
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 4, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Improvements to the Off-The-Record Protocol

 Student: Ali Mammadov

 Supervisor: Ing. Josef Kokeš

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2018/19

Instructions

1) Study the current state of the Off-The-Record Protocol.
2) Describe the properties of this protocol, explain its state machine, and discuss the practical feasibility of
a computational attack.
3) Propose improvements to the protocol to remove or mitigate the vulnerability.
4) Design a Python library covering the modified protocol.
5) Discuss your results.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Bachelor’s thesis

Improvements to the Off-The-Record

Protocol

Ali Mammadov

Supervisor: Ing. Josef Kokeš

12th May 2018

Acknowledgements

First of all, I would like to mention my supervisor Ing. Josef Kokeš for his
patience, guidance and excellent soft and domain skills. Thanks to every
person who has ever been my teacher: you and your work helped me become
who I am now.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 12th May 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Ali Mammadov. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mammadov, Ali. Improvements to the Off-The-Record Protocol. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Techno-
logy, 2018.

Abstrakt

Off-The-Record (OTR) je kryptografický protokol, který poskytuje šifrováńı
pro instant messagingové konverzace. Nejnověǰśı verze OTR použ́ıvá kom-
binaci symetrického algoritmu AES se 128bitovým kĺıčem, Diffie-Hellmanovy
výměny kĺıče s grupou o velikosti 1536 bit̊u, a hashovaćı funkce SHA-1. Ćılem
této práce je změnit protokol tak,aby byl lépe zabezpečený proti neustále
rostoućı výpočetńı śıle potenciálńıch protivńık̊u. Změny navrhované v této
práci umožňuj́ı flexibilńı volbu sady kryptografických algoritmů a jejich para-
metr̊u. Výsledkem je možnost zvolit si požadovanou úroveň bezpečnosti a
zjednodušena je i úloha ř́ızeńı bezpečnosti OTR jako celku.

Kĺıčová slova instant messaging, OTR, soukromı́, popiratelné šifrováńı

Abstract

Off-The-Record messaging (OTR) is a cryptographic protocol that provides
encryption for instant messaging conversations. The latest version of OTR
uses a combination of AES symmetric-key algorithm with 128-bit key length,
Diffie–Hellman key exchange with 1536-bit group size, and SHA-1 hash func-
tion. The goal of this work is to introduce changes to this protocol to make

ix

it better secured against growing computational power of potential adversar-
ies. The changes proposed by this work allow flexible selection of the set of
cryptoalgorithms and their parameters. As a result, there is a way to choose
desired security level and the overall task of managing security of OTR is
simplified.

Keywords instant messaging, OTR, privacy, deniable encryption

x

Contents

Introduction 1

Problem statement . 2

1 State of the Art 3

1.1 High-level overview of OTR . 3

1.2 Requesting an OTR conversation 3

1.3 Authenticated Key Exchange 5

1.4 Exchanging data . 6

1.5 Forward secrecy . 6

1.6 Socialist Millionaires’ Protocol 6

1.7 Protocol state machine . 8

1.8 Previous work on OTR . 15

2 Analysis and design 17

2.1 Feasibility of computational attack 17

2.2 Proposed improvements . 20

3 Library design 27

3.1 Main classes and points of interaction 27

3.2 Cryptosuites . 28

3.3 Demonstration code . 29

Conclusion 31

Bibliography 33

A Low-level details of OTR 35

A.1 Data message plaintext structure 35

A.2 MAC keys revealing . 35

xi

B Acronyms 37

C Contents of enclosed CD 39

xii

List of Figures

1.1 OTR Authenticated Key Exchange 5

xiii

Introduction

With more mass surveillance being performed each year, the need for secure
encrypted messaging protocols and platforms is rapidly increasing. While
there are quite a few protocols for secure and authenticated messaging present
today, most of them have an undesired consequence: it is easy to prove the
authorship of a given message at any time. While it may seem unimportant,
the mere possibility of this is sometimes unacceptable to certain groups of
users. In fact, it was so important to them that a whole new protocol was
created: Off-The-Record (OTR), for which main design goal was providing
deniability for the conversation participants while maintaining conversation
confidentiality[2], like a private conversation in real life, or off the record in
journalism sourcing (hence the name), in contrast with other protocols which
allow to prove the fact of communication and the identities of the participants.

OTR has several useful properties:

authentication the parties can be sure they talk to the desired person

encryption the messages are readable only to the intended recipient

perfect forward secrecy a compromise of private keys will not lead to the
decryption of previous conversations

malleability after a conversation has completed, anyone is able to forge a
message to appear to have come from one of the participants in the
conversation, making it is impossible to prove that a specific message
came from a specific person.

However, the protocol’s age (first version presented in 2004) starts to show
itself: when the protocol was designed, computational cost of breaking Diffie-
Hellman key exchange with 1536-bit group size was considered way too high
even for the most resourceful adversaries. But recent advances in computa-
tional power, efficiency and algorithms are slowly starting to impose a threat
to the security of Diffie-Hellman exchange[12], on which OTR confidentiality

1

Introduction

depends. To make things even worse, OTR does not have a mechanism to
easily change the set of underlying cryptoalgorithms and their parameters.

The objective of this thesis is to add flexibility to the existing OTR pro-
tocol, and doing it in a way which will be beneficial both in the short and the
long-term.

Problem statement

The current problem of OTR is its use of Diffie-Hellman key exchange with
1536-bit group size and SHA-1 hash function as a fingerprint for the public
keys. OTR in its current version does not allow to use Diffie-Hellman with
parameters other that those currently mentioned in protocol description nor
does it allow to use any other hashing algorithm. A successful attack on SHA-
1 has been demonstrated[3] and Diffie-Hellman key exchange with 1536-bit
group size is no longer approved for use in new systems by NIST[4]. OTR
needs to be modified in a way that will allow both parties to negotiate more
secure cryptoalgorithms and their parameters.

2

Chapter 1

State of the Art

This section describes the basics of OTR protocol and gives an overview of
the previous work on its security.

1.1 High-level overview of OTR

The process of establishing encrypted and authenticated OTR conversation
consists of two main stages:

Querying one party sends a message indicating that it wants to start using
OTR

Authenticated Key Exchange both parties perform unauthenticated Diffie-
Hellman exchange and once inside the encrypted channel, a mutual au-
thentication is performed

Note: OTR assumes a network model which provides in-order delivery of
messages, but allows that some messages may not get delivered at all (for
example, if the user disconnects). There may be an active attacker who is
allowed to perform a Denial of Service attack, but not to learn the contents
of messages.[5]

1.2 Requesting an OTR conversation

There are two ways Alice can inform Bob that she is willing to use the OTR
protocol to speak with him: by sending him the OTR Query Message, or
by including a special “tag” consisting of whitespace characters in one of her
messages to him. Each method also includes a way for Alice to communicate
to Bob which versions of the OTR protocol she supports.

The semantics of the OTR Query Message are that Alice is requesting
that Bob start an OTR conversation with her (if, of course, he is willing and

3

1. State of the Art

able to do so). On the other hand, the semantics of the whitespace tag are
that Alice is merely indicating to Bob that she is willing and able to have an
OTR conversation with him. If Bob has a policy of “only use OTR when it’s
explicitly requested”, for example, then he would start an OTR conversation
upon receiving an OTR Query Message, but would not upon receiving the
whitespace tag.[5]

4

1.3. Authenticated Key Exchange

Figure 1.1: OTR Authenticated Key Exchange

1.3 Authenticated Key Exchange

Authentication in OTR is provided by means of long-term public keys and
digital signatures. Each participant has a long-term public key which is used
for signature generation in the AKE process. Authenticity of public keys
should be verified by each participant individually.

During the initial AKE phase, each party authenticates itself and estab-
lishes a shared Diffie-Hellman secret. Signatures are used only in the initial
AKE stage to allow initial authentication and the deniability in the future.
The use of signatures implies that neither party can deny that conversation
did in fact occur, only the contents of the conversation are deniable.

Description of the SIGMA protocol[6] used as the AKE is given below. All
exponentiations are done modulo a particular 1536-bit prime[7] pdh, and g is
a generator of group Z×pdh . Alice and Bob’s long-term authentication public
keys are pubA and pubB, respectively.

In the figure 1.1[1], Bob is initiating AKE with Alice. First, r ∈ Z2128

and x, y ∈ Z≥2320 and gx, gy ∈ [2, pdh − 2] have to be satisfied. After DH
key message, each party computes s, the shared DH key, in the following
way: s = (gy)x = (gx)y. Each party also has to pick keyid for its DH key.
All signatures have to be verified by the corresponding public keys. MAC
and AES keys c, c′,Km1 ,Km1

′ ,Km2 ,Km2
′ are derived from s by hashing it in

various ways. Note: There are number of checks and constraints omitted in

5

1. State of the Art

the diagram for simplicity.

1.4 Exchanging data

Each data message in OTR is encrypted with AES in counter mode, which
makes messages malleable to the third party. Malleability is desirable so that
parties can later claim that any third party with possession of the proper MAC
keys could’ve produced the messages.

Malleability comes from the fact that AES in counter mode is equivalent
to a stream cipher, and the latter does not provide any means for authen-
tication or integrity protection. Authentication is provided by MAC and is
done separately, so that the old MAC keys could be discarded along with
their corresponding Diffie-Hellman keys. Because the MAC keys are derived
by hashing the shared DH key, their publication does not allow a third party
to decrypt old messages due to the one-way nature of hash function used, yet
it allows anyone to modify the messages and still make them look as valid
since now they have all the required information to produce valid MACs for
arbitrary data.

1.5 Forward secrecy

Alice and Bob are constantly attempting to re-key. This serves two purposes:
first, this ensures forward secrecy by changing sharing Diffie-Hellman secret s,
and consequently the keys generated from it used for encryption and authen-
tication, and second, it provides the foundation for deniability. In each data
message sent by each party there is a new proposed exponent gxi+1 . Once re-
ceived, the other party will encrypt its future messages with gxi+1yi and send
its new key gyi+1 .

This system has two useful properties: first, the parties can securely for-
get old Diffie-Hellman keys as soon as they are not required. Once again, this
ensures forward secrecy, since any successful attack in the future will not be
able to recover old keys and thus will not be able to decrypt the conversation.
Second, constant re-keying contaminates the impact, that is, a successful at-
tack will only allow an attacker to read a small portion of the conversation.
Additionally, re-keying makes it possible to publish old MAC keys associated
with old DH keys.

1.6 Socialist Millionaires’ Protocol

Socialist Millionaires’ Protocol (SMP) is a cryptographic protocol which allows
two parties, Alice and Bob, that have secret information x and y respectively,
to check whether x = y without disclosing any additional information about x
or y to a third party. If the values observed during SMP proof match for both

6

1.6. Socialist Millionaires’ Protocol

of the parties, then each party knows that the other party knows the same
secret, so they can be sure about identities of each other, given the secret x
hasn’t been leaked.

As above, all exponentiations are done modulo pdh and g1 is generator of
Z×pdh . Assuming that Alice is the one initiating SMP:

• Alice:

– Picks random exponents a2 and a3

– Sends Bob g2a = ga21 and g3a = ga31

• Bob:

– Picks random exponents b2 and b3

– Computes g2b = gb21 and g3b = gb31

– Computes g2 = gb22a and g3 = gb33a

– Picks random exponent r

– Computes Pb = gr3 and Qb = gr1g
y
2

– Sends Alice g2b, g3b, Pb and Qb

• Alice:

– Computes g2 = ga22b and g3 = ga33b

– Picks random exponent s

– Computes Pa = gs3 and Qa = gs1g
x
2

– Computes Ra = (Qa ×Qb
−1)a3

– Sends Bob Pa, Qa and Ra

• Bob:

– Computes Rb = (Qa ×Qb
−1)b3

– Computes Rab = Rb3
a

– Checks whether Rab = (Pa × P−1b)

– Sends Alice Rb

• Alice:

– Computes Rab = Ra3
b

– Checks whether Rab = (Pa × P−1b)

7

1. State of the Art

Source:[5]

If everything is done correctly, then Rab should contain (Pa × P−1b) ×
(ga3b32)(x−y). Which means that the verification will only succeed if x = y.
Furthermore, since ga3b32 is a random number not known to any party, if x 6= y,
no additional information is revealed.

SMP is used in OTR to detect impersonation and it may benefit from the
changes being introduced to OTR. However, improvements to it are out of the
scope of this thesis.

1.7 Protocol state machine

An OTR client maintains separate a state for each correspondent. The state
consists of two variables: message state (msgstate) and authentication state
(authstate).

1.7.1 Message state variable

The message state variable, msgstate, controls what happens to outgoing
messages typed by the user[5]. It can take the following values:

State name Description

MSGSTATE PLAINTEXT Initial state, messages are sent without encryption. This is
the state that is used before an OTR conversation is initi-
ated. Note: the only way to subsequently enter this state
is for the user to explicitly request to do so via some user-
initiated action.

MSGSTATE ENCRYPTED Outgoing messages are sent encrypted. This is the state that
is used during an OTR conversation. The only way to enter
this state is for the authentication state machine (below) to
successfully complete.

MSGSTATE FINISHED Outgoing messages are not delivered at all. This state is
entered only when the other party indicates she has termin-
ated her side of the OTR conversation. The purpose of this
state is to prevent accidentally leaking any information in
plaintext.

1.7.2 Authentication state variable

The authentication state variable, authstate, shows the progress of the initial
AKE. It can take the following values:

8

1.7. Protocol state machine

State name Description

AUTHSTATE NONE Initial state.

AUTHSTATE AWAITING DHKEY DH commit message was sent and DH key mes-
sage is being expected from the other party.

AUTHSTATE AWAITING REVEALSIG DH commit message was received and DH key
message was sent in response. Reveal signature
message is being expected.

AUTHSTATE AWAITING SIG DH key message was received and reveal signa-
ture was sent in response. Signature message is
being expected.

AUTHSTATE V1 SETUP For OTR version 1 compatibility.

If any of the parties in AUTHSTATE AWAITING SIG or AUTHSTATE AWAITING REVEALSIG,
receives signature message or reveal signature message (and replies with her
own signature message), respectively, then msgstate should transition to
MSGSTATE ENCRYPTED. Regardless of whether the signature verifications suc-
ceed, the authstate variable is reset to AUTHSTATE NONE.[5]

1.7.3 OTR policies

OTR clients can choose to adhere to different policies. Policy, in the context
of OTR state machine, is essentially a binary flag controlling the behaviour
of the state machine during transitions. Policies can be set on global or per-
correspondent basis.

Policy name Description

ALLOW V1 Allow version 1 of OTR protocol

ALLOW V2 Allow version 2 of OTR protocol

ALLOW V3 Allow version 3 of OTR protocol

REQUIRE ENCRYPTION Refuse to send unencrypted messages

SEND WHITESPACE TAG Show support for whitespace tags

WHITESPACE START AKE Start AKE after receiving whitespace tag

ERROR START AKE Start AKE after receiving error message

1.7.4 State transitions

There are 12 events to which an OTR client must react:

Received messages:

Plaintext message without whitespace tag

Plaintext message with whitespace tag

Query message

9

1. State of the Art

Error message

DH commit message

DH key message

Reveal signature message

Signature message

Data message

User actions:

User requests to start an OTR conversation

User requests to end an OTR conversation

User types a message to be sent

The following description assumes that at least one of ALLOW V1, ALLOW V2

or ALLOW V3 is set; otherwise, the OTR is disabled completely.

1.7.4.1 Receiving plaintext message without the whitespace tag

msgstate = MSGSTATE PLAINTEXT:

Simply display the message to the user. If REQUIRE ENCRYPTION is
set, warn her that the message was received unencrypted.

msgstate = MSGSTATE ENCRYPTED ∨ MSGSTATE FINISHED:

Display the message to the user, but warn her that the message
was received unencrypted.

1.7.4.2 Receiving plaintext message with the whitespace tag

msgstate = MSGSTATE PLAINTEXT:

Remove the whitespace tag and display the message to the user. If
REQUIRE ENCRYPTION is set, warn her that the message was received
unencrypted.

msgstate = MSGSTATE ENCRYPTED ∨ MSGSTATE FINISHED:

Remove the whitespace tag and display the message to the user,
but warn her that the message was received unencrypted.

In any event, if WHITESPACE START AKE is set:

If tag offers OTR version 3 and ALLOW V3 is set:

10

1.7. Protocol state machine

Send a version 3 DH commit message, and transition authstate

to AUTHSTATE AWAITING DHKEY.

Otherwise, if the tag offers OTR version 2 and ALLOW V2 is set:

Send a version 2 DH commit message, and transition authstate

to AUTHSTATE AWAITING DHKEY.

1.7.4.3 Receiving a query message

If the query message offers OTR version 3 and ALLOW V3 is set:

Send a version 3 DH commit message, and transition authstate

to AUTHSTATE AWAITING DHKEY.

Otherwise, if the message offers OTR version 2 and ALLOW V2 is set:

Send a version 2 DH commit message, and transition authstate

to AUTHSTATE AWAITING DHKEY.

1.7.4.4 Receiving an error message

Display the message to the user. If ERROR START AKE is set, reply with
a query message.

1.7.4.5 User requests to start an OTR conversation

Send an OTR query message to the correspondent.

1.7.4.6 Receiving a DH commit message

If the message is version 2 and ALLOW V2 is not set, ignore this message.
Similarly if the message is version 3 and ALLOW V3 is not set, ignore the
message. Otherwise:

authstate = AUTHSTATE NONE:

Reply with a DH key message,
and transition authstate to AUTHSTATE AWAITING REVEALSIG.

authstate = AUTHSTATE AWAITING DHKEY:

This is the trickiest transition in the whole protocol. It indicates
that the user has already sent a DH commit message to the corres-
pondent, but that she either didn’t receive it, or just didn’t receive
it yet, and has sent you one as well. The symmetry will be broken by
comparing the hashed gx you sent in the sent DH commit message
with the received one, considered as 32-byte unsigned big-endian
values.

11

1. State of the Art

If the sent message has is the higher hash value:

Ignore the incoming DH commit message, but resend the ori-
ginal DH commit message.

Otherwise:

Forget the original gx value that was sent (encrypted) earlier,
and pretend the state is AUTHSTATE NONE;
i.e. reply with a DH key message, and transition authstate

to AUTHSTATE AWAITING REVEALSIG.

authstate = AUTHSTATE AWAITING REVEALSIG:

Retransmit the original DH key message (the same one as was sent
when the user entered AUTHSTATE AWAITING REVEALSIG). Forget
the old DH commit message, and use this new one instead.

authstate = AUTHSTATE AWAITING SIG ∨ AUTHSTATE V1 SETUP:

Reply with a new DH key message, and transition authstate to
AUTHSTATE AWAITING REVEALSIG.

1.7.4.7 Receiving a DH key message

If the message is version 2 and ALLOW V2 is not set, ignore this message.
Similarly if the message is version 3 and ALLOW V3 is not set, ignore this
message. Otherwise:

authstate = AUTHSTATE AWAITING DHKEY:

Reply with a reveal signature message and transition authstate to
AUTHSTATE AWAITING SIG.

authstate = AUTHSTATE AWAITING SIG:

If this DH key message is the same as the one received earlier (when
entering AUTHSTATE AWAITING SIG):

Retransmit the reveal signature message.

Otherwise:

Ignore the message.

authstate = AUTHSTATE NONE ∨ AUTHSTATE AWAITING REVEALSIG ∨ AUTHSTATE V1 SETUP:

Ignore the message.

12

1.7. Protocol state machine

1.7.4.8 Receiving a reveal signature message

If the message is version 2 and ALLOW V2 is not set, ignore this message.
Similarly if the message is version 3 and ALLOW V3 is not set, ignore the
message. Otherwise:

authstate = AUTHSTATE AWAITING REVEALSIG:

Use the received value of r to decrypt the value of gx received in
the DH commit message, and verify the hash therein. Decrypt the
encrypted signature, and verify the signature and the MACs.

If everything checks out:

Reply with a signature message.

Transition authstate to AUTHSTATE NONE.

Transition msgstate to MSGSTATE ENCRYPTED.

Otherwise:

Ignore the message.

authstate = AUTHSTATE NONE ∨ AUTHSTATE AWAITING DHKEY ∨ AUTHSTATE AWAITING SIG

∨ AUTHSTATE V1 SETUP:

Ignore the message.

1.7.4.9 Receiving a signature message

If the message is version 2 and ALLOW V2 is not set, ignore this message.
Similarly if the message is version 3 and ALLOW V3 is not set, ignore the
message. Otherwise:

authstate = AUTHSTATE AWAITING SIG:

Decrypt the encrypted signature, and verify the signature and the
MACs. If everything checks out:

Transition authstate to AUTHSTATE NONE.

Transition msgstate to MSGSTATE ENCRYPTED.

Otherwise, ignore the message.

authstate = AUTHSTATE NONE ∨ AUTHSTATE AWAITING DHKEY ∨
AUTHSTATE AWAITING REVEALSIG:

Ignore the message.

13

1. State of the Art

1.7.4.10 User types a message to be sent

msgstate = MSGSTATE PLAINTEXT:

If REQUIRE ENCRYPTION is set:

Store the plaintext message for possible retransmission, and
send a query message.

Otherwise:

If SEND WHITESPACE TAG is set, and you have not received a
plaintext message from this correspondent since last entering
MSGSTATE PLAINTEXT, attach the whitespace tag to the mes-
sage. Send the (possibly modified) message as plaintext.

msgstate = MSGSTATE ENCRYPTED:

Encrypt the message, and send it as a data message. Store the
plaintext message for possible retransmission.

msgstate = MSGSTATE FINISHED:

Inform the user that the message cannot be sent at this time. Store
the plaintext message for possible retransmission.

1.7.4.11 Receiving a data message

msgstate = MSGSTATE ENCRYPTED:

Verify the information (MAC, keyids, ctr value, etc.) in the mes-
sage.

If the verification succeeds:

Decrypt the message and display the human-readable part (if
non-empty) to the user.

Update the DH encryption keys, if necessary.

If you have not sent a message to this correspondent in some
(configurable) time, send a “heartbeat” message, consisting of
a data message encoding an empty plaintext. The heartbeat
message should have the IGNORE UNREADABLE flag set.

If the received message contains a Tag/Length/Value (TLV)
element of type 1, forget all encryption keys for this corres-
pondent, and transition msgstate to MSGSTATE FINISHED.

Otherwise, inform the user that an unreadable encrypted message
was received, and reply with an error message.

msgstate = MSGSTATE PLAINTEXT ∨ MSGSTATE FINISHED:

Inform the user that an unreadable encrypted message was received,
and reply with an error message.

14

1.8. Previous work on OTR

1.7.4.12 User requests to end an OTR conversation

msgstate = MSGSTATE PLAINTEXT:

Do nothing.

msgstate = MSGSTATE ENCRYPTED:

Send a data message, encoding a message with an empty human-
readable part, and TLV type 1.
Transition msgstate to MSGSTATE PLAINTEXT.

msgstate = MSGSTATE FINISHED:

Transition msgstate to MSGSTATE PLAINTEXT.

1.8 Previous work on OTR

There are a few papers about previous versions of OTR and its security ana-
lysis:

• Secure Off-the-record messaging[8]

• Finite-state security analysis of OTR version 2[1]

First paper shows vulnerabilities of the OTR version 1 and proposes using
other well-known protocols for AKE, including SIGMA[6]. However, the at-
tacks shown in the latter paper are applicable to the current version of the
OTR and they affect the integrity and strong deniability of OTR under the
assumption that the attack has complete control over the network. Attacks
described there include:

• Version rollback — attacker can change the set of protocol versions sup-
ported by each party, forcing parties to use old OTR version 1. Fix is
trivial: each party has to state what her initial version preference was
at the end of AKE.

• Attack on strong deniability — dishonest party can reveal invalid MACs
or not reveal them at all. This implies that the other party does not
have appropriate information to forge message signatures, and thus can’t
deny contents of the messages. Fix of this attack is non-trivial.

• Attack on message integrity — attacker, due to assumed total network
control, can hide the fact that one of the parties revealed her MAC
keys, and subsequently present the other party a fake message signed
with presumably valid MAC key. Fix of this attack is non-trivial.

15

1. State of the Art

• Authentication failure — attacker can attempt to perform a man-in-the-
middle attack during AKE, leading to authentication failure, but only
for one party. Due to the nature of AKE, the initiating party will believe
that she successfully completed AKE, however, since the attacker didn’t
learn either party’s Diffie-Hellman secret, no damage to confidentiality
or integrity is done. Fix of this attack is to add information about
whom the party believes she is communicating with, both encrypted
and MAC’d in the final two AKE messages.

Nevertheless, mitigations for all of the aforementioned attacks are out of the
scope of this thesis, because even with mitigations applied, as stated by papers’
authors, “[one] cannot rule out the possibility of additional attacks on the
protocol”.

16

Chapter 2

Analysis and design

This section gives a brief description of what needs to be done to break OTR
message confidentiality and how computationally complex the task is. Also,
the improvements are proposed here.

2.1 Feasibility of computational attack

This section deals with a computational attack on the OTR message confid-
entiality. The attack scenario outlines how and what will be attacked and the
complexity estimate follows in the next section along with mitigations.

2.1.1 Attack scenario

An attacker, who has a capability to passively observe all communication
between Alice and Bob and wants to get the content of the messages, has
to get the keys used for AES encryption. Those keys are derived from the
shared DH key by hashing it in various ways. Thus, the attacker’s main focus
is recovering shared key s which was generated during initial AKE and the
subsequent DH keys, which were present in the data messages. The attack
is basically a classical discrete logarithm problem. Widely known classical
algorithm for this is GNFS and it will be used in complexity estimation.

2.1.2 GNFS algorithm

General number field sieve algorithm is the most efficient classical algorithm[9]
for factoring integers larger than 10100. Heuristically, its complexity for factor-
ing integer n is (using L-notation) of the form

Ln

[
1
3 ,

3

√
64
9

]
The algorithm consists of four computational stages, three of which depend

only on the particular prime p (in our case pdh). The first three stages also
comprise most of the computation.

17

2. Analysis and design

The brief description of each stage with possible improvements, as per
Weak DH paper[12], is given below.

The first phase is polynomial selection, where a polynomial f(z) defining
a number field Q(z)/f(z) is searched for. It is parallelizable and takes only a
small part of the time.

The second phase is sieving, factoring of ranges of integers and number
field elements in batches to find many relations of elements, all prime factors of
which are less than some bound B (called B-smooth). special-q lattice sieving
may be used, which for each special q explores a sieving region 22I candidates,
where I is a parameter. Such sieving parallelizes well, since each q is processed
independently. Sieving is computationally demanding since it has to search
through and try to factor many elements. Complexity of this step depends on
heuristic estimate of the probability of encountering B-smooth numbers and
on number I and on number of special q to consider before having enough
relations.

The third phase is linear algebra stage, where a large, sparse matrix con-
sisting of coefficient vectors of prime factorizations is constructed. A nonzero
kernel vector of the matrix modulo the order q of the group produces logar-
ithms of many small elements. This database of logarithms serves as input
for the next stage. Computational cost depends on q and the matrix size and
the stage can be parallelized up to some degree.

The last stage, descent, actually finds the logarithm of the given target.
Sieving is repeated until the set of relations that allows to express the target
logarithm in terms of logarithms in the database is found. It is done in three
steps: initialization step, where attempts to express the target logarithm us-
ing medium-sized primes are made. Second step, where the primes from the
previous stages are further sieved until they can be represented by elements
in the database of logarithms. And the last step, that actually recovers the
target using the logarithm database.

Recent work in number theory field has improved the descent stage com-
plexity first to Ln

[
1
3 , 1.442

]
[10] and later to Ln

[
1
3 , 1.232

]
[11], which is orders

of magnitude less that the previous stages[12].

2.1.3 Estimated complexity

In the WeakDH paper [12], authors have estimated that calculating the logar-
ithm database for a 1024-bit prime would take 45M core-years and the descent
stage would take only 30 core-days. Using the same approach as in the paper
gives us estimated multiplicative factors by which the time and space com-
plexity will increase. Time complexity of 1536-bit GNFS precomputation will
increase by 6.048×105 and space complexity will increase by 777 with respect
to the 1024-bit GNFS.

18

2.1. Feasibility of computational attack

2.1.4 Recommendations on the DH group size from
standards

One of the most respected cryptography standards, NIST SP 800-57 Part
1, states (revision 4, section 5.6.1)[4]: “... algorithm/key-size combinations
that have been estimated at a maximum security strength of less than 112
bits are no longer approved for applying cryptographic protection on Federal
government information”.

In the same section, there is a table of strengths of different algorithm/key-
size combinations. 2048-bit Diffie-Hellman has a rating of 112 bits there.
Naturally, the 1536-bit Diffie-Hellman key exchange would have less than 112
bits of security making it improper for use in U.S. federal systems.

The table below is provided for reference.

1. Column 1 indicates the estimated maximum security strength (in bits)
provided by the algorithms and key sizes in a particular row.

2. Column 2 identifies the symmetric-key algorithms that can provide se-
curity strength indicated in column 1.

3. Column 3 indicates the minimum size of the parameters associated with
the standards that use finite-field cryptography (FFC). Examples of such
algorithms include DSA and Diffie-Hellman. L is the public key size, and
N is the private key size.

4. Column 4 indicates the value k (the size of modulus n) for algorithms
based on integer-factorization cryptography (IFC). The predominant al-
gorithm of this type is RSA. The value k is commonly considered to be
the key size.

5. Column 5 indicates the range of f (the size of n, where n is the order
of the base point G) for algorithms based on elliptic-curve cryptography
(ECC). The value of f is commonly considered to be the key size.

Security
Strength

Symmetric
key
algorithms

FFC IFC ECC

≤ 80 2TDEA L = 1024
N = 160

k = 1024 f = 160− 223

112 3TDEA L = 2048
N = 224

k = 2048 f = 224− 255

128 AES-128 L = 3072
N = 256

k = 3072 f = 256− 383

192 AES-192 L = 7680
N = 384

k = 7680 f = 384− 511

256 AES-256 L = 15360
N = 512

k = 15360 f = 512+

19

2. Analysis and design

2.2 Proposed improvements

Since just changing the used algorithms to the new ones will not be bene-
ficial in the long-term, changes shall consist of adding a flexible mechanism
for selecting and using any cryptoprimitives equivalent to the ones used in
OTR version 3, and providing support for additional Diffie-Hellman groups
mentioned in IETF RFC 3526[7] and 5114[13]. Implementing these changes
would require:

• A protocol negotiation mechanism

• A new key derivation scheme

• Changes to query and DH commit message contents

• Changes to low-level structure of all messages

2.2.1 Protocol negotiation mechanism

Before discussing the details of protocol negotiation, let’s recapitulate what
cryptoprimitives one needs during OTR AKE and data exchange:

Cryptoprimitive Algorithm used in OTR version
3

Counter mode block cipher AES with key length of 128 bits

Message authentication code SHA1-HMAC and SHA256-HMAC-
160 (first 160 bits of SHA256-HMAC
output)

Multiplicative group of integers modulo n 1536-bit MODP Group[7]

Digital signature Digital Signature Algorithm

Hash function SHA256 and SHA-1

Special note about key derivation in OTR: SHA256 and SHA-1 are also
used for deriving MAC and encryption keys. However, the way they are used
puts unnecessary restrictions on key sizes, which is undesirable, and on the
other hand, attempts to somehow extend the way of generating keys by using
these functions may introduce additional vulnerabilities to the crucial parts
of OTR. Thus, a key derivation function with variable length output has to
be used.

Definition 1 A cryptosuite is a collection of algorithms realizing aforemen-
tioned cryptoprimitives to be used during AKE and data exchange.

When Alice and Bob want to start an OTR conversation, they need to
negotiate which cryptosuite to use. They may do so by embedding information

20

2.2. Proposed improvements

about desired cryptosuites and their ranks, which are just positive integers
chosen by each party independently, into message contents. Then they choose
the cryptosuite with the highest average rank among the mutually supported
cryptosuites and proceed to the later stages of the AKE.

2.2.2 Key derivation

During OTR conversation, parties regularly need to rekey, and consequently
derive new keys. For AKE, six keys are needed (c, c′,m1,m1

′,m2,m2
′), and

four more for data exchange. All of them are generated by hashing shared
DH secret concatenated with some specific byte values. Due to the fact that
MAC keys for data exchange (the ones that shall be revealed at some point)
are generated by hashing of the encryption key, byte values used for them are
changed. Otherwise identical keys will be produced both for encryption and
authentication, and the latter will later be revealed, thus compromising the
confidentiality of the conversation.

During the AKE, parties compute six keys based on the shared DH secret
s:

• Two 128-bit AES keys, c, c′

• Four 256-bit SHA256-HMAC keys, m1, m1
′, m2, m2

′

This is done in the following way:

• Encode the shared DH secret s as a byte sequence (concrete byte-level
representation depends on the specific group used). Let this value be
called secbytes.

• For a given byte b, define h2(b) to be a 256-bit output of SHA256 hash
of the byte b followed by secbytes — h2(b) = SHA256(b||secbytes).

• Let c be the first 128 bits of h2(1) and let c′ be the second 128 bits of
h2(1).

• m1 = h2(2)

• m2 = h2(3)

• m1
′ = h2(4)

• m2
′ = h2(5)

During a data exchange, the parties use the most recent Diffie-Hellman
keys to compute s and derive four keys based on it:

• Two 128-bit AES keys

• Two 160-bit SHA1-HMAC keys

21

2. Analysis and design

They are calculated as follows:

• Each party determines if it is on the “low” or “high” end of the con-
versation. They do so by comparing their serialized public keys as a
big-endian integer. This comparison has to be performed after every
re-keying.

• A party sets two values, sendbyte and recvbyte, according to the res-
ults of the comparison: if the party is “high”, then sendbyte = 1 and
recvbyte = 2. Otherwise, the values are swapped.

• For a given byte b, define h1(b) to be 160-bit output of SHA-1 hash of
the byte b followed by secbytes — h1(b) = SHA1(b||secbytes).

• The sending AES key is the first 128 bits of h1(sendbyte)

• The sending MAC key is the 160-bit SHA-1 hash of the 128-bit sending
AES key.

• The receiving AES key is the first 128 bits of h1(recvbyte)

• The receiving MAC key is the 160-bit SHA-1 hash of the 128-bit receiv-
ing AES key.

As one may notice, such a key derivation scheme puts restrictions on key
sizes, and consequently on available ciphers. In order to bypass this limitation,
a flexible and secure key derivation scheme has to be used. Let us define
kd(b, l) as l-bit output of key derivation function of byte sequence b followed
by secbytes — (b||secbytes). Value l has to be adjusted according to each
cipher’s parameters.

With all aforementioned changes in mind, the AKE keys are derived this
way:

• c is the first l bits of kd(1, 2l)

• c′ is the last l bits of kd(1, 2l)

• m1 = kd(2, l)

• m2 = kd(3, l)

• m1
′ = kd(4, l)

• m2
′ = kd(5, l)

Data exchange keys are derived similarly:

• Each party determines which end of the conversation it is on, but with
a subtle difference: if the party is “high” end, sendbyte = 6 and
recvbyte = 7, and the reverse is true if the party is on the “low” end.

22

2.2. Proposed improvements

• Let concat(a, b) be a byte sequence of byte a followed by byte b —
concat(a, b) = a||b.

• The sending encryption key is kd(concat(sendbyte, 1), l)

• The sending MAC key is kd(concat(sendbyte, 2), l)

• The receiving encryption key is kd(concat(recvbyte, 1), l)

• The receiving MAC key is kd(concat(recvbyte, 2), l)

2.2.3 Changes to message contents

The structure of AKE demands that a cryptosuite must be determined for both
parties at the time of DH key message creation. However, there is no need to
send any extra messages before the regular AKE. The party sending the query
message now has to embed the serialized list of supported cryptosuites. The
other party, having received this message, now knows everything needed for
cryptosuite selection and proceeds with DH commit message, which is now
also modified to have an additional field holding a cryptosuite list. Thus,
the party which is supposed to send the DH key message will successfully
determine the cryptosuite, and proceed with the rest of AKE. Presence of
cryptosuite list without any authentication data opens up a possibility of
cryptosuite downgrade via man-in-the-middle attack. However, this problem
can’t be easily solved by simply signing the cryptosuite list, since it would
be vulnerable to replay attacks — any attacker, who intercepted a signed
cryptosuite list would be able to retransmit it, and it would still appear as a
valid query message. A rather simple solution would be if each party selects
her supported cryptosuites according to their security requirements i.e. the
parties should not assume that query messages are somehow authenticated.

2.2.3.1 Unencoded messages

This section describes the messages in the OTR protocol that are not base-64
encoded binary.

OTR query message

This is the first message sent by the initiating party to indicate the beginning
of an OTR conversation.

It consists of ASCII string "?OTR" followed by the supported versions of
protocols and "?" at the end. If OTR version one is supported, then "?" is
appended after "OTR", otherwise "v" is appended.

Implementation supplied alongside this thesis accepts only "?OTRvx?"

query message. The “x” stands for experimental.

23

2. Analysis and design

2.2.3.2 Binary messages

This section describes the byte-level format of the base-64 encoded binary
OTR messages. The binary form of each of the messages is described below.
To transmit one of these messages, construct the ASCII string consisting of
the five bytes "?OTR:", followed by the base-64 encoding of the binary form
of the message, followed by the byte ".".

Note: only messages whose structure had to be modified will be described
there. All other messages are described in the OTR specification[5]. However,
due to the variety of cryptographic algorithms used, implementations should
use different field types: all field types other than BYTE, SHORT and INT have
to be treated as DATA fields.

OTR DH commit message

This is the first message of AKE. It is sent to commit the choice of the DH
encryption key while not revealing the key itself. It is a binary message and
consists of several fields:

• Protocol version

• Message type

• Sender instance tag (ignored in the implementation)

• Receiver instance tag (ignored in the implementation)

• Encrypted DH key gx

• Hash of gx

• Cryptosuite list — serialized list of elements consisting of two integers:
first denoting the cryptosuite ID, and the second denoting its rank.

OTR DH key message

This is the second message of the AKE. It simply consists of party’s Diffie-
Hellman key.

• Protocol version

• Message type

• Sender instance tag (ignored in the implementation)

• Receiver instance tag (ignored in the implementation)

• DH key gy

24

2.2. Proposed improvements

OTR Reveal Signature message

This is the third message of the AKE. It reveals the key sent with the DH
commit message and authenticates the party and the channel parameters. E
is a counter mode cipher.

• Protocol version

• Message type

• Sender instance tag (ignored in the implementation)

• Receiver instance tag (ignored in the implementation)

• Revealed key r

• Encrypted signature:

– MB = MACKm1
(gx, gy, pubB, keyidB)

– XB = (pubB, keyidB, sigB(MB))

– result is Ec(XB)

• MAC’d signature — MACKm2
(Ec(XB))

OTR Signature message

This is the final message of the AKE. The other party now authenticates
herself and the parameters, thus finalizing the key exchange.

• Protocol version

• Message type

• Sender instance tag (ignored in the implementation)

• Receiver instance tag (ignored in the implementation)

• Encrypted signature:

– MA = MACKm1
′ (g

y, gx, pubA, keyidA)

– XA = (pubA, keyidA, sigA(MA))

– result is Ec′(XA)

• MAC’d signature — MACKm2
′ (Ec′(XA))

25

2. Analysis and design

OTR Data message

This message is used to transmit a private message to the correspondent. It
is also used to reveal old MAC keys.

• Protocol version

• Message type

• Sender instance tag (ignored in the implementation)

• Receiver instance tag (ignored in the implementation)

• Flags — bitwise OR of the flags for the message. Usually set to 0.
Ignored in the implementation.

• Sender keyid — must be strictly greater than 0, and increment by 1
with each key change.

• Recipient keyid — must therefore be strictly greater than 0, as the
receiver has no key with id 0. The sender and recipient keyids are those
used to encrypt and MAC this message.

• DH y — next DH public key for this sender.

• Top half of counter block — this should monotonically increase (as a
big-endian value) for each message sent with the same (sender keyid,
recipient keyid) pair, and must not be all zeroes.

• Encrypted message — counter-mode encryption of the message using the
appropriate encryption key derived from the sender’s and recipient’s DH
public keys (with the keyids given in this message). Let initial counter
be an x bytes long value whose first x/2 bytes are the above ”top half
of counter block” value, and whose last x/2 bytes are all zeroes.

• Authenticator — MAC of everything from the protocol version to the
end of encrypted message using appropriate MAC key.

• Old MAC keys — discarded MAC keys.

26

Chapter 3

Library design

This section describes the design of the library, implementing aforementioned
changes to the OTR protocol. The library is written in Python 3 and, depends
on a few third-party libraries.

3.1 Main classes and points of interaction

The main point of interaction with the whole library is the OTRSession class.
This class combines all the parts required for using OTR:

• OTRStateMachine class — handles all the logic

• OTRSessionContext class — contains all session data

• Public and private keys of correspondents

• A cryptosuite list

• A policy list

To construct an OTRSession object, one needs to pass his keypair and
cryptosuite list, correspondent’s public key, and optionally, a policy. In case of
no selected policy, REQUIRE ENCRYPTION will be selected by default. OTRSession
contains a queue where all outgoing messages shall be put. Method get message

tries to get one message out of the queue, and if the queue is empty, it blocks
until some other thread puts a new message in the queue. The message itself is
an ASCII string. The client may send it in any desired form over any channel.
Method recv raw shall be called whenever client receives a new message, the
message itself being passed as an argument. The return value of recv raw

shall be inspected for any errors or warnings. In case of an incoming data
message, it will also contain the decrypted plaintext message. When a client
wants to send a message, send text needs to be called, with plaintext mes-
sage as the argument. A client must start an OTR session before sending any

27

3. Library design

text messages. It must be done by either calling start session (if the client
initiates first) or receiving a query message and calling recv raw. Ending the
session is done in a similar manner, by calling end session.

3.2 Cryptosuites

The main goal of this library is to provide a set of interfaces and expected
behaviors required for implementing all the cryptoprimitives in OTR. This
way, when anybody wants to use some new algorithms with OTR, the only
work required will be implementing classes realizing those interfaces.

3.2.1 AbstractCryptoSuite class

Classes inheriting from AbstractCryptoSuite should contain references to all
cryptoalgorithms used during an OTR session. This class should not have any
operations defined over it. Each class inheriting from AbstractCryptoSuite

class should be given some integer identifier and reference to it shall be in-
cluded in a global variable where all subclasses of AbstractCryptoSuite shall
reside.

3.2.2 AbstractCryptoObject class

All objects on which operations will be performed (DH/MAC/cipher keys,
etc.) shall inherit from this class. The default constructor has to initialize the
whole internal state to some reasonable default. The instances shall implement
a few public methods:

• generate random - fill appropriate internal variables with random data.
Cryptographically secure randomness sources have to be used, though
the exact choice is implementation-defined.

• pack - pack the whole internal state of the object into a bytes array.

• unpack - do the opposite of pack.

3.2.3 Cryptoproviders

Cryptoproviders are the classes realizing the actual cryptographic operations.
They operate on the aforementioned objects. There are two main types of
cryptoproviders: stateful and stateless. Stateful ones are the CTR ciphers
and the MAC providers. Stateless ones are hash, signature, Diffie-Hellman
and KDF providers. Each provider has to inherit from its specific class.

28

3.3. Demonstration code

3.2.3.1 CTR cipher provider

• set key/get key - set/get key for this instance.

• set counter/get counter - set/get counter block for this instance.

• encrypt - perform encryption on a given bytes object. Note: During
each encrypt call, the top half of the counter block should remain the
same, while the bottom half should be filled with zeroes before encryp-
tion begins.

• increment top half - increment the top half of the counter block as a
big-endian integer.

3.2.3.2 MAC provider

• set key/get key - set/get key for this instance.

• mac - produce MAC of the given bytes array.

3.2.3.3 Hash provider

• hash - produce a hash of the given bytes array.

3.2.3.4 Modular group provider

• generator - return a generator of this group.

• modexp - perform exponentiation modulo this group.

3.2.3.5 Signature provider

• sign - sign the given bytes array with the private key.

• verify - verify the given signature of the given bytes array against the
given public key.

3.2.3.6 KDF provider

• kd - produce output of length len from the byte sequence consisting of
byte b followed by secbytes.

3.3 Demonstration code

There is a demo code included with sources which demonstrates basic usage of
library. It creates a short local OTR conversation and shows its every stage.
An implementation of all cryptoproviders is provided as well. It uses AES-256,
SHA-256, RSA-2048 as a signature with SHA-256 as a hash and Probabilistic

29

3. Library design

Signature Scheme (PSS) with MGF1 as a mask generating function, Diffie-
Hellman over 2048 MODP group as per RFC 3526[7], and SHA256-HMAC
as MAC and Argon2id as a KDF. Argon2id is used with default parameters
provided by third-party library except the random salt length, which has to
be equal to zero in order to make key derivation deterministic.

Testing code and cryptoproviders are dependent on the following python
libraries:

• argon2-cffi

• cryptography

They can be installed by using tool called pip or manually.

30

Conclusion

The main goals of this thesis were a discussion of an attack on OTR pro-
tocol security, obstacles which complicate mitigation and proposition of a
possible solution. The attack is based on property of the GNFS algorithm
that allows to perform most of the heavy computational work in advance for
a specific Diffie-Hellman group and thus makes solving individual instances
of discrete logarithm much faster given the precomputed database. Since the
amount of precomputational work required depends only on Diffie-Hellman
group, and the security properties of OTR conversation depend on the shared
Diffie-Hellman secret, even constant re-keying present in OTR is not helpful in
mitigating this attack. Thus, support for additional and larger Diffie-Hellman
groups is needed to raise the cost of precomputing beyond any reasonable
budgets. The solution proposed in this thesis allows any cryptoalgorithm
equivalent to the one used in original OTR to be used instead of the default
ones. This solution aims to provide OTR ability to adapt and maintain its
security properties as new attacks are discovered on some of the cryptoal-
gorithms. The solutions gives a significant flexibility for OTR, since now re-
moving vulnerable algorithms from OTR or adding new ones is just a matter of
implementing proper cryptoproviders. This makes it easy to greatly increase
cost of computational attack by just choosing the right cryptosuites, just like
the TLS protocol. A Python library implementing basic OTR facilities has
been created as proof of concept. The design of library allows to quickly plug
in any new algorithm by implementing just a handful of interfaces. Further
work may consist of improving SMP in OTR, by adding support for additional
groups just like in the case with Diffie-Hellman. Another area of improvement
is asynchronous messaging. OTR, in its current state, requires both parties
to be present during conversation; i.e. it is a synchronous messaging protocol.
However, constant online presence might be problematic on mobile devices
due to network conditions. Thus, a protocol aiming to become successful in
that market needs some asynchronous messaging support.

31

Bibliography

[1] Bonneau, J.; Morrison, A. Finite-State Security Analysis of OTR Version
2.

[2] Borisov, N.; Goldberg, I.; Brewer, E. Off-the-record Communication, or,
Why Not to Use PGP. In Proceedings of the 2004 ACM Workshop on Pri-
vacy in the Electronic Society, WPES ’04, New York, NY, USA: ACM,
2004, ISBN 1-58113-968-3, pp. 77–84, doi:10.1145/1029179.1029200.
Available from: http://doi.acm.org/10.1145/1029179.1029200

[3] Marc Stevens, P. K. A. A. Y. M., Elie Bursztein. The first collision for
full SHA-1.

[4] Barker, E. Recommendation for Key Management Part 1: General. Tech-
nical report, jan 2016, doi:10.6028/nist.sp.800-57pt1r4. Available from:
https://doi.org/10.6028/nist.sp.800-57pt1r4

[5] Off-the-Record Messaging Protocol version 3. Available from: https:

//otr.cypherpunks.ca/Protocol-v3-4.1.1.html

[6] Krawczyk, H. SIGMA: The ‘SIGn-and-MAc’ Approach to Authentic-
ated Diffie-Hellman and Its Use in the IKE Protocols. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2003, ISBN 978-3-540-45146-4, pp.
400–425, doi:10.1007/978-3-540-45146-4 24. Available from: https://

doi.org/10.1007/978-3-540-45146-4_24

[7] Kivinen, T.; Kojo, M. More Modular Exponential (MODP) Diffie-
Hellman groups for Internet Key Exchange (IKE). RFC 3526, RFC Ed-
itor, May 2003, http://www.rfc-editor.org/rfc/rfc3526.txt. Avail-
able from: http://www.rfc-editor.org/rfc/rfc3526.txt

[8] Di Raimondo, M.; Gennaro, R.; Krawczyk, H. Secure Off-the-record Mes-
saging. In Proceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, WPES ’05, New York, NY, USA: ACM, 2005, ISBN

33

http://doi.acm.org/10.1145/1029179.1029200
https://doi.org/10.6028/nist.sp.800-57pt1r4
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
http://www.rfc-editor.org/rfc/rfc3526.txt
http://www.rfc-editor.org/rfc/rfc3526.txt

Bibliography

1-59593-228-3, pp. 81–89, doi:10.1145/1102199.1102216. Available from:
http://doi.acm.org/10.1145/1102199.1102216

[9] Yang, L. T.; Huang, G.; Feng, J.; et al. Parallel GNFS algorithm
integrated with parallel block Wiedemann algorithm for RSA secur-
ity in cloud computing. Information Sciences, volume 387, 2017: pp.
254 – 265, ISSN 0020-0255, doi:https://doi.org/10.1016/j.ins.2016.10.017.
Available from: http://www.sciencedirect.com/science/article/
pii/S0020025516312348

[10] Commeine, A.; Semaev, I. An Algorithm to Solve the Discrete Logarithm
Problem with the Number Field Sieve. In Public Key Cryptography -
PKC 2006, edited by M. Yung; Y. Dodis; A. Kiayias; T. Malkin, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, ISBN 978-3-540-33852-9,
pp. 174–190.

[11] Thomé, E. Algorithmes de calcul de logarithmes discrets dans les corps
finis. Theses, Ecole Polytechnique X, May 2003, membre du Jury : von
zur Gathen, Joachim et Coppersmith, Don et Berger, Thierry et Villard,
Gillles et Sendrier, Nicolas et Roblot, Xavier. Available from: https:

//pastel.archives-ouvertes.fr/tel-00007532

[12] Adrian, D.; Bhargavan, K.; Durumeric, Z.; et al. Imperfect Forward
Secrecy: How Diffie-Hellman Fails in Practice. In 22nd ACM Conference
on Computer and Communications Security, Oct. 2015.

[13] Lepinski, M.; Kent, S. Additional Diffie-Hellman Groups for Use with
IETF Standards. RFC 5114, RFC Editor, January 2008.

34

http://doi.acm.org/10.1145/1102199.1102216
http://www.sciencedirect.com/science/article/pii/S0020025516312348
http://www.sciencedirect.com/science/article/pii/S0020025516312348
https://pastel.archives-ouvertes.fr/tel-00007532
https://pastel.archives-ouvertes.fr/tel-00007532

Appendix A

Low-level details of OTR

A.1 Data message plaintext structure

Note: this describes only the human-readable part of the data message.
Each plaintext message (either before encryption, or after decryption) con-

sists of a human-readable message (encoded in UTF-8 encoding), optionally
followed by:

• a single byte with value of 0

• zero or more TLV (type/length/value) records with no padding between
them

Each TLV takes the form:

Type — 2 bytes, big-endian integer

Length — 2 bytes, big-endian integer

Value — sequence of bytes

Type 1 TLV denotes the other party’s request to finish an OTR conver-
sation. The party sending it should also reveal all remaining MAC keys and
transition the msgstate variable to MSGSTATE PLAINTEXT. The party receiving
it should also reveal the keys and transition msgstate to MSGSTATE FINISHED.

In the implementation produced on the basis of this thesis, TLVs are not
used at all. Instead, a message consisting of just a single byte 0 is treated as
Type 1 TLV.

A.2 MAC keys revealing

Whenever one is about to forget either one of their own old DH keys, or one
of the correspondent’s old DH public keys, one should take all of the receiving

35

A. Low-level details of OTR

MAC keys that were generated from that key (note that there are up to two:
the receiving MAC keys produced by the pairings of that key with each of
two of the other side’s keys; but note that one only needs to take MAC keys
that were actually used to verify a MAC on a message), and put them (as a
set of concatenated byte sequences) into the “Old MAC keys to be revealed”
section of the next data message. This in done to allow the forgeability of
OTR transcripts: once the MAC keys are revealed, anyone can modify an
OTR message and still have it appear valid. But since we don’t reveal the
MAC keys until their corresponding DH keys are being discarded, there is
no danger of accepting a message as valid which uses a MAC key which has
already been revealed.

36

Appendix B

Acronyms

AES Advanced Encryption Standard.

AKE Authenticated Key Exchange.

HMAC Hash-based Message Authentication Code.

MAC Message Authentication Code.

OTR Off-The-Record messaging.

PKI Public Key Infrastructure.

SHA-1 Secure Hash Algorithm 1.

SMP Socialist Millionaires’ Protocol.

37

Appendix C

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

poc...implementation sources
pyotr..library sources
test.py.......................................simple demo code

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

39

	Introduction
	Problem statement

	State of the Art
	High-level overview of OTR
	Requesting an OTR conversation
	Authenticated Key Exchange
	Exchanging data
	Forward secrecy
	Socialist Millionaires' Protocol
	Protocol state machine
	Previous work on OTR

	Analysis and design
	Feasibility of computational attack
	Proposed improvements

	Library design
	Main classes and points of interaction
	Cryptosuites
	Demonstration code

	Conclusion
	Bibliography
	Low-level details of OTR
	Data message plaintext structure
	MAC keys revealing

	Acronyms
	Contents of enclosed CD

