice of the proper tools is paramount. This section describes the chosen
tools as well as elaborates on the reasons as to why these tools were chosen.

2.6.1 Spring Boot

Spring Boot20 is a JVM based framework for creating stand-alone production-grade ap-
plications based on the popular Spring Framework21. Unlike most other enterprise Java
frameworks, Spring Boot does not need a container (such as Tomcat or Glassfish) to be
present on the machine to run in, as it includes an embedded one. This allows for easy and
simple JAR (Java ARchive) based deployment.

17Java <https://www.java.com/>
18Oracle <https://www.oracle.com/>
19HTML <https://www.w3.org/wiki/The_web_standards_model_-_HTML_CSS_and_JavaScript/>
20Spring Boot <https://projects.spring.io/spring-boot/>
21Spring <https://spring.io/>

https://www.java.com/
https://www.oracle.com/
https://www.w3.org/wiki/The_web_standards_model_-_HTML_CSS_and_JavaScript/
https://projects.spring.io/spring-boot/
https://spring.io/


2.6. ANALYSIS OF SOLUTIONS FOR IMPLEMENTATION 15

Spring Boot is an opinionated framework, building on the idea of Convention over Con-
figuration. In essence, the idea behind this is to reduce the amount of configuration needed
by having sensible defaults and using rules, or conventions, in naming and structure so that
the framework may assume, based on these conventions, what it is supposed to do. A typical
exam of this would be that a class called WelcomeController would map to the ’/welcome*’
URL[35].

Spring Boot, being based on the Spring Framework, has powerfull Inversion of Con-
trol (IoC) capabilites, also known as Dependency Injection (DI). IoC "... is a process
whereby objects define their dependencies, that is, the other objects they work
with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a
factory method. The container then injects those dependencies when it creates
the bean. This process is fundamentally the inverse, hence the name Inversion
of Control (IoC), of the bean itself controlling the instantiation or location
of its dependencies by using direct construction of classes, or a mechanism such
as the Service Locator pattern."[36]

By delegating the creation and management of objects to the framework, IoC reduces the
dependency of components on one another while still allowing them to interact and allows
for more modularity, as it is the framework at runtime who decides which instances will be
injected, typically by building what is called a Dependency Graph.

Spring Boot projects can be managed by either of the two most popular JVM build
automation and dependency management tools, Maven and Gradle.

Maven

Maven22 is one of the most popular JVM build automation and dependency management
tools. Maven’s configuration is based on XML files. It manages the project’s dependencies
(third-party modules and libraries) and defines the build and execution order of different
tasks. Maven also downloads the project’s dependencies from online repositories, which are
defined in the configuration, and caches them on the local machine.

Maven is distributed as open source under the Apache License, Version 2.023.

Gradle

Gradle24 has, over the past few years, become a strong competitor to Maven and gained great
popularity[11]. Like Maven, Gradle is a build automation and dependency management tool.
However, it uses a Groovy-based DSL (Domain-Specific Language) for its configuration. This
leads to shorter and more readable configuration files, while at the same time providing more
flexibility and even scripting options. Like Maven, Gradle also downloads dependencies from
online repositories and stores them on the local machine.

When it comes to performance, thanks to its advanced and modern techniques, Gradle
builds are much faster compared to Maven (see Figure 2.6).

22Apache Maven <https://maven.apache.org/>
23Apache License 2.0 <https://www.apache.org/licenses/>
24Gradle <https://gradle.org/>

https://maven.apache.org/
https://www.apache.org/licenses/
https://gradle.org/


16 CHAPTER 2. ANALYSIS

Figure 2.6: Maven and Gradle build time comparison. Source[18]

Thanks to Gradle’s learning curve, ease of use and advanced features, Gradle is the
default build tool for Google’s Android OS.

Both Gradle and Spring Boot are distributed as Open Source software under the same
license as Maven, the Apache License (ASL), Version 2.0 25.

Build Tool Conclusion

After careful evaluation of the available build and dependency management tools, including
their features, drawbacks and other factors, such as active community support, extensibility,
and thorough documentation among others, the selected tool for the implementation part of
this thesis is Gradle.

2.6.2 Testing Framework

In order to create automated tests for the system’s code, a powerful testing framework is
needed. Automated tests help to ensure that all components work as intended, even after
small changes to the underlying code. Testing is indispensable for a large application to
remain maintainable.

2.6.2.1 JUnit

JUnit26 is one of the most popular JVM-based testing framework. Since the JUnit 5 version,
it has been split into three main modules, The JUnit Platform, JUnit Jupiter and JUnit
Vintage.

25Apache License 2.0 <https://www.apache.org/licenses/>
26JUnit <http://junit.org/junit5/>

https://www.apache.org/licenses/
http://junit.org/junit5/


2.6. ANALYSIS OF SOLUTIONS FOR IMPLEMENTATION 17

The JUnit Platform "serves as a foundation for launching testing frameworks
on the JVM. It also defines the TestEngine API for developing a testing framework
that runs on the platform. Furthermore, the platform provides a Console Launcher
to launch the platform from the command line and build plugins for Gradle and
Maven as well as a JUnit 4 based Runner for running any TestEngine on the platform."[21]

On top of providing the basis for running other testing frameworks, JUnit also provides
its own solution for writing tests, which resides in the JUnit Jupiter module.

JUnit is Open Source software released under the Eclipse Public License (EPL) 1.027.

2.6.2.2 Spock Framework

Spock28 is a powerful all-round testing framework for the JVM platform. Based on the
Groovy29 language and JUnit, it aims to put together the plethora of test libraries available
into a comprehensive and easy to use framework.

Thanks to its use of Groovy DSL, Spock boasts an easy to understand and expressive
specification language. On top of basic testing, some of its more advanced features in-
clude powerful Mocking APIs, class Stubbing, Data Driven Testing and Interaction Driven
Testing, and its Spring Module provides seamless integration with the Spring TestContext
Framework[14].

Spock Framework is Open Source software distributed under the Apache License (APL)
2.030

2.6.3 Database technology

Since the system needs to persistently store, alter and access data, a database system is a
proper solution. One of the most commonly used methods of accessing database storage in
Java applications is the usage of an ORM (Object-Relational Mapping) framework, arguably
the most popular one being Hibernate31.

Hibernate provides abstraction from the concrete database implementation, along with
its own query language, HQL (Hibernate Query Language), which allows for more flexibility
and interchangeability when it comes to the database software in use. Hibernate’s ORM
implementation is also an implementation of the Java Persistence API (JPA)[20].

On top of powerful ORM for SQL databases, Hibernate also provides Hibernate OGM, a
powerful JPA implementation for NoSQL database systems, including first party implemen-
tations for Infinispan, MongoDB and Neo4j and community-maintained dialects for Cassan-
dra, CouchDB, EhCache, Apache Ignite and Redis[19].

Hibernate is Free Software distributed under the GNU Lesser General Public License
(LGPL) 2.132 or Apache License (ASL), Version 2.033 licenses.

27EPL 1.0 <https://opensource.org/licenses/EPL-1.0>
28Spock Framework <http://spockframework.org/>
29Apache Groovy <http://groovy-lang.org/>
30APL 2.0 <https://www.apache.org/licenses/LICENSE-2.0>
31Hibernate <http://hibernate.org/>
32LGPL 2.1 <https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html/>
33ASL 2.0 <https://www.apache.org/licenses/LICENSE-2.0.html/>

https://opensource.org/licenses/EPL-1.0
http://spockframework.org/
http://groovy-lang.org/
https://www.apache.org/licenses/LICENSE-2.0
http://hibernate.org/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html/
https://www.apache.org/licenses/LICENSE-2.0.html/


18 CHAPTER 2. ANALYSIS

The aim of the system implemented as part of this thesis is to provide as much freedom,
flexibility and modularity to the its users34. For this reason, the system should be designed
in such a way that it is easy to switch out the end database layer, including support for both
SQL and NoSQL databases, and create custom implementations.

2.7 Analysis of Solutions for Sample Implementation

In order to prove the system meets its requirements and works properly, a sample imple-
mentation of the highly modular parts of the system must be provided. The requirements
for the sample implementation are listed in Section 2.4 Requirement Analysis (Sample Im-
plementation).

2.7.1 Firebase Cloud Messaging

Firebase Cloud Messaging (FCM)35 is a multi-platform messaging solution by Google36.
FCM is the successor to the Google Cloud Messaging (GCM)37 platform, that was aimed
mainly at the Android, iOS, and Google Chrome platforms. On top of the platform support
of GCM, FCM adds support for the Web, NodeJS, C++, and Unity platforms.

FCM also provides powerful HTTP and XMPP (Extensible Messaging and Presence
Protocol) APIs, which can be used to create clients for other platforms.

Key Features[13]

• Support for Android, iOS, Web, C++ and Unity platforms.

• Unlimited number of messages, with up to 4kB of data each.

• Support for Notification messages, which display a notification on the target device to
the user.

• Support for Data messages, which are only handled in the background of the app on
the target device.

• Normal and High priority message setting.

• Message Time to Live (TTL).

• HTTP and XMPP APIs.

• Free of charge.

34Users here meaning those who would self-host the system, not the end users of any application using the
system

35FCM <https://firebase.google.com/docs/cloud-messaging/>
36Google <https://google.com>
37GCM <https://developers.google.com/cloud-messaging/>

https://firebase.google.com/docs/cloud-messaging/
https://google.com
https://developers.google.com/cloud-messaging/


2.7. ANALYSIS OF SOLUTIONS FOR SAMPLE IMPLEMENTATION 19

Firebase Cloud Messaging is used in the sample implementation to relay messages onto
the Android platform.

In order to simplify the use of FCM from the system a proper client library should be
used. While there are no first party Java libraries, there are several community-maintained
ones, two of which are compared below.

2.7.1.1 FcmJava

FcmJava38 is a community-maintained Java library for communication with the FCM API.
It provides object-oriented encapsulation of the FCM APIs. At the time of selecting the
tools for the sample implementation (14. 1. 2018), FcmJava does not support the new FCM
HTTP v1 API, but uses the Legacy HTTP Cloud Messaging, however support for the FCM
HTTP v1 API is planned in the 3.0 milestone[12].

2.7.1.2 Pushraven

Pushraven39 is a community-maintained Java library for communicating with the FCM API.
It provides a nicely designed object-oriented encapsulation of the FCM APIs, that is simple
to use and very easy to read. On 1. 12. 2017, the main auther of Pushraven, Raudius,
released a fully updated version of the library with support of the new FCM HTTP v1
API[40].

FCM library conclusion

Due to its good design, ease of use, fast update intervals and support of the more modern
FCM HTTP v1 APIs, the library used in the sample implementation was decided to be
Pushraven.

2.7.2 Message Queue

The design of the architecture of the system features a message queue for passing messages
between the individual instances of the application (see Chapter 3 Design). This section
presents several of the most popular message queue brokers, discusses their differences and
presents a choice for the sample implementation.

2.7.2.1 RabbitMQ

RabbitMQ 40 is an Open Source message queue broker, licensed under the Mozzila Public
License (MPL)41. RabbitMQ supports deployment in a distributed cluster, allowing for easy
scaling, can be deployed on a wide variety of systems including Windows and Linux, and
provides client libraries for languages such as Java, .NET, PHP, Python, Javascript, Ruby,
Go and others[32], as well as integration with frameworks such as Spring.

38FcmJava <https://github.com/bytefish/FcmJava>
39Pushraven <https://github.com/Raudius/Pushraven>
40RabbitMQ <https://www.rabbitmq.com/>
41MPL <https://www.mozilla.org/en-US/MPL/>

https://github.com/bytefish/FcmJava
https://github.com/Raudius/Pushraven
https://www.rabbitmq.com/
https://www.mozilla.org/en-US/MPL/


20 CHAPTER 2. ANALYSIS

While RabbitMQ is not a JMS provider, it includes a plugin that enables support for the
JMS queue and topic messaging models[33].

Key features:

• Support for both message queues and publish/subscribe pattern topics

• Delivery acknowledgement

• Routing based on wildcards

2.7.2.2 Apache ActiveMQ

Apache ActiveMQ 42 is an Open Source message queue broker, licensed under the Apache
2.0 License (APLv2)43. ActiveMQ provides a plethora of clients and protocols for languages
such as Java, C++, C#, Ruby, Perl, Python, PHP, and others[8], as well as several different
communication protocols, such as AMQP, MQTT, OpenWire and STOMP[8]. ActiveMQ
also has support for frameworks such as Spring and unlike RabbitMQ is a JMS provider.

ActiveMQ also provides message queue data persistence and scaling via distribution and
clustering.

Key features:

• Support for both message queues and publish/subscribe pattern topics

• Delivery acknowledgement

• Routing based on wildcards

Message Queue broker conclusion

RabbitMQ and Apache ActiveMQ provide extremely similar functionality and therefore are
equivalent solutions for the implemention. However, based on the fact that ActiveMQ itself
is based on the JVM and is a native JMS provider, as well as prior personal experience with
the platform, the message queue broker used in the implementation is Apache ActiveMQ.

2.8 Scalability Analysis

In order to achieve a system that is horizontally scalable, the system must be able to easily
run distributed among different machines, let us call every such instance of the back-end
application a node. The system must be able to run across multiple nodes, distributing
the computational load among these and it must be easy to add or remove nodes from the
system while it maintains full functionality. This section describes the requirements on such
a system and various problematic scenarios that may occur and the system must be able to
handle.

42Apache ActiveMQ <http://activemq.apache.org/>
43APLv2 <http://www.apache.org/licenses/LICENSE-2.0.html>

http://activemq.apache.org/
http://www.apache.org/licenses/LICENSE-2.0.html


2.8. SCALABILITY ANALYSIS 21

2.8.1 Problematic Scenarios

2.8.1.1 Servicing a large amount of clients

This is the most basic use case for a scalable system. The system must be able to service a
large amount of clients at the same time without any significant performance loss or becoming
overloaded and stop servicing them at all.

This is a problematic scenario for applications as the infrastructure an application runs
on has limited resources. An increasing amount of clients can be serviced by vertically
scaling the application, i.e. adding more resources, such as CPU speed and/or cores and
RAM memory, but this approach is feasible only to some extent, which is where horizontal
scaling comes into play. By scaling the system horizontally, onto multiple machines, the load
can be better distributed.

This scenario is expected to appear very often, as a large amount of clients are to be
using the system simultaneously.

2.8.1.2 A large amount of clients connects at the same time

This scenario may occur when a large amount of clients attempts to connect to the system
simultaneously. The difference between this scenario and the scenario described in Section
2.8.1.1 Servicing a large amount of clients is that a large number of clients must not only
be serviced at the same time, but they are also initializing their connection to the system
simultaneously, placing great strain onto the entry point of the system.

This scenario is expected to occur very rarely on a very large scale and in minor scales
during peak times, for example if an application utilizing the system would connect when the
user starts using their phone a peak of connections can be expected in the morning, when
people wake up and start their day.

2.8.1.3 A large amount of messages for a single client

This case describes a scenario where a large number of clients are all sending messages to a
single addressee client. The possible problem is that a client is connected to a single node,
therefore the messages that are to be delivered to it cannot be scaled across multiple nodes.

This scenario may happen in cases where the system is used to link a server to its clients,
for example let us imagine a tracking app for food delivery. The individual clients would be
the apps on the phones of each delivery driver, while the client receiving all their messages
would be the server running the tracking application. All the drivers constantly stream their
position data to the "server" through the system, resulting in a large number of messages
from various clients, all addressed to a single recipient client.

2.8.1.4 A node dies

This scenario describes a situation where one of the nodes dies or is disconnected. The system
must be able to respond to such a situation by reconnecting any clients that were connected
to this node to a different node or set of nodes and manage to reroute any messages that are
addressed to these clients.



22 CHAPTER 2. ANALYSIS

This scenario is expected to happen rarely, with a cause either due to technical issues or
for example upgrading the application on a node to a new version.

2.8.1.5 A message is sent to a user group with a large amount of users

This scenario describes a situation where the system contains a group with many users, for
example an application’s group of all its users, and a message is sent to this group. In the
aforementioned example that could be used as a broadcast message to all the app’s users.
This scenario is problematic as the number of users in the group may be large enough that
unfolding the group into all its users may put extreme stress on a node and its memory,
possibly causing it to crash.

This scenario is expected to occur depending on the application using the system.



Chapter 3

Design

This chapter provides an in-depth description of the system architecture and its individual
components, based heavily on the conclusions drawn from Chapter 2 Analysis. It will cover
the separation of responsibility of each component as well their interactions.

3.1 Scalability Design

This section describes the architecture proposed in order to achieve a horizontally scalable
system, as well as how the proposed architecture deals with possible problematic scenarios
described in Section 2.8.1 Problematic Scenarios.

The proposed design of the system architecture to achieve horizontal scalability is shown
below in Figure 3.1. The design can be split into four main components: Nodes, Node
Coordinator, Message Queue andDatabase, the connections between these are shown in
the Figure in different colours. The responsibilities, as well as the way in which the different
components are connected and communicate with each other, are described in detail in the
following sections.

Figure 3.1: Architecture design for horizontal scalability

23



24 CHAPTER 3. DESIGN

3.1.1 Scalability Architecture Components

3.1.1.1 Nodes

The Nodes form the core of the system. A node is an instance of the application containing
all of the business logic. A Node’s main responsibility is to dispatch messages to client
devices as well as resolving groupings (such as Group or User, see Section 3.2.1 Data Tier).
The Nodes are also the system’s main scalability point, as the amount of load the system
can process is proportional to the number of active Nodes in the system.

Nodes are aware of each other, as they receive a list of Nodes ordered by least load from
the Node Coordinator (see Section 3.1.1.2 Node Coordinator).

3.1.1.2 Node Coordinator

The Node Coordinator is a simple component, whose main responsibility is to keep track of
all Nodes in the system, as well as perform periodical health checks on them. Each Node
should connect and announce its presence to the Node Coordinator upon start-up. The Node
Coordinator also provides its connected Nodes with a list of n least loaded Nodes.

In case of a large number of Nodes connected to the Coordinator, if Nodes requested
the list of least loaded Nodes upon every request, the Coordinator could quickly become
overloaded. Therefore, Nodes should cache this list for a short amount of time and update
it when necessary. This is achieved by the Node only requesting a new list of least loaded
Nodes after the caching time expires.

3.1.1.3 Message Queue

The Message Queue component is an implementation of a message queue which is inherently
scalable. For protocols that are bound to a concrete Node, for example a websocket connec-
tion, the message queue channels would correspond to individual devices connected to the
Node, for example if a device with id device1 would connect to the Node, the Node would
then subscribe to a channel called websocket.device1. Any messages addressed to this device
would then be pushed into this channel. This flow can be seen in Figure 3.2.

For devices which are not bound to a concrete Node, for example mobile devices connected
through FCM, the messages for the device would be pushed into the channel FCM, from
which any Node can dequeue and process it. This flow can be seen in Figure 3.3.

As unfolding a user into their respective devices is also an operation which does not
require a specific Node to process, these are pushed to a user channel, from which the
messages get distributed among all available Nodes. The equivalent can be done for groups.



3.1. SCALABILITY DESIGN 25

Figure 3.2: Message flow for bound device

Figure 3.3: Message flow for unbound device



26 CHAPTER 3. DESIGN

3.1.1.4 Database

The Database component is a database layer shared between Nodes, containing all persis-
tent data. As the database layer is fully modular, the end implementation used is up to
the discretion of whoever is building the system (see Section 3.3.2 Database Modularity).
However, in order to create a system that is fully scalable a scalable database solution (e.g.
database cluster) is recommended.

3.1.2 Problematic Scenarios and their Handling

The system can encounter several problematic scenarios, as described in Section 2.8.1 Prob-
lematic Scenarios. This section describes how the proposed architecture design handles these
scenarios.

3.1.2.1 Serving a large amount of clients

In this scenario, a large amount of clients is being served by the system. In order to prevent
the system from becoming overwhelmed, the load must be distributed among the available
Nodes in such a way that all maintain a healthy load.

The proposed architecture deals with this scenario by spreading the load using the coor-
dination of the Nodes and the Node Coordinator. When a client tries to connect to a Node,
in case the Node is above a certain load threshold, it sends the list of the least loaded Nodes
to the client. The client then attempts to connect to a random Node from this list.

This resolves the issue by offloading incoming traffic onto less loaded Nodes.

3.1.2.2 A large amount of clients connects at the same time

This scenario is very similar to the one described in Section 3.1.2.1 Serving a large amount of
clients. However, the significant difference is that in this scenario, a large number of clients
are attempting to connect to the system at the same time.

The proposed architecture design deals with this scenario mostly in the same way as with
the scenario 3.1.2.1. On top of that, a load balancer or DNS-level balancing should be put
in place before the entry point to the system. By placing a load balancer into the system
entry point or using multiple IP addresses for the DNS (Domain Name System) entry of the
system, the initial connection requests can be distributed among different Nodes.

The system can handle this scenario this way also thanks to the randomization of the
client connection after receiving the list of least loaded Nodes. If the clients attempted to
connect to the least loaded Node, then in the case that a large number of clients connects
at the same time, all would be redirected to the same Node, therefore placing it under
large load. By randomly choosing between the n least loaded Nodes, the connections are
distributed among the Nodes.



3.1. SCALABILITY DESIGN 27

3.1.2.3 A large amount of messages for a single client

This scenario describes a situation where a large number of messages are addressed to a
single client.

The system handles this scenario by using a message queue which is inherently scalable.
The messages for the client are expected to be sent onto different Nodes (from all the other
clients), which then place them in the Message Queue. The Node to which the target client
is connected to then takes these messages and passes them onto the client.

A possible bottleneck in this scenario may be the connection speed between the Node
and the client, but that is unsolvable by scaling the system. However, in order to prevent
the Node from getting blocked by this client and stop serving other clients connected to it,
it must be able to handle each client in parallel.

3.1.2.4 A node dies

This scenario describes a situation in which a Node becomes disconnected from the system,
either by crashing or connectivity issues. The system discovers that a Node has died by the
Node failing a health check from the Coordinator.

The proposed design handles this situation on two levels:

Client side

When the client loses connection to the Node it is connected to, it attempts to reconnect
to it. If the reconnecting attempt also fails, it assumes the Node is no longer reachable and
begins the connection process anew, connecting to a different Node.

Server side

When a Node fails a health check, it is assumed dead and the Coordinator removes it from
its connected Nodes. Any messages meant for clients connected to the now dead Node stay
in the Message Queue and if the clients reconnect to a new Node within a certain message
timeout period, the messages are then passed onto the clients.

3.1.2.5 A message is sent to a user group with a large amount of users

This scenario describes a situation where the system contains a group with many users. So
many users in fact, that their unfolding from the group could cause an overload on the node,
possibly causing it to crash.

The system handles this scenario by splitting the group into user pages of a size that can
be easily handled, pushing references to these into the message queue, from where they are
split across multiple nodes that process them. This flow can be seen in Figure 3.4.



28 CHAPTER 3. DESIGN

Figure 3.4: Message flow for group unfolding (flow after user processing omitted for read-
ability)

3.2 Architecture Design

The system can be divided into multiple main parts1, the highest-level of division can be
into a basic four tier (or four-layered) architecture containing the following four tiers:

• Client Tier (Presentation Tier)

• Collaboration Tier

• Business Tier (Business Process Tier)

• Data Tier

Figure 3.5 shows these four layers and the components belonging in each. Due to the
high modularity requirements of the system, only most of the Business and part of the
Collaboration Tiers belong into the core system, the Presentation and Data Tiers are to be
easily interchangeable and therefore are part of the sample implementation.

A more concrete version of the tiered architecture for the full sample implementation can
be seen in Figure 3.6.

1Note: These do not necessarily overlap with the modular aspects of the system.



3.2. ARCHITECTURE DESIGN 29

Figure 3.5: Four Tier basic system architecture



30 CHAPTER 3. DESIGN

Figure 3.6: Detailed Four Tier system architecture for sample implementation



3.2. ARCHITECTURE DESIGN 31

3.2.1 Data Tier

The Data Tier is used to persistently store data describing how messages should be handled
and how they are to be delivered to their intended recipient. After analysing the necessary
requirements, the data to be stored has been divided into the following entities.

• Group: The Group entity represents a collection of Users, aggregated for some reason,
eg. all users of an application, members of a chatroom, etc.

• User: The User entity represents an end user of the application using the system. A
User can belong to Groups and has Devices.

• Device: The Device entity represents an end device onto which messages will be
delivered. Every Device belongs to a User and is on a certain Platform.

• Platform: The Platform entity represents the platform on which a Device is run-
ning and therefore determines how a message is to be delivered to that Device, eg.
websocket, FCM, etc.

Due to the high modularity design required of the system, the core of the system only
contains interfaces and instructions for the implementation of the data layer.

3.2.1.1 Sample Implementation Data Tier

In the sample implementation, which is part of this thesis, a relational database system will
be used. The Object-Relational Mapping (ORM) implementation design of the data layer
interface can be seen in Figure 3.7

Figure 3.7: Sample Implementation ORM Data Layer design

3.2.2 Business Tier

The Business Tier, also commonly known as the Business Process Tier or Business Logic
Layer, is where all the main functions of the system are done. Here the messages are received,



32 CHAPTER 3. DESIGN

processed and passed along to either the message queue or the respective adapters for the
target device’s platform2.

Figure 3.8 shows a simplified representation of the flow of a message through the Business
Tier. The message starts in the Client Tier, where one of the clients sends it. After being
received through the system’s API it is processed and passed to the MessagingService, which
communicates with the Data layer to find information on the target group, user or device
and the platforms associated with them. After this, the message is passed into the message
queue in the Collaboration Tier, from which individual Nodes, subscribed to their relevant
channels, receive the messages into the proper platform adapters. From here, the message is
sent out to the end devices, in the Client Tier.

Figure 3.8: Flow of a message through the Business layer

3.2.3 Collaboration Tier

The Collaboration Tier is responsible for managing information sharing among multiple
instances of the Business Tier. The Collaboration Tier includes the Node Coordinator,
which serves to keep track of active Nodes in the system, and the Message Queue, which
provides a way to communicate between Nodes and distributing messages among them.

3.2.4 Client Tier

The Client Tier, also commonly referred to as the Presentation Tier includes all client
libraries and applications that can receive and/or send messages from/to the system. Because

2More on adapters in Section 3.3.3.1



3.2. ARCHITECTURE DESIGN 33

the Client Tier must be designed with high modularity in mind, none of it is part of the
main system and the specifics of its API depend on the individual adapters3 that go with it.

3.2.4.1 Sample Implementation Client Tier

The sample implementation that is part of this thesis includes an implementation of the
Client Tier, aka the client libraries, for the platforms stated in Section 2.4.1 Functional
Requirements.

Dektop, Server, and Mobile

The client library for the Desktop and Server Java platforms is a Java Archive (JAR) file, that
can be included in a Java application’s classpath and provides interfaces to send and receive
messages to and from the system, respectively. It will be independent of any framework, such
as Spring, so that it works with any Java application. Since applications for the Android
mobile platform can be written in Java, the Java client library is designed in such a way that
it can be used on the Android platform as well.

With real-time communication in mind, the design of the client library was made using
an Event Driven architectural pattern for receiving messages through a websocket. However,
keeping in mind that end applications might use a different way of consuming the messages,
for example in Android’s case through Firebase Cloud Messaging, connection using websock-
ets is optional.

Figure 3.9 shows an overview of the classes the library contains along with their external
interface. For simplicity, private members of the classes have been omitted.

The most important class being MsgrClient, which is the main point of interaction for the
application using the library. It contains methods for setting up the client, sending messages,
and setting up a message listener, which is an instance of the Consumer class, from Java
8’s functional API. Because in Android’s ART the Groovy JSON Builder cannot be used, a
Function instance can be also set, to use custom behaviour for constructing JSON strings.

The WsSocket class is an internal class of the library, used by the main MsgrClient in
order to process incoming and outgoing messages through a websocket connection.

Data container classes are not important to the overall architecture design, they serve
simply as POJOs (Plain Old Java Objects) that envelop data, along with providing getters
and setters, in order to pass the data between components in a simple, encapsulated object-
oriented manner. These include classes such as DataMessageDto, NotificationDto, etc.

3More on adapters in Section 3.3.3.1



34 CHAPTER 3. DESIGN

Figure 3.9: Design of the main class components of the Java client library

Web

The Web client is a Javascript library application, its overall design very similar to the design
of the Java client library described in Section 3.2.4.1 Dektop, Server, and Mobile and uses
websockets to communicate with the system. The Javascript library is compatible with most
modern web browsers (versions: Chrome 50+, Firefox 44+, Opera Mobile 37+)[17].

3.3 Modularity Design

A critical part of the requirements put onto the system is its high flexibility and adaptability,
based on high modularity. For this reason, the system has been designed in order to reach



3.3. MODULARITY DESIGN 35

maximum modularity. In order to achieve this, the main system is contained in a Core
module, which will be the basis for any full applications with the system. Functionality and
components that may be interchanged depending on the applications’ needs are contained
in individual modules, which can be added to the full application as further dependencies
(together with the Core module). An example of an application with different modules
can be seen in Figure 3.10, which shows the basic module structure used in the Sample
Implementation.

Figure 3.10: Module structure design of sample implementation

3.3.1 Core Module

The Core module, or Core library, is the heart of the entire system. The Core module
provides the interfaces needed for other modules to implement the Spring Managed Beans
(from now on referred to simply as Beans) that will be used across the application.

Beans are objects whose lifecycle is managed by the Spring’s IoC Container’s Application
Context, which means the Spring Container initializes and configures them and where needed,
allows them to be injected[34]. These Beans provide the main business logic of the application
as well as manage the cooperation between all modules. The design of these interactions is
further elaborated upon in the following sections.

The Core module also provides the business logic for basic message processing, Node
health status, and core Node APIs.



36 CHAPTER 3. DESIGN

3.3.2 Database Modularity

The system’s access to the Data Tier has been designed in a fully modular way, so that the
end deployment is not dependent on any one type or provider of database. The result of this
effort for maximum freedom and interchangeability are the interfaces in the core.db package,
as seen in Figures 3.11 and 3.12.

Figure 3.11: Interfaces for database modules in the core.db package (Entity)

Any module that wishes to implement access to a database must create JPA Entities
implementing the entity interfaces and create interfaces that extend the repository interfaces
and extend Spring Data’s CrudRepository interface. This will indicate to the Spring Context
to instantiate repository Beans based on these interfaces[37], which the Context will then
inject into the Beans where they are used.



3.3. MODULARITY DESIGN 37

Figure 3.12: Interfaces for database modules in the core.db package (Repository)

3.3.3 Platform Modularity

One of the key features of the system is its multi-platform support. In order to be able to
support the widest possible range of platforms, the platform portion of the system had to be
designed with complete modularity in mind. The results of the design choices made based
on these requirements led to the creation of the IPlatformAdapter interface and @Platfor-
mAdapter annotations, which can be seen in more detail in Figure 3.13.

Any module that wishes to implement support for a new platform must contain at least
one Bean implementing the IPlatformAdapter interface and annotate it with the @Platfor-
mAdapter annotation, which takes the platform’s name as a parameter.



38 CHAPTER 3. DESIGN

Figure 3.13: Interfaces for platform modules in the core.platform package

3.3.3.1 Adapters

Platform Adapters are Spring Managed Beans that implement the Core module’s IPlatfor-
mAdapter interface and are annotated with the @PlatformAdapter annotation, which takes
the platform’s name as a parameter.

Adapters are automatically found at system startup by the Core module’s AdapterService
using Spring’s Application Context and registered based on the platform’s name, as specified
in the @PlatformAdapter annotation. The sequence of these events including an example
message being sent can be seen illustrated in Figure 3.14

The platform adapters need to subscribe to their relevant queues/topics in the message
queue, using the IReceiver bean (see Section 3.3.4 Message Queue Modularity). The timing
of when to subscribe is up to the adapter, as it may differ based on the platform’s needs.
For example for the FCM platform, the adapter subscribes after its initialization, while the
websocket adapter subscribes after a device is bound to it.



3.3. MODULARITY DESIGN 39

Figure 3.14: Sequence diagram indicating the resolution process of Adapters



40 CHAPTER 3. DESIGN

3.3.4 Message Queue Modularity

The message queue portion of the application has also been designed in a modular way, so
the best solution for each specific scenario can be used. Modules that would implement the
message queue functionality need to implement the interfaces defined in the core.mq package,
which can be seen in Figure 3.15.

Figure 3.15: Interfaces for message queue modules in the core.mq package

The message queue core package consist of three main interfaces, the ISender, IReceiver,
and IMqStats. The interfaces use Java generics, where K stands for the type of the message
queue key. In most message queue implementations, this would be a String. The V generic
stands for the type that is pushed into the message queue. While the sample implementation
uses a String containing a JSON object, the use of generics in the interface allows imple-
mentations of the message queue model to use other types, for example an array of bytes as
a direct serialization of Java objects.



Chapter 4

Implementation

This chapter describes the development environment and tools used to implement the system,
as well as the sample solution. The detailed structure of the implementation project is
presented and explained.

4.1 Development platform

The entire system is developed on Microsoft’s Windows 10 platform. Based on the con-
clusions made from in-depth analysis (see Chapter 2 Analysis), the primary development
language chosen is Groovy, a powerful dynamic Object-Oriented language based on the Java
platform, and the following set of applications for development:

Software used for the development of the system core

• Java Development Kit (JDK) 1.81 as the Java runtime and development kit

• JetBrains IntelliJ Idea 2018.1 (Ultimate Edition)2 as the Integrated Develop-
ment Environment (IDE)

• Apache Groovy 2.43 as the Groovy language compiler

• Atlassian Sourcetree 2.54 as a source control for GIT

Software used for the development of the sample application

On top of the software used for the development of the system core, the following software
was also used in the development of the sample implementation.

1JDK 1.8 <http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-
2133151.html>

2JetBrains IntelliJ Idea <https://www.jetbrains.com/idea/>
3Apache Groovy <http://groovy-lang.org/>
4Atlassian Sourcetree <https://www.sourcetreeapp.com/>

41

http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html
https://www.jetbrains.com/idea/
http://groovy-lang.org/
https://www.sourcetreeapp.com/


42 CHAPTER 4. IMPLEMENTATION

• Android Studio 3.05 as the IDE for developing the sample Android application

• MySQL 5.66 as the database provider

• Apache ActiveMQ 5.157 as the message queue broker

• Postman 6.08 for sending requests to REST endpoints

• Mozilla Firefox 629 as web browser and Javascript debugger

4.2 Code Structure

The code of the implementation is structured into 5 groups, henceforth called projects, each
encasing a complete application. As some applications share parts of their code, in order
to avoid duplication, some project modules are designed to be packaged into a JAR library,
which is used in other projects. This section describes these projects and their internal
structure. The 5 top-level projects are Msgr, Coordinator, Java-Client, MsgrChattr, and
Web.

Figure 4.1: Modules in the Msgr project and their dependencies on each other

5Android Studio <https://developer.android.com/studio/>
6MySQL <https://www.mysql.com/>
7Apache ActiveMQ <http://activemq.apache.org/>
8Postman <https://www.getpostman.com/>
9Mozilla Firefox <https://www.mozilla.org/en-US/firefox/new/>

https://developer.android.com/studio/
https://www.mysql.com/
http://activemq.apache.org/
https://www.getpostman.com/
https://www.mozilla.org/en-US/firefox/new/


4.2. CODE STRUCTURE 43

4.2.1 Msgr

The Msgr project represents the Node application, containing both the system core and
modules containing the sample implementation of the modular components of the system.

The Msgr root project is just a simple Gradle project containing only a Spring Boot
application, but no other code. The root project puts together all the individual modules of
the application by declaring dependency on its subprojects, the module projects. The project
tree, including dependencies between modules can be seen in Figure 4.1. The following
subsections further break down and describe the modules.

4.2.1.1 Core Module

The Core Module contains all the interfaces for other modules to implement, which are
explained in detail in Sections 3.3.2, 3.3.3, and 3.3.4, the application’s core business logic,
described in Section 3.2.2, and several controllers providing core APIs. This section contains
a brief description of a selection of the classes contained in the Core Module.

Controllers

The controller package contains three classes:

• ConnectionController, which serves as the entry point into the system by exposing
the /connect endpoint. The controller registers the connecting device, based on the
ConnectionRequest object in the request’s payload, and responds with the device’s full
registration information and a list of addresses of least loaded Nodes.

Example response payload:

{
"addresses": [
"node1.example.com",
"node2.example.com",
"node3.example.com"

],
"deviceData": {
"userId":"user1",
"userName":"user name",
"deviceId":"device1",
"deviceToken":"device 1"

}
}

• MessageController, which provides an API for sending messages and notifications
through HTTP REST calls by exposing the /notification and /message endpoints.



44 CHAPTER 4. IMPLEMENTATION

• HealthController, which exposes the /health endpoint that is used by the Node
Coordinator to check the Node’s health and receive Node status data.

Example response payload:

{
"load":0.4,
"memory":58.7

}

Queue Processors

The queue package contains classes that perform the processing of messages dequeued from
general queues, such as the group and user queues.

CoordinatorConnector

The CoordinatorConnector class represents a bean that, at the start of the Spring Application
Context, announces the Node to the Node Coordinator, and then caches and refreshes the
list of least loaded Nodes from the Coordinator.

Services

The services package contains the AdapterService and MessagingService classes, which pro-
vide most of the core business logic and are described in detail in Section 3.2.2 Business
Tier.

4.2.1.2 Message-Common

TheMessage-Common module is a simple collection of Data Transfer Objects (DTOs), which
serve to encapsulate data sent over APIs, and a few utility methods for working with them.
The Message-Common module is meant to be used as a library in other projects which use
these same classes, such as the Java-Client.

4.2.1.3 Fcm

The Fcm module contains the adapter implementation for the FCM platform.

4.2.1.4 Mysql

The Mysql module contains implementations for the Data Tier modularity interfaces, as
described in Section 3.2.1 Data Tier.

4.2.1.5 Websocket

The Websocket module contains the adapter implementations for the Websocket platform.



4.2. CODE STRUCTURE 45

4.2.1.6 Websocket-Common

The Websocket-Common module contains classes that are shared between the Websocket
module and the Java-Client project.

4.2.1.7 ActiveMq

The ActiveMq module contains the implementations of the message queue interfaces for the
ActiveMQ platform, along with all message queue related logic.

4.2.1.8 Node-Stats

The Node-Stats module exposes the /stats endpoint, which provides detailed information on
the current state of the Node, including the number of connections to the message queue,
bound devices, and more.

Example response payload:

{
"system": {
"load": 0.272,
"memory": 37.92

},
"totalBoundClients": 0,
"platformClients": {
"websocket": 0

},
"mq": {
"totalConnections": 1,
"sessions": 3,
"origins": [
"queue://FCM",
"queue://q.group.*",
"queue://q.user.*"

]
}

}

4.2.2 Coordinator

The Coordinator project represents the Node Coordinator application, which maintains a list
of all connected Nodes and performs regular health checks on them. The Coordinator also
exposes /free-nodes endpoint, which provides the list of n least loaded nodes, and a monitor
page containing the current status and health of the Coordinator and all its connected Nodes
(see Figure 4.2).

The Coordinator further includes the Common module subproject, which contains utility
classes for obtaining statistics about the system, such as CPU load and free memory. This
module is used as a library in the Core module of the Msgr project.



46 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Node Coordinator monitor page

4.2.3 Java-Client

The Java-Client project contains the classes forming the Java platform client library, which
is described in detail in Section 3.2.4.1 Dektop, Server, and Mobile.

4.2.4 Web

The Web project contains the sample implementation for the Web platform, which consists
of a Javascript client library and a web application, called Chattr, which functions as an IM
chat that can be used to send and receive messages (see Figure 4.3).

4.2.5 MsgrChattr

The MsgrChattr project contains the Android application that is part of the sample imple-
mentation for the mobile platform. The app consists of a single screen, or Activity, as they
are called in Android terminology, which is able to receive and send messages, showing them
in an IM chat fashion (see Figure 4.4). The application uses Google’s Firebase Cloud Mes-
saging to receive Android notifications and messages and the Java-Client library to access
the system and send messages.



4.2. CODE STRUCTURE 47

Figure 4.3: Chattr web application screenshot



48 CHAPTER 4. IMPLEMENTATION

Figure 4.4: MsgrChattr Android application screenshot



Chapter 5

Testing

Testing is an inseparable component of software development and is an integral part of
the code writing process. In order to ensure the designed and implemented system works
correctly and satisfies the requirements placed upon it, three different approaches to testing
and verification were chosen: automated tests, manual tests and performance tests. This
chapter describes the performed tests, the environments in which they were performed, and
their outcomes along with derived conclusions.

5.1 Automated Testing

Automated tests for the application are written using the Spock framework, described in
Chapter 2.6.2.2 Spock Framework. The Spock framework has a powerful mocking API,
which is used in order to test application logic in isolation in the form of unit tests. Spock
also provides support for easily implemented Data Driven and Interaction Based testing,
both of which were used.

Where needed, automated Spock’s Spring plugin is used in order to run integration tests,
which are used for verification of logic that relies on the Spring Application Context to
be loaded. For integration tests, an embedded H21 database is used, allowing for tests to
easily be run automatically by continuous integration tools, without the need of supplying
an external test database.

5.2 Manual Testing

Due to the nature of the system and the complexity of testing a distributed system, the
sample implementation application, Chattr, was created to verify the proper behaviour of
the system. Using this, a large part of the tests of the functionality of the system as a whole
was done using manual tests, based on use-case scenarios. This section describes the test
scenarios and the environment in which they were performed.

1H2 Database Engine <http://www.h2database.com/html/main.html>

49

http://www.h2database.com/html/main.html


50 CHAPTER 5. TESTING

5.2.1 Testing Environment

In order to approximate a distributed environment, the testing environment consists of two
machines, on which the system is run, utilizing each machine to run multiple applications
and Nodes. The deployment diagram of the system testing environment can be seen in
Figure 5.1.

Figure 5.1: Deployment diagram of the testing environment

The machine called Server2 runs four Node instances, an ActiveMQ instance and two
instances of the Web client, Chattr. The second machine, called Server1, runs a Node in-
stance, the Node Coordinator, and a MySQL database. Both machines share the same Local
Area Network (LAN), with an Android smart phone also connected to the same network.
The LAN is connected to the internet, where the Firebase Cloud Messaging service resides
in the cloud.

5.2.1.1 Testing Environment Machine Specifications

The hardware and operating system specifications of the two machines used in the testing
environment are detailed in Table 5.1.



5.3. PERFORMANCE TESTING 51

Machine Operating System CPU RAM
Server1 Ubuntu Server 16.04

LTS x64
Intel Core i5-7500T, 4
cores @ 2.7GHz

8GB DDR3L 1600MHz

Server2 Windows 10 Home x64 Intel Core i7-3610QM, 4
cores @ 2.3GHz

16GB DDR3 1600MHz

Table 5.1: Testing environment machine specifications

5.3 Performance Testing

As the system is meant to support large-scale real-time applications, throughput and mes-
sage processing performance are critical. For the purposes of gauging the system’s message
throughput in different scenarios, a performance benchmark application was created. The
PerformanceTester application is a console application written in Groovy, which uses the
Java-Client library to communicate with the system.

This Section describes the performance tests performed, presents the obtained experi-
mental data and uses it to formulate conclusions on the system’s performance.

5.3.1 Tests

All tests were performed in the testing environment described in Section 5.2.1 Testing En-
vironment, with messages being addressed to a user. This means the message goes through
the following flow:

The message is sent to a Node, where it gets processed and pushed into the user message
queue, from which another Node dequeues it, processes it, and as it is a message addressed
for a user, unfolds the user into their devices, pushing the message into the devices respective
message queues. After this, the Nodes that each of these devices is bound to dequeues the
message and passes it to its client.

Every test was repeated four times in order to average out any abnormalities caused by
other processes on the machines.

The precision of the time measurements is in milliseconds (ms).

5.3.2 Test 1: Single Node, single client. 50 messages

In this test, the system consist only of Node001, running on the same machine as the Per-
formanceTester application.

The PerformanceTester connects a single client to the Node and sends 50 messages ad-
dressed to itself. As all of the messages are sent almost simultaneously, with no delay between
them, this test floods the system with a large number of messages at the same time.

5.3.3 Test 2: Single Node, single client. 200 messages

The scenario for this test mirrors Test 1, except this time 200 messages are sent simultane-
ously.



52 CHAPTER 5. TESTING

Measurement # Average message delivery time (ms)
1 0.3
2 0.42
3 0.48
4 0.18

Table 5.2: Average message delivery time for Test 1

Figure 5.2: Test 1: Delivery times

Measurement # Average message delivery time (ms)
1 1.205
2 1.125
3 1.105
4 1.32

Table 5.3: Average message delivery time for Test 2

Figure 5.3: Test 2: Delivery times



5.3. PERFORMANCE TESTING 53

The data from Tests 1 and 2 shows a clear connection between the number of messages
sent simultaneously and their delivery time. This is most likely due to the congestion of the
websocket communication channel, as all messages are pushed into it at once with little to
no spacing between them.

5.3.4 Test 3: 4 Nodes, single machine. 50 messages

The scenario for this test is similar to the scenarios in Tests 1 and 2, but enhanced by the
addition of Node instances to the system, so the Server2 machine now contains four Nodes
and the PerformanceTester is running a separate websocket client for each.

For every message to be sent, a random client is chosen and the message is sent as
a broadcast to all the clients, including the sender. This effectively means that while 50
messages are sent out, 200 messages in total are received - 50 for each client.

Measurement # Average message delivery time (ms)
1 2.97
2 2.92
3 1.975
4 2.785

Table 5.4: Average message delivery time for Test 3

Figure 5.4: Test 3: Delivery times

5.3.5 Test 4: 5 Nodes, two machines. 50 messages

The scenario for this test further enhances the previous scenarios by adding yet another Node
instance, the Node-server on machine Server1, therefore scaling the system onto a second
machine.



54 CHAPTER 5. TESTING

As there are now 5 nodes, it also means 50 more messages need to be delivered, making
it a total of 250 delivered messages.

Measurement # Average message delivery time (ms)
1 3.296
2 3.448
3 2.852
4 3.2

Table 5.5: Average message delivery time for Test 4

Figure 5.5: Test 4: Delivery times

The data from Tests 3 and 4 continue to support the trend from Tests 1 and 2, where the
larger the amount of messages pushed through the communication channel at one time, the
longer the message delivery time. However, for the same amount of delivered messages (200),
we can see that Test 3 has higher average delivery time than Test 2. As Test 3 distributes
the load among multiple Nodes, this further supports the hypothesis that the bottleneck
that is being congested is the websocket connection, not the system itself.



5.3. PERFORMANCE TESTING 55

5.3.6 Test 5: Communication simulation. 50 messages, 20ms interval

This scenario aims to simulate a real-time communication between two clients, with a two-
way constant stream of data from one to the other and vice versa. One client is connected to
Node Node001 on machine Server2 and the other to Node Node-server on machine Server1.
The individual messages are separated with 20ms intervals, mimicking a real communication
closer than the previous tests, which pushed all the messages at once.

Measurement # Average message delivery time (ms)
1 0.42
2 0.42
3 0.32
4 0.22

Table 5.6: Average message delivery time for Test 5

Figure 5.6: Test 5: Delivery times



56 CHAPTER 5. TESTING

5.3.7 Test 6: Communication simulation. 200 messages, 20ms interval

This scenario is an extension of the scenario in Test 5, increasing the number of sent messages
from 50 to 200.

Measurement # Average message delivery time (ms)
1 2.17
2 2.19
3 1.21
4 1.47

Table 5.7: Average message delivery time for Test 6

Figure 5.7: Test 6: Delivery times

The data from Tests 5 and 6 immediately shows a drastic decrease in delivery time as
congestion on the websockets is relieved and processing load is distributed over two machines.
The times are higher than in Tests 1 and 2, but that is likely due to the fact that messages
have to travel over the network to Node-server, while Tests 1 and 2 were executed completely
on a single machine and the PerformanceTester only had to maintain a single client.



5.3. PERFORMANCE TESTING 57

5.3.8 Test 7: Communication simulation. 200 messages, 100ms interval

This scenario builds upon the findings of Tests 5 and 6, where a more realistic interval
between messages decreased the congestion on the websocket channel, and further increases
this interval up to 100ms. This scenario simulates a real-time application that sends ten
messages per second.

Measurement # Average message delivery time (ms)
1 0.115
2 0.125
3 0.115
4 0.095

Table 5.8: Average message delivery time for Test 7

Figure 5.8: Test 7: Delivery times

5.3.9 Test 8: Communication simulation. 1000 messages, 100ms interval

Based upon the hypothesis that the bottleneck shown in Tests 1-5, this scenario keeps the
100ms interval of Tests 7, but sends a five times larger volume of data, 1000 messages.

The expected outcome of this test is that the average message delivery time will be
comparable to the one in Test 7, as the lower congestion of the websocket channel allows
messages to flow and the system has no trouble processing the higher volume of messages.



58 CHAPTER 5. TESTING

Measurement # Average message delivery time (ms)
1 0.189
2 0.061
3 0.082
4 0.52

Table 5.9: Average message delivery time for Test 8

Figure 5.9: Test 8: Delivery times



5.3. PERFORMANCE TESTING 59

5.3.10 Performance Test Conclusion

The data from Tests 7 and 8 shows that most messages are delivered under 1ms, even with
a large volume of messages. Combining this with the data from Tests 1-6, it can be assumed
that the largest bottleneck of the system is the websocket channel between Nodes and clients
and is based solely on connectivity.



60 CHAPTER 5. TESTING



Chapter 6

Conclusion

6.1 Goal Evaluation

The goals of this thesis were to design and implement a system that can serve as a framework
and foundation to be built upon and expanded for usage in modern applications that need
fast communication among a potentially large numbers of devices.

The application, which is the culmination of this thesis, is a highly modular and extensi-
ble framework, capable of running distributed across multiple instances and machines with
capability for easy horizontal scaling by way of adding new instances.

In order to demonstrate the functionality of the system, as well as provide an example of
the implementation of its highly modular components, a sample application was developed,
showcasing the system on representatives of the Web, Mobile, Desktop and Server platforms.
The application was also subjugated to multiple forms of testing.

6.2 Suggestions for Future Expansion

This thesis provides a framework that is designed to be further built upon, improved, and
expanded. This Section provides some ideas that were outside the scope of this thesis.

6.2.1 Authentication

The system in its current state already provides a logical division of devices between users
and allows for aggregation of users into groups. A possible improvement is evident: add
support for user authentication.

6.2.2 System Administration

This improvement suggestion goes hand in hand with the one mentioned above, in Section
6.2.1 Authentication. Once user authentication is possible, the system can be extended with
administration interfaces, allowing users with special privileges to manage devices, users and
groups.

61



62 CHAPTER 6. CONCLUSION

6.2.3 Encryption

While at its current state, the system could easily be used to send data with End-to-End
encryption by encrypting and decrypting it before sending and after receiving, respectively,
optional End-to-End encryption could be built-in in the client libraries.



Bibliography

[1] Ably. Ably protocol adapters. https://www.ably.io/adapters/. 3. 1. 2018.

[2] Ably. Do you binary encode your messages for greater efficiency? https:
//support.ably.io/support/solutions/articles/3000047365-do-you-binary-
encode-your-messages-for-greater-efficiency-/. 3. 1. 2018.

[3] Ably. Documentation. https://www.ably.io/documentation/. 3. 1. 2018.

[4] Ably. Download. https://www.ably.io/download/. 3. 1. 2018.

[5] Ably. How does ably count peak connections? https://support.pubnub.com/
support/solutions/articles/14000043668-how-are-peak-connections-counted-
/. 9. 1. 2018.

[6] Ably. How long are messages stored for? https://support.ably.io/
support/solutions/articles/3000030059-how-long-are-messages-stored-
forcumentation/. 3. 1. 2018.

[7] Ably. Reliable message ordering for connected clients. https://support.ably.io/
support/solutions/articles/3000044641-guaranteed-message-ordering-for-
connected-clients/. 3. 1. 2018.

[8] A. ActiveMQ. Cross Language Clients. http://activemq.apache.org/cross-
language-clients.html/. 22. 5. 2018.

[9] Apple. Enrollment. https://developer.apple.com/support/enrollment/.
22. 5. 2018.

[10] Apple. Purchase and Activation. https://developer.apple.com/support/purchase-
activation/. 22. 5. 2018.

[11] Baeldung. Build tools market share. http://www.baeldung.com/java-in-2017#
build/. 11. 1. 2018.

[12] bytefish (via GitHub). Any plan to add support for new http v1 api? https://github.
com/bytefish/FcmJava/issues/37/. 14. 1. 2018.

[13] G. Firebase. About fcm messages. https://firebase.google.com/docs/cloud-
messaging/concept-options/. 14. 1. 2018.

63

https://www.ably.io/adapters/
https://support.ably.io/support/solutions/articles/3000047365-do-you-binary-encode-your-messages-for-greater-efficiency-/
https://support.ably.io/support/solutions/articles/3000047365-do-you-binary-encode-your-messages-for-greater-efficiency-/
https://support.ably.io/support/solutions/articles/3000047365-do-you-binary-encode-your-messages-for-greater-efficiency-/
https://www.ably.io/documentation/
https://www.ably.io/download/
https://support.pubnub.com/support/solutions/articles/14000043668-how-are-peak-connections-counted-/
https://support.pubnub.com/support/solutions/articles/14000043668-how-are-peak-connections-counted-/
https://support.pubnub.com/support/solutions/articles/14000043668-how-are-peak-connections-counted-/
https://support.ably.io/support/solutions/articles/3000030059-how-long-are-messages-stored-forcumentation/
https://support.ably.io/support/solutions/articles/3000030059-how-long-are-messages-stored-forcumentation/
https://support.ably.io/support/solutions/articles/3000030059-how-long-are-messages-stored-forcumentation/
https://support.ably.io/support/solutions/articles/3000044641-guaranteed-message-ordering-for-connected-clients/
https://support.ably.io/support/solutions/articles/3000044641-guaranteed-message-ordering-for-connected-clients/
https://support.ably.io/support/solutions/articles/3000044641-guaranteed-message-ordering-for-connected-clients/
http://activemq.apache.org/cross-language-clients.html/
http://activemq.apache.org/cross-language-clients.html/
https://developer.apple.com/support/enrollment/
https://developer.apple.com/support/purchase-activation/
https://developer.apple.com/support/purchase-activation/
http://www.baeldung.com/java-in-2017#build/
http://www.baeldung.com/java-in-2017#build/
https://github.com/bytefish/FcmJava/issues/37/
https://github.com/bytefish/FcmJava/issues/37/
https://firebase.google.com/docs/cloud-messaging/concept-options/
https://firebase.google.com/docs/cloud-messaging/concept-options/


64 BIBLIOGRAPHY

[14] S. Framework. Spock framework reference documentation. http://spockframework.
org/spock/docs/1.1/all_in_one.html/. 14. 1. 2018.

[15] Gartner. Global mobile os market share in sales to end users from 1st quarter 2009 to
2nd quarter 2017. https://www.statista.com/statistics/266136/global-market-
share-held-by-smartphone-operating-systems/. 9. 1. 2018.

[16] Google. How to use the Play Console. https://support.google.com/googleplay/
android-developer/answer/6112435?hl=en/. 22. 5. 2018.

[17] Google. Set up a javascript firebase cloud messaging client app. https://firebase.
google.com/docs/cloud-messaging/js/client/. 15. 1. 2018.

[18] Gradle. Maven vs gradle. https://gradle.org/maven-vs-gradle/. 11. 1. 2018.

[19] Hibernate. Hibernate ogm. http://hibernate.org/ogm/. 14. 1. 2018.

[20] Hibernate. Hibernate orm. http://hibernate.org/orm/. 14. 1. 2018.

[21] JUnit. JUnit 5 user guide. http://junit.org/junit5/docs/current/user-guide/.
14. 1. 2018.

[22] OneSignal. Product overview. https://documentation.onesignal.com/docs/.
3. 1. 2018.

[23] OneSignal. Security. https://documentation.onesignal.com/v4.0/docs/security/.
8. 1. 2018.

[24] OneSignal. Ssending notifications. https://documentation.onesignal.com/v3.0/
docs/sending-notifications/. 8. 1. 2018.

[25] PubNub. Can i use catchup to retrieve older messages? https://support.
pubnub.com/support/solutions/articles/14000043538-can-i-use-catchup-to-
retrieve-older-messages-/. 5. 12. 2017.

[26] PubNub. Goinstant. https://www.pubnub.com/goinstant/. 8. 1. 2018.

[27] PubNub. How are peak connections counted? https://support.pubnub.com/
support/solutions/articles/14000043668-how-are-peak-connections-counted-
/. 9. 1. 2018.

[28] PubNub. Realtime Pub/Sub Messaging. https://www.pubnub.com/products/
realtime-messaging/. 5. 12. 2017.

[29] Pusher. Community libraries. https://pusher.com/docs/libraries#community-
libraries/. 9. 1. 2018.

[30] Pusher. Libraries. https://pusher.com/docs/libraries#rest_libraries/.
9. 1. 2018.

[31] Pusher. Querying application state. https://pusher.com/docs/server_api_guide/
interact_rest_api#querying-application-state/. 9. 1. 2018.

http://spockframework.org/spock/docs/1.1/all_in_one.html/
http://spockframework.org/spock/docs/1.1/all_in_one.html/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://support.google.com/googleplay/android-developer/answer/6112435?hl=en/
https://support.google.com/googleplay/android-developer/answer/6112435?hl=en/
https://firebase.google.com/docs/cloud-messaging/js/client/
https://firebase.google.com/docs/cloud-messaging/js/client/
https://gradle.org/maven-vs-gradle/
http://hibernate.org/ogm/
http://hibernate.org/orm/
http://junit.org/junit5/docs/current/user-guide/
https://documentation.onesignal.com/docs/
https://documentation.onesignal.com/v4.0/docs/security/
https://documentation.onesignal.com/v3.0/docs/sending-notifications/
https://documentation.onesignal.com/v3.0/docs/sending-notifications/
https://support.pubnub.com/support/solutions/articles/14000043538-can-i-use-catchup-to-retrieve-older-messages-/
https://support.pubnub.com/support/solutions/articles/14000043538-can-i-use-catchup-to-retrieve-older-messages-/
https://support.pubnub.com/support/solutions/articles/14000043538-can-i-use-catchup-to-retrieve-older-messages-/
https://www.pubnub.com/goinstant/
https://support.pubnub.com/support/solutions/articles/14000043668-how-are-peak-connections-counted-/
https://support.pubnub.com/support/solutions/articles/14000043668-how-are-peak-connections-counted-/
https://support.pubnub.com/support/solutions/articles/14000043668-how-are-peak-connections-counted-/
https://www.pubnub.com/products/realtime-messaging/
https://www.pubnub.com/products/realtime-messaging/
https://pusher.com/docs/libraries#community-libraries/
https://pusher.com/docs/libraries#community-libraries/
https://pusher.com/docs/libraries#rest_libraries/
https://pusher.com/docs/server_api_guide/interact_rest_api#querying-application-state/
https://pusher.com/docs/server_api_guide/interact_rest_api#querying-application-state/


BIBLIOGRAPHY 65

[32] RabbitMQ. Clients & Developer Tools. https://www.rabbitmq.com/devtools.html/.
22. 5. 2018.

[33] RabbitMQ. RabbitMQ JMS Client. https://www.rabbitmq.com/jms-client.html/.
22. 5. 2018.

[34] Spring. Bean overview. https://docs.spring.io/spring/docs/current/spring-
framework-reference/core.html#beans-definition/. 16. 1. 2018.

[35] Spring. Convention over configuration. https://docs.spring.io/spring/docs/3.0.
0.M3/reference/html/ch16s10.html/. 11. 1. 2018.

[36] Spring. The ioc container. https://docs.spring.io/spring/docs/3.2.x/spring-
framework-reference/html/beans.html/. 11. 1. 2018.

[37] Spring. Working with spring data repositories. https://docs.spring.io/spring-
data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html/.
16. 1. 2018.

[38] Statista. Internet of Things (IoT) connected devices installed base worldwide from 2015
to 2025 (in billions). https://www.statista.com/statistics/471264/iot-number-
of-connected-devices-worldwide/. 22. 5. 2018.

[39] Statista. Number of wireless local area network (WLAN) connected devices world-
wide from 2016 to 2021 (in billions). https://www.statista.com/statistics/802706/
world-wlan-connected-device/. 22. 5. 2018.

[40] R. (via GitHub). HTTP v1 API. https://github.com/Raudius/Pushraven/commit/
ca4356c6fb034042dcd576ac2364c4386a9bfe6f/. 14. 1. 2018.

https://www.rabbitmq.com/devtools.html/
https://www.rabbitmq.com/jms-client.html/
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-definition/
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-definition/
https://docs.spring.io/spring/docs/3.0.0.M3/reference/html/ch16s10.html/
https://docs.spring.io/spring/docs/3.0.0.M3/reference/html/ch16s10.html/
https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html/
https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html/
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html/
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/802706/world-wlan-connected-device/
https://www.statista.com/statistics/802706/world-wlan-connected-device/
https://github.com/Raudius/Pushraven/commit/ca4356c6fb034042dcd576ac2364c4386a9bfe6f/
https://github.com/Raudius/Pushraven/commit/ca4356c6fb034042dcd576ac2364c4386a9bfe6f/


66 BIBLIOGRAPHY



Appendix A

List of abbreviations

WLAN Wireless Local Area Network

IoT Internet of Things

IM Instant Messaging

API Application Programming Interface

JVM Java Virtual Machine

SaaS Software as a Service

PaaS Platform as a Service

FAQ Frequently Asked Questions

SDK Software Development Kit

REST Representational State Transfer

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

ART Android Runtime

Dex Dalvik Executable

JRE Java Runtime Environment

JDK Java Development Kit

OS Operating System

IDE Integrated Development Environment

GUI Graphical User Interface

HTML Hyper Text Markup Language

67



68 APPENDIX A. LIST OF ABBREVIATIONS

CSS Cascading Style Sheets

JAR Java ARchive

URL Uniform Resource Locator

IoC Inversion of Control

DI Dependency Injection

XML Extensible Markup Language

DSL Domain-Specific Language

SQL Structured Query Language

GPL General Public Licence

HA High Availability

ORM Object-Relational Mapping

HQL Hibernate Query Language

JPA Java Persistence API

ASL Apache Licence

LGPL GNU Lesser General Public Licence

FCM Firebase Cloud Messaging

TTL Time to Live

XMPP Extensible Messaging and Presence Protocol

POJO Plain Old Java Object

DNS Domain Name System

DTO Data Transfer Object

LAN Local Area Network

CPU Central Processing Unit

RAM Random Access Memory



Appendix B

User Guide

This chapter aims to provide a comprehensible guide to building, deploying and using the
system.

The steps described in this guide have been tested on 64bit versions of Windows 10 and
Ubuntu 16, but should be compatible with most modern versions of Windows, Linux, and
MacOS operating systems.

B.1 Building from Code

This Section describes the steps needed to build the applications forming the system from
the source code provided.

B.1.1 System Requirements

Minimum System Requirements

• 1GHz processor

• 2GB RAM

• 500MB free hard drive space

Recommended System Requirements

• 64bit Windows 10 or Ubuntu 16 operating system

• 2GHz multi-core processor

• 8GB RAM

• 1GB free hard drive space

69



70 APPENDIX B. USER GUIDE

B.1.2 Software Prerequisites

In order to build and the applications, the following software must be installed on the user’s
machine:

• Java JDK 1.8+

• Gradle 4.0+

(May be replaced by using the projects’ Gradle wrappers. To use the Gradle wrappers,
replace commands gradle <command> with ./gradlew <command> on Linux and

gradlew.bat <command> on Windows.)

You can verify their presence by running the the java -version and gradle -version ,
which should give a result similar to the following:

$ java -version
java version "1.8.0_101"
Java(TM) SE Runtime Environment (build 1.8.0_101-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

$ gradle -version

------------------------------------------------------------
Gradle 4.7
------------------------------------------------------------

Build time: 2018-04-18 09:09:12 UTC
Revision: b9a962bf70638332300e7f810689cb2febbd4a6c

Groovy: 2.4.12
Ant: Apache Ant(TM) version 1.9.9 compiled on February 2 2017
JVM: 1.8.0_101 (Oracle Corporation 25.101-b13)
OS: Linux 4.4.0-43-Microsoft amd64

B.1.3 Building Shared Dependencies

Some applications depend on libraries built from other applications’ submodules. This Sec-
tion describes the order in which these dependencies need to be built and the folders where
the built libraries are to be placed.

B.1.3.1 Coordinator/Common Module

In order to build this module, navigate to the messagingSystem/coordinator/common folder
and run gradle assemble . If successful, the command output should contain the following:

BUILD SUCCESSFUL in 9s
2 actionable tasks: 2 up-to-date
21:57:57: Task execution finished ’assemble’.



B.2. RUNNING THE APPLICATIONS 71

Next, move the assembled JAR file frommessagingSystem/coordinator/common/build/libs/common-
1.1.jar to messagingSystem/msgr/core/lib.

B.1.3.2 Msgr/Message-Common Module

Navigate to messagingSystem/msgr/message-common and run gradle assemble .
Move the assembled JAR file frommessagingSystem/msgr/message-common/build/libs/message-

common-1.0.jar to messagingSystem/java-client/lib.

B.1.4 Building the Node and Node Coordinator Applications

If the previous steps have been completed, navigate to messagingSystem/msgr for the Node
application or messagingSystem/coordinator for the Node Coordinator.

Run the gradle assemble command, which will build the project, along with all its
submodules and produce a JAR file, which can be found in the ./build/libs folder. This file
is a runnable JAR file. For information on how to configure and run the Node and Node
Coordinator, please see Sections B.2.2 Running the Node Application and B.2.1 Running
the Node Coordinator.

B.1.5 Building the Java-Client

In the messagingSystem/java-client folder, running the gradle shadowJar command will
produce the complete library JAR file, which includes all its dependencies. The JAR file will
be located in messagingSystem/java-client/build/libs/java-client-1.0-SNAPSHOT-all.jar

B.1.6 Building the MsgrChattr Android Application

In order to build the MsgrChattr Android Application, the Java-Client JAR must be placed
in the messagingSystem/MsgrChattr/app/libs folder. For instructions on how to build the
Java-Client and where to find the JAR file, see Section B.1.5 Building the Java-Client.

For building the Android app itself, refer to the official documentation depending on
which type of build is needed: https://developer.android.com/studio/build/building-
cmdline.

B.1.7 Building the PerformanceTester

To build the PerformanceTester, navigate to the messaginSystem/PerformanceTester and
run the gradle shadowJar command.

B.2 Running the Applications

This Section describes how to run and configure the individual applications that are part of
the system. This Section assumes that all applications have been built into runnable JAR
files, as described in Section B.1 Building from Code

https://developer.android.com/studio/build/building-cmdline
https://developer.android.com/studio/build/building-cmdline


72 APPENDIX B. USER GUIDE

B.2.1 Running the Node Coordinator

In order to run the Node Coordinator, start the runnable JAR file using java -jar coordinator-1.0.jar
and the application will begin too boot.

While the Node Coordinator application uses some sensible default configuration values,
it is possible to change these by using a configuration file. The configuration file must be
placed in config/application.properties, relative to where the JAR file is being run from. The
options configurable in the properties file are described in the following properties template:

# cron expression to use for healthcheck, if null,
coordinator.healthcheck.seconds will be used

coordinator.healthcheck.cron=
# number of seconds between healthchecks, used only if

coordinator.healtcheck.cron is null. Defaults to 5
coordinator.healthcheck.seconds=

# number of miliseconds for request timeout when getting healthcheck. Defaults to
1000

coordinator.healthcheck.connection.timeout=

# number of least loaded nodes to return, defaults to 10
coordinator.list.node.amount=
# maximum load on a node to be offered in the node list (vals 0.0-1.0), defaults

to 0.9
coordinator.list.node.max-load=

# number of seconds since last successful healthcheck to proclaim node dead,
defaults to 15

coordinator.node.unhealthy.timeout=

# number of seconds to cache list of least loaded nodes, defaults to 5
coordinator.node.cache.time=

# logging settings
# you can set logging level based on packages or individual classes
# available log levels are ERROR, WARN, INFO, DEBUG, TRACE
# packages example:
logging.level.org.springframework.data=
logging.level.cz.cvut.fel.hernaosc=
# class example:
logging.level.cz.cvut.fel.hernaosc.service.CoordinatorService=

# configure the port on which the application will run
server.port = 8090

B.2.2 Running the Node Application

The Node application can be started by running the assembled JAR file using java -jar msgr-1.0.jar .
However, unlike the Node Coordinator, the Node Application requires the following software
in order to be able to run:



B.2. RUNNING THE APPLICATIONS 73

• MySQL Server 5.5+

• ActiveMQ 5+

In order for the Firebase Cloud Messaging adapter to be able to connect to FCM and
send messages, a JSON file containing your Firebase account credentials (instructions on
how to obtain it can be found here: https://firebase.google.com/docs/admin/setup#
add_firebase_to_your_app) has to be provided to the application.

The Node Application provides reasonable defaults for most configuration, however if
needed, these can be overwritten using the config/application.properties file, using the fol-
lowing template:

# MySQL DB settings
spring.jpa.hibernate.ddl-auto=
spring.datasource.url=jdbc:mysql://
spring.datasource.username=
spring.datasource.password=

spring.jpa.properties.hibernate.enable_lazy_load_no_trans=true

# FCM adapter settings
msgr.adapter.fcm.projectId=
msgr.adapter.fcm.serviceAccountFilename=

# MSGR Node settings
# node ID to use when connecting to Coordinator. Defaults to random UUID
msgr.node.id=
# node address (including any port other than 80) that the Coordinator will use

to health check and coordinate traffic
msgr.node.address=
# Address (including any port other than 80) for the Node Coordinator
msgr.coordinator.address=

# number of seconds to cache list of least loaded nodes, defaults to 5
msgr.node.cache.time=

# number of users to include in a page when breaking down group, defaults to 50
msgr.group.user.page.size=

# ActiveMQ settings
spring.activemq.broker-url=
spring.activemq.user=
spring.activemq.password=
# maximum number of connections between Node and ActiveMQ. Max 500 sessions per

connection. Defaults to 1
msgr.activemq.max.connections=
# message time to live in ActiveMQ, in miliseconds. Default 108000ms (30 minutes)
msgr.activemq.message.ttl=

https://firebase.google.com/docs/admin/setup#add_firebase_to_your_app
https://firebase.google.com/docs/admin/setup#add_firebase_to_your_app


74 APPENDIX B. USER GUIDE

B.2.3 Running the MsgrChattr Android Application

For instructions on how to run the Android application, please refer to official Android
documenatation at https://developer.android.com/studio/build/building-cmdline.

B.2.4 Running the Chattr Web Application

To run the Chattr web application, open the messagingSystem/web/chattr/chattr.html file
in any supported browser (see Section 2.3.2 Non-functional Requirements).

B.2.5 Running the PerformanceTester Application

The PerformanceTester application runs as a command line Java application. Trying to run
the JAR file without any arguments gives the following output:

$ java -jar PerformanceTester-1.0-all.jar
Invalid arguments. Usage: MsgrPerf <cmd> <args>
Available commands:
For details on each command run MsgrPerf help <cmd>
testConnection
multiMessage
multiNodeMessage
communication
help

The help command shows which inputs are required for each command. Example out-
put:

$ java -jar PerformanceTester-1.0-all.jar help multiMessage
Usage: multiMessage <url> <target> <numMessages>
Valid targets: ’device’, ’user’

https://developer.android.com/studio/build/building-cmdline


Appendix C

Contents of CD

/mnt/c/Users/Osa-S/Documents/school/fel/ing/diplomka/dp-cd/
Multi_platform_Scalable_Messaging_System.pdf
doc

chattr-android.png
chattr-web.png
maven-gradle-speed.png
mobile-market.png
monitor-page.png
peak-conns.png
diagrams

20180426_133118.jpg
adapter-flow.asta
adapter-flow.png
basic-arch.asta
basic-arch.png
basic-arch_0.png
core-db-module-repo.png
core-db-module.png
core-mq-module.png
core-platform-module.png
example-situation.png
java-client-classes.asta
java-client-classes.png
layer-arch-detail.png
layer-arch.png
mq-fcm-device.png
mq-group.png
mq-ws-device.png
msg-flow.asta
msg-flow.png
msgr-project.png
orm.png

75



76 APPENDIX C. CONTENTS OF CD

Realtime-communication-pattern.png
s-impl-arch.png
s-impl-comps.asta
s-impl-comps.png
scalability-architecture.png
test-deploy-dia.asta
test-deploy-dia.png
Traditional communication pattern.asta
Traditional-communication-pattern.png
img

android-logo-transparent-background.png
Apple-Logo-black-png-transparent.png
commons-wiki-User_icon_BLACK-01.png
firebase.png
google_PNG19630.png
KSDyuoBGRcmvqnL3ozKi_1024px-Apple_iOS_new.svg.png
microsoft-windows-22.png
microsoft_PNG14.png
windows_logos_PNG31.png

test
test-perf1.png
test-perf2.png
test-perf3.png
test-perf4.png
test-perf5.png
test-perf6.png
test-perf7.png
test-perf8.png

messagingSystem
perf-results.xlsx
coordinator

build.gradle
gradlew
gradlew.bat
settings.gradle
common

build.gradle
src

main
groovy

cz
cvut

fel
hernaosc

dp
msgr



77

coordinator
common

MsgrNode.groovy
sys

SysMemory.groovy
SysUtils.groovy

java
resources

test
groovy
java
resources

config
application.properties

gradle
wrapper

gradle-wrapper.jar
gradle-wrapper.properties

src
main

groovy
cz

cvut
fel

hernaosc
dp

msgr
coordinator

CoordinatorApplication.groovy
config

JobsConfig.groovy
controller

NodeController.groovy
dto

NodeStatus.groovy
jobs

HealthCheckJob.groovy
service

CoordinatorService.groovy
java
resources

test
groovy

cz
cvut

fel



78 APPENDIX C. CONTENTS OF CD

hernaosc
dp

msgr
coordinator

controller
NodeControllerTest.groovy

service
CoordinatorServiceTest.groovy

java
resources

java-client
build.gradle
gradlew
gradlew.bat
settings.gradle
gradle

wrapper
gradle-wrapper.jar
gradle-wrapper.properties

lib
src

main
java

cz
cvut

fel
hernaosc

dp
msgr

javaclient
MsgrClient.java
ws

WsSocket.java
test

java
cz

cvut
fel

hernaosc
dp

msgr
msgr

build.gradle
gradlew
gradlew.bat
settings.gradle



79

activemq
build.gradle
src

main
groovy

cz
cvut

fel
hernaosc

dp
msgr

activemq
MsgrActiveMq.groovy
config

ConnectionPoolConfig.groovy
JmsTemplateConfig.groovy

mq
ActiveMqReceiver.groovy
ActiveMqSender.groovy
ActiveMqStats.groovy
ActiveMqTopicListener.groovy

java
resources

test
groovy

cz
cvut

fel
hernaosc

dp
msgr

activemq
mq

ActiveMqReceiverTest.groovy
java
resources

config
application.properties.template

core
build.gradle
lib
src

main
groovy

cz
cvut



80 APPENDIX C. CONTENTS OF CD

fel
hernaosc

dp
msgr

core
CoordinatorConnector.groovy
MsgrCore.groovy
config

CorsConfig.groovy
controller

ConnectionController.groovy
HealthController.groovy
MessageController.groovy

db
IEntity.groovy
entities

IDevice.groovy
IGroup.groovy
IPlatform.groovy
IUser.groovy

repository
IBaseRepository.groovy
IDeviceRepository.groovy
IGroupRepository.groovy
IPlatformRepository.groovy
IUserRepository.groovy

dto
MqStatsDto.groovy

mq
IMqStats.groovy
IReceiver.groovy
ISender.groovy

platform
IPlatformAdapter.groovy
PlatformAdapter.groovy

queue
GroupProcessor.groovy
UserProcessor.groovy

service
AdapterService.groovy
IAdapterService.groovy
IEntityService.groovy
IMessagingService.groovy
MessagingService.groovy

util
MsgrUtils.groovy



81

java
test

groovy
cz

cvut
fel

hernaosc
dp

msgr
core

service
MessagingServiceTest.groovy

util
MsgrUtilsTest.groovy

java
resources

fcm
build.gradle
src

main
groovy

cz
cvut

fel
hernaosc

dp
msgr

fcm
MsgrFcm.groovy
adapter

FirebaseCloudMessagingAdapter.groovy
java
resources

test
groovy

cz
cvut

fel
hernaosc

dp
msgr

fcm
adapter

FirebaseCloudMessagingAdapterTest.groovy
java
resources



82 APPENDIX C. CONTENTS OF CD

gradle
wrapper

gradle-wrapper.jar
gradle-wrapper.properties

message-common
build.gradle
src

main
groovy

cz
cvut

fel
hernaosc

dp
msgr

messagecommon
dto

ConnectionRequest.groovy
message

DataMessageDto.groovy
MessageDto.groovy
NotificationDto.groovy

util
MsgrMessageUtils.groovy

java
resources

test
groovy
java
resources

mysql
build.gradle
src

main
groovy

cz
cvut

fel
hernaosc

dp
msgr

mysql
MsgrMysql.groovy
db

Entity.groovy
MsgrMysqlUUIDGenerator.groovy



83

entities
Device.groovy
Group.groovy
Platform.groovy
User.groovy

repository
DeviceRepository.groovy
GroupRepository.groovy
PlatformRepository.groovy
UserRepository.groovy

service
EntityService.groovy

java
resources

test
groovy

cz
cvut

fel
hernaosc

dp
msgr

mysql
ContextAwareTest.groovy
db

repository
RepositoryTest.groovy

service
EntityServiceTest.groovy

java
resources

node-stats
build.gradle
src

main
groovy

cz
cvut

fel
hernaosc

dp
msgr

nodestats
MsgrNodeStats.groovy
controller

NodeStatsController.groovy



84 APPENDIX C. CONTENTS OF CD

java
resources

static
templates

test
groovy

cz
cvut

fel
hernaosc

dp
msgr

nodestats
java
resources

src
main

groovy
cz

cvut
fel

hernaosc
dp

msgr
ScalableMessagingSystemApplication.groovy

java
resources

static
templates

test
groovy

cz
cvut

fel
hernaosc

dp
msgr

java
resources

websocket
build.gradle
src

main
groovy

cz
cvut



85

fel
hernaosc

dp
msgr

websocket
MsgrWebsocket.groovy
config

WebSocketConfig.groovy
service

WebSocketService.groovy
util

JsonMessage.groovy
java
resources

static
templates

test
groovy

cz
cvut

fel
hernaosc

dp
msgr

websocket
service

WebSocketServiceTest.groovy
java
resources

websocket-common
build.gradle
src

main
groovy

cz
cvut

fel
hernaosc

dp
msgr

websocket
common

consts
StatusCodes.groovy

dto
java



86 APPENDIX C. CONTENTS OF CD

resources
test

groovy
java
resources

MsgrChattr
build.gradle
gradle.properties
gradlew
gradlew.bat
settings.gradle
app

build.gradle
proguard-rules.pro
libs
src

androidTest
java

cz
cvut

fel
hernaosc

dp
msgr

chattr
ExampleInstrumentedTest.java

main
AndroidManifest.xml
java

cz
cvut

fel
hernaosc

dp
msgr

chattr
MainActivity.java
service

FcmInstanceIdService.java
FcmService.java

org
apache

commons
collections

res
omitted



87

test
java

cz
cvut

fel
hernaosc

dp
msgr

chattr
ExampleUnitTest.java

gradle
wrapper

gradle-wrapper.jar
gradle-wrapper.properties

PerformanceTester
build.gradle
communication-test-1000-100.csv
communication-test-200-100.csv
communication-test-200.csv
communication-test-50.csv
gradlew
gradlew.bat
multi-node-multi-msg-4-50.csv
multi-node-multi-msg-5-50.csv
settings.gradle
single-node-multi-msg-user-200.csv
single-node-multi-msg-user-50.csv
gradle

wrapper
gradle-wrapper.jar
gradle-wrapper.properties

libs
src

main
groovy

cz
cvut

fel
hernaosc

dp
msgr

perftest
MsgrPerf.groovy
Util.groovy
test

CommunicationTest.groovy



88 APPENDIX C. CONTENTS OF CD

ConnectionTest.groovy
MultiNodeMultiMessageTest.groovy
SingeNodeMultiMessageTest.groovy

web
chattr

chattr.html
msgr-client-js

msgr-client.js
tex

hernaosc_master_thesis.tex
hyphen.tex
reference.bib
chapters

01_introduction.tex
02_analysis.tex
03_design.tex
04_implementation.tex
05_testing.tex
06_conclusion.tex
AX_abbrev.tex
AX_cd.tex
AX_user-guide.tex

figures
LogoCVUT.eps
LogoCVUT.pdf
02_analysis

example-situation.png
maven-gradle-speed.png
mobile-market.png
peak-conns.png
Realtime-communication-pattern.png
Traditional-communication-pattern.png

03_design
adapter-flow.png
basic-arch.png
core-db-module-repo.png
core-db-module.png
core-mq-module.png
core-platform-module.png
java-client-classes.png
layer-arch-detail.png
layer-arch.png
mq-fcm-device.png
mq-group.png
mq-ws-device.png
msg-flow.png



89

orm.png
s-impl-arch.png
s-impl-comps.png
scalability-architecture.png

04_implementation
chattr-android.png
chattr-web.png
monitor-page.png
msgr-project.png

05_testing
test-deploy-dia.png
test-perf1.png
test-perf2.png
test-perf3.png
test-perf4.png
test-perf5.png
test-perf6.png
test-perf7.png
test-perf8.png

misc
k336_thesis_macros.sty


	Introduction
	Motivation
	Goals
	Usage Scenarios

	Analysis
	Problem Analysis
	Existing Similar Solutions
	PubNub
	Ably
	Pusher
	OneSignal
	Similar solution comparison conclusion

	Requirement Analysis (Core System)
	Functional Requirements
	Non-functional Requirements

	Requirement Analysis (Sample Implementation)
	Functional Requirements
	Non-functional Requirements

	Platform Analysis
	Mobile platform
	Android
	iOS

	Desktop and Server platforms
	Java

	Web

	Analysis of Solutions for Implementation
	Spring Boot
	Testing Framework
	JUnit
	Spock Framework

	Database technology

	Analysis of Solutions for Sample Implementation
	Firebase Cloud Messaging
	FcmJava
	Pushraven

	Message Queue
	RabbitMQ
	Apache ActiveMQ


	Scalability Analysis
	Problematic Scenarios
	Servicing a large amount of clients
	A large amount of clients connects at the same time
	A large amount of messages for a single client
	A node dies
	A message is sent to a user group with a large amount of users



	Design
	Scalability Design
	Scalability Architecture Components
	Nodes
	Node Coordinator
	Message Queue
	Database

	Problematic Scenarios and their Handling
	Serving a large amount of clients
	A large amount of clients connects at the same time
	A large amount of messages for a single client
	A node dies
	A message is sent to a user group with a large amount of users


	Architecture Design
	Data Tier
	Sample Implementation Data Tier

	Business Tier
	Collaboration Tier
	Client Tier
	Sample Implementation Client Tier


	Modularity Design
	Core Module
	Database Modularity
	Platform Modularity
	Adapters

	Message Queue Modularity


	Implementation
	Development platform
	Code Structure
	Msgr
	Core Module
	Message-Common
	Fcm
	Mysql
	Websocket
	Websocket-Common
	ActiveMq
	Node-Stats

	Coordinator
	Java-Client
	Web
	MsgrChattr


	Testing
	Automated Testing
	Manual Testing
	Testing Environment
	Testing Environment Machine Specifications


	Performance Testing
	Tests
	Test 1: Single Node, single client. 50 messages
	Test 2: Single Node, single client. 200 messages
	Test 3: 4 Nodes, single machine. 50 messages
	Test 4: 5 Nodes, two machines. 50 messages
	Test 5: Communication simulation. 50 messages, 20ms interval
	Test 6: Communication simulation. 200 messages, 20ms interval
	Test 7: Communication simulation. 200 messages, 100ms interval
	Test 8: Communication simulation. 1000 messages, 100ms interval
	Performance Test Conclusion


	Conclusion
	Goal Evaluation
	Suggestions for Future Expansion
	Authentication
	System Administration
	Encryption


	Bibliography
	List of abbreviations
	User Guide
	Building from Code
	System Requirements
	Software Prerequisites
	Building Shared Dependencies
	Coordinator/Common Module
	Msgr/Message-Common Module

	Building the Node and Node Coordinator Applications
	Building the Java-Client
	Building the MsgrChattr Android Application
	Building the PerformanceTester

	Running the Applications
	Running the Node Coordinator
	Running the Node Application
	Running the MsgrChattr Android Application
	Running the Chattr Web Application
	Running the PerformanceTester Application


	Contents of CD

