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Abstract

The goal of this thesis is to develop a diagnostic tool for components of Android
system ported to Raspberry Pi platform. Project consists of two parts. First
one is about portation of Android to Raspberry Pi to create an environment
for development. Second part is development of diagnostic tool itself. Solution
for both parts is based on existing projects. To port Android was used project
android-rpi while for tool development were used process memory statistic tool
procmem and system events tracer atrace. Result of this project was finding a
way to merge procmem and atrace functionality and develop a new diagnostic
tool with both memory and performance measurements.

Keywords android, raspberry pi, porting, diagnostic tool, performance,
memory usage, linux, kernel, kernel events, cpu usage.
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Abstrakt

Ćılem této práce je vyvinout diagnostický nstroj pro komponenty systému
Android přeneseného na platformu Raspberry Pi. Projekt se skládá ze dvou
část́ı. Prvná cást je o portováńı Androidu na Raspberry Pi, která vytvář́ı
prostřed́ı pro vývoj. Druhou část́ı je vývoj samotného diagnostického nástroje.
Řešeńı pro obě části je založeno na stávaj́ıćıch projektech. Do portu An-
droid byl použit projekt android-rpi a pro vývoj nástroju̇ byl použit procesńı
pamět́ový statistický nástroj procmem a nástroj atrace určený pro sledováńı
systémových událost́ı. Výsledkem tohoto projektu je zpu̇sob, jak možné sloučit
funkčnosti procmem a atrace a vyvinout nový diagnostický nástroj s měřeńım
pamět́ı i výkonu.

Kĺıčová slova android, raspberry pi, portace, diagnostický program, výkon,
spotřeba pamět́ı, linux, jádro, událost́ı jádra, spotřeba procesoru̇.

xi





Contents

Introduction 1

1 Research of existing solutions 3

1.1 Existing solutions for porting Android OS to Raspberry Pi . . 3

1.2 Existing solutions of diagnostic tools for Android OS . . . . . . 4

2 Analysis 7

2.1 Analysis of existing solutions . . . . . . . . . . . . . . . . . . . 7

2.2 Development setup . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Extension requirements . . . . . . . . . . . . . . . . . . . . . . 19

3 Design 21

3.1 Porting project’s choice . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Design of diagnostic tool . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Development kit . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Development process . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Development plan . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Development approach . . . . . . . . . . . . . . . . . . . . . . . 23

4 Solution 25

4.1 Porting of Android to Raspberri Pi 3 . . . . . . . . . . . . . . . 25

4.2 Testing of procmem and atrace . . . . . . . . . . . . . . . . . . 31

4.3 Refactoring of atrace . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Refactoring of procmem . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Merging of procmem into atrace . . . . . . . . . . . . . . . . . 42

4.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Development of trace processing layer . . . . . . . . . . . . . . 42

4.8 Diagnostic tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion 49

xiii



Bibliography 51

A Acronyms 53

B Contents of enclosed USB disk 55

xiv



List of Figures

2.1 Screenshot of Trace-Viewer that runs on trace data collected by
systrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Example of ftrace log in trace buffer available for user . . . . . . . 12
2.3 Example of ftrace trace with sched events only enabled (format

was changed insignificantly for illustration) . . . . . . . . . . . . . 13
2.4 Example of ftrace trace with enabled kmem:kmalloc event . . . . . 14
2.5 Example of output of simpleperf report on collected perf.data . . . 16
2.6 Example of perf event open usage . . . . . . . . . . . . . . . . . . 17

4.1 Mesa VC patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Switch to SW video decoder . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Screen flashing patch . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Bluetooth patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 ATrace initial component model . . . . . . . . . . . . . . . . . . . 33
4.6 Android interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 FTrace interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 CmdLineApp class diagram . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Example of ATraceTest with Google Mock framework . . . . . . . 36
4.10 Action class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.11 Component model of atrace . . . . . . . . . . . . . . . . . . . . . . 38
4.12 Arguments, CmdLineArgsParser and CmdLineArgs classes . . . . 39
4.13 Pagemap library usage example . . . . . . . . . . . . . . . . . . . . 40
4.14 Procmem interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.15 ftrace buffer dump format . . . . . . . . . . . . . . . . . . . . . . . 43
4.16 FTraceEntry creators class diagram . . . . . . . . . . . . . . . . . 44
4.17 Process and Process Change class diagram . . . . . . . . . . . . . . 45
4.18 Example of output after tool execution . . . . . . . . . . . . . . . . 47

xv





Introduction

Android OS is a leading operating system on the market of handheld devices.
There is a big community of developers that constantly develop new applica-
tions for Android. The system itself is always evolving and Google provides
new releases each year with significant improvements of previos versions.

Internet of Things is a network of many small devices with broad range of
uses. Devices in this network have small computers, however, network allows
them to effectively exchange data among themselves and use it to improve
their performance.

With emergence of Internet Of Things many projects appear that tries to
port Android OS to embedded devices because once ported all these features
that make Android so popular became available on the device. The import-
ance of Android porting is marked with announcement of Google to finally
introduce official support for embedded devices. Android Things 1.0 could be
realised in the year of writing of this paper.

Raspberry Pi is a small cheap computer that has just enough resources to
use it in many possible ways and realise IoT ideas. Even though Raspberry Pi
was started as a project for educational purposes, now it has a huge community
of enthusiasts who are constantly creating new ideas of usage for this device.

Limited resources of embedded devices makes them not easy to program.
Raspberry Pi is not an exclusion and therefore it’s important to have a good
diagnostic tool to analyse performance of developed applications.

There exist already many diagnostic tools that could be used on embedded
devices with Android, however, most of them focus on analysing process only
from cpu usage or memory usage perspective.

This thesis takes as a goal to explore existing projects of porting Android to
Raspberry Pi, use one of them to port Android and develop in this environment
a new diagnostic tool that will provide analysis of both cpu usage and memory
usage of system or application processes in the provided period of time.

Chapter 1 provides an overview of existing partually similar projects.
There is a description of projects about porting Android OS to Raspberry
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Introduction

Pi platform and list of existing tools for analysis of process performance in
Android environment.

Chapter 2 describes possible options for solution. In particular deeper
analysis of pros and cons of existing porting projects and features of diagnostic
tools and how they could be used in solution of this thesis task. Also it
includes analysis of possible setups of environment for project development,
development methodologies.

Chapter 3 contains conclusions of analysis and provides reasons for them.
It states what options discussed in previous chapter were chosen for this pro-
ject. It covers which project for porting was chosen, which diagnostic tools
became a base for solution. It builds a plan for solution and measures approx-
imate time for steps.

Chapter 4 discusses the process of solution. It describes how steps from
plan described in previous chapter were fullfilled.

Chapter 5 summarises results of the project. It states a degree to which
the task was solved. It reviews what was done to achieve that. It provides
some thoughts about future project extensions.
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Chapter 1

Research of existing solutions

Project consists of two parts. The first one is porting Android OS to Raspberry
Pi platform. The second part is development of a diagnostic tool. Therefore,
research of existing solutions was made for both parts of the project.

1.1 Existing solutions for porting Android OS to
Raspberry Pi

There was no official support by Android of Raspberry Pi platform until re-
cently. That’s why all projects were based on work of enthusiasts or volun-
teers. Only recently Google started a project called Android Things that is a
variation of Android for embedded applications.

Here is a list of projects that are covered further in this section:

- Android Things

- RTAndroid (currently EmteriaOS)

- android-rpi

- RazDroid

- LineageOS

Android Things Android Things is a Google project to provide an OS
based on regular Android OS for handheld mobile devices with familiar APIs
for application development but with support of additional hardware that can
be found only on embedded systems.[1] Project considers several platforms,
one of them is Raspberry Pi 3.

Current status of project on time of writing this paper is Developer Pre-
view version 8. Official stable release doesn’t exist yet but there are rumours
that it will be made in 2018. There is a list of issues that are about to be
solved. Source code available, however it wasn’t prepared for publishing as
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1. Research of existing solutions

other official releases in Android Open Source Project. There is a primary
documentation support provided on Google developer website with guide for
installation. Experimental build is available to download and test on the user
platform.

RTAndroid RTAndroid (or newer name is EmteriaOS) is a project based
on research made in RTAachen University that grew into commercial product.
RT stands here for real-time. This is a real time extension of Android OS for
embedded systems.

Current status of project is support of Android Nougat. The source code
is not available, however it’s possible to download built image and try it on
the board.

android-rpi android-rpi is a github repository that is supported by three
enthusiasts (one of them is a founder of RTAndroid project) that provides a
basic solution for porting of latest releases of Android for mobile devices to
Raspberry Pi.

RazDroid RazDroid is an old project that was maintained by volunteers
and included usable port for Android version 2 as well as experimental build
for Android 4.

Current version of project is outdated. Source code available online but
the latest changes were made several years ago. It seems like project is not
supported anymore.

LineageOS LineageOS port for Raspberry Pi is an example of port of fla-
vour of Android OS. It’s based on android-rpi repository and LineageOS ex-
tensions for Android.

Current version uses Android Nougat port along with latest version of
LineageOS. Source code available with documentation how to compile and
build it.

1.2 Existing solutions of diagnostic tools for
Android OS

There exist a plenty of tools that are developed and maintained by Google for
debugging and analysis of system performance.

Android uses Linux kernel and, even though it has some patches applied
to it, it’s possible to use also Linux diagnostic tools.

Here is a short list of selected tools:

- Android Debug Bridge
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1.2. Existing solutions of diagnostic tools for Android OS

- dmesg

- logcat

- dumpsys

- systrace

- atrace

- ftrace

- procmem

- perf

- simpleperf

Android Debug Bridge Android Debug Bridge (ADB) is a software to
create a ”bridge” between your device and developer. It connects to device
using TCP/IP and provides an option to run a remote shell.

Other mentioned tools are executed from the shell provided by ADB. This
makes ADB a necessary tool for performing any analysis for system perform-
ance on Raspberry Pi.

dmesg dmesg is an internal tool provided in Linux Kernel to see output
from kernel boot. It outputs debug information with attached timestamps
that are counted from start of system initialization process. It is useful to
analyse the performance and functionality of kernel services.

logcat logcat is a built-in Android tool that contains all debugging logs of
the system. It can be used to output debug messages from Android System
components and developer application as well.

dumpsys dumpsys is a tool that can be executed from shell environment
on the target device and it outputs (dumps) information of all system services
and running applications.

systrace systrace is a python application that uses ADB to run another
tracing tool called atrace on target device for period of time, then reads trace
report and generates html with comfortable javascript interface called Trace-
View to view timespan of processes with their state information. This tool is
used for performance issues of Android components and applications.

atrace atrace is a system for analysing performance of Android System com-
ponents and kernel system. atrace uses ftrace Linux tool to collect information
from Android system and kernel at the same time.
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1. Research of existing solutions

ftrace ftrace is a very powerful Linux kernel function tracer. It can trace
any function in kernel space and relate them to process that function runs in,
specify on which CPU runs this process, display timestamp. It also can record
kernel tracepoints that define kernel space events with processes.

malloc debug Malloc Debug is a Android system debugging tool for heap
allocations. It can detect user space memory leaks or memory corruption
issues in Android applications or native platform code.

meminfo meminfo is a service for collecting process memory information
including Virtual Set Size(VSS), Resident Set Size (RSS), Proportional Set
Size(PSS) and Unique Set Size(USS). The easiest to analyse are sizes USS
and PSS. USS says how much memory will deallocated at the same time as
application will be terminated. PSS is shared with other processes and only
relative part of it will be freed.[2] It maintains history of process memory stat-
istics in last 3 hours and one of the easiest ways to use is to dump information
from this service using dumpsys.

procmem procmem is a memory profiling tool that displays similar inform-
ation as meminfo for a specified process, however with more details. In par-
ticular, it shows memory counters for each shared library in the process.

simpleperf simpleperf is a simple implementation of Linux tool called perf
that also includes some fixes specific for Android environment. It’s a modern
tool for performance analysis of processes running on modern CPUs supplied
with PMU.

6



Chapter 2

Analysis

This section provides analysis of projects and tools that were found during
research in terms of their relevance and possible usage for the task of this
project.

2.1 Analysis of existing solutions

For the development of Android diagnostic tool on Raspberry Pi platform it’s
necessary to have ported Android OS that complies with following require-
ments:

- functional version with regular shell toolbox support

- possibility to connect from host to shell with root access

- working native diagnostic applications

- modern version starting from Android 7 (Nougat)

- available source code

- available documentation of changes to original Android version

- project is up-to-date and supported by its community

For the development of tool it’s crusial to have stable system with ability
to easy connect to shell with root access. Many diagnostic tools rely on root
access for accessing diagnostic files of kernel. Root access in Android gives
essential rights to setup system for debugging purposes. It’s necessary that
system already supports some diagnostic tools that are officially released to
be able to verify results of developed tool. It’s also could be necessary to use
their functionality to implement necessary features. Therefore, ported system
should support memory usage and cpu usage measuring tools with available
source code and documentation. Project should be supported by community
to provide ability to ask possible questions regarding implementation of port.
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2. Analysis

Similarly, documentation of changes made to Android could be good for un-
derstanding better environment and comparing performance of tool in regular
supported platforms.

2.1.1 Analysis of porting projects

Most of projects mentioned in previous chapter were excluded from analysis.
For RazDroid the reason is that it’s out-of-date unsupported project. For
LineageOS it is a different flavour of Android that is based on android-rpi and
it is a only personal project available on github. RTAndroid is a version of
Android for user experience only. There is no documentation for developers
and its closed source commercial project. Therefore, two projects remain to
consider - Android Things and android-rpi.

Android Things Android Things supports Raspberry Pi 3. There is a
good documentation on how to setup a development on the device on Android
developers website. It is possible to connect to shell using ADB as long as
device is connected to network and assigned some IP address. Shell gives
common functionality that could be expected from Linux shell with default
toolbox and diagnostic applications. Its code is available in Android Open
Source Project repository.

However, one issue is that Android Things is a new project in develop-
ment preview state with special changes of usual Android mobile concepts
from Google for embedded devices. This gives some differences with regular
Android development that are described on developer website. For example,
one of them is single app experience for user.[1] The project is not stable,
interfaces for development are not fixed. Moreover, project is always evolving
and it’s not possible to rely on things that could be changed in next developer
preview after one month.

android-rpi Along with a source code that includes build configuration files,
patches for system and Linux kernel, this project also gives a basic guide how
to compile, build and run Android image on Raspberry Pi 2 and 3.

Solution of this project includes functionality like Launcher application
with several applications (for example, WebView), support of WiFi and Eth-
ernet, HDMI monitor, mouse and keyboard as substitute of navigation but-
tons. It’s possible to connect to shell with root access using ADB through
the IP address that can be, for example, viewed in Settings application using
monitor.

Current stable version of project is Android Nougat (android-7.1.2r19
branch). There exists also initial version for latest release of Android called
Oreo but it doesn’t support all features that are mentioned above. Repository
is gradually maintained. Changes to kernel are not documented and patches
to android system are minimal (just several lines).
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2.1. Analysis of existing solutions

2.1.2 Analysis of diagnostic tools

Tools like ADB, dmesg, logcat that were mentioned in previous chapter will
be excluded from deep analysis in this section. Instead they will be mentioned
in the Development setup section. They are essential for the development pro-
cess. In this section analysis will cover tools that have common functionality
to the task of this thesis.

2.1.3 systrace

As mentioned before systrace is a tool that uses atrace tool from host through
ADB to collect trace information of target device and parses it to user in a
friendly html interface powered by javascript frontend Trace-Viewer.[3]

Systrace mimics interface of atrace to control what should be included
in trace report. These options will be covered in more detail in analysis of
atrace. In short, user can specify what kind of events he wants to trace from
the ones that are available on target device. There are kernel and android
events. Kernel events are defined in documentation of ftrace, while android
events are not defined so well, more as a list of categories. This categories
correspond to Android components.

This functionality allows user of systrace to see what happens in different
Android components in correlation with what happens in kernel.

Figure 2.1: Screenshot of Trace-Viewer that runs on trace data collected by
systrace

Systrace is written in python, code is available in Catapult project on
github as well as in AOSP. It is written in OOP style and is easy to extend.
However, most functionality of code is about running ADB commands from
shell, collect output from device and save it in report file.
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2. Analysis

2.1.3.1 atrace

Overview Atrace is a tracing system of Android. The idea of the tool is to
run ftrace with some predefined grouped trace events and at the same time
capture tracing information from system like, for example, calls of Android
service methods and put all together in the same trace time sequence.

Atrace is a shell command. For Android events there are options to specify
what kind of event categories to trace in the system. These include:

- Graphics

- Input

- View System

- WebView

- Window Manager

- Activity Manager

This categories are not defined precisely while ’Graphics’ defines some
group of processes that render graphics, ’Activity Manager’ defines events
that happen with Activity Manager service. It’s possible though to find out
what code will log to these categories on existing AOSP code database using
this grep command:

$ grep -r ATRACE_TAG frameworks

It will output many source files that define and use macros corresponding
to these categories.

It is also possible to include Android and native applications to trace
by putting code functions calls in the beginning and end of methods.[4] For
application it’s also necessary to specify the package name of the application
to trace with the -a or –app command line option of atrace.

Source code As per android 7.1.2r19 source code in AOSP is in ’framework-
s/native/cmds/atrace’ directory. Dependencies except linux and C libraries
are defined in Android.mk file from the same directory and look as follows:

- libbinder

- libcutils

- libutils

- libz

Library libbinder is used to get Service manager through Binder interface
and send transactions to services to update their system properties values.
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2.1. Analysis of existing solutions

Functions to set system properties are defined in libcutils. Trace tags that
define which Android categories to trace are defined in libutils (more about
purpose of using these dependencies is in ’Android interaction’ paragraph of
this section). libz provides functions for compression of trace output.

ftrace role ftrace is used only partially by atrace. Tracing system enables
ftrace files that control what kind of event will be traced by kernel and put
into buffer. These files are defined in array in source code.

To relate events happening in kernel with the ones that are triggered in
Android system, atrace writes event information in the same file as ftrace.
This way it’s possible to see what was happening in kernel at the time of
event in Android system.

Android interaction As was mentioned earlier atrace allows to monitor
events that happened in Android system. To achieve that atrace applic-
ation uses atrace tags that are defined in system/core/include/cutils/

trace.h. It ORs them in one integer and stores in the property called de-
bug.atrace.tags.enableflags.

If user specifies some application packages to trace then the name of pack-
age is placed in separate property prefixed with debug.atrace.app and
ended with order number of application to trace. Moreover, it will set de-
bug.atrace.app number with number of applications to trace. For example,
for option -a com.example.app,com.example.otherapp atrace will set
property debug.atrace.app 0 to com.example.app then next property
debug.atrace.app 1 to com.example.otherapp and, finally, count in de-
bug.atrace.app number to 2. After setting the properties above atrace
makes a transaction to services through Binder to update their system prop-
erties records.

Execution Application side of atrace system that starts tracing doesn’t
have to collect information steadily from some pipe unless user wants to stream
trace in the standard output directly. It just setups tracing according to
user preferences described per arguments and then sleeps until interrupt or
time specified by user runs out. Tracing is done behind the scenes by ftrace
and Android System. Waked up atrace process stops tracing by cleaning up
properties and configuration files and collect everything from ftrace buffer file.

2.1.3.2 ftrace

Overview Being at first a kernel function tracer, ftrace can trace any func-
tion in kernel by specifying it’s name. It’s possible to output call stack, analyse
if there was some latency, find out at which CPU and process function was
called.
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At second ftrace defines tracepoints that are more general then kernel func-
tions and make it easier to trace specific events with CPU, like, for example,
switches of processes.

Usage Interface is provided via filesystem that depending on kernel version
could be mounted as tracefs or debugfs in /sys/kernel/tracing or /sys/

kernel/debug/tracingrespectively:

$ mount -t debugfs debugfs /sys/kernel/debug

To control options or start and stop tracing its enough to echo specified
values in files under these folders.

trace-cmd In addition to ftrace there exists trace-cmd shell tool that provides
friendly interface by specifying options with regular arguments instead writing
them in files of debug filesystem.[5]

Format Typical format of ftrace output is a table with headers:

# tracer: function

#

# entries-in-buffer/entries-written: 140080/250280 #P:4

#

# _-----=> irqs-off

# / _----=> need-resched

# | / _---=> hardirq/softirq

# || / _--=> preempt-depth

# ||| / delay

# TASK-PID CPU# |||| TIMESTAMP FUNCTION

# | | | |||| | |

bash-1977 [000] .... 17284.993652: sys_close <-system_call

bash-1977 [000] .... 17284.993653: __close_fd <-sys_close

Figure 2.2: Example of ftrace log in trace buffer available for user

The meaning of data is intuitive. tracer: shows what kind of tracer is used
in ftrace setup. It affects what kind of information is printed in last column
that is now called as FUNCTION. Buffer size could be set in options and in
this example it’s size is not enough to store all 250280 events but only 140080.
#P:4 shows number of online cpus. Three first columns are straitforward but
forth one has some special values. Their meaning could be found in ftrace
documentation, however, as stated there, these values are mostly meaningful
for kernel developers and they won’t be covered here.[6]
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2.1. Analysis of existing solutions

In summary in this example it’s possible to find out which function was
called on which CPU at what time and in which process. Moreover, also a
parent function is specified. ftrace was made to trace kernel functions and it’s
very powerful for this purpose.

Sched tracepoints One of the interesting tracepoints for ftrace is pos-
sibility to trace switches of processes on CPUs by using group of events in
tracing/events/sched folder (relative path to root folder of debugfs filesys-
tem).

sched_wakeup: comm=SensorService pid=1342 prio=89 success=1

target_cpu=000

sched_switch: prev_comm=swapper prev_pid=0 prev_prio=120

prev_state=R ==> next_comm=SensorService next_pid=1342

next_prio=89

sched_wakeup: comm=android.ui pid=1326 prio=118 success=1

target_cpu=000

sched_switch: prev_comm=SensorService prev_pid=1342 prev_prio=89

prev_state=S ==> next_comm=android.ui next_pid=1326

next_prio=118

sched_switch: prev_comm=android.ui prev_pid=1326 prev_prio=118

prev_state=S ==> next_comm=swapper next_pid=0 next_prio=120

sched_wakeup: comm=atrace pid=2394 prio=120 success=1

target_cpu=000

sched_switch: prev_comm=swapper prev_pid=0 prev_prio=120

prev_state=R ==> next_comm=atrace next_pid=2394 next_prio=120

Figure 2.3: Example of ftrace trace with sched events only enabled (format
was changed insignificantly for illustration)

In this example it’s possible to see life events of process on CPU. ftrace
tracepoints sched switch, sched wakeup give information when CPU switches
from one process to another with names of involved processes.

Memory allocations Another kind of tracepoints is kmemm that captures
events related to object and page allocation inside the kernel. Here is example
of capturing events for kmalloc calls.

In the example on figure 2.4 it’s possible how much memory a process
requested in kernel space and how much were allocated in reality.

2.1.3.3 Malloc Debug

Mallog-debug is a debugging tool to deteck memory issues such as, for ex-
ample, memory leaks or memory corruption. This tool is implemented by
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Binder:1543_1-1557 ( 1543) [000] .N.2 9709.880000:

kmalloc: call_site=ffffffff81432ecf ptr=ffff88000c8a8140

bytes_req=24 bytes_alloc=32 gfp_flags=GFP_ZERO

Binder:1543_1-1557 ( 1543) [000] ...1 9709.880000:

kmalloc: call_site=ffffffff812045a3 ptr=ffff88000cbfa000

bytes_req=4096 bytes_alloc=4096 gfp_flags=GFP_KERNEL|GFP_ZERO

Binder:1543_1-1557 ( 1543) [000] ...1 9709.880000:

kmalloc: call_site=ffffffff811b8e90 ptr=ffff88000c8a8140

bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL

SensorService-1342 ( 1311) [000] ...1 9709.910000:

kmalloc: call_site=ffffffff81455be1 ptr=ffff88000a510000

bytes_req=448 bytes_alloc=512

gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_REPEAT|GFP_NOMEMALLOC

SensorService-1342 ( 1311) [000] ...1 9709.980000:

kmalloc: call_site=ffffffff81455be1 ptr=ffff88000a510000

bytes_req=448 bytes_alloc=512

gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_REPEAT|GFP_NOMEMALLOC

SensorService-1342 ( 1311) [000] ...1 9710.040000:

kmalloc: call_site=ffffffff81455be1 ptr=ffff88000a510000

bytes_req=448 bytes_alloc=512

gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_REPEAT|GFP_NOMEMALLOC

Figure 2.4: Example of ftrace trace with enabled kmem:kmalloc event

Android System and have been significantly updated starting from Android
Nougat. It’s possible to record memory issues of native code as well as applic-
ations running on Dalvik machine.

Usage Interface of this tool is simple. It’s necessary just to set one or
two system properties that setup debugging and restart the device with new
properties using ADB shell. For example, with the following commands, it’s
possible to start debug on all processes in the system:

adb shell stop

adb shell setprop libc.debug.malloc.options backtrace

adb shell start

That makes the debugging starts. Possible issues can be found in logcat
output. Also it’s possible to dump collected data for a specific process in the
file using this command:

adb shell am dumpheap -n <PID_TO_DUMP> /data/local/tmp/heap.txt
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Practice Attempts to use the tool on Android Nougat were not always
successful. By searching solutions on the web it seems that Nougat version
isn’t supported well even though documentation states otherwise.[7]

During analysis basic options that were described above worked but only
partially. It wasn’t possible to get output in logcat. Dump of heap, how-
ever, worked. The format is described in detail in official documentation.
Most important are first three lines that give amount of total memory of live
allocations in heap and number of allocations records.

There exists API with two functions that could be used to receive dump
in the program. Example of usage was found on line 838 in android_os_

Debug.cpp that could be found in frameworks/base/core/jni folder.

2.1.3.4 procmem

Overview procmem is a simple tool that can collect memory information
about specified process. It outputs memory statistics for current moment in
time.

Data is presented as a table where each row correspond to each component
in process that uses memory, for example, shared libraries. Each row contains
RSS, PSS, USS, shared clean, shared dirty, private clean and private dirty
page memories values.

Source code Source code of the tool is available in ’system/extras/procmem’.
The tool is written in C language. Code is short, clean and easy to under-
stand. Main dependency is on pagemap library. This library was written
specifically for Android environment. Source code of library can be found in
system/extras/libpagemap.

Structures that were used from pagemap library in procmem:

pm_kernel_t

pm_process_t

pm_memusage_t

Structure kernel is the main structure that initializes basic information for
a library to function. Using kernel it’s possible to obtain a specified by PID
process. Process provides access to its memory usage through the structure
memusage.

2.1.3.5 simpleperf

Overview simpleperf is a powerful tool to profile processes running on CPUs
with PMU for a specific time period.[8]

It’s basic output is a list of processes with assigned number of event
samples, cpu number and so called overhead amount that is a percentage
of events samples count to all recorded event samples during tracing period.
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Samples: 1554 of event ’cpu-clock’

Event count: 388500000

Overhead Command Pid Tid Shared Object

99.55% swapper 0 0 [kernel.kallsyms]

0.39% simpleperf 2427 2427 [kernel.kallsyms]

0.06% simpleperf 2427 2427 /system/xbin/simpleperf

Figure 2.5: Example of output of simpleperf report on collected perf.data

It supports different kinds of events on CPU including hardware, software and
kernel tracepoints.

Source code quality Source code of simpleperf is available at system/

extras. For android-7.1.2r19 (this is a branch that is used by android-rpi
project) it is not easy to understand and hard to read. Code is written in C++,
purely structured. On master branch of the project code is partially refactored
and cleaned up. More methods and classes are documented. Unfortunately
this code is dependent on different libraries that are not present in android-
7.1.2r19 and it’s not easy to compile it for Android Nougat.

Usage of Linux API Application uses linux perf events interface.[9] It con-
structs, for each user specified event, perf event attr structure that is defined
in ’linux/perf event.h’. This structure apart of containing id of event to trace
also specifies different options for which information to collect. Once defined,
attr structures are used in system call to kernel with perf event open function.
It returns a file descriptor that can be used to read samples.

On figure 2.6 there is an example of usage of perf event. Option mmap
enables usage of mmap buffer for samples reading. Option sample type defines
what fields should be included in a sample structure. Option type defines type
of event to trace, while config is an id for a concrete event. Option sample freq
enables tracing by frequency. As an alternative, option sample period enables
sampling in periods where period is an amount of event executions. In other
words, event will be traced after period number of occurances.

Reading of samples is done using perf event mmap page structure that is
instantiated using obtained file descriptor by calling linux function mmap.

Then simpleperf in a loop uses call to poll with created poll fd structure
to wait for available data. Once some data is available code reads it from al-
located perf event mmap page structure. This structure defines a ring buffer.
After it’s done, read raw data is processed based on perf event attr and stored
in record file. The process repeats in the loop until some signal from system
or user fired.
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struct perf_event_attr pe;

pe.mmap = 1;

pe.sample_type |=PERF_SAMPLE_IP

| PERF_SAMPLE_TID

| PERF_SAMPLE_TIME

| PERF_SAMPLE_PERIOD

| PERF_SAMPLE_CPU;

pe.type = PERF_TYPE_TRACEPOINT;

pe.config = 52;

pe.sample_freq = 0;

pe.sample_period = 1;

pe.exclude_user = 0; // disable user space events

pe.exclude_kernel = 0; // disable kernel space events

fd = perf_event_open(&pe,

0, // any process

-1, // any cpu

-1, // not useful

// close file descriptor on exit

PERF_FLAG_FD_CLOEXEC);

Figure 2.6: Example of perf event open usage

It’s crucial to read samples fast because otherwise it’s possible to miss some
information due to ring buffer size limitations. For this purpose simpleperf
creates several processes to collect and read sample data. It also creates it’s
own record cache to allow to accumulate samples and save some time.

2.2 Development setup

This section will describe options for development kit and software develop-
ment process setup. It discusses options for choice of Raspberry Pi board and
describes building tools in Android environment.

2.2.1 Development kit

Development kit includes the following:

- Raspberry Pi board with power supply and SD card

- host computer with enough resources to store and build AOSP

- (optional) WiFi network, HDMI display, USB mouse and keyboard

- (optional) Ethernet cable
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- (optional) USB-USB cable

Android could be built as a light weight version, however, porting projects
try to port modern version of Android that requires more resources.

Project android-rpi supports Raspberry Pi 2 and 3, while Android Things
support only Raspberry Pi 3.

Collection of debugging information involves execution of additional in-
structions and that could require better resources from hardware.

To be able to download and build AOSP it’s essential to have enough
memory on host computer (at least 250 GB). Officially recommended en-
vironment is 64-bit Linux, in particular, Ubuntu 14.04 for Android Nougat.
Processor should be powerfull enough because builds of Android system could
take up to several hours on not enough fast CPUs. It’s recommended to have
enough RAM for a build (2GB at least).[10]

If target device can connect to Wifi then it’s possible to connect to it using
IP address. To establish connection and find out IP address it’s possible to
use Settings application. Therefore, for this setup it’s necessary to have WiFi
network, HDMI display, USB mouse and keyboard.

Other way to connect is to use Ethernet cable but Android Nougat by
default limits connection for Ethernet and futher analysis is needed to find a
solution how to setup connection on device.

USB connection could be used if ported solution supports it.

2.2.2 Development process

For development it’s necessary to have following options:

- build tool’s binary for target device

- distribute tool’s binary to target device

- access to shell with root access on device

- run tests both on host and target machines

All these options are provided by Android Open Source project.

repo repo is a python script designed specifically for Android repository
that simplifies work with git repositories of different Android projects. It’s
easy to install.[11] By default it’s configured to work with Android source
repositories. It’s also possible to configure it for other online repository by a
configuration file default.xml in ’.repo/local manifests’ folder. Configuration
allows to define a concrete part of project in directory structure of AOSP.
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Android Build System AOSP repository comes with very agile build sys-
tem. It uses ’make’ automation tool to build everything inside its repository.
Each executable or library has an Android.mk file that defines for build system
a way to build this library or executable. By defining a name of executable in
Android.mk it’s possible to run make just to build this executable.

System also provides an interface to choose a target for which executable or
library should be compiled. This option allows to compile unit tests both for
host and target. Running tests on host could save a bit of time for developers.

ADB ADB is an essential for development process. Except possibility to
connect to shell with root permissions on target device, it also provides pos-
sibility to transfer any file from and out of device. There is also an option to
run commands on device without leaving host shell. ADB can easily connects
to several devices at a time, including emulators.

Emulator AOSP repository also comes with set of emulators of devices.
Developers could choose one of the available ones and use them as a real
devices, though some debugging information could be meaningful only for
emulator. Emulator allows to continue development even without access to
device and that is very valuable with possibly complicated development kit of
embedded developers.

2.3 Extension requirements

One of the goals of this project is to develop diagnostic tool that will be easy
to extend. Therefore, the following requirements could be defined:

- good documentation

- clearly separated software layers

- tests

- OOP best practices

Good documentation of code will allow developers of extensions to faster
understand the code. Moreover, documentation can define some policy for
contribution that will help to keep code in a clean state.

Clearly separated software layers will allow to introduce minimum changes
for addition of new functionality. By knowing at which layer introduce the
change future developers would be sure that they are not breaking old func-
tionality as long as they don’t interrupt interface between layers.

Tests provide a resistance of code to new changes. If developer would have
to introduce a change in existing piece of code then he will immediately know
if this change breaks prior existing functionality or not.
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OOP allows to understand and extend code easier by keeping classes small,
providing encapsulation concept to preserve behaviour of existing classes and
avoid duplication with inheritance and polymorphism, making code more gen-
eral and abstract.

20



Chapter 3

Design

This section describes decisions and plan for solution with reasons based on
results of analysis made in previous chapter.

3.1 Porting project’s choice

As a basis for porting Android was chosen android-rpi project. It complies
with most requirements stated to porting project.

The biggest disadvantage of Android Things is that it’s an experimental
project with new concepts. Possible issues could complicate the solution be-
cause this version of Android is not yet well known by people other then
developers.

In contrast android-rpi ports well-known version of Android after it’s 19th
release. It’s practically guaranteed that there will be no issues with usage of
existing diagnostic tools mentioned in second part of analysis.

3.2 Design of diagnostic tool

Chosen base tools For implementation of diagnostic tool of thesis were
chosen atrace tool and procmem.

atrace is a powerful tool to record sequence of events for processes that
also allows to trace how much of cpu-time was assigned to concrete process.
Its implementation is easy to understand and all tracing is done under the
hood. The fact that application just sleeps during the trace gives a space
for putting this time to some other work, for example, collecting information
about memory usage.

Another candidate for usage could be simpleperf that is a powerful tracing
tool of events. However, it’s very complicated to understand its source code.
Application has to put a lot of effort to record events on CPUs compared with
atrace. It’s also possible to tweak existing functionality and obtain a sequence
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of events on process, however, there is no space to put extra functionality like
recording of process memory usage. Unfortunately, perf events provide only
ability to get user stack size.

procmem is a simple tool with clean source code that gives a good example
how to obtain memory statistics for processes from native code.

Solution idea The idea of solution to this thesis is to use available process
time of atrace to gather statistics in a similar way as procmem does and log it
refered to kernel events in the manner as atrace does for Android components.
This way trace will contain sequence of events in kernel merged with events in
Android system and memory statistics of processes. To get cpu usage statistic
it’s possible to use sched switch tracepoint and obtain time intervals when
process was actually running on CPU. Summing these intervals and dividing
by total amount of tracing time gives us a CPU usage of process.

3.3 Development kit

The chosen development kit for this project includes Raspberry Pi 3 and all
other possible options that were described in the analysis section.

android-rpi project provides two ways to connect to shell through ADB
and it’s very likely that at least one of these options will work.

3.4 Development process

Development process will highly rely on tools provided by AOSP repository.
Source code of application should be stored in a separated available online
repository like github and pulled into Android using repo.

For building will be used Android Build system because it allows to use
any native Android libraries that are necessary.

To distribute application and run it for testing on the target device will
be used ADB tool.

There is no emulator for Raspberry Pi 3 in AOSP but most of the time
it will be enough to test tool functionality on emulator with arm platform.
Functionality of diagnostic tool is not bound only to Raspberry Pi 3 platform.

3.5 Development plan

Proposed plan to implement diagnostic tool with approximate workload per
step is as follows:

1. porting of Android to Raspberry Pi 3 using android-rpi project (one-two
weeks)
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2. testing of tools procmem and atrace (one week)

3. refactoring of atrace for extension (two weeks)

4. refactoring of procmem for extraction of necessary functionality (two
weeks)

5. merging functionality of procmem into atrace (one week)

6. testing of developed tool, fixing possible bugs, completing unit tests (one
week)

7. development of trace output processing layer (one week)

8. development of algorithm to calculate problematic sequences of events
(one-two weeks)

9. testing of developed tool, fixing possible bugs (one week)

3.6 Development approach

For development steps several approaches will be used.
To refactor existing code of atrace and procmem, an approach of working

with legacy code will be used as both atrace and procmem doesn’t have any
tests. Therefore, at first there will be created some approach to test their
functionality. Then pieces of relevant logic will be gradually encapsulated in
classes until all code will be refactored.

Along with refactoring will be maintained simplified UML class diagrams.
For Unit tests will be used Google Test framework.
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Chapter 4

Solution

This sections describes how steps of the plan developed in previous chapter
were implemented.

4.1 Porting of Android to Raspberri Pi 3

All steps were made according to guide of android-rpi3 project.

4.1.1 Downloading Android source with kernel patches

To download Android source it was necessary to install repo first. This was
done using guide in Android Source website.

Once repo was installed, the first serie of commands from android-rpi3
guide was used:

$ repo init -u https://android.googlesource.com/platform/manifest

-b android-7.1.2_r19

$ git clone https://github.com/android-rpi/local_manifests

.repo/local_manifests

$ repo sync

Init command initialises repo to prepare it for sync with Android 7.1.2
release 19 branch. This command downloads some configs for repo into .repo
folder.

Next command clones repository from android-rpi3 project that contains
new config for repo to download kernel patched for Raspberry Pi 3.

Last command runs repo and downloads Android repository into directory
where commands were run. This command could take for about several hours.
To make things quicker -j option was used to specify a number of threads for
repo:

$ repo -j8 sync
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4.1.2 Building Kernel

After repo downloads all sources next step was to build kernel. To compile
kernel for Raspberry Pi it was necessary to install first gcc-arm-linux-gnueabihf
and then run following commands as per android-rpi3 guide:

$ sudo apt-get install gcc-arm-linux-gnueabihf

$ cd kernel/rpi

$ ARCH=arm scripts/kconfig/merge_config.sh

arch/arm/configs/bcm2709_defconfig

android/configs/android-base.cfg

android/configs/android-recommended.cfg

$ ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make zImage

$ ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- make dtbs

Note that commands that are present on one line should be copied and
executed this way. For example, ARCH=arm is not a separate command but
arguments for make or script merge config.sh.

First command is to move to kernel/rpi directory that contains kernel
source code cloned from repository of android-rpi3 project.

Second command uses merge config.sh to merge kernel configs defined spe-
cifically for Raspberry Pi’s BCM2709 board with base and recommended flags
from android. This defines what flags will be used in build of kernel.

Third command compiles zImage that is compressed self-extracting image
of patched Linux kernel. Fourth command compiles device tree binary - a low
level description specific to the device.

For all commands ARCH parameter is used to specify architecture of CPU
to compile kernel to. Moreover, for make commands CROSS COMPILE com-
mand is given to specify cross compiler for target. Here is used gnueabihf
where gnu stands for linux, eabi stands for embedded ABI and hf stands for
hard float. This choice of compiler means that code will be compiled for, so
called, bare metal arm core with hardware floating point support. make dtbs
stands for compiling multiple dtb or device tree binaries from dts files or device
tree sources that make takes from standard location ’arch/arm/boot/dts’.

To make things quicker a number of threads were provided to use for ’make’
in the same way as for repo.

4.1.3 Building Android System

Patches Several patches as it is proposed by project were applied to Android
System source code.

Mesa VC4 Mesa VC4 is a graphics driver for Raspberry Pi 3 used in
build of kernel. As it doesn’t support RGBA8888 format but uses BGRA8888
with Depth 24 or 0 and Stensil 8 or 0 it’s necessary to apply following patches:
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// frameworks/native/opengl/libs/EGL/eglApi.cpp:478

EGLSurface eglCreateWindowSurface( EGLDisplay dpy,

EGLConfig config)

- format = HAL_PIXEL_FORMAT_RGBA_8888;

+ format = HAL_PIXEL_FORMAT_BGRA_8888;

} else {

// frameworks/native.opengl/libs/EGL/eglApi.cpp:1843

EGLClientBuffer eglCreateNativeClientBufferANDROID

(const EGLint *attrib_list)

if (alpha_size == 8) {

- format = HAL_PIXEL_FORMAT_RGBA_8888;

+ format = HAL_PIXEL_FORMAT_BGRA_8888;

} else {

// frameworks/native/opengl/java/android/

opengl/GLSurfaceView.java:976

public class GLSurfaceView extends SurfaceView

implements SurfaceHolder.Callback

public SimpleEGLConfigChooser(boolean withDepthBuffer) {

- super(8, 8, 8, 0, withDepthBuffer ? 16 : 0, 0);

+ super(8, 8, 8, 8, withDepthBuffer ? 24 : 0, 0);

}

Figure 4.1: Mesa VC patch

HW video decoder As HW video decoder is not supported in this
porting project, it’s necessary to use SW video decoder instead with limited
performance. Patch is presented on figure 4.2.

Eluminate screen flashing There exists a Strict mode of operating
system that flashes screen when applications do too long operations in main
thread. This mode is enabled by default is ’eng’ build variant that will be
used to build Android System. Little modification to StrictMode class could
fix this issue. Patch is presented on figure 4.3.

Bluetooth timeout fix Add new bigger timeout for Bluetooth. Patch
is presented on figure 4.4.

Build system dependencies Per guide it’s necessary to install python-
mako for building system. However, after several attempts of building android
source on Ubuntu 16.04, several errors were encountered that demanded in-
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// frameworks/av/media/libstagefright/colorconversion

/SoftwareRenderer.cpp:113

void SoftwareRenderer::resetFormatIfChanged

(const sp<AMessage> &format) {

case OMX_TI_COLOR_FormatYUV420PackedSemiPlanar:

{

- halFormat = HAL_PIXEL_FORMAT_YV12;

- bufWidth = (mCropWidth + 1) & ~1;

- bufHeight = (mCropHeight + 1) & ~1;

break;

}

Figure 4.2: Switch to SW video decoder

// frameworks/base/core/java/android/os/StrictMode.java:1068

public final class StrictMode {

if (IS_ENG_BUILD) {

- doFlashes = true;

}

Figure 4.3: Screen flashing patch

// hardware/broadcom/libbt/src/hardware.c:232

static const fw_settlement_entry_t fw_settlement_table[] = {

{"BCM43241", 200},

{"BCM43341", 100},

+ {"BCM43430A1", 1000},

};

Figure 4.4: Bluetooth patch

stallation of bison and libxml2-utils. For installation of bison it’s also necessary
to install libraries libc6 i386, libncurses5 i386 and libstdc++6 i386.

Environment setup Android build system provides two commands to setup
environment for the build that should be used always before running make.

The first command is running a shell script build/envsetup.sh. It adds new
functions to run from shell for developer. Among them the second command
called ’lunch’ as well as some other useful commands for quickly navigation to
root of AOSP repository, some custom build commands and grep commands
for a specific purposes.
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’lunch’ is used to specify a target device to build source for. To use it’s
necessary to call command with a combo name. These combo names cor-
respond to target devices and are added by build/envsetup.sh that finds
all vendorsetup.sh files in ’device’ directory and execute them. Each script
vendorsetup.sh defines what combos to add for ’lunch’.

Building After environment is set and necessary dependencies are installed
it’s possible to start the build. It necessary to build ramdisk and system
image. Android ramdisk has the same purpose as Linux ramdisk - it’s a
filesystem that is mounted first for kernel that allows to start init to mount all
other system. System image is basic file system for Android that includes all
necessary files, applications, frameworks, the Dalvik VM. However, this image
doesn’t include kernel or ramdisk. That’s why it’s necessary to build those
separately

Out of memory error One issue during the build was caused by the fact
that Jack Server Virtual Machine was running out of memory. Several options
were tried to set bigger memory limit for Jack Server, however, only export-
ing environment variable JACK SERVER VM ARGUMENTS with necessary
arguments and restarting the server if it’s already running to pick up this vari-
able worked.

Commands summary On first build ’make’ step took the most time from
all building process commands even though -j option was used as before.

$ sudo apt-get install python-mako

$ export JACK_SERVER_VM_ARGUMENTS="-Dfile.encoding=UTF-8

-XX:+TieredCompilation -Xmx4096m"

$ out/host/linux-x86/bin/jack-admin kill-server

$ out/host/linux-x86/bin/jack-admin start-server

$ sudo dpkg --add-architecture i386

$ sudo apt-get update

$ sudo apt-get install libc6:i386 libncurses5:i386

libstdc++6:i386

$ sudo apt-get install bison

$ sudo apt-get install libxml2-utils

$ source build/envsetup.sh

$ lunch rpi3-eng

$ make ramdisk systemimage

Successful build should create ramdisk.img and system.img files in out/target/

product/rpi3 folder. First time files were missing and turned out that there
was an error in setup (environment wasn’t set correctly to rpi3-eng and images
were built for some other target).
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4.1.4 Installing Android on Raspberry Pi 3

Raspberry Pi 3 doesn’t have ROM and instead it boots from SD card.[12] To
boot Android from SD card on Raspberry Pi it had to be first partioned in a
specific way that was decribed in android-rpi guide. Then it remained only to
write Android image files and kernel that were built in previous steps.

Partitioning of SD card There should be overall four partitions placed on
SD card:

- W95 FAT32(LBA) Bootable partition with 512 MB size with label BOOT

- Linux EXT4 partition with 512 MB with label system

- Linux EXT4 partition with 512 MB with label cache

- Linux EXT4 partition with remaining space with label data

To prepare this partitions was used fdisk and mkfs tools. First it was neces-
sary to delete previous partitions and define new ones with fdisk. Then mkfs
was used for a specific filesystem (mkfs.vfat, mkfs.ext4) to format partitions
of SD card. Here is a comprehensive list of steps that were made:

- SD card was inserted in the computer using card reader

- ’df’ command was used to see in which directory SD card was mounted

- let’s assume that it was mounted in /dev/sdb

- fdisk console was used on /dev/sdb with root privileges as ’sudo fdisk
/dev/sdb’

- all existing partitions were deleted by entering ’d’ until error

- FAT32 partition was added with options ’n’,’e’,’+512M’,’t’,’b’,’a’

- two more partitions were added with options ’n’,’p’,’+512M’

- last partition was added with options ’n’, ’p’ and using default values
for other options

- table was checked with ’p’ and exit with ’w’ if table is correct

Resulting table was looking similar to this:

Device Boot Start End Sectors Size Id Type

/dev/sdb1 * 2048 1050623 1048576 512M b W95 FAT32

/dev/sdb2 1050624 2099199 1048576 512M 83 Linux

/dev/sdb3 2099200 3147775 1048576 512M 83 Linux

/dev/sdb4 3147776 30449663 27301888 13G 83 Linux

After to format created partitions and assign labels to them were use the
following commands:
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$ sudo mkfs.vfat -n BOOT /dev/sdb1

$ sudo mkfs.ext4 -L system /dev/sdb2

$ sudo mkfs.ext4 -L cache /dev/sdb3

$ sudo mkfs.ext4 -L userdata /dev/sdb4

Writing Android System to Raspberry Pi To write Android system to
SD card it was necessary to write kernel and Android components that were
built before.

To write system.img file from ’out/target/product/rpi3’ folder following
commands were used (assuming that system partition is mounted at /dev/sdb2):

$ cd out/target/product/rpi3

$ sudo dd if=system.img of=/dev/sdb2 bs=1M

To write another files to Raspberry Pi it was enough to simply copy them to
SD card:

$ cp device/brcm/rpi3/boot/* /dev/sdb2

$ cp kernel/rpi/arch/arm/boot/zImage /dev/sdb2

$ cp kernel/rpi/arch/arm/boot/dts/bcm2710-rpi-3-b.dtb /dev/sdb2

$ mkdir /dev/sdb2/overlays

$ cp kernel/rpi/arch/arm/boot/dts/overlays/vc4-kms-v3d.dtbo

/dev/sdb2/overlays

$ cp out/target/product/rpi3/ramdisk.img /dev/sdb2

Booting Android Finally it was possible to boot Android. It was enough
to insert SD card in Raspberry Pi board, connect monitor using HDMI cable,
connect mouse and keyboard. First boot took a bit of time, however, next
boots took only around one minute.

Setup ADB connection To setup ADB connection was used option with
WiFi network. Device with booted Android was connected to network using
Settings application. Then IP address was taken in Status section of Settings
and used in ADB tool to connect to shell with the following command:

$ adb connect ip-address

4.2 Testing of procmem and atrace

All tools that were discussed in Analysis chapter were available and function-
able in the shell of target device.

procmem procmem was fully functional and worked without any issues.
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atrace Before using atrace it was necessary to mount debugfs filesystem to
enable ftrace. Then atrace worked as expected for several kernel categories
but for Android categories it didn’t output anything.

Atrace was tested on ’eng’ build not on ’userdebug’ of rpi3. However,
atrace worked well on emulator both eng and userdebug.

Grep on aosp for atrace tags lead to file that could be responsible for
enabling atrace tracing. It’s trace dev.c located in system/core/libcutils. This
module turned out to have LOG TAG defined as cutils-trace. Search in the
logcat output revealed an error with this tag - fail to write in file because it
doesn’t exist (from source it was revealed that file is trace marker of ftrace).

As it was mentioned before there was an issue with debugfs to make ftrace
working. It seems that system needs to mount it on boot to be able to trace
Android components.

init.rc and init.device name.rc files are the one that specify how to boot
the system[13]. Analyzing init.goldfish.rc in device/google/atv folder that is
usually the one that is used by vendors[13], it was noticed that first command
that is defined is the following:

on early-init

mount debugfs debugfs /sys/kernel/debug

This command surely mounts ftrace filesystem and it is missing in init.rpi3.rc.
After adding it atrace started to show events of different Android components
and issue was resolved.

However, in logcat there was still an error even though now about insuffi-
cient permission to write file for example for camera or audio services. Using
chmod to enable write permission to trace marker file of ftrace on early-init
didn’t resolve the problem.

4.3 Refactoring of atrace

atrace source code is contained in one file and compiled as C++. The style of
code is procedural and its pieces of logic are divided into separate functions.
A lot of global variables make code not easy to read and understand. Many
condition branches that change the flow of the program make the separation
of functionality difficult.

Nevertheless, all functionality of this tool is useful for implementation of
the thesis task. It includes a minimal interface for setup tracing in ftrace as
well as logic to turn on tracing in Android system.

Absense of any tests makes this code legacy[14] and it’s hard to introduce
new changes. Therefore, refactoring process should be done in several stages
to minimize space for addition of new bugs.

The designed plan of refactoring of atrace contains the following stages:
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- Encapsulate logic from details of environment and tracing systems

- Add tests using mocks to substitute dependencies of environment

- Refactor core logic

The implementation of these stages is described in detail in the following
sections.

4.3.1 Initial encapsulation

It was essential to write tests at the beginning of refactoring process. To
make writing of first tests easier all interactions of application with ftrace
and Android system as well as console arguments should be extracted and
exchanged by interfaces. Once API would be set, it would be much easier to
exchange these dependencies by mock or dummy objects and write basic tests.

Figure 4.5: ATrace initial component model

4.3.1.1 Encapsulation of Android logic

In a nutshell, to enable tracing atrace writes values in special Android system
properties and makes a call through Binder to notify all available services
about these changes.

After separating all logic and data related to details of properties handling
and notification of services the following interface for Android was designed:

It was important for design to encapsulate as minimal logic as possible. For
example, setting of tags properties to enable categories could be encapsulated
in Android class to remove from user of class responsibility of handling tags.
However, in this stage it’s not our goal. Moreover, handling of tags is also
logic that could be tested and it would be easier to do if it will based on a
designed interface.
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Figure 4.6: Android interface

TraceCategory class was emplemented using enum data structure.

4.3.1.2 Encapsulation of ftrace logic

ftrace provides its interface through filesystem. atrace, therefore, uses a lot of
predefined filenames that correspond to ftrace configuration files and writes
and reads strings from these files to setup a desirable trace.

Here designed interface does cover some nuances of setting options because
it would be too tedious to write tests using only some filesystem abstraction.
However, filesystem interface would be introduced in next stages and will
simplify testing of ftrace interface.

Figure 4.7: FTrace interface

These interface uses enums in the same manner as Android interface to
represent ftrace options, tracepoints, tracers and clocks.

4.3.1.3 Abstraction from console interface

To abstract from console interface it was necessary to encapsulate all atrace
core functionality by wrapping it into a class called ATrace with setter methods
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for applying commandline arguments, run method to execute functionality
and a way to inject dependencies on Android and FTrace interface that were
designed in previous sections.

To make testing easier some further classes and interfaces were introduced
in this stage to wrap calls from application environment. atrace code was re-
gistering signal handler to change a boolean variable and control its behaviour
(break from infinite loop of tracing, for example). This boolean was wrapped
into class Signal and passed to atrace wrapper class. Moreover, to abstract
also from arguments parsing were introduced ATraceArgs class that contains
all necessary arguments to run atrace.

Different approaches were tried to implement dependency injection that
is needed to efficiently test core functionality and also to encapsulate logic of
constructing ATrace instance from ATraceArgs values. At the end a version of
Builder pattern was used. It was implemented by introduction of new classes
that contained logic of injecting dependencies and applying command line
arguments.

After applied changes the enter point of application was looking like this:

int main(int argc, const char ** argv) {

cmdLineApp.setArgs(new CmdLineArgs(argc, argv));

cmdLineApp.setActionCmdLineBuilder(

new ATraceCmdLineBuilder(

new ATraceArgsCmdLineBuilder(),

new ATraceBuilder(

new FTraceBuilder(),

new AndroidBuilder()

)

)

);

registerSignalHandler();

return cmdLineApp.run();

}

CmdLineApp instance uses args to build new Action instance that is
implemented by ATrace. ATraceCmdLineBuilder builds ATrace using AT-
raceArgsCmdLineBuilder that builds ATraceArgs from CmdLineArgs. AT-
raceArgs are used by ATraceBuilder to build ATrace and provide it with two
dependencies built by FTraceBuilder, AndroidBuilder.

4.3.2 Testing core

Testing of core logic was implemented using Google Mock objects. Once the
logic was wrapped into class with two dependencies on FTrace and Android
interfaces it was easy to make mocks for FTrace and Android to inject them
in the tested class object.
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Figure 4.8: CmdLineApp class diagram

For example, MockFTrace was injected into tested ATrace class object
and then by calling methods of this object, it was tested which methods of
MockFTrace were called and with which arguments.

class ATraceTest : public ::testing::Test {

void testRun() {

myMockFTrace = new MockFTrace();

myMockAndroid = new MockAndroid();

myATrace = new ATrace(myMockFTrace(),

myMockAndroid());

myATrace->addCategory("sched");

myATrace->setTime(0);

EXPECT_CALL(*myMockFTrace,

tryEnableTracePoint(FTracepoint::SCHED_SWITCH))

.WillOnce(Return(true));

EXPECT_CALL(*myMockAndroid, trySetTraceTagsProperty(0))

.WillOnce(Return(true));

EXPECT_TRUE(myATrace.tryRun());

}

}

Figure 4.9: Example of ATraceTest with Google Mock framework
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4.3.3 Refactoring of core logic

It was necessary to continue refactor the inner logic of class to make application
easy to extend, in particular, for inclusion of missing process memory profiling
logic and processing trace buffer dump.

Concept The basic structure of original atrace application is built by a
sequence of calls to procedures that setup trace systems, both Android and
ftrace, then start or stop tracing, dump trace buffer and clean up environment
to defaults. Main method of application was in charge of which ones of these
action procedures to envoke and in which order using complicated checks for
different user flags.

Based on that observation it was proposed to separate actions into different
classes and extract logic that builts a sequence from them.

Figure 4.10: Action class diagram

Each action runs in so called Environment or set of interfaces to differ-
ent application components or Android and FTrace implementations. This
approach makes application easy to extend by just including new service in
environment or adding new action that uses this service from environment.
This way was inserted procmem functionality that is described more in ”Mer-
ging of procmem into atrace”.

Environment is injected in each action and makes actions easy to test using
the same approach as before with mock objects.

Component Model As a result of refactoring process a three layered archi-
tecture was formed (see Figure 4.11) First layer, presentation layer, interacts
with user providing to him console interface through arguments to executable.
It also parses user arguments and uses them create new action environment
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from second layer. This environment is then injected in each action and a
sequence of actions is built. Once everything is ready actions are instructed
to run.

Second layer includes application components that are used to implement
environment interfaces. It constructs an environment for required actions
using prepared by first layer arguments. This layer interacts with last layer
that was separated at first step of refactoring: FTrace and Android. Another
interface was added to this layer to abstract file system operations called
FileSystem.

Figure 4.11: Component model of atrace

Issues It was a challenge to determine what kind of actions to extract and
how separate behaviour between them. Same challenge was with separation
of environment components. A big part of implementation process was spent
on understanding the original code that mostly was written in C style without
separation of responsibilities.

Console arguments interface A significant effort was made to provide an
easy to use classes for definition of application console arguments. As a result
two classes were created that are called CmdLineArgsParser and Arguments.

The caller uses CmdLineArgsParser to register a specific type of argument
with option and id. Then it calls parseTo method with provided command
line arguments and Arguments object. While parsing, CmdLineArgsParser
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uses registered types to correctly parse and convert arguments. Then it’s put
them to Arguments object by the same ids that were provided in registration
step. After parsing is done, caller can access arguments using its ids.

Figure 4.12: Arguments, CmdLineArgsParser and CmdLineArgs classes

This design makes it easy to extend application with new user arguments.
It is just enough to register necessary option and obtain from Arguments
object after.

4.4 Refactoring of procmem

procmem uses pagemap library that provides interface using structures and
functions that run on this structures. For the purpose of this thesis function-
ality that involves collecting memory pages was not needed. It was enough to
be able to get RSS, VSS, PSS or USS values for a concrete process.

procmem provides statistics only for one specified process. It is necessary
to extend it to make statistics on a list of processes.
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4.4.1 Example of usage of pagemap

An example of usage of library could be found on figure 4.13. This code
retrieves memory usage of a process with PID 2018.

typedef struct process_usage {

pm_process_t * process_ptr;

pm_memusage_t memusage;

} process_usage_t;

pm_kernel_t * kernel_ptr;

process_usage_t process_usage;

pid_t pid = 2018;

if (!pm_kernel_create(&kernel_ptr)

|| !pm_process_create(kernel_ptr, pid,

&(process_usage.process_ptr))

|| !pm_process_usage(process_usage.process_ptr,

&(process_usage.memusage))

{

exit(EXIT_FAILURE);

}

printf("rss: %ld, vss: %ld", process_usage.memusage.rss,

process_usage.memusage.vss);

exit(EXIT_SUCCESS);

Figure 4.13: Pagemap library usage example

Note One interesting issue with functions that retrieve memusage structure
is a necessity to place ’pm memusage’ structure next to pointer of structure
for which memory usage is requested. This behaviour was hard to realize
and there are no comments about this in function documentation. That’s
why in code example it was necessary to put ’pm process t’ pointer with
’pm memusage t’ at the same structure.

4.4.2 Implementation issues

Nested classes To encapsulate structures with functions from pagemap
library into classes it was necessary to use nested classes friend feature of
C++. The reason is the hierarchy of structures that makes one structure need
another one to initialize itself. This requires to uncover library structures of
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”parent” class. With nested classes it can be avoided because inner class can
access private members of outer.

Static constructor methods Classes have to contain inside structures
provided by library. However, the problem is that this structures has to be
initialized and there exists an option that it will produce an error. Therefore,
regular constructors are not suitable because it can lead to initialization of
invalid instance. On other hand, static creator methods are a good solution
with ability to return null pointer in case of errors.

It is also necessary to put structure inialization code in private method
of class and call it in static creator after construction. The problem is that
library function needs a pointer to memory structure for initialization.

4.4.3 Final implementation

To provide extra options for extension, API of PM Kernel was modeled using
interfaces and dependency injection. For caller it’s enough to use Kernel-
Builder interface to create object with Kernel interface and use it to create
Process. After from Process it’s possible to create two different MemoryUsage
implementation - one that returns only working set of process and another that
returns all memory. MemoryUsage interface provides ’tryUpdate’ method to
update information for current time.

Figure 4.14: Procmem interface
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4.5 Merging of procmem into atrace

One feature that atrace doesn’t have and that is essential for purpose of this
thesis is logging of memory statistics for a process to trace buffer.

Design The idea of gathering and writing in trace buffer memory statistics
for a process was to substitute sleeping of process in the original application
to writing of memory statistics.

In refactored atrace application it means to substitute SleepAction in a
sequence of actions to new action with desired functionality. In its tryRun
method it will obtain pagemap API, get statistics for a certain PID and log
them to trace buffer.

TraceBuffer already can be accessed through Environment, however, it is
necessary to add to environment new getter to get Kernel interface that is a
creator for Process with certain PID. Using this Process interface it is possible
to get MemoryUsage and obtain statistics.

Implementation For usability of new feature it was necessary to provide
new user options. They are period, number of periods and list of PIDs to take
memory measurements from. Period is specified in nanoseconds and controls
at what intervals application should make measurements of process memory.
Number of periods says how many periods should trace run overall. List of
PIDs specifies PIDs to take memory measurements from.

New added action was called MemorySampleAction. It uses Kernel getter
from Environment to acquire MemoryUsage instances for each of specified
PIDs. Once started action logs memory usage contents, goes to sleep for
a specified period, wakes up, logs memory usage and again goes to sleep.
It repeats this cycle number of times equal to number of periods that was
specified by user.

4.6 Testing

Unit tests using mocks were written for main core components of applications.
FTrace tests use FileSystem mock and AndroidTraceSystem uses Android in-
terface mock. Main actions such as StopAction, StartAction were also tested.

4.7 Development of trace processing layer

Design To collect results from trace it was necessary to parse ftrace file.
Tool ftrace creates entries in the format that was briefly specified earlier.
Here is another example:

Buffer contains one entry for each kernel event or write event (tracing mark
write) to buffer. Each entry has common fields in the beginning and specific
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android.display-1332 ( 1311) [000] d..3 287.760915:

sched_switch: prev_comm=android.display

prev_pid=1332 prev_prio=116 prev_state=S

==> next_comm=Binder:1036_2 next_pid=1083 next_prio=120

Binder:1036_2-1083 ( 1036) [000] dN.5 287.760923:

sched_wakeup: comm=android.display

pid=1332 prio=116 success=1 target_cpu=000

android.display-1332 ( 1311) [000] ...1 287.760932:

tracing_mark_write: E

android.display-1332 ( 1311) [000] ...1 287.760944:

tracing_mark_write:

B|1311|com.android.server.wm.WindowManagerService$H: #8

android.display-1332 ( 1311) [000] ...1 287.760958:

tracing_mark_write: E

Figure 4.15: ftrace buffer dump format

content in last column with preceding identifier. The content is usually a pair
of values and their names.

The parsing functionality should be easy to extend in a purpose of adding
new events. New statistics of processes could be written, plenty of ftrace events
with their own format could be supported in future application versions.

Parsing should output a list of events for each process with PID from a list
specified by user. Each entry in this list should contain CPU usage, memory
usage statistics, event name and timestamp.

Implementation Several abstractions were used on the way from convert-
ing a line of trace buffer to process record.

First of all application tries to create an FTraceEntry instance from each
line of file. FTraceEntry is a base class and each separate event defines it’s own
class that inherits common fields from FTraceEntry. Moreover, for creation
of each FTraceEntry child class there are FTraceEntryCreator child classes
that contain logic to parse content column value specific for it’s entry. These
creators are then used in Factory Pattern when during parsing a necessary
creator is chosen by identifier column (see Figure 4.16).

FTraceEntry besides representing an information from line also contains
logic for parsing its information in ProcessChange instances. These process
changes are then applied to Process instances that represent states of system
processes. For each change a ProcessRecord is created. Its CPU usage is
calculated by dividing process total run on total time of tracing at moment
of recorded change. Other fields like memory usage are just copied from last
Process instance state (see Figure 4.17).
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Figure 4.16: FTraceEntry creators class diagram

Calculation of problematic sequences of events Calculation of prob-
lematic sequences is based on determining events that pass a user specified
threschold of CPU usage or memory value.

A new action was added to application called InterpretDumpFileAction.
It uses ProcessRecordFile interface to obtain all records from the trace buffer.
Then these records are referenced to user defined processes and output to user
with filtered records that passed threschold.

4.8 Diagnostic tool

Features A result of solution section is a diagnostic tool that supports the
following features:

- enable tracing of Android

- enable kernel ftrace tracepoints

- profile given set of pids and log them in common trace buffer

- process file with dump of trace buffer and create process event sequences

- based on event sequences and user threshold output problematic se-
quences to user
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Figure 4.17: Process and Process Change class diagram

Features and usage of atrace was preserved with minor changes in console
arguments, especially, android trace categories and kernel trace categories
should be explicitly divided by using separate options in contrast with previous
interface.

There were added options how to specify memory measurements, espe-
cially period, number of periods to run trace and list of pids to take memory
measurements of. All these parameters are necessary for a memory tracing to
start.

Moreover, it’s possible to filter records using two options. One option
defines the minimal border of CPU usage in percents that should be overrun
for a record to display. For example, by specifying a value 20, only records
with value of 21 percent and more will be displayed.

Another option specified how much from initial record value of RSS should
other records deviate to be shown to user. For example, by saying 1000 it
would mean for application to filter all records that didn’t deviate from first
records by more than 1000 KB.

Implementation Application consists of two parts: collection of tracing
information and processing of collected information. Second part strongly
depends on first, in particular, on what kind of information was collected.

To get calculations of CPU usage it is necessary to specify for first stage to
collect information about scheduling events. CPU usage is calculated based on
process state switches and without this information nothing will be displayed
to user.
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Similar applies to memory usage of process. It’s crucial to specify period
for memory collection and how many periods should be made. This would
create required information in buffer for further processing.

And at last for processing it is necessary to specify file destination to dump
buffer in. Then processing will be able to take place after using dumped data.

Therefore to get full table of statistics for the process it is necessary to
provide the following options:

$ atrace -e sched -p 100000 -m 1000 -o /data/trace -pids PID

where ’e’ specifies kernel categories, here, in particular sched group of
categories. ’p’ option specifies period of 100000 and 1000 of repetitions.

Format of memory tracing To provide statistics about process memory
application make records in the following format to ftrace buffer:

M: VSS=UINT64 RSS=UINT64 PSS=UINT64 USS=UINT64 PID=INT

Format begins with letter M to differentiate from Android system entries.
Then are printed memory statistic values and PID of traced process.

Example of usage This example will describe how to find out whether
application android.settings allocates for its process not less than 100 KB
during interaction with user and not less than 1% of CPU time.

First of all it’s necessary to find out PID of android.settings. It’s easy to
do using, for example, ’top’ command.

Assuming that PID of android.settings is 2311 the following command will
be able to answer our above question with also appending some android events
in the sequence of measurements:

adb shell /data/extrace -d am -e sched -p 100000 -m 1000

-minCpu 1 -minUss 100

-pids 2311 -o /data/trace

The output will look as it’s shown on figure 4.18. Filtered records are
displayed in two lines. First line contains statistics such as (from left to right)
PID of the process, CPU usage percentage and memory values for VSS, PSS,
USS and RSS ending with timestamp and process state. Second line contains
content or name of the event. Android uses content to display package of
service and its event description. For memory measurement records made
by application used ’MemTrace’ identifier. For kernel events such as process
switches are used SchedSwitch or SchedWakeup identifiers.
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Figure 4.18: Example of output after tool execution
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Chapter 5

Conclusion

The goal of this thesis was to develop a diagnostic tool for components of
Android system running on Raspberry Pi platform. Application should be
able to compute memory and cpu consumption of system processes related to
sequence of events happening with them. Based on these statistics tool should
be able to mark a possibly problematic sequence of events and display it to
the user.

As a result of this project was developed a tool that base its functionality
on Android tracing system called atrace and Android library pagemap. Atrace
turned out to be a very suitable system for the goals of this project because
it uses ftrace to trace kernel events and also instructs Android components to
log their behaviour in the same trace buffer. That gives an option to see for a
specific period of time what was happening in Android system and kernel at
the same time. Pagemap provides an easy to use C library to obtain memory
usage statictics for a process.

One of the major conclusions of this project was that tracing memory and
performance is not so common and usually these tasks are done separately.
However, during research it was found that atrace interface application doesn’t
do a lot of work except that sending signals to system and kernel to start
tracing or stop. During tracing the application just put itself to sleep. This
spot turned out to be a good place to extend atrace and instruct process
instead of sleeping to collect memory usage statistics and log them into the
same ftrace buffer. That produced a trace output that contained events from
kernel, Android components and memory usage statistics with timestamps. It
wasn’t so hard to parse this information after and using some rules like limit
barriers for memory or CPU time consumption display problematic sequences
to the user. Tool supports such profiling for multiple processes at the same
time that could be specified by user.

Tool was designed in OOP style with documentation and tests that made
it easy to extend.

In future tool could be extended to gather more information about memory,
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specify more events to trace in kernel. These extensions could increase the
amount of data to analyse. Analysis also can be improved by introduction of
more rules, such as for example, relation of memory allocation in kernel space
with allocations in user space.

Provided by tool information about memory consumption in different
points of time could be also used to improve Trace-Viewer interface that uses
original atrace output to show to the user a visual interactive graph to analyse
but lacks memory usage statistics.
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Appendix A

Acronyms

OS Operation system

IoT Internet of Things

ADB Android Debug Bridge

AOSP Android Open Source Project

VSS Virtual Set Size

RSS Resident Set Size

PSS Proportional Set Size

USS Unique Set Size

CPU Central Processing Unit

PMU Processor Monitoring Unit

OOP Object Oriented Programming
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Appendix B

Contents of enclosed USB disk

readme.txt..................the file with USB disk contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

app.........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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