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Abstract
Sampling-based motion planning is a mod-
ern approach for solving a task of the
navigation that arises in many scientific
disciplines. This work is dedicated to an
analysis and application of all relevant mo-
tion planning algorithms. Furthermore,
we propose a new method for the RRT
expansion called RRT-sphere. We show
experimental results and comparison of
five implemented RRT-based algorithms.

Keywords: Motion, path, planning,
RRT, sampling, robotics

Supervisor: Ing. Vojtěch Vonásek,
Ph.D.
CTU in Prague,
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Abstrakt
Plánování pohybu založené na náhodném
vzorkování prostoru je moderní přístup
k řešení úlohy navigace, která se vysky-
tuje v mnoha vědeckých disciplínách. Tato
práce je věnovaná analýze a použití všech
významných algoritmů pro plánování po-
hybu. Mimo to představujeme novou me-
todu pro expanzi stromu v algoritmu RRT,
která se jmenuje RRT-sphere. Předloženy
jsou experimentální výsledky a srovnání
pěti implementovaných algoritmů založe-
ných na RRT.

Klíčová slova: Pohyb, cesta, plánování,
RRT, vzorkování, robotika

Překlad názvu: Plánování pohybu pro
3D objekty
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Chapter 1

Introduction

1.1 Motivation

The task of motion planning is to compute collision-free paths for robots.
The paths must satisfy constraints for a movement of the robots. In general,
environments for the motion planning can be very complex with an arbitrary
number of dimensions. The most common environment in the motion planning
is Euclidean space R3 since it is the world we are living in. Furthermore, the
environment can contain obstacles, the robot cannot interact with.

Since first mobile robots were constructed, it was required to plan their
trajectory and control their movement. Recently, with growing research in
the area of mobile and intelligent robotics, many new and improved planning
algorithms have been proposed. But it is not only the mobile robotics, the
motion planning is used for. The motion planning has been successfully
applied in a wide spectrum of applications. Namely, robotic arms in the
industry [1, 2], CAD systems [3], video game artificial intelligence [4, 5],
self-driving cars [6, 7], robotic surgery [8, 9], biochemistry (study of proteins,
drug design) [10, 11] and more. An example of usage in biochemistry is
outlined in Figure 1.1.

1.2 Thesis Goals

The thesis has following goals designated in the assignment:.To familiarize with the motion planning. In the thesis, we give
an overview of the motion planning algorithms. We further study and
describe a group of sampling-based algorithms. Specifically Rapidly ex-
ploring Random Trees (RRT) [12, 13], Probabilistic Roadmaps (PRM) [14]

1



1. Introduction .....................................
and their derivatives..To implement a planning algorithm based on RRT or PRM.
RRT and four other RRT-based algorithms are implemented in our
application coded in C++ programming language..To propose an alternative algorithm for the tree expand in
RRT. We proposed an improvement of RRT. This improvement is based
on the adaptive sampling region expanding around the goal..To experimentally examine implemented algorithms. We test
the performance of all methods in terms of the run-time, number of
explored nodes and length of the path (according to a metric). The tests
are performed in maps from the benchmark [15] and protein models. A
metric influence on the planning speed and quality is evaluated as well.

1.3 Thesis Outline

The thesis continues with Chapter 2, where we familiarize a reader with
necessary terms for further study of the motion planning. The motion
planning itself is discussed in Chapter 3. All significant algorithms, whether
newer or older, are described for an understanding of the reader in this chapter.
Chapter 4 is devoted to the most relevant algorithm for the thesis — RRT. We
study the original RRT and four enhanced RRT-based algorithms in Chapter 4.
In Chapter 5, our work is presented. It consists of a motion planning software,
introduction of an improved version of RRT and experimenting with various
RRT-based algorithms.

(a) : Ligands (b) : A protein molecule

Figure 1.1: In biochemistry, the motion planning is used to determine possible
exit pathways for a small molecule (ligand) from a large molecule (protein). A
simple approach is to compute the pathway only for a single atom, or better,
considering the whole ligand. The existence of pathways can help the chemists
to decide if a given can react with the protein, which is useful e.g. in drug design.
(Illustrations by courtesy of Vojtěch Vonásek)
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Chapter 2

Problem Analysis

In this chapter, we describe essential concepts in the motion planning. It
gives a reader theoretical background of the subject. All terms in this section
are defined for the need of this bachelor thesis and meanings may differ from
other literature. The most significant literature about the motion planning is
Steven M. LaValle’s book Planning Algorithms [16]. This book is the primary
source of information for this thesis.

2.1 Representation of the Environment

For the purpose of the motion planning, it is important to define an envi-
ronment, the planning will be executed at. A point on a plane (Euclidean
space R2), of course, needs fewer variables to describe it’s movement than a
12-DOF1 robotic arm. The concept of determining an object position in the
world is the main idea behind the space called state space. Further, terms
configuration space and metric are described.

State space The main and the most general space in the field of robotics and
cybernetics (including control theory). The state space captures all possible
situations which may occur. A state of the robot given by translations, rota-
tions, translational and angular velocities of every independently moving part
in all directions (in terms of basis) assigns a point to the N -dimensional state
space. For the rigid object in the 3D world with R holonomic constraints2 N
is equal to 2 · (6−R).

1DOF – Degree Of Freedom.
2Holonomic constraint – A geometrical constraint that reduces the number of DOF of

the object.

3



2. Problem Analysis ...................................

Figure 2.1: The configuration of a 2D rigid object in the form q = (x, y, θ)

Let x denote the current state, ẋ derivative of the state, X the state space,
u the vector of control inputs and U the set of possible inputs. The input u
is a variable that controls the robot and define the robot’s movement over
time. This input is determined by a planner or robot controller. A dynamical
model of the system (in this case a robot) can be encoded in a function f
called state transition equation:

ẋ = f(x, u). (2.1)

This model is also called the forward motion model. A new state is computed
by integrating f over a given time interval ∆t. If no analytical solution exists,
methods of numerical integration are used. For example Euler method or
Runge–Kutta method [17].

Configuration space Because for some groups of motion planning problems
(discussed later in Section 2.3) are some states unimportant, the next space
used in the motion planning is the configuration space. The configuration
space is a subspace of the state space that contains only translations and
rotations. Eventually, it can contain other generalized coordinates which
clearly identify a position of the robot in the world (distance of two robots).
The set of generalized coordinates is called a configuration and is denoted q
(see Figure 2.1). A state x can be also defined as x = (q, q̇).

Let C denote the configuration space. For a rigid object without moving
parts in N -dimensional space, C can be written as a Cartesian product

C = RN × SO(N), (2.2)

where RN is N -dimensional Euclidean space and SO(N) is N -dimensional
Rotation group including all rotations about the origin. This applies if no
holonomic constrains are present. If so, the number of dimensions is reduced
by the number of holonomic constrains.

The configuration space C can be divided into two subspaces depending
on the position of obstacles. The part where the robot can move without

4



........................... 2.1. Representation of the Environment

Figure 2.2: The configuration space around an obstacle

collisions is denoted Cfree ⊆ C. Thus, the other subspace is a part of C with
obstacles Cobs = C \ Cfree. The obstacle space Cobs is not just a projection of
the obstacles to C because the robot occupies more space around its reference
point as the robot is not just a point (see Figure 2.2).

Just as Cfree and Cobs are defined, free state space Xfree and obstacles state
space Xobs are also defined. The obstacle space Xobs can be constructed by
adding geometrical constraints (obstacles) and velocity constraints to the
state space X .

Metric For a given set S, metric is a function

ρ : S × S → R. (2.3)

For all x, y, z ∈ S, the metric has following properties:

ρ(x, y) ≥ 0 (2.4a)

ρ(x, y) = 0⇔ x = y (2.4b)

ρ(x, y) = ρ(y, x) (2.4c)

ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (2.4d)

If metric is defined on the set S, this set is called metric space. Condi-
tions 2.4 express abstraction of the concept of distance. Examples of metrics
are Euclidean metric, taxicab (Manhattan) metric or Hamming distance.

First two mentioned metrics are the part of generalized metric called
Lp metric, which is defined as

Lp(x, y) =
( n∑
i=1
|xi − yi|p

)1/p
. (2.5)

For p = 1, it yields taxicab metric. For p = 2, we get well-known Euclidean
metric.

5



2. Problem Analysis ...................................
2.2 Collision Detection

The task of the robot is to avoid obstacles on the way the goal. To determine
whether the robot is at a collision configuration is an assignment for the
collision detector which has to be a part of the motion planner. This problem
can be seen as determine whether the robot lies in the free configuration
space Cfree and therefore, is in the collision-free configuration. The collision
detector is a function

φ(C, q) =
{
TRUE if q ∈ Cobs
FALSE otherwise

, (2.6)

where q is the configuration of the robot.

Although it might seem that it is simple to check whether a point (rep-
resentation of the robot in C) lies in Cobs, exact appearance of Cobs is not
known for most of the planning problems since it is a complex non-convex
set. Nevertheless, mapping of obstacles into the configuration space is still
possible. One of the approaches is via the fast Fourier transform [18].

Many of collision detection algorithms have been proposed recently [19]. A
widespread method used in many collision detectors is called bounding volume
hierarchy [20]. Suppose two non-convex objects, the robot and obstacle.
The objects are decomposed into trees Tr and To, where a root of each
tree is the whole object and each node represents a bounded subset of the
object. Possible bounding regions are shown in Figure 2.3. An intersection
is first tested between the root nodes and if no exist, the algorithm reports
no collision. If the bounding overlap, the algorithm recursively tests their
children until it finds the intersection or reaches leaves of the tree. In that
case, each polygon pair of the robot and obstacle is tested.

(a) : Sphere (b) : Axis-
aligned bounding
box

(c) : Oriented
bounding box

(d) : Convex hull

Figure 2.3: Possible bounding regions for the bounding volume hierarchy
method in the collision detection system

6



................................... 2.3. Motion Planning

2.3 Motion Planning

Generally, the motion planning is defined for a set that contains:. world W, either W = R2 or W = R3,. obstacle region O ⊂ W,. semi-algebraic rigid robot A ⊂ W or a collection of m joined segments
A1, ...,Am ⊂ W,. state space X ,. set of possible inputs U ,. initial state xI ∈ X ,. goal state xG or set of goal states Xgoal ⊂ X .

The motion planning executes a probing of the state space. A goal is to
find a valid non-colliding path for the robot A in the world W from the
initial position and velocity encoded by x1 to the goal region Xgoal. The
robot must obey geometric constraints given by obstacles and differential
(non-holonomic) constrains given by the robot’s design. It was shown that
the problem of motion planning is PSPACE-hard [21]. We can classify motion
planning problems into three groups by constraints.

Holonomic planning The most basic motion planning is called holonomic
planning. The term refers to holonomic constraints. Holonomic constraints
are constraints which reduce the number of DOF of the robot. Holonomic
constraints appear in the form hi(q) = 0 and thus i generalized coordinates
are blocked for the control. See Figure 2.4 for an example.

Non-holonomic planning This planning addresses problems with non-
integrable velocity constraints [22]. These constraints are common in systems
that involve rotating parts like wheeled-robots (car) or aerial systems (aircraft,
UAV3). Non-holonomic constraints are the constraints in the form gi(q, q̇) = 0.
It prevents to control all DOF separately since a change of the one coor-
dinate might change others coordinates as well. This is a difference with
the holonomic planning, where all coordinates can be controlled separately.
See Figure 2.5 for an example. Both holonomic and non-holonomic planners
perform a search in the configuration space.

Kinodynamic planning The title refers to kinematic and dynamic con-
straints. Besides position and velocity constraints, acceleration constraints
are present in this planning yielding equations ki(q, q̇, q̈) = 0 [23]. Since
acceleration constraints exist, space to be searched is the full state space X .

3UAV – Unmanned Aerial Vehicle.

7



2. Problem Analysis ...................................
Further in the thesis, we address all problems as probing of the state

space regardless of a type even though we defined a state as x = (q, q̇). For
holonomic and non-holonomic planning, one can assume x = q and hence
X = C.

Figure 2.4: A holonomic system, planar pendulum, with constraint in the form
x2 + y2 = l2 that reduces the number of DOF. This system can be described by
one coordinate θ and hence q = θ and x = (θ, θ̇).

Figure 2.5: A car representing the non-holonomic system. A configuration of
the system is q = (x, y, θ, ϕ).
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Chapter 3

State of the Art

This chapter gives a brief overview of motion planning methods. There
are three main approaches to motion planning algorithms different in the
representation of the state space. The oldest group of algorithms is com-
binatorial planning [24, 25]. The next group are artificial potential field
methods [26, 27]. At present, intensive research is ongoing in the field of
sampling-based planning [28].

Since the title of this thesis is Sampling-based motion planning for 3D rigid
objects, we study sampling-based algorithms in more detail and Chapter 4 is
devoted to the most important algorithm for the work.

3.1 Combinatorial Planning

In the task of probing the state space, the continuous space needs to be
discretized. This can be done by several techniques. Combinatorial planning
directly represents the free state space as a roadmap. The roadmap is an
undirected graph G(V,E) in Xfree, where vertices from the set V are states
from X and edges from the set E are possible transitions between the states.
After the roadmap is done, a graph search algorithm (A*,D*) is applied to
find the shortest path.

The combinatorial planning requires polygonal obstacles O in order to
create the roadmap representation of W. Because the motion planning
operates in the state space X and not in the world W, the obstacles need to
be first transformed into X to make Xobs. It is a very demanding task and
exact transformation can be done only in simple problems, for example a 3D
world with a rigid robot restricted only to the translation movement. In this
cases, Xobs can be constructed as Xobs = O ⊕ −A(0), where ⊕ is a special

9



3. State of the Art ...................................

Figure 3.1: The visibility graph

convolution called a Minkowski sum defined as

A⊕B = {~a+~b |~a ∈ A,~b ∈ B}. (3.1)

Let A(q) ⊂ W define all points of the geometry of the robot A located in the
configuration q.

The combinatorial algorithms are capable of solving easier planning prob-
lems very elegant and intuitive. They are unfortunately limited by the low
number of DOF and only holonomic constraints. On the other hand, their
advantage is that they are complete1. For example, the 2D world with a robot
moving only translationally is a great occasion to employ a combinatorial
planner.

Visibility graph The roadmap is constructed by connecting mutually
visible vertices of obstacle polygons [29]. First, the initial and goal positions
are connected to the all visible vertices of obstacles and world. Each vertex is
then connected with others vertices if they are in sight. After this procedure,
the roadmap looks like it is shown in Figure 3.1.

The visibility graph method finds an optimal path every time, but the path
is close to obstacles. A naïve algorithm for construction the visibility graph
has a time complexity O(n3) and the best algorithm is O(n2) [30].

Voronoi diagram The Voronoi diagram is a planar structure that partition
a plane into regions based on the distance of given points. The Voronoi region
Vk of a point xk is defined as

Vk = {p ∈ Xfree | ∀i 6= k, ρ(p, xk) ≤ ρ(p, xi)}, (3.2)

where xi, xk are the input points and ρ is a metric. The Voronoi diagram is
formed from vertices that have the same distance from two or more points

1Complete algorithm – Algorithm either finds a solution or reports that a solution does
not exist.
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Figure 3.2: The Voronoi diagram with points representing obstacles

(see Figure 3.2). Edges are connections of the closest vertices. Edges of the
diagram can be generated between two points, point and edge and between
two edges (segment Voronoi diagram) which is useful for the motion planning
since the obstacle boundary is represented by edges.

Voronoi diagrams have been well studied in the mobile robotics [31]. Con-
struction of the Voronoi diagram is very fast (time complexity O(n log(n))
in simple maps [32]), but it is not suitable for open spaces because the robot
is attracted to the middle and sub-optimal paths are created.

Cell decomposition The idea of this algorithm is decomposing Xfree
into cells with the specified shape. In each cell, which does not include the
obstacle, is placed a vertex of the roadmap called adjacency graph. Edges of
the adjacency graph are lines connecting the adjacent vertices. There are two
versions of the cell decomposition algorithm: exact decomposition [33] and
approximate decomposition [34].

In the exact decomposition, space is decomposed into sets of variously
large trapezoids or triangles. The cells may be constructed by cutting the
space vertically from each polygon vertex as shown in Figure 3.3. Then, the

Figure 3.3: The exact cell decomposition
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3. State of the Art ...................................

Figure 3.4: The approximate cell decomposition

vertex is placed in each segment border and inside each segment, for example
to the center of the segment. The best-known algorithm for the exact cell
decomposition has complexity O(n log(n)).

The approximate decomposition is different in a mechanism of constructing
the cells. All cells are the same simple shape, most often squares, creating a
grid. Cells that intersect with the obstacles are removed. A solution existence
depends on density of the grid. The algorithm starts with small density and
then refines the density until it finds a solution (which may not exist). Thus,
the algorithm is incomplete but easy to implement. See Figure 3.4 for the
approximate cell decomposition in a simple environment.

3.2 Potential Fields

So far, achievable states of the robot were represented by a graph. Another
approach for the holonomic or non-holonomic planning is to define an artificial
potential field U(q) similar to the electric potential [26, 27]. The robot acts
like a charged particle in the electric field and is attracted by a force

F = −~∇U(q). (3.3)

U(q) is modelled to has a global minimum at the goal state and a local
maximum at the initial state. The goal generates the attractive potential
that pulls the robot toward the goal. On the contrary, obstacles generate the
repulsive potential that pushes the robot away from them (see Figure 3.5).

The disadvantage of the potential field methods is that the robot can get
stuck in a local minimum that is not in at the goal. This can be resolved by
using an optimization algorithm such as simulated annealing. Potential fields
are commonly used for local motion planning2.

2Local motion planning – Controls a movement of the robot between two states.
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Figure 3.5: A potential field of the space with one obstacle in the middle

Potential fields which represent the environment can be obtained at the
start of the planning process or iteratively. The sequential approach computes
the potential field on a grid. Before the algorithm starts, the continuous
space must be discretized over a mesh with defined proportions.

3.3 Sampling-based Planning

A sampling-based approach to the motion planning is based on representing
the free space as a roadmap of sampled states. Sampling scheme generates
random samples in the space. Whenever there exists a collision-free path
between two samples, they can be connected by a line. Computation of the
line shape is a task for the local planner. Examples of uniform sampling
schemes are shown in Figure 3.6. Besides the most used uniform sampling,
there are others techniques for the space sampling [35, 36].

The main difference with the probabilistic planning is that there is no
need to explicit construct Xobs before the algorithm starts. Sampling-based
algorithms probe X without knowing anything about the world. They are
independent of the geometrical representation of the world. It is possible due
to the collision detection algorithm (see Section 2.2). This makes the collision
detector the most critical part of the sampling-based planning.

The major advantage of sampling-based algorithms is the ability to solve
all kinds of planning problems with non-holonomic or kinodynamic con-
straints [37] with a low computational cost. Moreover, they can handle
high DOF spaces and a wide variety of geometrical models. There are also
modifications capable of planning in dynamic environments [38].

It has been proposed two basic sampling-based algorithms and many
improved ones. The first sampling-based algorithm introduced in 1996 by Jean-
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(a) : Pseudo-random (b) : Low-discrepancy

(c) : Poisson disk (d) : Lattice

Figure 3.6: Uniform sampling schemes with the Voronoi diagram representing
the scatter of random points

Claude Latombe and his collaborators3 is called Probabilistic Roadmaps [14].
The other algorithm was introduced in 1998 by Steven M. LaValle. This
algorithm is called Rapidly exploring Random Trees [12].

3.3.1 Probabilistic Roadmaps

Probabilistic Roadmaps (PRM) [14], as the title suggests, is a method for the
motion planning similar to the combinatorial planning methods in terms of the
algorithm proceeding. The algorithm is separated into two phases: learning
phase and query phase. In the learning phase, a roadmap is constructed by
generating random samples (states) in X (Algorithm 1). The learning phase
is followed by the query phase, where the task is to find a collision-free path
between initial and goal states by a graph search algorithm.

The roadmap is represented by an undirected graph G = (V,E), where V
stands for vertices and E for edges. The vertices represent states and the
edges represent transitions between two states given by a local planner. The
graph is first composed of several connected components. As the algorithm
continues, the number of connected components reduces until there is only one
connected component left. The construction of PRM is shown in Figure 3.7
and examples of different roadmaps in Figure 3.8.

3Lydia E. Kavraki, Petr Švestka, Mark H. Overmars.
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............................... 3.3. Sampling-based Planning

Algorithm 1 Basic PRM - learning phase
Require: Initial state xI , number of iterations K, maximal distance of

neighbours d
Ensure: Undirected graph G
1: G.add_vertex(xI)
2: for k = 0 to K do
3: xrand ← RANDOM_STATE()
4: G.add_vertex(xrand)
5: N ← NEIGHBOURS(xrand, G, d)
6: for each x ∈ N do
7: u← SELECT_INPUT(xrand, x)
8: if x is feasible then
9: G.add_edge(xrand, x, u)

10: return G

Given a state space X , initial state xI , distance d and empty graph G, the
algorithm proceeds as follows:..1. Learning phase Add the initial state to the graph G...2. Generate a random state xrand ∈ Xfree and add it to the graph...3. Select all neighbour states of xrand within the distance d in terms of the

metric ρ...4. For all the neighbours select a control input u ∈ U that ensures a
collision-free transition and also minimizes a distance from xrand to the
neighbour...5. If such a control input is found, add the neighbour to the graph...6. If the roadmap is completed, go to step 7. Go to step 2 otherwise...7. Query phase Employ a graph search algorithm to find a path in G
from xI to xG.

Figure 3.7: The construction of PRM, where xrand is a randomly generated
point from Xfree and d is the maximal distance to other points needed to make
a connection.
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1

(a) : 10 samples, d = 1 (b) : 10 samples, d = ∞
p

(c) : 50 samples, d = 1 (d) : 50 samples, d = ∞

(e) : 150 samples, d = 1

p

(f) : 150 samples, d = ∞

Figure 3.8: PRM with different number of samples and parameter d. With the
increasing number of samples, the uniform coverage of the space is achieved. (e)
shows a computed path in the query phase.
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Chapter 4

Rapidly Exploring Random Trees

Rapidly exploring Random Trees (RRT) [12, 13] is an effective sampling-based
planning algorithm designed for handling various motion planning problems.
The collision-free samples are saved in a tree T . In contrast with a common
graph in case of PRM, the tree is an undirected graph without cycles. The
absence of the cycles implies that every vertex in the tree has only one parent
and thus no graph search algorithm is needed. It is possible to trace back
nodes from the goal node to the initial node in order to find a path.

Although RRT is capable of probing high dimensional spaces with all kinds
of constraints, it may be inappropriate for some planning problems. For
example, the worlds with obstacles close together decrease the performance
and efficiency of the algorithm. The parts with little space for passing
the configuration are called narrow passages (see Figure 4.1). The basic
RRT samples the space by a pseudo-random generator yielding in a lack of
uniformity of the distribution. The analysis of weaknesses of the random
sampling is shown in [39]. Improved versions of RRT, proposed to solve
different types of problems, are also discussed in this chapter.

(a) : Hedgehog in the cage (b) : A tunnel

Figure 4.1: Two examples of narrow passages in the 3D world
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4. Rapidly Exploring Random Trees ............................
4.1 Basic RRT

The first version of RRT was proposed in 1998. Introduction of RRT was
a breakthrough in the motion planning due to the algorithm rapidity and
ability to easy enhance the method. Unlike the combinatorial algorithms
and PRM, RRT was designed to handle non-holonomic and kinodynamic
planning. The non-holonomic version is described in Algorithm 2.

Given a state space X , initial state xI , time interval ∆t and empty tree T ,
the RRT algorithm proceeds as follows:..1. Add the initial state to the tree T ...2. Generate a random state xrand ∈ X ...3. Select the nearest neighbour of xrand laying in T in terms of metric ρ.

Denote it xnear...4. Select a control input u ∈ U that ensures a collision-free transition and
also minimizes a distance from xrand to xnear...5. Apply the input u to xnear and compute a new state xnew. This state
is determined by integration of state equation ẋ = f(x, u) over a time
interval ∆t.

xnew = xnear +
∫ ∆t

0
f(x, u) dt (4.1)..6. If xnew is reachable by a collision-free path, add it to the tree. Ignore it

otherwise...7. Go to step 2.

There are two key components in RRT and others sampling-based algo-
rithms, and that is the NEAREST_NEIGHBOUR function and the collision
detector. The task of the first one is to find the nearest vertex of another
vertex. This is dependent on a choice of the metric. It can be performed by
a KD-tree approach [40]. See [41] for a library ANN by David M. Mount,

Algorithm 2 Basic RRT
Require: Initial state xI , number of iterations K, time interval ∆t
Ensure: RRT tree T
1: T .add_vertex(xI)
2: for k = 0 to K do
3: xrand ← RANDOM_STATE()
4: xnear ← NEAREST_NEIGHBOUR(xrand, T )
5: u← SELECT_INPUT(xrand, xnear)
6: xnew ← NEW_STATE(xnear, u,∆t)
7: if xnew is feasible then
8: T .add_vertex(xnew)
9: T .add_edge(xnew, xnear, u)
10: return T

18



..................................... 4.1. Basic RRT

Figure 4.2: The construction of holonomic RRT. ε denotes the maximal distance
between two nodes.

Sunil Arya and [42] for the improved implementation called MPNN by Anna
Yershova and Steven M. LaValle. The advantage of MPNN is a possibility
to add nodes to the KD-tree while running. An approximate approach of
determining the nearest neighbours is possible as well [43].

The collision detection system was briefly introduced in Section 2.2. The
collision detector determines whether a new node is in a collision-free configu-
ration. Two libraries frequently used in the motion planning are RAPID [44]
and OZCollide [45] for their great usability. Both libraries are based on the
method bounding volume hierarchy. An input to the libraries is a polygon
soup, which is a group of unlinked polygons (most often triangles).

The tree tends to explore yet unexplored portions, so it leads to the
uniform coverage of the space, as it can be seen in Figure 4.3. After crossing
a threshold, let’s say 1600 samples in Figure 4.3, when the tree is spread out
all over the space, the expansion stops and the tree is getting denser as the
algorithm is running. This fact can be viewed as a ration between exploration
and exploitation [46]. Planning algorithms may be classified according to
this ratio. Generally, the state space is infinitely large, but for real-world
applications, we can assume the bounded state space by reachable positions
and velocities. See figure 4.2 for an illustration of constructing RRT.

In the following picture, it is demonstrated a tree growing from the centre
for a holonomic non-steerable system. Since a state in the holonomic planning
does not contain any dependence on the previous state, the state transition
equation is reduced to ẋ = f(u). For a non-steerable system, the input
represents a bounded geodesic1 (|u| < ε), where ε denotes the maximal
distance between two nodes. Moreover, it is shown a computed path between
two selected nodes in Figure 4.3 (f).

1Geodesic – The shortest route between two points. For Euclidean geometry it is a
straight line.
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Figure 4.3: The RRT tree growing from the centre for a small holonomic square
as the robot. Parameters are: state space width = 100, ε = 1.
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4.2 RRT-based Planners

Since the basic RRT planner does not produce optimal results for some
planning problems, it has been developed hundreds of enhanced RRT-based
planners to employ for specific problems. See [28] for an overview.

The first parameter of RRT that can be altered is the sampling strategy. In
the basic RRT, the space is sampled by the uniform pseudo-random number
generator. Other possible variants are: the intelligent sampling, biasing
sampling, sampling around obstacles, sampling in narrow regions, hybrid
sampling and more. Another important parameter is a metric. In general, a
metric can represent an arbitrary parameter describing a cost of the transition
from one state to another. Different metrics are used among the RRT-based
algorithms.

Some algorithms modify the expansion step for better behaviour in highly
constrained environments and narrow passages. For the purpose of finding
an optimal (shortest, fastest) path, a whole group of optimal RRT-based
algorithms exists. Moreover, there are improvements which apply a post-
processing to a given path. They can smooth the path or make it shorter.

But first, let’s explore the group of algorithms which utilize more that one
tree that grows from the beginning.

4.2.1 Multiple Trees

The idea is maintaining multiple trees instead of one tree rooted in the initial
state in RRT. There is a basic variant with two trees called RRT-Connect [47].
Some of the multiple trees methods even utilize more than two trees, namely
three [48] or even more trees as required by the environment [49]. A common
characteristic of these algorithms is heuristic which connects the trees whether
it is possible. In experiments, it was shown that for some applications multiple
trees are more efficient than a single tree [47].

RRT-Connect was the first multi-tree algorithm for the holonomic planning
proposed just two years after the introduction of RRT in 2000 by Steven M.
LaValle and James J. Kuffner. The algorithm was designed for problems that
do not contain differential constraints. This approach is sometimes called
a balanced bidirectional search. It is bidirectional because it involves two
trees growing from two directions and balanced in order to keep their rapid
exploring property.

Generally, the tree balancing is a part of the multi-tree algorithms, but
not all algorithms involve it (RRT-Connect). In the case of the algorithm
where the balancing is not present, it can almost lead to the basic RRT in
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4. Rapidly Exploring Random Trees ............................
Algorithm 3 Balanced bidirectional RRT
Require: Initial state xI , goal state xG, number of iterations K, distance ε
Ensure: The path from xI to xG if is found, failure otherwise
1: Ta.add_vertex(xI)
2: Tb.add_vertex(xG)
3: for k = 0 to K do
4: xrand ← RANDOM_STATE()
5: xnear ← NEAREST_NEIGHBOUR(xrand, Ta)
6: xnew ← NEW_STATE(xnear, ε)
7: if xnew is feasible from xnear then
8: Ta.add_vertex(xnew)
9: Ta.add_edge(xnew, xnear)
10: xn ← NEAREST_NEIGHBOUR(xnew, Tb)
11: if xnew is feasible from xn then
12: return path

13: if |Tb| > |Ta| then
14: SWAP(Ta, Tb)
15: return failure

some environments, because one tree is strongly expanded while the other
tree contains few nodes. The balancing can be realized by comparison the
number of nodes in the trees or the total length.

Balanced bidirectional RRT starts by adding the initial state xI to the
tree Ta. The goal state xG is added to the second tree Tb. Then it picks
a random state xrand from X , selects the nearest neighbour of xrand in the
tree Ta and determines a new state xnew according to the maximal distance
between two nodes ε. Then, it is established if xnew is reachable from xnear
by a collision-free path. If so, xnew and u are recorded to Ta. The nearest
neighbour of xnew in the second tree Tb is selected (xn). If xn and xnew can

0

0

0

0

0

0

0

0

0

0

0

Figure 4.4: Balanced bidirectional RRT rooted in the initial node and goal
node. The red line represents a possible connection of the trees.
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Figure 4.5: The retraction step performs iterative optimization. The tree is
expanded toward the nodes xa, .., xd ∈ Xcontact with the RRT expansion.

be connected by a collision-free path, the algorithm stops and returns a path
(see Figure 4.4). If not, the trees are either swapped or not depending on the
balance condition (Algorithm 3 – line 13). Then the loop starts again until a
solution is found or the number of iterations expires.

4.2.2 Modification of the Extension Step

The extension step of the basic RRT is as simple as possible: for a given
state xrand, determine the nearest neighbour xnear and apply the control
input to xnear. A new node xnew is obtained by this procedure. The tree is
expanded toward xrand. The described expansion step is good enough for
simple problems but struggles in spaces with narrow passages. With high
probability, a lot of nodes have to be added to the tree until one of the nodes
will be situated in the narrow passage.

Modifications of the extension step improve the usability of RRT in narrow
passages. The first algorithm to be discussed is Retraction-based RRT [50].

Retraction-based RRT This algorithm proceeds the same as the holo-
nomic RRT until xnew does not lie in Xobs. In that case, basic RRT ignores the
new node and generates a new one. Retraction-based RRT runs a retraction
step which determines the closest point to the parent such that the point lies
on an obstacle boundary. The retraction step is an optimization problem
defined as

xm = arg min
x∈Xcontact

ρ(x, xrand), (4.2)

where xrand is a given colliding state, ρ is the metric and Xcontact ⊆ Xobs
boundary of obstacles called the contact space. See Figure 4.5 for an illustra-
tion of the retraction step.
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Algorithm 4 Retraction-based RRT
Require: Initial state xI , number of iterations K, distance ε
Ensure: RRT tree T
1: T .init(xI)
2: for k = 0 to K do
3: xrand ← RANDOM_STATE()
4: xnear ← NEAREST_NEIGHBOUR(xrand, T )
5: xnew ← NEW_STATE(xnear, ε)
6: if xnew is feasible then
7: T .add_vertex(xnew)
8: T .add_edge(xnew, xnear, u)
9: else
10: S ← RETRACTION(xrand, xnear)
11: for each xi ∈ S do
12: STANDARD_RRT_EXPANSION(T , xi)
13: return T

Given a colliding state xrand and its nearest neighbour xnear, the retraction
step proceeds as follows:..1. Project xnear into Xcontact to generate a new sample xa...2. Perform a contact query by computing new samples around xa, which

have a minimal distance between the robot and obstacle...3. Search the samples computed by the contact query and determine a new
sample xb in Xcontact, which locally minimizes the distance to xrand. If
the new sample xb satisfy ρ(xb, xrand) < ρ(xa, xrand), continue to step 4.
End the algorithm otherwise...4. Assign xnear = xb and go to step 1.

The RETRACTION(xrand, xnear) function assigns all samples xa, xb, ...
given by the retraction step to a set S. The standard expansion from the
basic RRT is performed for all nodes from the set S (line 12 in Algorithm 4).
Thus, the tree expands around the obstacles and the performance in narrow
passages is highly increased.

RRT-blossom Another example of a method with the modified extension
step is RRT-Blossom [51]. The algorithm is specific by a local flood-fill
behaviour. This mechanism helps RRT-blossom to escape a local minimum,
where the robot may get stuck, in highly constrained environments. RRT-
blossom is well employable for non-holonomic and kinodynamic problems.

RRT-blossom starts, just like Retraction-based RRT, same as the basic
RRT. It generates a random state xrand and finds its nearest neighbour
xnear in terms of the metric ρ. Then, control inputs ui are assigned to a
set U . The inputs are chosen by the function SELECT_INPUTS(xnear)
deterministically or stochastically. New states are computed by applying all
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Algorithm 5 RRT-blossom
Require: Initial state xI , number of iterations K
Ensure: RRT tree T
1: T .init(xI)
2: for k = 0 to K do
3: xrand ← RANDOM_STATE()
4: xnear ← NEAREST_NEIGHBOUR(xrand, T )
5: U ← SELECT_INPUTS(xnear)
6: for each ui ∈ U do
7: xnew ← NEW_STATE(xnear, u,∆t)
8: xn ← NEAREST_NEIGHBOUR(xnew, T )
9: if xnew is feasible and REGRESSION(T , xnew) then

10: T .add_vertex(xnew)
11: T .add_edge(xnew, xnear, u)
12: return T

inputs from U ∈ U to xnear. If xnew is feasible and the regression function
REGRESSION(T , xnew) returns true, xnew is added to the tree T .

The regression function is an important technique in RRT-blossom. It
ensures the rapidly exploring property of the RRT algorithm by eliminating
nodes which tend to regress as it is shown in Figure 4.6. Generally, implement-
ing the regression function is a demanding task. For holonomic applications,
this task is greatly simplified and we can effectively compute the regression
only with knowledge of the distance metric ρ as

REGR.(T , xnew) =
{
FALSE if ∃x ∈ T | ρ(x, xnew) < ρ(xnear, xnew)
TRUE otherwise

.

(4.3)
The regression function from Equation 4.3 returns TRUE only if no node
from T is closer to xnew than the parent and therefore if xn = xnear.

Figure 4.6: RRT-blossom adds nodes xnew3 , xnew5 , xnew7 to the tree. Other
nodes are excluded by the regression function because their nearest neighbour is
not xnear.
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(a) : Select the best parent (b) : Rewire the tree

Figure 4.7: RRT* performing the optimization of the tree

4.2.3 Optimal Planning

Disadvantage of all basic sampling-based methods is a non-optimal output
path. This issue can be solved by utilizing an optimal RRT-based planner
called RRT* [52] introduced by Sertac Karaman and Emilio Frazzoli in 2011.
It has been proven that the paths computed by RRT* have the asymptotically
optimal property [52] and therefore RRT* always finds the shortest path in
the infinite amount of time.

The optimal property of RRT* is redeemed by a longer computation time
compared with the basic RRT. The longer computation time is caused by
a feature called rewiring which improves the path quality as the algorithm
runs. The original algorithm is limited to holonomic problems only.

Since the first optimal RRT-based algorithm was introduced, many new
relevant RRT*-based algorithms have been proposed. We can name a non-
holonomic expansion Anytime RRT* [53] by the same authors as the original
RRT*, memory efficient version RRT*FN [54] or a version with the smart
sampling Informed RRT* [55]. A complete survey on RRT*-based methods
is presented in [56].

Before we will discuss RRT*, it is necessary to present functions used in
Algorithm 6. For two given states xa, xb ∈ RN , LINE(xa, xb) is a function
xa, xb → R that denotes a path length from xa to xb. Let COST(xa) denote a
function xa → R, that returns a distance of xa to the beginning when passing
by a path. This definition implies that COST(xI) = 0. Let PARENT(xa)
be a function xa → xb that returns a parent node of xa. With respect to
the previous definitions, we can write COST(xa) = COST(PARENT(xa)) +
LINE(xa,PARENT(xa)).
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Algorithm 6 RRT*
Require: Initial state xI , number of iterations K, distance ε
Ensure: RRT* tree T
1: T .init(xI)
2: for k = 0 to K do
3: xrand ← RANDOM_STATE()
4: xnear ← NEAREST_NEIGHBOUR(xrand, T )
5: xnew ← NEW_STATE(xnear, ε)
6: if xnew is feasible then
7: T .add_vertex(xnew)
8: Xnear ← NEIGHBOURS(xnew, T ,min{γ(log|T | / |T |)1/N , η})
9: xmin ← xnear

10: cmin ← COST(xnear) + LINE(xnear, xnew)
11: for each xn ∈ Xnear do
12: if xn is feasible from xnew and COST(xn)+LINE(xn, xnew) <

cmin then
13: xmin ← xn
14: cmin ← COST(xn) + LINE(xn, xnew)
15: T .add_edge(xnew, xn)
16: for each xn ∈ Xnear do
17: if xn is feasible from xnew and COST(xnew) +

LINE(xn, xnew) < COST(xn) then
18: xparent ← PARENT(xn)
19: T .remove_edge(xn, xparent)
20: T .add_edge(xn, xnew)
21: return T

Given an initial state xI , empty tree T and state space X , RRT* proceeds
as follows:..1. Holonomic RRT Add the initial state to the tree T ...2. Generate a random state xrand ∈ X ...3. Select the nearest neighbour of xrand in terms of metric ρ. Denote it

xnear...4. Determine a new state xnew by connecting xrand to xnear by a straight
line. If LINE(xrand, xnear) < ε, then xnew ← xrand. Compute a state
that satisfy LINE(xnew, xnear) = ε and lie on the line otherwise...5. If xnew is reachable by a collision-free path, add it to the tree. If not,
ignore it and go to step 2...6. Best parent Select all neighbours of xnew within the distance

min
{
γ

( log |T |
|T |

) 1
N

, η

}
(4.4)

where γ and η are parameters dependent on the environment, |T | is the
number of nodes in the tree and N is the number of dimensions.
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4. Rapidly Exploring Random Trees ..............................7. Cycle through all the neighbours and find the parent of xnew with a
minimum-cost path to the initial node among them...8. Rewiring Cycle again through all the neighbours and if a path to the
node through xnew is shorter, remove the existing connection to its parent
and add the new less costly connection. Assign xnew as the new parent.
See Figure 4.7 for an illustration of the rewiring procedure.
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Figure 4.8: Comparison of RRT and RRT* for a holonomic robot. The path
generated by RRT* (d) is shorter than the path generated by RRT (c).

28



Chapter 5

Our Contribution

This chapter is dedicated to our contribution to the motion planning. In the
first section, we introduce a new algorithm for the holonomic motion planning
based on the basic RRT. In the other section, our new algorithm RRT-sphere
and other implemented RRT-based algorithms are tested by means of own
3D models and benchmark [15] for their execution time, number of explored
nodes and length of the final path.

5.1 RRT-sphere

RRT-sphere is a novel RRT-based algorithm we propose to improve the
performance of RRT in low constrained environments. Every discussed
algorithm so far utilized uniform sampling scheme. Proposed RRT-sphere
samples the state space by adaptive sampling which attracts the samples
toward the goal state whether it is possible. The principle of the non-uniform
sampling ensures that no redundant nodes are created and thus it saves
system resources like RAM and CPU.

This method is designed to solve holonomic and non-holonomic problems,
but we only focus on holonomic systems in the thesis. Testing RRT-sphere
under non-holonomic constraints and automatic tuning of parameters is a
possible avenue for the future work.

Unlike the RANDOM_STATE() function from previous algorithms, the
method for generating new samples is modified in RRT-sphere. RAN-
DOM_STATE (xG, h) generates new states around the goal state xG within
the radius h. The part of the state space, where random samples xrand are
located, looks like N-D hypersphere with the centre in xG, where N is the
number of translation dimensions of the state space.
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Algorithm 7 RRT-sphere
Require: Initial state xI , goal state xG, number of iterations K, initial

radius h
Ensure: RRT tree T
1: T .add_vertex(xI)
2: a, b← 0
3: for k = 0 to K do
4: if k mod α = 0 then
5: a← 0
6: b← 0
7: h← SET_RADIUS(a, b)
8: xrand ← RANDOM_STATE(xG, h)
9: xnear ← NEAREST_NEIGHBOUR(xrand, T )
10: u← SELECT_INPUT(xrand, xnear)
11: xnew ← NEW_STATE(xnear, u,∆t)
12: if xnew is feasible then
13: T .add_vertex(xnew)
14: T .add_edge(xnew, xnear, u)
15: a← a+ 1
16: else
17: b← b+ 1
18: return T

The radius changes dynamically according to the ratio of non-colliding and
colliding nodes in the function SET_RADIUS(a, b), where a is the number
of feasible nodes and b is the number of colliding nodes. The counters a and
b reset to 0 after the established number of iterations expires. The number
of required iterations to reset the counter is denoted α. Let β denote the
stretching factor which represents the speed of expansion/shrinking of the area
around xG (β ∈< 0, 1 >). Adaptation of the radius is shown in Figure 5.1.
The full pseudo-algorithm of RRT-sphere is shown in Algorithm 7.

The function that controls change of the radius h is defined as:

SET_RADIUS(a, b) =


h← h+ βh if k mod α = 0 ∧ a < b

h← h− β
2h if k mod α = 0 ∧ a > b

unchanged h otherwise
(5.1)

Provided that there exists a path without majority of narrow passages from
xI to xG, RRT-sphere finds the path using a smaller amount of samples in
comparison with the original RRT and other RRT-based methods with the
uniform probing of the space. This algorithm never produces worse results
than the basic RRT because in the worst case, h is large enough to cover the
all state space yielding in the uniform coverage.
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Figure 5.1: Changing of the radius h in RRT-sphere according to the number
of successfully added nodes. New nodes are generated in the red area.

5.2 Experimental Results

The experimental section of the thesis is divided into three parts. In the
first part, we analyse RRT-sphere parameters α, β and their influence on
the motion planning performance. Then, we perform experiments on various
motion planning problems in 2D worlds with all implemented algorithms —
RRT [12], Retraction-based RRT [50], RRT-blossom [51], RRT* [52], RRT-
sphere, and in 3D worlds with three selected algorithms. The algorithms are
compared in detail and results are provided in the section.

5.2.1 RRT-sphere Parameters

The correct initializing of parameters is the important preliminary phase of
all sampling-based motion planning algorithms. Wrongly tuned parameters
can lead to substandard quality of the planning. Internal constants of motion
planning algorithms affect the run-time, memory requirement and quality of
the final path. There exists a specific set of parameters which is optimal for
the particular planning task and gives the best results. It is not possible to
tune the parameters correctly without knowledge of the environment.
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Figure 5.2: The dependency of RRT-sphere parameters α and β on the number
of nodes required to find a path in the 2D map
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32



................................. 5.2. Experimental Results

(a) : The 2D map (b) : The 3D map

Figure 5.4: Two testing maps utilized for evaluating RRT-sphere parameters
with calculated paths

The maps used for testing the dependency of RRT-sphere parameters on
the planning quality are shown in Figure 5.4. We determine the number
of generated nodes until the algorithm finds a path. The parameter α is
examined in the interval < 10, 100 > and the parameter β in the interval
< 0.1, 1 >. Results are visualised as heat maps in Figure 5.2 and Figure 5.3.
The value in each box is the mean of ten tests. For comparison, the basic
RRT generates 5000 nodes on average in the 2D map.

In the 2D map, there can be observed a strong correlation between the
parameters and number of needed nodes to find a path. When the parameters
approach closer to α = 10 and β = 0.1, the number of generated nodes
reduces. Experiments in the 3D map do not exhibit the correlation. Best
results in the 3D map are produced by α = 90 and β = 0.8.

5.2.2 Experiments in 2D Environments

We perform experiments in 2D environments with the robot which is rep-
resented by a square. The robot is capable of moving in two DOF and its
configuration (state) is q = (x, y), where x and y are translational coordinates.
The system is holonomic and thus the robot can displace independently in
both directions. The state space has dimensions 200 cm by 200 cm and the
robot has dimensions 20 cm by 20 cm.

For the testing, we designed three maps: easy (1), obstacles (2) and L-trap
(3) An assignment for the robot is to find a path from (0, 0) to (200, 200).
The step size is set to 3 for all algorithms. We utilized Euclidean metric.
Examples of computed paths in all testing maps are shown in Figure 5.5.
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(a) : RRT (1) (b) : RRT (2) (c) : RRT (3)

(d) : Retr. RRT (1) (e) : Retr. RRT (2) (f) : Retr. RRT (3)

(g) : RRT-blossom (1) (h) : RRT-blossom (2) (i) : RRT-blossom (3)

(j) : RRT* (1) (k) : RRT* (2) (l) : RRT* (3)

(m) : RRT-sphere (1) (n) : RRT-sphere (2) (o) : RRT-sphere (3)

Figure 5.5: Five RRT-based algorithms in various 2D maps. The best results
are achieved by our proposed algorithm RRT-sphere.
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2D map obstacles (2)
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Figure 5.10: The run-time – 2D map
obstacles (2)
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map obstacles (2)
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Figure 5.12: The number of nodes –
2D map L-trap (3)
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Figure 5.13: The run-time – 2D map
L-trap (3)
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Figure 5.14: The path length – 2D map L-trap (3)

In Retraction-based RRT, there are 5 attempts to generate one node in
the obstacle space. The maximal number of nodes laying in the obstacle
space given by the RETRACTION function is set to 5 and maximal length
between two retraction nodes is 3. The γ constant for RRT* is set to 100.
The maximal number of expansions in RRT-blossom is 5. In the case of
RRT-sphere, α = 10 and β = 0.1 since the best results were achieved with
this setting. There was done 50 tests in each map.

Figures 5.6–5.14 show performance of all algorithms as the number of
nodes in the tree, path length the run-time. The central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The maximal and minimal values are indicated
by marks at the end of the dashed lines. Success rates according to the
number of required iterations to find a solution in all maps are shown in
Figures 5.15–5.17.
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Figure 5.17: The success rate on the L-trap map

From the figures, it can be observed that the RRT* run-time is approxi-
mately 100 times longer than the RRT run-time. It ensues from the rewiring
feature in RRT* where all neighbours of the selected node are reconnected to
achieve the optimality of the path. On the other hand, paths given by RRT*
are shorter by 20% in compare with RRT.

RRT-blossom generates the smallest number of nodes to cover the space,
but paths computed by RRT-blossom are distinctly sub-optimal. Retraction
based-RRT places nodes on the boundary of the obstacle state space in order
to improve the performance in narrow passages. In the 2D testing maps,
RRT-sphere produces best results in terms of the number of generated nodes
and computational time. In contrast with RRT-blossom, RRT-sphere does not
cover the space equally from the initial node. Summarizing, all implemented
algorithms excel in a specific field, and for each task, a different algorithm is
the most suitable for the task.
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(a) : The alpha puzzle (b) : Hedgehog in the cage

Figure 5.18: Two testing environments utilized for 3D experiments. The red
object in both environments represents the robot.

5.2.3 Experiments in 3D Environments

For 3D experiments, we selected three environments – hedgehog in the cage
designed by us, alpha puzzle from [15] (both shown in Figure 5.18) and
protein models. The robots are capable of moving in 6 DOF (3x translations,
3x rotations). Because of the difficulty of the tasks, we used modified versions
of the objects. In the alpha puzzle, the narrow passage between two tubes is
expanded. The full alpha puzzle computation was not completed in 48 hours,
same as in the hedgehog case. The Hedgehog in the cage modification was
done by scaling the hedgehog to 70%, 80% and 90% of its original size.

The first experiment in 3D environments was performed on the alpha puzzle.
There were chosen two RRT-based algorithms (RRT-blossom, RRT-sphere)
for their results in 2D maps and the original RRT for comparison. Full results
for 50 tests are shown in Figures 5.20–5.24. Unlike the 2D experiments, we
added an extra graph to show only translational component of the final path
length. The shortest run-times are achieved with our proposed algorithm RRT-
sphere, as well as the the smallest number of generated nodes. The longest
paths are generated by RRT-blossom, but considering only displacements,
the differences among path lengths are not substantial (see Figure 5.23).

The second experiment consists of scaled hedgehog as the robot and the
cage around. This planning problem involves challenging narrow passages.
RRT is able to solve the 70% hedgehog in 3 s on average (Figure 5.26), 80%
hedgehog in 3.5 h and 90% hedgehog in 47 h. The computed path for the
80% hedgehog is illustrated in Figure 5.19 and a video showing the path is
included on the attached CD.
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(a): (b): (c):

(d): (e): (f):

Figure 5.19: The computed trajectory of the hedgehog scaled to 80% by
RRT-sphere (computation time 3.5 h)
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Figure 5.21: The run-time in the
alpha puzzle map
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Figure 5.23: A translational compo-
nent of the path length in the alpha
puzzle map
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Figure 5.24: The success rate on the the alpha puzzle map
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Figure 5.26: Comparison of the Eu-
clidean and Manhattan metric – the
run-time
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Figure 5.27: Comparison of the Eu-
clidean and Manhattan metric – the
path length including rotations
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success rate

Then, we evaluated the metric influence on the planning performance. As
a testing map, we utilized hedgehog in the cage scaled to 70%. Results for
the basic RRT algorithm and RRT-sphere are shown in Figures 5.25–5.28.
A letter “E” stands for the Euclidean metric and a letter “M” stands for
the Manhattan metric (see Section 2.1 for further information). It has been
shown that the Euclidean metric is more suitable for the problem as the
run-times, number of nodes and path lengths are lower. The number of
required iterations to find a path is lower as well. The only exception is the
number of nodes in RRT, where the Manhattan metric gives slightly better
results on average than the Euclidean metric.

41



5. Our Contribution ...................................

proitein
ligand

Figure 5.29: Model of a protein and simple ligand

Finally, we performed an experiment with molecule structures. The model
consists of a large molecule (protein) and a small molecule (ligand) as shown
in Figure 5.29. The task of the ligand is to escape from the center of the
protein and get to the position on the edge of the protein. The protein is
made of 4652 atoms approximated by triangulated spheres. The ligand is
a single atom with radius 0.7 Å1. The spheres representing atoms contain
60 triangles. For the accurate planning, more triangles would be needed.
However, for purposes of the demonstration in this thesis, the number of
triangles is sufficient.

Table 5.1 shows rounded results of the algorithms after one pass. The
step size is set to 0.1 Å. The results are heavily dependent on settings of the
parameters, and precise tuning of them would lead to better results. A video
showing the path of the ligand computed by the RRT-sphere algorithm is
included on the attached CD.

# of nodes Run-time [s] Path length # of iterations
RRT 197 000 46.6 77.7 589 000
Retr. RRT 316 000 588.3 54.2 285 000
RRT-blossom 336 000 238.8 56.2 379 000
RRT* 271 000 608.6 40.5 392 000
RRT-sphere 25 000 7.5 74.7 94 000

Table 5.1: Results of five RRT-based algorithms from the molecules planning

1A unit of length equal to 1 nm used extensively in chemistry.
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Chapter 6

Conclusions

The motion planning is used in the extensive number of applications every day.
There is a growing need for development of new improved motion planning
algorithms as new tasks arise. At present, the major field where the motion
planning is used, is the mobile and intelligent robotics. We can mention
self-driving cars since they are considered as the future of the automotive
industry.

This bachelor thesis was focused on the analysis of the group of sampling-
based motion planning algorithms. The sampling sampling-based algorithms
was a novel and revolutionary approach to the motion planning. They allowed
an effective planning in highly constrained environments with many number
of DOF which was not possible before. We have successfully implemented
five sampling-based algorithms, all based on the Rapidly Exploring Random
Trees algorithm, in our planning application.

The application was utilized for testing the algorithms in various 2D and
3D maps. We employed the algorithms to solve three 2D problems. We
determined the pros and cons of all methods and illustrated results in figures
with computed paths and graphs with all relevant data. Selected algorithms
were used to evaluate the performance on two puzzles and protein model
because in biochemistry, the motion planning has a significant position. In the
experimental part, we determined that the Euclidean metric is a preferable
metric in the motion planning.

In the thesis, we proposed a novel RRT-based algorithm called RRT-sphere.
This method is based on the basic RRT algorithm and improves its properties
such as the number of generated nodes and run-time. The main feature in
RRT-sphere is the adaptive sampling radius around the goal state which
expands/shrinks according to the ratio of colliding and non-colliding new
nodes. RRT-sphere yields the good experimental performance over a wide
variety of 2D and 3D examples.
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Appendix A

List of Notation and Abbreviations

Symbol Meaning

X The state space
C The configuration space
O The obstacle region
U The set of control inputs
W The world
A The robot
x The state
q The configuration
u The control input
ρ The metric
T The RRT tree

Abbreviation Meaning

PRM Probablistic Roadmap
RRT Rapidly exploring Random Tree
DOF Degree Of Freedom
RNG Random Number Generator
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Appendix B

Motion Planning Software

The software is designed to handle holonomic planning problems in the 3D
world. The world involves a rigid robot and stationary obstacles. The robot
is capable of displacement and rotation around the pivot and hence it has 6
DOF (3x translation, 3x rotation) and the state space is 6D. A block diagram
of the application is shown in Figure B.1.

The following external libraries are implemented in the software:.MPNN - Nearest neighbour library for the motion planning by Anna
Yershova and Steven M. LaValle, University of Illinois [40]. MPNN is a
key element in our motion planner because the nearest neighbour search-
ing is one of the most challenging tasks in the motion planning. Utilizing
a basic linear search would increase the process time dramatically..RAPID - Robust and Accurate Polygon Interference Detection (colli-
sion detection) by Stefan Gottschalk, Ming C. Lin, Dinesh Manocha,
University of North Carolina [44]. Another key component for sampling-
based planning methods is a collision detector. RAPID is an easy to use
detector with a set of uncoupled triangle polygons as the input..OBJ LOADER - A C++ OBJ Model Loader [57]. To import objects
assembled from polygons to RAPID, a parser that decomposes an object
(.obj) file into a triangle mesh is used..TinyXML-2 - A C++ XML parser by Lee Thomason [58]. All necessary
parameters for the planning such as an object file, type of a planner,
start and goal configuration and more are sent to the planner via an
XML file. TinyXML-2 carries out the task of transferring a given XML
file with parameters to a set of strings and number values.. effolkronium random - Random for modern C++ with convenient
API by Ilya Polishchuk [59]. To simplify the work with random numbers
used for generating random samples in RRT, we use the API for C++11.
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B. Motion Planning Software ...............................

MAIN

PLANNER

PARSER

EXPORT

KNN

TREE

NODE

RANDOM
POINTS

COLLISION

OBJECT

INPUT
XML FILE

OUTPUT
TXT FILE

Figure B.1: A block diagram of the application. Arrows illustrate dependences
of application classes.

For proper functionality of the application, there needs to be three files in
the root directory: an object file with .obj extension, XML file and Makefile.
The object file includes just two items, an obstacle and robot in this order.
The robot has a reference point in the center of the coordinate system. Any
3D modeling software can be used to generate the file (Blender [60], Cinema
4D [61]). For example, the object file may look like this:

# WaveFront *.obj file (generated by CINEMA 4D)
v 0 0 0
... #list of vertices of the obstacle
# 8 vertices

vn 0 0 -1
... #list of normals of the obstacle
# 6 normals
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............................... B. Motion Planning Software

o Obstacle
usemtl default
f 1//1 2//1 4//1 3//1
... #list of polygons of the obstacle

v 50 50 50
... #list of vertices of the robot
# 8 vertices

# 0 normal #list of normals of the robot
(same normals as the obstacle)

o Robot
usemtl default
f 9//1 10//1 12//1 11//1
... #list of polygons of the robot

The other file is the input XML file, in which are defined all constants and
parameters. Structure of the file is following:
<Planning_task>

<Name>Testing</Name> <!-- name of the task -->
<Object>objects.obj</Object> <!-- the object file -->
<Planner>RRT</Planner> <!-- employed planner -->
<Task_number>1</Task_number> <!-- task number -->
<Parameters>

<iteration_limit>2000</iteration_limit>
.
.
<beta>10</beta>

</Parameters>
</Planning_task>

In the application, five RRT-based algorithms are implemented. A user
selects the algorithm by the <Planner> tag. Available options are:.Basic RRT – <Planner>RRT</Planner>.Retraction-based RRT – <Planner>RRTRetraction</Planner>.RRT* – <Planner>RRTStar</Planner>.RRT-blossom – <Planner>RRTBlossom</Planner>.RRT-sphere – <Planner>RRTSphere</Planner> (Our new algorithm

discussed in Section 5.2)

In the case of other option, the planner stops and returns an error.
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B. Motion Planning Software ...............................
The parameters for a correct functionality of the planner are defined in the

<Parameters> group. General parameters, necessary for all planners, are:. iteration_limit – The number of RRT expansions. If set to 0, the planner
iterates until it finds a valid path.. time_limit – After this time elapses, the application terminates. The
time limit is in seconds.. init_pos_x, init_pos_y, init_pos_z – Translation coordinates of the
initial state.. init_rot_x, init_rot_y, init_rot_z – Initial rotation of the initial state.. goal_pos_x, goal_pos_y, goal_pos_z – Translation coordinates of the
goal state.. goal_pos_radius – A radius with a centre in the goal state defining the
set of goal states.. state_space_x, state_space_y, state_space_z – Sizes of translational
components of the state space.. step_size – A maximal length between two nodes ε.. interpolation_step – A step size to determine whether an input path is
collision-free..metric – The used metric. 1 for Euclidean, 2 for Manhattan.. scale_trans – A scale of translation coordinates.. scale_rot – A scale of rotation coordinates.

General parameters are followed by specific parameters for a particular
planner:. retraction_nodes – The number of attempts to generate one node in the

obstacle space for retraction-based RRT.. retraction_iterations – The maximal number of nodes laying in the
obstacle space given by the RETRACTION function.. retraction_step – A maximal length between two neighbouring nodes
given by the RETRACTION function.. gamma – The parameter γ for RRT*.. inputs – The number of control inputs of which new states are computed
in RRT-blossom |U|.. alpha – The parameter α for RRT-sphere.. beta – The parameter β for RRT-sphere.

Full example of the file is shown in Apendix D.
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............................... B. Motion Planning Software

The state space defined by the state_space_xxx parameter determines the
samples generated by the RNG1. If the state_space_x is a, x coordinate for
samples is generated in the interval < 0, a >. Rotational coordinates are
generated in the interval < −π, π >.

After making the binary file by the enclosed Makefile (requires gcc 4.9
or later), the planning starts by executing following commands in a linux
terminal:
chmod 777 bin/a.out
./bin/a.out task.xml

After the planner finishes its task, it prints all relevant information to the
terminal and file info.txt. This information includes the number of nodes in
the path, path length and run-time. List of all connections from the tree is
exported to a file called nodes.txt. The computed path is listed in the file
path.txt. The files can be used for visualization.

1RNG – Random Number Generator.
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Appendix C

Tree Structure of the Application

/

/bin

/build

/ext

/mpnn

/OBJ-Loader

/random

/rapid

/tinyxml2

/include

Collision.h

Export.h

KNN.h

Node.h

Object.h

Parser.h

Planning.h

RandomPoints.h

Tree.h
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C. Tree Structure of the Application............................
/src

Main.cpp

Collision.cpp

Export.cpp

KNN.cpp

Node.cpp

Object.cpp

Parser.cpp

Planning.cpp

RandomPoints.cpp

Tree.cpp

task.xml

objects.obj

Makefile
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Appendix D

Example of the Input XML File

<Planning_task>
<Name>Testing</Name>
<Object>obejcts.obj</Object>
<Planner>RRTStar</Planner>
<Task_number>1</Task_number>
<Parameters>

<iteration_limit>2000</iteration_limit>
<time_limit>1</time_limit>
<init_pos_x>0</init_pos_x>
<init_pos_y>0</init_pos_y>
<init_pos_z>0</init_pos_z>
<init_rot_x>0</init_rot_x>
<init_rot_y>0</init_rot_y>
<init_rot_z>0</init_rot_z>
<goal_pos_x>200</goal_pos_x>
<goal_pos_y>200</goal_pos_y>
<goal_pos_z>200</goal_pos_z>
<goal_pos_radius>3</goal_pos_radius>
<state_space_x>250</state_space_x>
<state_space_y>250</state_space_y>
<state_space_z>250</state_space_z>
<step_size>2</step_size>
<interpolation_step>0.1</interpolation_step>
<metric>1</metric>
<scale_trans>1</scale_trans>
<scale_rot>1</scale_rot>
<retraction_step>0.5</retraction_step>
<retraction_nodes>10</retraction_nodes>
<retraction_iterations>10</retraction_iterations>
<gamma>50</gamma>
<inputs>50</inputs>
<alpha>10</alpha>
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D. Example of the Input XML File.............................
<beta>10</beta>

</Parameters>
</Planning_task>
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Appendix E

Content of the Attached Disc

The attached disc contains following directories:. text – A PDF file with the thesis.. files – Source files of the motion planner. data – Output data of experiments.maps – 3D models of utilized maps. video – Videos with motion planning tasks
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