
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 31, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Distributed interface for cooperative game

 Student: Anna Moudrá

 Supervisor: Ing. Jan Buriánek

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

Design and realize prototype of distributed interface for cooperative multiplayer game. Focus on a game in
a chosen immersive environment (movie theatre, conference hall, classroom, etc.), in which players will
control the game via mobile devices and the output, course of the game and instructions will be displayed
on a central screen (projection, CAVE, dome, etc.).

1) Study available literature concerning matters of cooperative games.
2) Design proof of concept for such distributed game; describe used mechanics and principles, ideally in a
form of short Game Design Document.
3) Implement prototype of a chosen simplified game for multiple mobile devices and one central screen.
4) Test and assess the prototype in real operational environment.
5) Write down and analyze your observations.

References

Will be provided by the supervisor.

Bachelor’s thesis

Distributed interface for cooperative game

Anna Moudrá

Department of Software Engineering
Supervisor: Ing. Jan Buriánek

May 14, 2018

Acknowledgements

I would like to express my sincere thanks to my supervisor Ing. Jan Buriánek
for his valuable insight and advice. I would also like to thank my family for
continuously supporting me throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 14, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Anna Moudrá. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Moudrá, Anna. Distributed interface for cooperative game. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2018.

Abstrakt

Tato bakalářská práce se zaměřuje na lokálńı kooperativńı hry a jejich použi-
telnost v r̊uzných imersivńıch prostřed́ıch, jako jsou kina, planetária či CAVE
systémy. Důraz je kladen na využit́ı mobilńıch zař́ızeńı a verbálńı mezilidský
kontakt, který tyto typy her vyžaduj́ı. Praktická část této práce zahrnuje
analýzu, návrh a popis následné implementace prototypu distribuovaného
rozhrańı pro týmovou kooperativńı hru. Prototyp implementovaný pomoćı
herńıho enginu Unity3D je vytvořen pro specifickou promı́taćı plochu a je
koncipován pro ovládáńı přes webový prohĺıžeč na mobilńıch zař́ızeńı.

Kĺıčová slova návrh a implementace prototypu, lokálńı kooperativńı hry,
distribuované uživatelské rozhrańı, imersivńı prostřed́ı, bring your own device
gaming, real-time interakce, Unity herńı engine

vii

Abstract

This thesis focuses on local cooperative games and their usability in immer-
sive environments such as movie theaters, planetaria or CAVE systems. The
emphasis is put on encouraging verbal communication and the use of mobile
devices. The practical part of this work incorporates the analysis, design and
subsequent realisation of own prototype of distributed interface for local co-
operative game. The prototype, implemented in Unity3D game engine, was
developed for a specific projection surface and is controlled via web browser
on mobile devices.

Keywords prototype implementation, local cooperative gaming, distributed
interface, immersive environment, bring your own device gaming, real-time in-
teraction management, Unity game engine

viii

Contents

Introduction 1

1 State of the art 3
1.1 Forms of cooperative gaming 4
1.2 Existing solutions . 6
1.3 Which features should be used in own solution? 11
1.4 Principles used in cooperative gaming 12

2 Analysis 15
2.1 Initial Game Idea . 15
2.2 Target audience . 16
2.3 Applicable games . 16
2.4 Initial game Design: Idea Refinement 17
2.5 Requirements . 18
2.6 Detailed gameplay description 20
2.7 Actors and Roles . 21
2.8 Use Cases . 23
2.9 Game Flow . 26
2.10 Domain model . 27
2.11 State Machine Diagram . 30

3 Technologies for prototype development 33
3.1 Immersive environment . 33
3.2 Network architecture . 34
3.3 Platforms . 34

4 Prototype Design 39
4.1 Scenes and controller screen design 39
4.2 Connection and communication sequence 45
4.3 Class diagrams . 46

ix

4.4 Graphical user interface . 47
4.5 Logging and data gathering . 47
4.6 Modularity . 48

5 Realisation 51
5.1 Project structure . 51
5.2 Implementation . 52
5.3 Data manipulation . 56
5.4 Issues and solutions . 57
5.5 Installation and configuration 58

6 Prototype Evaluation 61
6.1 Testing during implementation 61
6.2 Usability testing . 61
6.3 Concluded issues . 65
6.4 Future testings . 66

Conclusion 67

Bibliography 69

A Acronyms 75

B Contents of enclosed DVD 77

C Examples of prototype GUI 79

x

List of Figures

1.1 CtrlMovie: Photo from interactive movie LateShift where audience
votes on the actions of the protagonist via their smartphones. . . . 5

1.2 SpaceTeam: Two screens next to each other showcasing different
control panels and instructions . 6

1.3 M3 framework architecture. 7
1.5 RoundTable: Interactive exhibit at VIDA! Science Center in Brno. 10
1.6 Controllers used at Dukovany Power Plant Information Centre . . 10

2.1 Requirements . 18
2.2 Initial architecture . 21
2.3 Actors . 21
2.4 Actor’s use-cases related utilizing the distributed game 23
2.5 Standard game flow . 28
2.6 Simple domain diagram of the game NUMBERS 29
2.7 State Machine . 31

3.1 Updated architecture: Control system has been separated into
server and game engine . 37

4.1 Central screen scene designs . 42
4.2 Player controller screen wireframes 44
4.3 Unity data structures . 45
4.4 Moderator controller data structures 46
4.5 Server data structures . 46
4.6 Communication flow aligned with states from figure 2.7 49

5.1 Three layers of the UnityApplication. 53
5.2 Creating scenes in the Unity3D editor. 53
5.3 Ball prefab: visualisation of a problem on screen. 54
5.4 Smoke explosion animation: visual feedback to solving a problem. 55

xi

5.5 Difference between team colors: in upper row are materials before
change. 57

5.6 Two examples of game setup. 58

C.1 PlayerController – welcome screen, waiting screen, game over. . . 79
C.2 PlayerController – screens during game play: choose answer, an-

swer screen, change answer. 80
C.3 ModController : Round settings, 8 players are connected and di-

vided into 4 teams. 80
C.4 ModController : Game play, 8 players are connected and divided

into 4 teams. 81
C.5 UnityApplication: Waiting for players to connect. 81
C.6 UnityApplication: Waiting for new round. 82
C.7 UnityApplication: Game play, 9 players are divided into 4 teams. . 82
C.8 UnityApplication: Leader board after 2 rounds. Four teams are

competing. 83
C.9 UnityApplication: Game over after three rounds. 83

xii

List of Tables

6.1 Test scenario completion: testers at CTU 64
6.2 Test scenario completion: testers at Open house 64

xiii

Introduction

In recent years local cooperative gaming has been gaining in popularity, and
while every public screen or projection – in science centres, train stations or
shopping malls – can be a potential playfield, solutions offering spontaneous,
setup-free gaming experiences are sparse. While some museums and planetaria
have their own interactive exhibits or voting systems, expensive equipment
and lengthy setup are often in the way of creating a spontaneous experience.
To address these complications, this paper presents a cooperative game with
minimal setup and distributed interface, which allows for players use their
own devices to connect.

Challenges

There are several technical and even artistic challenges to creating a dis-
tributed interface for cooperative game, as the main goal is to create a sys-
tem, that is complementary to the experience of a spectator. In other words
a system, that does not take away from the immersive experience by creating
additional barrier between the audience and the screen. The substance of the
interactive screening content should share some of the qualities of passive con-
tent, namely a visual appeal and an engaging element, which may be either
a story or some of the primary motivations of gamers e.g. competition or
completion of a task. As it is crucial to not excessively divert the attention
from the main source of content, the form of interaction ought to be minimal
and intuitive. Furthermore, the requirements on usability of the game’s user
interface will only grow with the number of players, moreover so, when they
must communicate and cooperate effectively.

1

Introduction

Goals

There are three main conceptual goals to this thesis. Firstly, the text aims
to educate about the possibilities of interactivity in immersive environments.
Readers should be able to recognise the advantages and limits of interactive
content in immersive environment and gain knowledge of existing solutions.
The second goal is the design and realization of own prototype of local coop-
erative multiplayer for chosen environment. Since the prototype is designed
without given foundation, the author focuses on all major steps of the pro-
cess of creating a distributed interface for a cooperative game, including the
game logic and designing own graphical user interface. The final part of this
text describes the testing and assessment of the prototype in real operative
environment, pointing out users’ reception and room for future improvement.

2

Chapter 1
State of the art

This chapter briefly resumes the state of the art of local collaborative gaming.
The author lists several up to date solutions to the problem of distributed
applications for local cooperative gaming, along with the advantages and limits
of each solution. From the conducted research the author additionally outlines
several universal principles applied to the cooperative games.

Before the text will delve into the analysis it is necessary to introduce
several terms and concepts relevant to this thesis.

Immersive environment The terms immersion and immersive environ-
ment are most commonly linked to an artificial, computer-created scene or
world within which the onlooker can immerse themselves. Nowadays, the
phrase is mainly used in regards to Virtual Reality or Augmented reality sys-
tems using headsets. Even less artificial environments like planetaria, art ex-
hibits or movie theaters can create an immersive experience, most commonly
by providing a limited level of interactivity.

Event games These type of games often incorporate aspects of networking
games or icebreakers as they are mostly taking place at large, often corporate,
events and meetings. Event games are designed to connect large groups of
strangers and initiate conversation, often by facing the group with a problem
that can be solved only by joint discussion [1]. Other types of event games
are created to convey commercial messages or raise awareness about a given
issue and can be found in science centres or museums [2].

Game moderator Sometime also known as Game Master is a person who
acts as organiser and administrator to local and online cooperative games.
The responsibilities of a game moderator often include preparing the game
session, directing the course of the game and, in some cases, managing possible
conflicts between players [3].

3

1. State of the art

1.1 Forms of cooperative gaming

The upcoming section briefly resumes the different concepts of local coopera-
tive gaming.

1.1.1 Collaborative cinema

Historically, movie theaters and planetaria were first to introduce interactive
storytelling to their spectators.

In 1967, Kinoautomat, the world’s first interactive film has been released.
The screening took place at a theater with built-in remote controls and was
essentially divided into 9 parts. At the end of each part, a live actor appeared
on stage and asked the audience to vote on which way the scene should con-
tinue [4].

While immersive and interactive screenings moved predominantly to 3D
projections and synchronized physical effects such as wind blowing and tem-
perature changes, interactive films are made even today [5].

Many of those interactive “choose-your-own-story” films in the past were
created for planetaria and other theaters with built-in voting systems. But
companies like CtrlMovie are creating interactive movies that can perform in
a much less limiting setting – as is stated on their website: “the audience’s
smart devices, the CtrlMovie app and a local WiFi enable decisions based on
majority votes [6].”

1.1.2 Console games and mobile cooperative games

Nowadays, local cooperative games are quite common in households and video
game consoles like Nintendo Switch1 or Sony’s PlayStation 42 allow for multi-
ple controller connections. While these games are very popular and engaging,
they are usually limited to 4 or 8 players and require a specific video game
console with a set of controller, that effectively restrict the game play to one
location.

Another new trend in local multiplayer gaming has been mobile coopera-
tive games, operated through smartphones. Most of these games are simple
arcade or racing games that support multiplayer mode which lets the players
compete with each other and does not require any cooperation. Some of these
games, such as SpaceTeam3 are focused strictly on players’ verbal communi-
cation by supplying each player with only a subset of resources needed for
solving the game [7]. The mobile devices are usually connected through a
local Wi-Fi or a Bluetooth connection.

1https://www.nintendo.com/switch/
2https://www.playstation.com/en-us/explore/ps4/
3http://spaceteam.ca/

4

1.1. Forms of cooperative gaming

Figure 1.1: CtrlMovie: Photo from interactive movie LateShift where audience
votes on the actions of the protagonist via their smartphones.

Source: [6]

As local smartphone multiplayer gaming effectively solves the issue of mo-
bility, the games are designed for a limited number of players, usually 8 at
maximum, as game designers must also take into consideration the limited
screen space.

1.1.3 Collaborative interactive displays and special events
games

Science centres and museums often look for ways to make their exhibitions
more engaging to the public, and thus interactive exhibits are becoming more
and more popular. According to Eric Klopfer and collective [8], simply equip-
ping visitors with audio guides and pocket devices is counterproductive as
the technology makes them feel more separated from the exhibition. Klopfer
instead approaches the idea of using technology to encourage human inter-
action with other visitors. For example the China Science and Technology
Museum in Beijing offers a collaborative VR experiences by creating a virtual
scene for 5 participants. The participants, each equipped with VR goggles,
must complete the task of transporting an aircraft carrier from a hangar and
subsequently take-off [9]. Other science centers also include this idea by of-
fering round table games, cooperative dance pads or music trackers to engage
visitors [10]. For the same reasons of engaging groups of people together and

5

1. State of the art

encouraging networking, many corporate companies implement cooperative
and round table games at their meetings, as it is an effective way to encour-
age the participants to engage in discussion.

1.2 Existing solutions

This section describes some existing solutions of local multiplayer games de-
veloped in recent years and lists their advantages and disadvantages. From
those findings, the author then concludes in section 1.3 which features are
worth keeping in the development of own prototype.

1.2.1 SpaceTeam

As already mentioned in section 1.1.2, SpaceTeam is a local mobile cross-
platform multiplayer game developed in 2012. The game accommodates from
2 to 8 players, each participating on their own device. Each player is assigned
a random control panel with buttons and their names, as seen in figure 1.2.
Each player is then required to follow time-sensitive instructions to push a
certain button. However, the instructions are being sent randomly to other
teammates, which leads to the players shouting instructions at each other.
While this application does not utilize a central screen, the game logic could

Figure 1.2: SpaceTeam: Two screens next to each other showcasing different
control panels and instructions

be adapted well to an environment with multiple controllers - sets of control
panels – and a central display. Displaying the game play on TV screen has
been already been done as SpaceTeam has been the first game to launch on

6

1.2. Existing solutions

AppleTV [11]. The game could be well adapted to a team based game as well,
where the teams would compete against each other and track the results on
a central display. The sci-fi sentiment makes the game suitable for science
centers or planetaria.

Advantages

• Mobile controllers; this game can be played virtually anywhere as devices
can be connected through Bluetooth.
• Clear directions and simple controller manipulation for the players.
• Communication between players is necessary for success.

Disadvantages

• Setup requires cooperation – as all players must simultaneously hold a
button on their devices – even before the game starts.
• For 8 players at maximum.
• Players need own mobile devices to connect to the game.
• Very fast paced game. Players solve multiple problems at once which

results in very loud environment4.

1.2.2 Massive Mobile Multiuser framework

WIFI/3G

HTTP

WebSocket

HTML5/JS
controller
(frontend)

Browser

Application

Backend

HTTP server
(e.g. Apache)

Linux server

Mobile device

public display

Figure 1.3: M3 framework architecture.
Source: [12]

4This could, of course, be a positive trait as well, but the size of the playing crowd must
be taken into consideration.

7

1. State of the art

In 2015 a collective of authors from Bauhaus-Universitat Weimar created
and tested the Massive Mobile Multiuser framework, hereafter referred to as
the M3 framework. Their work presents a software platform enabling a set-up
free, real-time interaction for a larger number of players on a single public
display. The M3 framework consists of 3 modules; while the application and
backend runs on a Linux server, the frontend runs on client devices and is
accessible via mobile web-browser, as seen in figure 1.35.

The authors implemented a multiplayer soccer match that enables 17 con-
current users. The connection between the server and client is kept over a
HTTP protocol using WebSockets. The players may connect and disconnect
anytime during the 3 minutes long matches. The game itself is very minimal
yet extremely fast-paced and sensitive to any amount of lagging. The team of
authors assessed the prototype in real-time operative environment with over
8 hours of play. Their surveyed data shown positive feedback to perceived
latency, easy set-up and some issues with lost users’ input [12].

(a) M3: MMMBall playfield on one cen-
tral screen.

Source: [13]

(b) M3: Controllers accessible via web
browser on smartphones.

Source: [13]

Advantages

• Mobile game that can be easily transported.
• Players can spontaneously join the play during a game.
• Scalable architecture.

Disadvantages

• Players need own mobile devices to connect to the game.
• Players do not need to talk to each other and can just observe the screen.
5Figure recreated from the original diagram.

8

1.2. Existing solutions

1.2.3 Fishing at VIDA! center in Brno

The learning center VIDA! in Brno introduced an interactive exhibit called
Round Table in 2014. The table is consists of 12 separate client computers for
players and one central computer with round screen in the middle for everyone
to see. The first implemented cooperative game, called Fishing6, simulates a
pond where the central screen shows an available amount of fish and players
can each gather a number of it. After each of the finite 10 rounds, the number
of caught fish is added to the overall number and the rest of the fish in the pond
can multiply. The collective goal is to gather as many fish as possible while
not interrupting its ecosystem by overfishing. Leaving only certain number of
fish in the pond leads to failure [10] [14]. While the system was prepared for
hosting more types of games, only one was implemented. In 2017 David Savič
designed and tested new central control system for the Round Table. This
new system offers choice between two games but was designed to be easily
extensible by specifying the API and requirements for future games [15].

Advantages

• Interesting algorithm for multiplying fish between rounds.
• Players must engage in conversation.
• Players do not need own any equipment to join the game.

Disadvantages

• Non-scalable to more that 12 players.
• Built-in system.
• Players cannot join the play during a game.
• The control system must have been reimplemented to accommodate a

different type of game.

1.2.4 Dukovany Power Plant Information Centre

Another interactive interactive exhibit in the Czech Republic is at the Duko-
vany power plant information center. According to a personal conversation
with a guide at the center [17], the exhibit is divided into 6 separate sections,
each of which has some kind of display. Groups of visitors divided into teams
are given small voting controllers, photographed in figure 1.6, and then pro-
ceed to collectively discuss and answer displayed questions in each section.
After all groups have finished the course, the results of voting, teams order
and correct answers are shown. Each exhibit is conducted by a guide who
is in charge of distributing the controllers and setting up each section. The

6Rybolov in Czech original.

9

1. State of the art

Figure 1.5: RoundTable: Interactive exhibit at VIDA! Science Center in Brno.
Source: [16]

premise of such interactive exhibit is an added element of competition that
motivates the visitors, mainly groups of pupils, to be attentive to the displayed
information.

Figure 1.6: Controllers used at Dukovany Power Plant Information Centre

Advantages

10

1.3. Which features should be used in own solution?

• Moderator directs the course of the game and can adjust the speed to
the players.

• Players do not need their own devices.
• Mobile controllers, at least to the extent of one building.
• Clear directions and simple controller manipulation for the players.
• Collaboration is encouraged.
• Competition between teams increases motivation to answer correctly.

Disadvantages

• Lengthy setup.
• System cannot be easily transported, number of players is dependent on

the number of available controllers.
• Non-responsive controllers – players cannot see anywhere how they voted.
• Players cannot join nor leave during the game play.
• Players cannot change their answers.
• Players do not know the results or team score until after the course.

1.3 Which features should be used in own
solution?

There are many different solutions to the problem of implementing a dis-
tributed interface for a cooperative game, and while all of the listed above
are functional, most of them are a solution to a specific problem in a specific
location.

This thesis aspire to present a more universal solution, with design that is
easily extensible to accommodate different locations and types of games.

Such distributed interface should not be dependent on a pre-set type and
amount of controllers, as drastically different amount of players is needed for
different type of games. For that reason, the model of BYOD7 implemented by
the M3 framework or the CtrlMovie company is the most location independent,
easily scalable solution. The former solution is more user-friendly for the
reason that it does not require to install an additional application on the
device, but is accessible via web browser on any mobile device.

Another concept worth incorporating in own design of cooperative game
interface is the fact that players need to verbally communicate with each
other. As the number of players should be scalable to tens or even hundrets of
people, depending on the type of game, the best way around this seems to be

7Bring-your-own-device is a policy allowing to work with own device. In this context
the term refers to the players being able to connect their own device to the game interface
and use it as a controller.

11

1. State of the art

dividing the players into teams, which was also the solution at the Dukovany
Power Plant information center. That way the communication should be kept
manageable even with 10+ players.

On the other hand it is not hard to imagine that with that many people
it could be difficult to clearly communicate the game settings, such as the
game start, what game to choose if there is a choice and how to distribute the
teams. For that reason the idea of having an extra person act as a moderator
should be incorporated into the design for a game with more than 10 players.

1.4 Principles used in cooperative gaming

This section describes several other, more universal, aspects to cooperative
multiplayer games than location and used technologies.

1.4.1 Cooperative game theory

Game theory is an important part of more complex gaming mechanisms as
it deals with problems concerning behaviour between different agents with
varying motivations [2].

Tragedy of the commons is one of the most popular game theory principles
used in local cooperative games. The term is used to describe the problem of
sustaining a public resource that everybody is free to overuse, which leads to a
social dilemma. Each party wants to act in their current best interest, and take
as much from the shared pool of resources as they can, which is contradictory
to the common good of all users and eventually leads to resource depletion. In
reality the best collective good can be only reached by consistent collaboration
between all parties [18].

The tragedy of the commons is in many ways application of the Prisoner’s
dilemma, another game theory principle, on a larger scale [2].

The described game Fishing or the WarmGame [2], focusing on the issue
of climate change, are great examples of incorporating game theory principles
into local cooperative gaming.

1.4.2 Group dynamics

There are different dynamics between players that know each other and com-
plete strangers. A study from 2014 found out that players must figure out
the right way to communicate and coordinate every time they become a part
of a new team. Moreover, they must maintain a positive atmosphere as it,
according to the study, directly translates to the team’s well-being. [19]

Individual players Generally speaking, when developing a game for
spontaneous, large scale gaming, there should not be a reason to force players
into teams, unless socialisation is the primary motivation behind the game.
Instead of forcing a single player in a cooperation with a group of strangers

12

1.4. Principles used in cooperative gaming

and then expecting them to work well together, it is better to let a players join
the game individually and then reward them for cooperation. The best way
to motivate individual players to collaborate on a problem is by setting a goal
that cannot be reached otherwise. There are two types of goals for players in
a cooperative game:

1. Shared goals – for example in the soccer match implemented in the M3

framework the shared goal was to move the ball across the playfield and
score on the other team.

2. Interlaced goals – players have different goals, however, one player in the
process of completing their goal simultaneously creates an environment
where second player can also succeed [20].

Playing in teams Playing in teams is the base for most cooperative games
that require verbal communication between players.

1. Preexisting groups – oftentimes the players are already in well formed
groups and join a cooperative game with the intention to play together.
Forcibly separating these groups of people into different groups can lead
to a complete loss of motivation to play [21]. For that reason it’s impor-
tant to consider when it’s best to let players choose their own teams. It
is important to note that in many educational games the act of separat-
ing good friend, and thus forcing players to come out of their comfort
zone is desirable.

2. Groups of strangers – dividing strangers or not fully formed groups into
teams is common for games focused on collaborative learning or net-
working

1.4.3 Time and speed

If timing plays an important role in a single player game, timing in collabo-
rative games is crucial, as the players need some room to communicate, but
having too much time can make the game slow. Having too much time in
cooperative gaming can often lead to one player taking over the process of
decision making, which defies the concept of solving a problem by joint dis-
cussion. Depending on the implemented game, short time limit resulting in
forced simultaneous choice is a good way of preventing this issue. On the
other hand, too little time can cause the game to become very difficult and
frustrating [22] [23]. To find the right balance, the final product should be
thoroughly tested and adjusted accordingly.

1.4.4 Game difficulty

The environment and used technology are detrimental to the level of coopera-
tion that should be required from the players. According to Reuter et al both

13

1. State of the art

age and limits in communication should be further considered in developing
a cooperative game. Age of the target group dictates the complexity of the
game in respect to required communication and timing difficulty. Addition-
ally, any factors limiting human interaction (e.g. loud environment, players
cannot see each other, . . .) should be taken into consideration and further
lower the amount of required cooperation between players [23].

14

Chapter 2
Analysis

The analytical part of this thesis describes the initial process of creating a
local cooperative game and its functional and non-functional requirements.
The process goes from simple analysis of target audience and choosing an
appropriate game to a more thorough process of defining roles and use-cases.
The chapter ends with a deduced state machine diagram that will serve as a
base structure for the following application design.

2.1 Initial Game Idea

When creating a game, no matter the final platform, it is crucial not to un-
derestimate the basic motivations that attract and engage players. There
are certain concepts and steps that need to be followed to make the game
enjoyable. What is needed first is a basic game idea that can initiate the de-
velopment process. The game idea may be completely new or, as it is in our
case, can be inspired by other successful game. The initial game idea settles
mainly these following issues:

• Who is the target player (single person or group) and what are their
motivations for playing.

• What are the primary expectations of these people, what will attract
and engage them.

• What are the main motivations for creating the game and what possible
outcomes are the creators hoping for.

All these issues (the whats and whys) should be addressed before even
considering the initial development requirements (the hows).

15

2. Analysis

2.2 Target audience

The target player for a local cooperative game, that implements the BYOD
gaming policy, is someone who owns a smartphone and is comfortable with
performing basic tasks such as connecting to wifi or installing and running a
mobile application.

Other than these requirements the game should not be excessively exclud-
ing considering that a group of 40 individuals, even in a similar age group,
can be very diverse.

Another crucial part to consider is that the players, unless they will have
exterior motivations, will not want to be bothered with a lengthy setup or
complicated game rules. Therefore, the goal is to create a simple game ac-
cessible without prior installation via mobile browser. The game should not
be targeted at any specific age group, since it could possibly drive away other
potential players.

2.3 Applicable games

Below the author lists several local cooperative games applicable to the target
group.

Spaceteam The game is described in section 1.1.2. A group of 40 players
would have to be divided into smaller teams. The teams would then compete
against each other, having their score be displayed on the central projection.

Fishing The game is described in section 1.2.3.
Snake or slither.io The setting with 40 players and one central screen

lends itself to a game like slither.io8 where each player could operate one snake
and compete with other players for who lasts the longest. But because this
game would be more competitive than cooperative, another simple modifica-
tion of the game snake could be implemented. Several team consisting of 4
players could play this game, when each player would control one snake on the
central screen. However, each player on the team would have only one way to
move the snake – left, right, speed up, slow down. The team would inevitably
have to verbally communicate to move the snake.

Numbers The players are divided into several teams and each player has
a set of numbers on their controllers. Numbers for each team are randomly
appearing on the main screen and the players in one team must collectively
match the sum on screen to get points.

Catch the Egg This game is mostly used as an icebreaker or a team
building game. Each player controls movement of a particle, from the top of
the central screen are slowly falling objects (eggs). The players have to form a
basket shape from their particles and catch the falling object before it reaches
the bottom of the screen. Players may be divided into teams but since there

8http://slither.io/

16

2.4. Initial game Design: Idea Refinement

should be a minimal number of particles to create the figurative basket, the
minimal number of players per team could be 5–10. Very technically similar
to this game is the soccer match realized in the M3 framework.

2.3.1 Pace and game choice

The type of audience plays an important role in choosing the pace of the final
game. For a fast-paced game, such as SpaceTeam, the emotions rise rather
quickly, with players shouting at each other with vigor. While the pace keeps
the game engaging, at higher numbers of players it becomes increasingly more
difficult to keep the volume at a reasonable level. On the other hand, a slow-
paced game can easily become uninteresting and players will find themselves
either unattached or waiting at their co-players.

Out of the above listed the game of Numbers, hereafter referred to as
NUMBERS, became the most viable option for the design and prototype for
a few reasons. The game is easily scalable from a small number of players to
accommodating even a larger crowd (100+ players), furthermore the pace can
remain flexible in relation to the crowd size. Yet the greatest advantage the
game has over the other options is the simplicity of the rules.

Regardless of the chosen cooperative game the distributed interface should
be designed as universally as possible, to accommodate, possible future exten-
sions.

2.4 Initial game Design: Idea Refinement

The game NUMBERS is a simple cooperative game for roughly 40 players
playing on their own mobile devices. NUMBERS will be local multiplayer
game as all players are required to have access to one main projector screen
(4K resolution9 projection screen at Techmania Science Center in Pilsen) and
engage in inter-personal communication.

2.4.1 Gameplay

The game will divide players into teams in which they are required to cooperate
to reach the final goal within limited time. The essence of a problem will be
displayed on one central screen and each player will have a set of resources on
their device.

2.4.2 Mindset

The game should be complex enough to rise an emotion and start a discussion
but rather simple in design and accessibility to prevent confusion, embarrass-
ment and frustration. The problems will most likely be extremely simple to

94K, also known as Ultra High Definition, is a resolution of 3840x2016 pixels 10

17

2. Analysis

solve (i.e. simple tap on an object on mobile screen) but the game itself
fast-paced to get players under pressure.

2.4.3 Proof of Concept

To demonstrate functionality a basic prototype of the game NUMBERS will
be implemented. Such prototype will showcase the basic mechanics of cooper-
ative multiplayer game such as connecting players together and dividing them
into teams, starting a game and handling gameplay for a limited amount of
time. Prototype will be required to undergo basic functionality testing in real
functional environment by roughly 5 – 40 players.

2.5 Requirements

Each game that will be able to use the central control mechanics must fulfill
certain requirements. These requirements are:

• Game has strictly set maximum and minimum player count. If a current
game has maximum number of players connected, another player cannot
join the game.
• Suitable graphical user interface.
• Only one instance of a game is playable at one time. If one game has

been started, another one cannot start until first game is cancelled or
finished.
• Moderator can cancel game at any given point.
• Players cannot dynamically join a game after it has started. Even when

maximum player count has not been reached.
• Game should react to a player disconnection.

These initial demands were further analysed and subdivided into functional
and non-functional requirements, as seen in figure 2.1.

Non-functional requirements

+ N1 - Controller accessible via browser on mobile devices
+ N2 - Communication on local Wi-Fi
+ N3 - Game state recognisable on screen
+ N4 - Visual feedback to players' actions
+ N5 - Communication without lagging
+ N6 - Short tutorial with game rules

Functional requirements

+ F1 - Connecting clients to the server
+ F2 - Handling state changes
+ F3 - Dividing players into teams
+ F4 - Aquiring and resolving players' input
+ F5 - Moderator can switch between states
+ F6 - Logging players' information
+ F7 - Displaying game statistics
+ F8 - Disconnecting players
+ F9 - Updating gameplay

Figure 2.1: Requirements

18

2.5. Requirements

2.5.1 Functional requirements specification

To ensure basic functionality of the game, there are several requirements that
must be fulfilled. The design ought to solve these following problems:

1. F1 – Connecting players to the game. Players can connect to the
game via their own mobile device.

2. F2 – Handling state changes. The system will recognise a change of
state (i.e. when player leaves the game) and will update the state on all
related devices.

3. F3 – Dividing players into teams. The system will divide connected
players into one or more teams and will consistently keep them in their
teams.

4. F4 – Acquiring and resolving players input. The system will react
to player’s input and will update state on all related devices.

5. F5 – Moderator can switch between scenes. Moderator will have
the option to switch between scenes and reset or cancel a game.

6. F6 – Logging players’ information. The system will log information
about the user devices and behaviour. This logging will be performed
once right after connection to the game. Each new game will have it’s
own log file.

7. F7 – Updating the game play. Updates will appear on all related
devices.

8. F8 – Displaying game statistics. Team statistics will be on display
at all times during the game play.

9. F9 – Disconnecting players. After the game ends, all players will be
disconnected.

19

2. Analysis

2.5.2 Non-functional requirements specification

Along with the functional requirements, there is another set of requirements
that must be accomplished to make the game usable. These requirements are
not focused on the specific functions as much as on the used technologies and
the graphical user interface design. These non-functional requirements ensure
the prototype usability:

1. N1 – Controller accessible via web browser. All players can con-
nect to the game and further control the game on their own mobile
devices via web browser.

2. N2 – Communication will be implemented on local Wi-Fi. All
devices will be connected through local network.

3. N3 – Players recognise the game play states. A change of a state
will be recognisable for the player on either the controller, the central
screen, or both.

4. N4 – Feedback to players’ actions. Players will be visually (at the
least) notified of their actions.

5. N5 – Instant feedback. Communication between devices will be with-
out lengthy lag if possible.

6. N6 – Game has a simple tutorial. The tutorial will briefly demon-
strate the game rules.

Initial Architecture

The requirements imply that the architecture will consist of at least three
different independent agents – the players, the moderator and the control
system – communicating with each other through a local network. See the
initial architecture in figure 2.2.

2.6 Detailed gameplay description

This section describes the rules of the game NUMBERS in greater detail.
The central screen will display one number, sometimes referred to as prob-

lem in the text, per team, moving across the screen from one edge towards
the other. Each player in team has a set of numbers on their controllers from
which they can choose just one. When the sum of chosen numbers by players
matches the number on screen, the number will disappear and the team will
acquire points. Once a number moves off screen, or is completed by the team,
a new problem is generated. The level of difficulty can be set by the modera-
tor. The highest difficulty deduces points from team for each failed problem.
The lowest difficulty will not deduce any points and the problem will remain
on screen until completion. The game will have three rounds, each lasting a
given amount of time, set by the moderator. The players’ answers are visible

20

2.7. Actors and Roles

Control System

Central Display

Moderator

Player

< two-way connection >

< one-way connection >

< two-way connection >

Player Player Player...

Figure 2.2: Initial architecture

on the main screen, along with the current team sum. After each round a
leaderboard will be displayed, showing which team is in the lead. After all
rounds are finished, a winning team is announced.

2.7 Actors and Roles

This section describes the type of users, shown in figure 2.3, who will interact
with the game’s distributed user interface.

uc Analysis View

Moderator Player

Figure 2.3: Actors

21

2. Analysis

2.7.1 Moderator

The role of a moderator has shown to be crucial for local multiplayer games
with a larger number of players. A good game design offers intuitive GUI that
does not need a further explanation, and while having an additional person
at hand to explain all the rules is beneficial, it is not a primary role of the
moderator to be a support character.

Responsibilities: The moderator is responsible for the application setup.
He or she must run all the required programs and set the environment for
each new game. It is the moderator who decides and then sets the number
of players that can join the game and the number of teams the players will
be divided into. Moderator also must assess the group of players and set
the game difficulty and duration for each round. In addition the moderator
switches between game states that are not necessarily consecutive and would
require the players to all communicate with each other.

2.7.2 Player

Player is a person, who has a conscious interest in joining the cooperative
game. They can join and participate in the game, or leave it.

Responsibilities: Since the game NUMBERS requires players to have
their own mobile devices (smartphones, tablets or even laptops), the players
must each connect their device to the game on their own. Once the player
is connected to the game, they go through the process of being divided into
teams and learning the game rules. Once the game play has started, the
players sorted to one team must cooperate and each choose a number on their
devices. Once a game is finished the player should disconnect their device
from the local network.

22

2.8. Use Cases

2.8 Use Cases

This section contains a detailed description of processes the actors have to
complete in order to participate in the game. The described use cases are
illustrated in figure 2.4 in relation to the actors responsible for their comple-
tion.

uc process3

Team

Player 1

Player 2

UC4 - Choose answer

UC5 - Change answer

UC6 - Leave game

UC7 - Communicate
strategy

Moderator

UC1 - Setup game

UC2 - Setup round

UC3 - Connect to
game

«include»

«extend»

«include»

Figure 2.4: Actor’s use-cases related utilizing the distributed game

2.8.1 UC1 – Setup game

Basic Path: Setup game

1. Moderator connects to the game via web browser.

2. Moderator sets the welcome message for players and instructions for
connection.

3. Moderator sets the maximum number of players.

4. Moderator sets the number of teams.

5. Moderator starts the game.

6. If players connect to the game, then: <include> UC2 – Setup round.

7. After each round have ended and leader board is shown, moderator
chooses to switch to a new round setting or proceed to the game finish.

23

2. Analysis

2.8.2 UC2 – Setup round

Basic Path: Setup round

1. Moderator sets round duration.
2. Moderator sets round difficulty.
3. Optional: Moderator launches the tutorial.
4. Moderator starts round.

2.8.3 UC3 – Connect to game

Basic Path: Connect to game

1. Player identifies the instruction on central screen to connect his device
to the game.

2. Player connects the mobile to local network.
3. Player opens the controller via web browser.
4. Player chooses to join the game and confirms the action on the device.
5. Player identifies that they have been connected to the game on the

central screen.
6. Player is now connected to the game and can wait to be assigned to a

team.
7. Moderator sends request to allocate the teams.
8. Player is now a part of a team and is waiting for the round to start.

Alternate: Connect to game

1. If the game has not been setup or is already in progress, this script starts
in between steps 3 and 4 of the Basic Path.

2. Player is not allowed to join the game and is notified to try later.
3. Player’s device is disconnected from the game.

2.8.4 UC4 – Choose answer

Basic Path: Choose answer

1. Player identifies problem belonging to his team on central screen.
2. Player identifies own set of possible answers on device screen.
3. If player cannot or does not want to solve problem alone then: <include>

UC7 – Communicate strategy.
4. Player chooses an answer and confirms it on the device screen.
5. Player waits for other teammates to choose their answers.
6. Player identifies on the screen if the team was successful in solving the

problem.

24

2.8. Use Cases

7. If the team has not been successful then: <extend> UC5 – Change an-
swer.

8. If the team has been successful, the player can see updated team score
on the screen.

2.8.5 UC5 – Change answer

Basic Path: Change answer

1. Player identifies that their answer needs to be changed.
2. Player chooses a different answer and confirms it on device screen.

2.8.6 UC6 – Leave game

A player may disconnect from the game at any point. Basic Path: Leave game

1. Player closes web browser window with the game on the device.
2. Player disconnects from the local network.

2.8.7 UC7 – Communicate strategy

Basic Path: Communicate strategy

1. Player identifies his teammates.
2. Player communicates the strategy to solve a problem with the team.

25

2. Analysis

2.9 Game Flow

This section describes the overall game flow for actors as well as for the control
system, along with defining the behavior for non-standard situations such as
player leaving a game during game play or moderator resetting a round or the
whole game. The use cases provided a set of actions coming from the actor,
that the control system must assess and then change its state accordingly –
which means the game flow is by design very action-response driven.

Standard successful game

Connecting the individual standard use–case paths together results in a base
for one complete game.

After a game is started by the moderator, players are allowed to connect to
the game. First player to connect will cause a change of state, and the game
will shift from the welcome board to scene indicating the waiting for other
players to connect. Each connected player can choose to stop waiting on
other players, in which case he will not be joining the game. Each connection
is logged by the control system as well as shown on the moderator’s controller,
that way the moderator can decide if he should create the teams or wait for
more players to connect. Once enough players are connected and waiting, the
moderator will give a command for the control system to sort players into
teams. Alternatively, players who earlier indicated their team preference will
be sorted accordingly. After the players are sorted, the moderator can set the
round. The round set-up consists of duration and difficulty settings. Players
are meanwhile waiting for the round to start. The moderator then has a choice
to either play a tutorial or start the round.

During the game play, each player has a choice between multiple answers
– in the case of the game NUMBERS a choice between numbers from 0 to
9. As a part of a team, the players must realise what is the complete anwer
they are looking for, in this case, the team number appearing on the central
screen. Subsequently the players in each team should communicate, how they
will reach the complete answer and choose their answers accordingly. Their
complete answer as well as their individual answers are shown on the central
screen. If the team succeeds in matching their complete answer to their num-
ber on screen, the team will score points and the problem will disappear. After
each success the players’ answers will be reset to the default value, which is
0. If the team did not succeed, the players can change their answers. Players
may leave the game, but cannot join again until a new game is started. After
a round is finished, the control system changes state either back to waiting for
moderator’s setting or, if all rounds have been completed, to the final state,
which displays the winning team and subsequently disconnects all players. Af-
ter the game is finished, the control system resets all saved data and settings
and returns to its inital state, waiting for the moderator to set a new game

26

2.10. Domain model

with a new set of teams and players. The game processes are best shown in
figure 2.5 on page 28.

Round reset

At any point during the game play, the moderator can choose to restart the
round. This situation may come up if the players were not prepared for the
round to start or the time limit or difficulty need to be re-adjusted. This event
will reset all team scores gain in the round as well as the players answer. The
control system will set itself and the players back to waiting for the moderator
to setup and start a new round.

Game reset

The moderator may choose to cancel the game at any point after the game
has been set. This action will disconnect all players and reset all of the game
settings except for the control system - moderator connection. The control
system will then wait again for the moderator to send new game settings.

Player disconnection

A player may disconnect from the game at any point.

• Player leaves a game before the teams were assigned The control
system and moderator are notified, but no other action is needed.

• Player leaves a game after the teams were assigned The control
system and moderator are notified. Team size is decreased by one. A
game can only be played if all team sizes are greater than zero, if that
is not the case, the game must be cancelled as the number of teams
cannot be changed dynamically and is preset for each game. If a team
player disconnects during a game play, the other teammates will have
their answers and their collective answer reset. Their curent problem on
the central screen will be replaced with a new one with no penalisation.

2.10 Domain model

There are several independent entities in the game NUMBERS, some of which
contain attributes that need to be synchronized between several independent
applications. Below is a list of the most significant entities and their roles:

• Moderator The moderator is the main driving force behind most of the
actions leading up to a successful game. He or she must first configure
the game and then each round. Moderator also oversees the action of
each player.

27

2. Analysis

Moderator Control System Players

Establishing
moderator
connection

Connecting
to the system

Waiting for the
moderator
to connect

Sending game setup
Receive

game
setup

Establishing player
connection and
logging information

Waiting for the
game setup

from the moderator

Waiting for players
to connect

Connecting
to the system

[enough players
connected?]

[no]

[yes]

Receiving team
information

Sending request to
create teams

Creating teams and sending team
information to moderator and players

Sending round settings
 to the control system

Receiving team
information

Receiving
round

settings

Sending request to
start round

Starting game
play

Sending request to
play tutorial

Choosing answer

Changing answer

Displaying
instructions

Receiving player's
answer

Receiving player's
answer Sending answer

[answer solved
problem?]

Finish round and
display leaderboard

[all rounds
completed?]

Display winning team
and disconnect players

Disconnecting from
the game

Waiting for
round to start

[show
tutorial?]

[yes]

[no]

[no]

[yes]

[no]

[yes]

Creating game settings:
welcome message,

of players,
of teams

Connecting own
device to local

network

Figure 2.5: Standard game flow
28

2.10. Domain model
class Zpracování textur

Problem

- number: int

Team

- color {id}
- score: int
- size: int

Moderator Game

- settings

Player

- answer: int
- id: int {id}

Round

- difficulty: int
- duration: int

1

Oversees

0.. *

1

Participates in
1.. 8

1.. 5

Is part of
0.. 1

1
Sets up

0..*

1

Sets up

0..*

1
Consists of

0.. 3

1
Solves

1

1

Generates

0.. *

Figure 2.6: Simple domain diagram of the game NUMBERS

• Game Each game has its initial configuration which determines the
number of players and teams. Each game has a set of teams that par-
ticipate in it and solve the problems the game generates in each round.

• Round Each round has a duration and difficulty set by the moderator.
Every game must finish three rounds before its completion.

• Player Every player connected to the game has its own unique identifier
– by which is recognized on the moderator’s controller. Once the player
is assigned to a team and round is started, the player will participate in
the game by choosing an answer.

• Team The team entity gathers answers from its players and keeps up-
dated information about the number of players it contains and the score.

• Problem Once a round is started, each team is assigned a problem to
solve. The problem is a number that the team must match to solve.

The entities and their relations are shown in figure 2.6.

29

2. Analysis

2.11 State Machine Diagram

The described processes and game flow resulted in a state machine diagram in
figure 2.7. This diagram is a base structure for the latter design of a prototype
of the game NUMBERS, but can be re-used for other cooperative games as
the principles of establishing connections, starting a game, gathering players’
input and ending a game are universal. It is clear from the diagram that the
application operates in two main loops. The first loop goes through states 1 – 6
and presents one complete game, after each such loop the game can start with
a different set of teams and players, but the moderator stays connected. The
second smallest loop goes through states 3 – 5 and represents a game round,
each of which keeps the teams and players, but can have different difficulty
and duration.

30

2.11. State Machine Diagram

ST
AT

E
0

In
iti

al
iz

in
g

th
e

Co

nt
ro

l S
ys

te
m

 a
nd

w

ai
tin

g
fo

r M
od

er
at

or
ST

AT
E

1

M
od

er
at

or
 is

 s
et

tin
g

th
e

ga

m
e

ST
AT

E
2

Pl
ay

er
s

ar
e

co
nn

ec
tin

g
to

th

e
ga

m
e

ST
AT

E
3

M
od

er
at

or
 is

 s
et

tin
g

a
ne

w
 ro

un
d

ST
AT

E
4

Ga
m

e
pl

ay

ST
AT

E
5

Le
ad

er
 b

oa
rd

ST
AT

E
6

Ga
m

e
ov

er

D
isc

on
ne

ct
in

g
pl

ay
er

s

[M
od

er
at

or
 c

on
ne

ct
s]

[M
od

er
at

or
 st

ar
ts

 a

 n
ew

 g
am

e
]

[P
la

ye
rs

 a
re

 c
on

ne
ct

ed

an
d

te
am

s a
re

 c
re

at
ed

]
[M

od
er

at
or

 st
ar

ts
 a

 g
am

e
]

[[
Tu

to
ria

l c
an

 b
e

sh
ow

n
in

be

tw
ee

n
st

at
e

3
an

d
4

]]

[R
ou

nd
 ti

m
e

lim

it
is

up
]

[I
f a

ll
ro

un
ds

ar

e
fin

ish
ed

]

[M
od

er
at

or
 c

an
ce

ls
ro

un
d

]

*

*Af
te

r a
 g

am
e

is
st

ar
te

d,
 th

e
M

od
er

at
or

 c
an

 c
an

ce
l i

t
at

 a
ny

 p
oi

nt
 w

hi
ch

 w
ill

 re
se

t t
he

 p
ro

ce
ss

 to
 S

TA
TE

 1

[A
 n

ew
 g

am
e

is
re

ad
y

to
 b

e
st

ar
te

d
]

[N
ot

 a
ll

ro
un

ds

ar
e

co
m

pl
et

ed
]

Figure 2.7: State Machine 31

Chapter 3
Technologies for prototype

development

This section deals with the analysis and selection of technologies and tools
fitting the requirements of a local distributed cooperative game for chosen
immersive environment.

3.1 Immersive environment

The environment in which the game will be played will have, without a doubt,
the greatest impact on the visual form of the game. There are several types
of projection rooms and surfaces but some are more immersive than others:

• Two-dimensional flat screen While flat projections, such as class-
room projections, TVs or movie theater screens, are the least immer-
sive types of environments, they are very accessible and can be found
virtually anywhere from households and schools to train stations and
shopping malls. The most common monitor and video projector aspect
ratios are 4:3 (XGA and SXGA), 16:10 (WXGA and WUXGA) and 16:9
(standard HDTV, 1080p) [24]. Theaters nowadays usually offer 2K or
4K resolution [25], but cluster based systems like SAGE and SAGE2
offer presentation across multiple synchronized displays, reaching even
higher resolution11 [26].

• CAVE and dome projection This type of environment undoubtedly
offers higher level of engagement as the audience is literally surrounded
by the projection. CAVE is a multiprojection system where scenes are
projected onto the lateral surface area of a cube-like room [27]. Sim-
iliarly immersive to a CAVE projection is a dome projection used in

11The system at SAGElab, CTU FIT (https://sagelab.cesnet.cz/en/) consists of 20
FullHD monitors resulting in 9600 x 4320 pixels or 8K+ resolution.

33

3. Technologies for prototype development

planetaria. While mapping a 2D canvas on a hemisphere is possible ei-
ther by using a fisheye projection or by warping the 2D canvas prior to
projecting, the content should be customized for such environment as
the two-dimensional frame must deal with the issues of 360◦ angle and
the need for high resolution of a three-dimensional space [28].

• Other There are many more technologies focused on immersive expe-
rience, and some, such as VR and AR headsets offer far superior expe-
rience than even a dome projection. Because of the fact that the game
NUMBERS is set to be controlled via smartphones, the author dismissed
these technologies for the design of own prototype.

Because the proposed game is set for maximum of forty players who need to
be able to use their smartphones, the author decided to develop the prototype
for a movie theater like setting, with one flat projection screen.

3.2 Network architecture

There are two12 [29] main network topologies for online multiplayer games,
the peer-to-peer solution and server-client, and both are being currently used
for different games.

The peer-to-peer architecture has a few undeniable advantages; for fully
distributed fast paced games such as car racing, the response time is faster as
each player updates the game state view based on signals received from other
players [29].

Although there are systems that benefit from fast response times using
peer-to-peer broadcasting, such as the framework MicroPlay, the game NUM-
BERS is, for one, not as fast paced to utilise that feature. Moreover, while
the MicroPlay is fully distributed [30], the game NUMBERS is a centralized
system, revolving around one playfield displayed on one surface.

Considering our application already has a need for control system, the
server-client solution is more straightforward solution.

3.3 Platforms

This section proposes few suitable tools for developing a distributed coopera-
tive game and the choice for develpomn NUMEBRS.

3.3.1 Game Engines

A game engine provides a set of tools for developing a complete game – from
implementing game logic, synchronization and memory management to ani-

12The third network architecture is a hybrid between the peer-to-peer and server-client.
This type of architecture is used for mass online multiplayer games.

34

3.3. Platforms

mating and rendering graphics. Most game engines contain these main com-
ponents: a rendering engine, an audio engine, a physics engine, AI module and
the game logic program [31]. The two currently most popular game engines
are Unreal Engine 413 and Unity3D 514. Both Unity3D 5 and Unreal Engine 4
have API for scripting, support for 2D and 3D game development for multiple
platforms and both offer conditionally free versions. Since a prototype of a
cooperative game could be developed in either of those engines, the choice of
using Unity 5 is based on its simplicity and better documentation.

3.3.2 Server-Client communication

One of the main responsibilities of the server is keeping the clients synchro-
nized. The trouble with a browser client comes with the connection over an
HTTP request/response protocol. One way to push data from server to web
page client is to use AJAX. AJAX uses the XmlHttpRequest object to peri-
odically send HTTP request to server, this process is known as long-polling.
Having multiple clients automatically sending requests to the server, just in
case there is a change of state, is rather inefficient and could very well lead to
latency and server overloading, depending on the implementation [32]. There
are multiple [33] solutions to this problem and one of them is using WebSock-
ets, which enable to send and receive data through a TCP socket.

• Unity dedicated server The Unity Game Engine offers its own dedi-
cated server – the Unity Multiplayer15. To utilise WebSockets, another
option for Unity based server is using a library such as websocket-sharp16

to implement a websocket server.

• External server Another approach would be to use an external server
and connect the game engine as a client. This solution would effectively
separate the game play logic from handling the players’ connections.
It would also allow for the game to be run on a different device and
have the game updated only in need of changing the content on the
central screen. This approach leads to a more plugin-based design and
significantly improves the application’s potential for future expansions.

After considering both options, having an external server is possibly a
more complex feat for the implementation of the prototype, yet it is the better
solution for creating a modular expandable software. One of the most popular

13https://www.unrealengine.com/en-US/
14https://unity3d.com/
15https://unity3d.com/unity/features/multiplayer
16https://github.com/sta/websocket-sharp

35

3. Technologies for prototype development

and well documented options for WebSockets is combining Node.js17 server –
along with the Express.js18 web framework – with the Socket.IO19 library.

3.3.3 Browser-based controllers

One of the requirements, discussed in section 2.5, suggests the controllers to
be accessible via web browser, which rules out the option of using an Unity
deployed mobile app as a remote control and demands a web-based solution.

• JavaScript This multiplatform, dynamic and objected oriented lan-
guage is one of the most popular tool for creating interactive web con-
tent. JavaScript runs in the browser client – a signifficant distinction
over some other scripting languages such as PHP, which run on the
server [34].

• JavaScript Client and WebSockets Having a Node.js server along
with Socket.IO JavaScript lends itself to extending the same tools to
developing the players’s and moderator’s controllers. The Socket.IO
client API is analogous to the server API, and uses JavaScript callback
functions to react to communication.

• HTML5 The standard markup language for web pages is used to create
structured web-page document. HTML elements, for example canvas,
div or paragraph, are structured containers that allow to draw interactive
graphics via JavaScript [35].

3.3.4 Connection

Communication protocol Since the clients connect to the server through
a web browser, the initial connection takes place over the HTTP protocol [36].
After the initial HTTP handshake the WebSocket connection has been opened
and the communication progresses further over its own protocol.

Updated Architecture

Because of the choice to use an external Node.js server instead of Unity Multi-
player dedicated server, the control system from the initial architecture should
be divided into two independent agents with a two-way communication. This
addition not only separates both the game play mechanics and visualisation
from the communication layer but also enables the game engine to only keep
data relevant to its current state, without having to synchronize all of the
players’ events. See the updated architecture in figure 3.1.

17https://nodejs.org/en/
18https://expressjs.com/
19https://socket.io/

36

3.3. Platforms

Server

Central Display

Moderator

Player

< two-way connection >

< one-way
connection >

< two-way connection >

Player Player Player...

< two-way connection >

Game Engine

Figure 3.1: Updated architecture: Control system has been separated into
server and game engine

37

Chapter 4
Prototype Design

After analysing several applicable game ideas and deciding on one, the next
stage is the formation of a solution. The requirements analysis along with
the deduced state machine and the initial design of the architecture, lay the
foundation for designing the states of each module: the game engine, player
controller, moderator controller and server. After having clear picture of each
module’s behavior, the communication that will signal a change of state be-
tween the clients and the server will be proposed. The remainder of this
chapter is dedicated to the design of graphical user interface, data structures
and manipulation and the application modularity.

4.1 Scenes and controller screen design

This chapter describes how each state translates into a visual response on
screen. The author chose a 2D projection as a demonstrative utility for main
projection surface – for that reason all the following storyboards will be in
16:9 ratio.

4.1.1 Main projection

The game engine needs a network manager agent that will be initiated at
the beginning of running the program and handle a two-way connection to
the server. The connection must remain uninterrupted over the course of the
game and can be only closed by terminating the program20. The transition
between scenes is shown in figure 4.1 along with wireframes of the graphical
user interface of each scene.

0. Initialization state Game engine initializes its Network Manager and
establishes connection to the server. After the connection is established,
the game engine can switch scenes and wait for the game setting.

20This also implies that the server must be running prior to running the Unity3D program.

39

4. Prototype Design

1. Waiting for the game to start Once the moderator sends the game
settings to the server , welcome message, number of teams and expected
number of players is passed on to Unity and a new scene is loaded.

2. Welcome screen This static screen displays the instructions for con-
necting a player device to the game via web browser. Once the first
player has connected, new scene is loaded.

3. Waiting for players The instructions from last scene are still displayed.
Unity gets a message from the server anytime a player has connected
or disconnected. The number of connected players ready to play is
displayed along with the expected number of players. This way the
players can collectively see who has connected and how many have yet
to be connected. When the server sends a message that the moderator
assigned teams the next scene will load. While Unity3D application
does not keep an instance of players’ connections, once the teams are
assigned, the application will keep and update the information about
each team until a new game is started.

4. Round Introduction Static screen displaying which round is up next
and what its duration and difficulty will be. Both of those can be
changed by the moderator on request and passed over to the Unity3D
application through the server.

5. Tutorial Optional scene which is triggered by a request from the mod-
erator to the server. After the scene animating the game play and rules
is finished. The game waits for the game to be started by the moderator.

6. Game Play The game starts by generating a problem for each team
and ends after the round duration elapses. Server keeps updating the
team’s collective answers and also separate players’s answers. Problems,
one for each team, will appear on one side of the screen and proceed to
roll to the other side. Once a problem rolls off the screen the team has
failed to complete it. Team scores 10 points for each solved problem. If
the difficulty is set to 1 – the easiest – there is no time limit in which the
team must solve the problem, apart of the duration of the round, and
the problem will appear again after rolling off the screen. For moderate
difficulty, the team will lose 5 points for each time a problem rolls off
screen, but problem with the same number as before will appear. The
hardest difficulty will have teams lose 5 points for each failed problem
and a completely new problem will be generated.

7. Leader Board This scene displays the teams in order by their overall
score from all rounds combined. If not all rounds have been completed,
the scene is switched back to scene 4 on moderator’s request.

40

4.1. Scenes and controller screen design

8. Game Over After all three rounds are finished, the game will instead
of scene 4 switch to this scene, which will display the winning team.

Teams in NUMBERS As mentioned above once a team is allocated
the Unity3D application keeps and updates its attributes. Each team must
have assigned its size, which is the number of players in the team. Once a
round is started, the team entity gathers its current players’ answers along
with the reached score. While each team will have a name, they must be
easily recognizable by distinct colors. Team data is destroyed after the game
is finished or cancelled.

Moderator settings in NUMBERS Each of the moderator’s settings
such as the welcome text and round difficulty is saved and updated in the app
for the whole duration of one game. Once a game is cancelled or finished, the
setting will be reset back to default values.

In the case that the moderator resets a round, the application will return
to scene 4. If moderator cancels the game or after the game is finished, the
application will return to state 1 waiting for the next game to begin.

4.1.2 Player controller

The player controller is accessible via web-browser on local network. After
the player connects to the local network, he or she should be redirected to
the controller web-page. Once the page is loaded, connection to the server is
established and must be kept through the duration of the game. The player
will be disconnected once they close the browser window. The transition
between the separate controller screens is visualized in figure 4.2. Below are
listed the separate states of the player controller application:

0. Game is not accessible If the game is currently in progress or has
not been started yet, the controller displays a message to try again later
and the connection to the server is interrupted. This screen includes a
refresh button which the player can use to try to reconnect.

1. Joining a game After the game has been started and setup by the
moderator, the screen will show a welcome message along with a single
button that will connect the player to the game.

2. Waiting for other players Once a player has joined the game, they are
assigned a unique player identification number. The number is displayed
on the screen at all times until the player disconnects from the game. At
this point, the player is connected to the game and is waiting for other
players to join him in waiting for the teams to be assigned. He or she
can choose to stop waiting, at which point they will not be included in
the game once the teams are assigned, and will be redirected to state 0.
Team selection: Alternatively, the player can signalise preference for
one team over the others.

41

4. Prototype Design

first player
connects

moderator
triggers
tutorial

moderator
starts game

moderator
starts round

moderator
creates
teams

rounds left
to finish

all rounds were
completed

Figure 4.1: Central screen scene designs

42

4.1. Scenes and controller screen design

3. Team assignation After the teams are allocated, the player is notified
about the team they have been assigned to. From this point the team
color will be at display until the game is over.

4. Tutorial When the tutorial runs on the central screen, players are no-
tified to watch the instructions.

5. Game Play - choice After each round is started, player has access
to multiple possible answers to choose from. By tapping a button with
an answer, the answer is sent to the server and then passed on to the
Unity3D game application and to the moderator, who can oversee the
player’s answer at any point in the game play. By choosing an answer the
next screen is loaded. If a player later decides to go back and change his
answer, the current answer will be highlighted among all other answers.

6. Game Play - answer Since player has chosen an answer, the current
answer is now visible on screen. The player can choose to change his
answer by clicking a button that will take him to the former screen.

7. Round Over After each round is finished, players are notified and
encouraged to wait for a new round. From this point, the game will
progress either to the tutorial screen – screen 4 – or to the game play
screen – screen 5.

8. Game Over When all rounds are finished, the server will signalise the
end of a game so players won’t expect another round. The screen con-
tains a notification about the end of a game.

9. Disconnection After the game is over, all players are disconnected
from the server to allow for new game settings. The screen contains
a notification about disconnection from the server.

4.1.3 Moderator controller

The moderator must connect to the server prior to any players as the game
stays otherwise inaccessible.

1. Game Settings The initial page shows multiple input fields for the
game configuration. After the fields are filled in the moderator can
start the game – action that will pass the game settings to Unity3D
application.

2. Waiting for players The controller will notify the moderator each time
a player has connected to the game. The page will create a slot for each
connected player and display the player’s status21 and unique identifier.

21connected or disconnected

43

4. Prototype Design

Figure 4.2: Player controller screen wireframes

The moderator can request team allocation by tapping a button, which
will also load the next page.

3. Round Settings The page will maintain the players’ slots and also
show input fields for the round settings. Each player slot also displays
which team they belong to. The page contains buttons for cancelling
the game, showing the tutorial and starting the round.

4. Game Play The page further contains a button to cancel the round.
Moderator now can oversee each player’s answers.

44

4.2. Connection and communication sequence

5. Round Over After the round is over, the central screen shows the
leaderboard until the moderator taps a button to start a new round or
finish the game – in case all rounds were completed.

4.2 Connection and communication sequence

The connection between each part of the prototype is crucial to the game. It
has been established in section 2.5, that the actors must be interconnected via
local network, and later the decision to use external server in addition to the
game engine application led to separating the design into four applications.
As these applications should be as independent as possible, greater amount
of thought must be given to the communication flow used to synchronize and
transfer data across the server to and from the clients. It is apparent from
the design of the game and the described states of each application, that the
communication is very time-sensitive and many events in the game have a
firmly set order of succession.

ModeratorSetting

- gameSettings: GameSettings
- roundSettings: RoundSettings

+ setRoundSettings: void
+ setGameSettings: void
+ updateRoundSettings: void
+ updateGameSettings: void
+ playTutorial(): void

Team

- id: int
- color: string
- size: int
- sum: int
- score: int

+ updateSize(): void
+ updateSum(): void
+ updateScore(): void

RoundSettings

- number: int
- duration: int
- difficulty: int

GameSettings
- numberOfTeams: int
- maximumPlayers: int
- welcomeText: string

0..3

0..1 1

1

NetworkManager

- settings: ModeratorSetting
- teams: Team []
- currentSceneIndex: int

+ setRoundSettings(): void
+ setGameSettings(): void
+ updateRoundSettings(): void
+ updateGameSettings(): void
+ playTutorial(): void
+ loadScene(): void

Scene

- SceneIndex: int
- manager: NetworkManager

GameController
- teamSlots: Slot []
- problemPrefab

+ assignSlots(): void
+ generateProblem(): gameObject

1

1

1

1

Uses

Figure 4.3: The main proposed data structures kept in the Unity3D applica-
tion

Given that all communication is passed from and to the server, the main
responsibility of the server is to correctly evaluate each request and send a

45

4. Prototype Design

fitting response either to the same or different client or clients. The commu-
nication flow is shown in figure 4.6.

Moderator

- maximumPlayers: int
- numberOfTeams: int
- roundDifficulty: int
- roundDuration: int
- welcomeText: string
- gameState: int

+ assignTeams(): bool
+ cancelGame(): void
+ cancelRound(): void
+ playTutorial(): void
+ setGame(): void
+ setRound(): void
+ startRound(): void
+ connectPlayer(): Player
+ disconnectPlayer(): void
+ updatePlayer(): void

Player

- id: int
- team: int
- answer: int
- active: bool

+ updateAnswer(): void
+ setTeam(): void
+ setActive(): void

-isContainedIn +Contains

1 0..*

Figure 4.4: Moderator controller keeps data concerning the game settings and
connected players

4.3 Class diagrams

Several independent data structures will form the the core of the game NUM-
BERS, some of which will contain data needed to be synchronized between
several applications via the proposed communication protocol. The proposed
class diagrams for the Unity3D application, moderator controller and server
are shown in figures 4.3, 4.4 and 4.5.

Player

- id: int
- team: int
- answer: int
- deviceInformation: string

+ updateAnswer(): int
+ setTeam(): void
+ logInformation(): void

Team

- id: int
- size: int
- collectiveSum: int
- sumData: string

+ updateSum(): void
+ updateData(): void
+ updateSize(): void

Figure 4.5: Server keeps stored all client connections in addition to storing
data about the players and teams

46

4.4. Graphical user interface

4.4 Graphical user interface

While attractive graphics is not the most crucial part of the prototype as it is
a proof of concept and not a fully developed game, certain graphic standards
must be taken into consideration. Poorly designed graphical user interface
could easily render the prototype impractical, therefore these following ideas
will improve the usability of the game.

Playfield The scene is divided into several horizontal slots, one slot for
each team. Each team has all its information displayed in this horizontal line.
The text and the problem visualization are both in the team’s color. Each
slot displays information about the team’s score and the current collective
answer of the team. For better clarity the separate answers of each player may
be also displayed, to indicate how each player voted. The timer and round
information is displayed on the background of the scene and in the middle
of the screen. For more information about the design, please see wireframes
in figure 2.5. Each of the team’s problems must be visible at all times, and
once a team succeeds in solving the problem, the event shall be visually and
audibly indicated.

Player controller The user interface on the client device must be rea-
sonably responsible to accommodate different types of mobile devices, but is
primarily meant to be accessed through smartphone. Another key feature is
visual similarity to the central screen in font use and color palette, as the
controller should clearly indicate that it is an extension of the course of events
happening on the central screen.

Moderator controller The controller must be able to effectively display
all players’s information on one screen, without requiring the moderator to
scroll or list another page.

4.5 Logging and data gathering

From the moment the player is connected, the server can gather and save his
interactions or any other type of information the player chooses to share. Now,
this game does not require for the players to submit their personal information
such as age, gender or favorite color, yet even logging and subsequently ana-
lyzing the player’s behavior during the game may offer valuable information.
Among others player’s behaviour logging and analysis may give information
about the game play – for example who is the most active player, what is
the strategy the team chose, how much time it took per average to solve a
problem – but also about the prototype itself – How many players were idle
during the first round? Were they more active in the second? How many
player’s decided to leave the game before it was over? Were they in the cur-
rently losing team? While many of those questions could be answered during
a lengthy testing by asking the players, all of those could be also answered by

47

4. Prototype Design

an extensive behaviour logging and proper analysis.
The simplest way to monitor player’s behaviour is simply logging the traffic

incoming from the client to the server.

4.6 Modularity

Each application connected to the server must be independent, working only
with the data from user’s input or accessed via the server. That way future
changes and improvement can be applied to just one part, without affecting
the whole system. This principle should be applied also to the two main
application layers in Unity3D project – the communication layer and the vi-
sualisation layer.

While the above described application states were created for the game
NUMBERS, the architecture and communication protocol are very well appli-
cable to other games. The only game-specific data transfer between the game
engine and the server are the players’ answers. The essence of the problem to
be solved is present only in the Game Controller layer of the Unity application
and nowhere else.

48

4.6. Modularity

SERVERUNITYMODERATORPLAYER
connecting to the server connection established

connecting to the server connection established

sending game configuration passing on game config

accepting game configuration

connecting to the server handling player connection

of connected players

player connection and ID
accepting ID

request team allocation handling team allocation

accepting team

of teams and their sizes

sending round configuration passing on game config
accepting round configuration

requesting tutorial handling tutorial request
accepting tutorial request

tutorial notification

starting round handling round start
accepting round start

accepting round start

sending answer handling players answer
accepting players answer

accepting updated team's
collective sum and team's
separate answers

sending team's success handling team's success
resetting answers in
team's players

accepting players answer

round over passing on round over

round over - in leaderboard

round over - in leaderboard

game over

switch from leaderboard handling switching to
waiting for new roundleaderboard over

wait for new round

handling switching to
game over

end game handling game over

game reset
disconnect

cancel game handling game over

game reset
disconnect

cancel round handling round reset

round reset
wait for new round

game over
configure new game

STATE

0

1

2

3

4

5

5 → 3

6 → 1

4 → 3

2 → 6

5 → 6

+

message from client to server
message from server to client

Figure 4.6: Communication flow aligned with states from figure 2.7

49

Chapter 5
Realisation

This chapter is focused on the complete realisation of a prototype of the local
cooperative game NUMBERS. The first section is dedicated to the overall
structure of the project, while the second describes the most important parts
of implementing each application. The chapter further describes the main data
structures and issues that came across during the process of implementation.
The final section addresses the process of installation and setup in order to
successfully launch the prototype.

5.1 Project structure

The prototype consists of 4 separate applications – the server, two web based
applications, referred to as PlayerController and ModController, and one
Unity3D game application, hereafter referred to as the UnityApplication.

Server application The server is operated from a single JavaScript file
called server.js in the root of the web folder. The gathered data are stored
in the log folder.

PlayerController The application consists of a JavaScript file sketch.js
with a commented set of functions handling the connection to the server and
interactivity. Predefined variables along with the IP address and port are kept
in the file resources.js. The files are linked together along with two CSS
files, ensuring responsible design, via the index.html file.

ModController Similarly to the PlayerController the logic and inter-
activity is largely kept in the mod.js file in the Mod folder. The predefine
variables are again kept in resources.js file. Other files contain declarations
of data structure functions and HTML elements.

UnityApplication The Unity3D project consists of several files needed
for the project to be opened in the Unity3D editor, but all the user-made
files are stored in the Assets folder. The ten separate scenes are kept in the
folder Scenes within the Assets folder. All the C# script the author made are
stored within the Scripts folder, regardless of the scene or game object they

51

5. Realisation

are linked to. The font family Orbitron22 that the author used for all the text
within the game scenes is stored in the folder Fonts. The Libs folder contains
the imported .dll files enabling the use of the socket.io-unity library used
to establish a WebSocket connection between the UnityApplication and the
server. Pre-made game objects are stored in the Prefabs folder and explosion
effects are in a folder named Smoke. All created and subsequently imported
textures are in the Textures folder while all of the materials that are real-time
loaded during the game play must be stored in the Resources folder.

5.2 Implementation

This section describes the most significant parts of implementing each part of
the distributed game.

5.2.1 Server and controllers

The server application handles the incoming and outcoming messages from
UnityApplication, ModController and multiple PlayerControllers. To estab-
lish the connections, the author setup the server to listen on three separate
ports, each for one type of client. As both UnityApplication and ModCon-
troller connections are kept in single variable, the server only allows for one
connection from each application. Communication with client applications
was realized through setting a different event listener to each port and subse-
quently storing each connection through a Socket.IO socket object for later
use. The server keeps the current state in the gameState variable used to
synchronize the state on the client devices.

Data log on server While the design proposes extensive player behavior
logging, the prototype implements the general idea of keeping a set of in-
formation about each connected player. Every time a player connects to the
game, the server logs information about the device accessed via the user-agent
header presented in the HTTP protocol [37]. The logged device information
consist of the device’s IP address, web browser and operational system. The
server logs each game to a different file and utilizes the useragent-parser-js23

package to parse the data from an HTTP request.
PlayerController The controller was implemented to mimic the design

proposed in the wireframes in 4.2. The connection to the server is realized
through Socket.IO Client API and kept through the socket variable.

ModController The controller was implemented to accommodate each
state as described in section 4.1.3 of the Design chapter. The application
keeps data about the players and their actions. The connection is realized
through Socket.IO Client API.

22https://fonts.google.com/specimen/Orbitron
23https://www.npmjs.com/package/useragent-parser-js

52

5.2. Implementation

5.2.2 Unity project

DATA LAYER

SCENE 0 SCENE 6 SCENE 9... ...

NETWORK LAYER

PRESENTER LAYER

TEAMS MODERATOR'S SETTING

NETWORK MANAGER

Figure 5.1: Three layers of the UnityApplication.

The work on the game engine side of the prototype lies in the realisation
of a stable two-way socket connection to the server and the visualisation of
the 10 scenes seen in figure 4.1. The UnityApplication could be divided into 3
structural layers: network layer, data layer and presenter layer. Each scene has
own script that displays or animates its contents. After one scene is loaded,
all the objects, settings and data stored in the previous scene are lost. For
that reason, the data that needs to be kept across multiple scenes ought to be
stored in a lower layer as seen in figure 5.1.

Figure 5.2: Creating scenes in the Unity3D editor.

Two-way socket connection The connection between the server and
the NetworkManager class24 was implemented using the socket.io-unity [38]

24The class can be found within the Scripts folder in the NetworkManager.cs file.

53

5. Realisation

library. The connection is kept during the whole run of the unity project.
Creating scenes in Unity3D Each of the scenes was first created in the

Unity Editor. The background canvas is a plane with assigned texture. There
is only one ortographic view of the scene, provided by a camera positioned in
90◦ angle over the background canvas. Each scene is illuminated by three di-
rectional lights. All texts and panels were realised by the Unity3D UI Canvas,
Text and Image objects.

Problem visualisation There are many ways to show a number on screen
in the Unity3D game engine, some more straightforward than other. Since
the displayed problem must indicate both number and team color, combining
these two into one object became the most practical solution. In deciding
what exactly the object should be, pool balls stood up in association as they
combine colors, numbers and roll on a given surface. To implement the idea,
that the application will generate new problems during the game play, it was
necessary to create a prefab25 asset of the chosen object. As sphere shape is

Figure 5.3: Ball prefab: visualisation of a problem on screen.

one of the primitives that can be created directly within the editor, the author
did not have to model and import own object. Each visible model in Unity
has its Mesh Renderer Component with the Materials attribute [39]. The
most effective way to change the numbers and colors of each sphere, was to
assign two materials to the Mesh Renderer before the object’s instantiation.
The first material would be the color of the team and the second, partly
translucent, would show the number. Materials can be easily created in the
Unity3D Editor by importing a texture and subsequently assigning the texture
to a newly created material. Therefore the author prepared set of materials in
the Resources folder of the project. Files saved to the Resources folder can be

25https://docs.unity3d.com/Manual/Prefabs.html

54

5.2. Implementation

Figure 5.4: Smoke explosion animation: visual feedback to solving a problem.

subsequently loaded during the game play via script. The author then added
several scripts to the sphere GameObject:

• Mover This script enables the object to realistically move across the
scene, depending on the speed variable. The speed is dependent on the
team size Tsize, as larger teams need a bit more time for communicating
strategies:

speed = (12− Tsize) ∗ 0.95
2.5

• Random Rotator Enables the object to rotate by setting its angular ve-
locity vector, the speed of rotating depends on the tumble variable.

• Destroy By Time Each instantiated object gets destroyed over some
time after it rolls off the screen.

• Destroy By Team The object recognizes if a team has been successful
in matching its number and calls subsequent events such as explosion
animation, team score update, . . .

Build settings The project was built as a standalone application for Win-
dows platform with x86 64 architecture with the resolution set to 3840x2160
pixels as those are the specifications of the hardware available at Techmania
Science Center in Pilsen26, where the prototype will be subjected to usability
and stress testing.

26http://techmania.cz/en/

55

5. Realisation

5.3 Data manipulation

The vast majority of data is stored on the side of the server and the UnityAp-
plication. The least amount of data is stored in the player’s application, as
the player must only be aware of the state of the game and their answer.

5.3.1 Data structures in UnityApplication

The main two data structures in the Unity3D objects are the class Team and
the class ModSettings as described in chapter 4, figure 4.3. The data are only
accessible via the NetworkManager class that acts as a controller layer between
the scene scripts. Because all of those three classes must remain unaffected by
loading different scenes, the script they are contained in must be assigned to a
Unity3D game object. The object must be then preserved through all scenes
by applying the function DontDestroyOnLoad(game object) in the object’s
initialization.

5.3.2 Data structures on server

The server application keeps three main data structures to successfully store
and then redistribute the information. The functions Player, Moderator and
Team are identical to the structures proposed in the design chapter, figure 4.5.
The team sum on the server is updated by receiving the current answer Pcurrent
from the player along with their previous answer Pprevious. This way the Team
object on server does not have to keep information about its players and their
answers. The team sum Tsum will be:

Tsum = Tsum − Pprevious + Pcurrent

The individual player’s answers are kept in two ways, in the Player.number
variable and then also in Team.sumData array. The array is updated every
time a player of the team changes their answer and passed over to Unity
application. That way the Team and Player units are effectively separated
even on the server, with the Team information only sent to Unity and the
Player data communicated to the player devices and moderator.

5.3.3 Data structures – ModController and
PlayerController

The ModController stores the connected player’s data in the same way as on
server and displays them on screen in a grid of HTML div elements, including
the players’ IDs, teams and current answers, as can be seen in figure 4.4. The
PlayerController keeps only information about the current game state, the
current and last chosen answer and the assigned team.

56

5.4. Issues and solutions

5.4 Issues and solutions

This section focuses on the challenges that needed to be overcome during the
process of implementation.

5.4.1 UnityApplication build

The author’s initial intention was to build the UnityApplication to WebGL
platform, and then use a sage2 unity library27 for SAGE2, that would make it
possible to display the UnityApplication in Electron browser. Unfortunately,
the library used for communication with the server fails to emit messages to
the server in WebGL build. The library’s github page now has multiple issues
dedicated to this problem. One user offered the solution of switching the .NET
version28, which in this case did not help to solve the issue.

5.4.2 Matching colors and fonts

The first group of testers that helped to assess the prototype noticed, that the
color of the balls visualizing the problems in some cases did not match the
general team color shown on client’s device and in some cases was too similar
to other team’s color. This issue was fixed by taking the same background
texture used on the client’s devices to indicate teams and turning it into a
material for the ball prefab. See the difference in figure 5.5. Other issue the
testers noticed was a difficult readability of white text on the team background
for one of the teams. This issue was handled by changing the font color to
darker shade for players with teams of lighter color.

Figure 5.5: Difference between team colors: in upper row are materials before
change.

27https://bitbucket.org/sage2/sage2 unity
28https://github.com/floatinghotpot/socket.io-unity/issues/20

57

5. Realisation

5.5 Installation and configuration

The game NUMBERS requires to have installed Node.js on the machine that
runs the server application. The machine that runs server must be the same
one the moderator will use to access the controller.29

NUMBERS

...
moderator

+
server

+
Unity game

NUMBERS

...

router

players

players

router

moderator
+

server

Unity game

Figure 5.6: Two examples of game setup.

The standalone Unity3D application can run on the same or different ma-
chine. Before launching the applications or controllers, all devices must be con-
nected to a local Wi-Fi network, with the IP address on the machine that runs
the server set to 192.168.0.101. The author used the TP-Link TL-WR902AC
portable router with network set up on 2.4 GHz wireless frequencies for all

29This can be easily changed, but the feature of configuring the input points is not yet
implemented in the application.

58

5.5. Installation and configuration

testing and development. The application setup is described in figure 5.6.
More detailed installation and setup guide is provided in the attachments.

Results The interface consist of two independent applications and con-
trollers for the moderator and players. Realized prototype of the game NUM-
BERS implements all of the functional and non-functional requirements from
section 2.5 and is prepared for usability testing and evaluation. Screenshots
from conducted testings, showcasing the realized prototype and GUI, are en-
closed in appendix C on page 79.

59

Chapter 6
Prototype Evaluation

Testing is a vital part of any application development as it provides useful
information about the product’s quality. In this chapter the author describes
the testing process of the realised prototype of the game NUMBERS and
findings concluded during this process.

6.1 Testing during implementation

The prototype has been tested in iterations all through the process of imple-
mentation in a smaller setting.30 As the development was processed on per-
sonal PC, the author could not test the prototype on more than 5 devices31

at the same time, thus it has been only possible to ensure basic functional
testing.

The testings during the implementation helped to uncover and fix several
problems. One of the problems had been an issue with generating the problem
game objects. If a team solved one problem so quickly, that the object’s mesh
was still in the area a new problem would appear in, the new problem would
be triggered by the other object and it’s trajectory would change accordingly,
leading to objects flying out of scene. This issue has been solved by disabling
the game object’s mesh trigger for until the object passed half of the screen
distance.

6.2 Usability testing

According to [40], a product is usable when “the user can do what he or she
wants to do the way he or she expects to be able to do it, without hindrance,
hesitation, or questions.” Because only a person, who has not developed

30One PC unit running the server, UnityApplication and ModController and 2–4 con-
nected smartphones.

31One extra computer and 3 smartphones.

61

6. Prototype Evaluation

the final product, can approach an application without bias, it is necessary
to conduct usability testing with testers that have not been involved in the
process of realisation.

6.2.1 Test scenario and enclosed questionnaires

This section describes the additional tools used to gather feedback from testers.
Introductory questionnaire The testers were first asked to fill an in-

troductory questionnaire focused mainly on their ability to use a web browser
on their mobile device and the likeness of having them spontaneously connect
to a game that would require an installation of additional application on their
device. The questions are listed below:

1. Do you own a smartphone or a tablet? {Yes/No}
2. Can you connect mobile device to secured Wi-Fi? {Yes/No}
3. Which web browser do you use on your device?
4. Are you allowed to install mobile applications on your device? Do you

know how? {Yes/No}
5. Would you install an application on your device just to play one game

at a party event? {Yes/No}
6. Are you able to fill in URL address to your web browser? {Yes/No}
7. Would you join a cooperative game, if it would require playing with

strangers? {Yes/No}

Test scenario To assess the prototype’s usability, it was necessary to see
the testers interact with the game and carefully observe whether they had
any difficulty with using the prototype. The testers were asked to attempt to
complete these following tasks:

1. Connect your device to the game.
2. Disconnect from the game (not the network).
3. Connect again to the game and wait to be assigned into a team.
4. Watch tutorial on the central screen.
5. Identify your team’s problem on the central screen.
6. Cooperate with your teammates to solve a problem.
7. Identify your team on the leaderboard.
8. Finish the game.

Consecutive questionnaire Many players were not able to give a valu-
able feedback verbally, reflecting more on their gaming experience rather than
the usability of the prototype. For this reason a short survey was created,
that would help to further assess the prototype. The questionnaire consists of
these following questions:32

32Translated from Czech.

62

6.2. Usability testing

1. Do you own a smartphone or a tablet? {Yes/No}33

2. Did you manage to connect your device to the game? {Yes/No}
3. Were you disconnected against your will over the course of the game?
{Yes/No}

4. How much did you mind the fact you could not choose your team? {Scale
from 1 to 5}

5. Did you understand the rules of the game and the events over the course
of the game? {Scale from 1 to 5; 1 – everything was clear, 5 – did not
understand even after several rounds}

6. Try to assess the game’s complexity. {Scale from 1 to 5; 1 – extremely
simple, 5 – too difficult}

7. How many players combined were in your team? {From 2 – 5 players}

Testers were encouraged to add own notes and further feedback under each
question.

6.2.2 Testers

Because the section 2.2 describes the target audience as a diverse group, the
selected testers should reflect that fact as well. The usability testings were
conducted on several occasions with different sets of testers. The first few
testers were students at CTU FIT, very technically savvy group of people
in their 20’s. The second group was rather diverse group of people during
Open house at Technical college of information studies where some testers
were teenage attendees and some part of the school management.

6.2.3 Conducted testings

Testing at CTU: Game configuration: Initially one team with four connected
players, difficulty set easy and round time to 90 seconds. Over time the number
of players progressed and further games were played by multiple teams, usually
with 2 to 3 players and the difficulty set to hard. Connected players: At peak
24 player controllers were connected to the game, with 8 teams participating
in the game. Testers have not been given any additional information about
the system. Completion of usability test scenario can be seen in table 6.1.

Testing at Open house: Game configuration: 2 teams with 2 players per
team. Difficulty set to easy, round duration was 1 minute. Connected players:
At peak 4 player controllers were connected to the game. Testers have not been
given any additional information about the system. Completion of usability
test scenario can be seen in table 6.2;

33This question has been asked again because some testers used borrowed devices, which
can affect their ability to use the game smoothly.

63

6. Prototype Evaluation

Tester 1 Tester 2 Tester 3
1 3 3 3

2 3 3 3

3 3 3 3

4 3 3
completed with difficulty,

see section 6.2.4
5 3 3 3

6 3 3 3

7 3 3 3

8 3 3 3

Table 6.1: Test scenario completion: testers at CTU

Tester 1 Tester 2 Tester 3 Tester 4 Tester 5 Tester 6

1 3 3
not completed,
see section 6.2.4 3 3 3

2 3 3 3 3 3 3

3 3 3 3 3 3 3

4 3 3 3 3 3 3

5 3 3 3 3 3 3

6 3 3 3 3 3 3

7 3 3 3 3 3 3

8 3 3 3 3 3 3

Table 6.2: Test scenario completion: testers at Open house

6.2.4 Testing analysis

Testing at CTU: After the test script was completed, the testers were fur-
ther asked to compete for a substantial prize to further motivate the group to
react faster. The prototype performed well even during this fast paced testing,
where noticeable latency would cause frustration to the testers. The general
assessment has been rather positive, with only a few complaints about the UI
on mobile device and some unreliable response to their actions34 on the main
screen. Despite the positive feedback, it must be taken into consideration that
all of the testers in this testing setting have been technically savvy and there-
fore had no additional problems with the setup, such as typing an IP address
into a browser window. Although it has not resulted in difficulty during the
game play, one tester stated, that she had difficulty following the tutorial, as
she cannot read English very fast and suggested using more animation instead
of text. In response to the first testing a major UI update was added to the

34While the game and score has been progressing safely, from time to time the players’
numbers and sum printed on the main screen have not been up to date. This bug has been
recorded happening anywhere from 0 to 16 times per round.

64

6.3. Concluded issues

controller on mobile device along with a QR code for more intuitive joining
process. The second testing couple days later, with the same type of techni-
cally savvy testers, assessed that the colors of a few teams are difficult to tell
apart and thus the author changed the game object textures to closely match
the team banners in color. This fix can be seen in figure 5.5. Another issue
was raised as two or more teams ended up with the same amount of points
but only one winner was announced.

Testing at Open house: Most testers were able to finish all steps of
the testing scenario. One person needed further instruction to be able to
connect to the game and later filled this following feedback to the follow-
up questionnaire: “[Connecting to the game] caused me difficulty; right after
filling in [the address], I was redirected to google.com and nothing happened.”
Which points out that the player connection to the game must be further
simplified. This time players reacted positively to the game UI, commenting
on clear indication of each player’s answer and the team sum on the central
screen.

6.2.5 Survey feedback

The introductory survey has been filled by 22 players and the consecutive one
by 14 testers. All respondents stated that they know how to connect mobile
device to a Wi-Fi and how to use a web browser on their devices. While
most respondents, 21 out of 22, declared that they know how to install an
application on their device, only 8 stated that they would install an application
for an event game. Some testers added that the included tutorial did not help
them and was frustrating as it contained too much text. Most testers evaluated
the game’s complexity as fairly low (2 out of 5) and played predominantly in
a team of 2 or 3 players.

While the data from the questionnaires is interesting, it is needed to con-
duct several additional testings to gather more responses.

6.3 Concluded issues

While the testing questionnaires provided some information, the most valuable
feedback has proved to be watching the players during the game and listening
to their complaints.

Additional testing analysis resulted in a list of issues that appeared during
testing. The author ordered these problems by its impact on the game play
and will further work on eliminating them before another testing iteration.

6.3.1 Only one winning team – high priority

When two or more teams achieve the same winning score only the last sur-
passing team is announced as the winner.

65

6. Prototype Evaluation

6.3.2 Difficult connection – medium priority

Player must connect to the local Wi-Fi and then allocate web browser and
input IP address. Despite having access to a hyperlink QR code, this has
proven to be an issue for some players and they must have been assisted
before they were able to connect to the game. Possible solution seems to be
the implementation of a captive portal, that would redirect the players to the
URL address right after they connected the device to the local network.

6.3.3 Error in keeping team sum – medium priority

Sometimes during game play the team sum is not reset on the server. This
bug appeared twice during the described testings.

6.3.4 Error in displaying individual answers on central
screen – low priority

Occasionally, after player suddenly disconnects during the game, UnityAppli-
cation takes a bit of time to change the number of players in team. This error
appeared once during the described testings.

6.4 Future testings

After the above issues are fixed the prototype will be required to undergo
another round of basic functionality testings before being tested again for
user usability.

Although the prototype has been designed to handle 40 concurrent players,
the most devices that had been connected at one time has been 2835. Because
of that, the prototype will be required to undergo an additional stress testing
to ensure that it does perform as designed.

35This has been an action outside of the usability testing, conducted spontaneously and
without the test case scenario. Since the author of the prototype had heavily intervened
during the process of playing, the event could not be included as an official testing.

66

Conclusion

This thesis is dedicated to the design and implementation of a distributed
interface for a local cooperative game. The realised game prototype is trans-
portable and controlled via mobile devices, implementing the BYOD gaming
model.

First, the thesis describes several up to date solutions of distributed inter-
faces for local cooperative games, their advantages and limiting factors along
with few concepts applied to cooperative gaming in general. Although the
subject of all possible co-op games, that could be controlled via mobile de-
vices and played in immersive environments, has not been exhausted in the
text, the conducted research provided a steady base for a detailed list of func-
tional and non-functional requirements and further analysis of own design for
distributed interface for a local cooperative game. The latter chapters are
detailing the process of choosing the right technologies and further developing
the design of own solution. The author then proceeded to implement the de-
sign and realised a functional prototype of the cooperative game NUMBERS
to demonstrate the functionality of own solution. The design resulted in a
working prototype with minimal setup and the ability to manage from 2 to 40
players, which has been tested in real operational environment and performed
well.

Room for future improvement

Testing of the prototype helped to uncover few notable errors, most of which
has been fixed, as well as pointed out several areas for improvement.

It has not been explicitly mentioned during the testing, but some players
seemed to be uneasy with having no choice in choosing their teammates. While
the analysis does mention the possibility of players choosing their own teams,
this feature has not been incorporated into the prototype, which is something
that will change in the future.

67

Conclusion

Additionally, the process of connecting players to the game wil be further
simplified by implementing a captive portal web page. As some testers visibly
struggled with the language of the prototype, a fully fledged application should
implement multiple language mutations.

Assignment completion

1. Studying available literature concerning matters of cooperative
games. This point is presented in the State of the art, chapter 1. The
author describes the main principles of cooperative games and analyses
several up to date solutions.

2. Design proof of concept for such distributed game; describe
used mechanics and principles, ideally in a form of short Game
Design Document. From the conducted research, the author deduced
several requirements for own local cooperative game. The author further
specified the mechanics and principles of the developed game NUMBERS
along with specifying the behaviour of each participant. The analysis led
to a state machine diagram, describing the course of the game NUM-
BERS. The process of designing the proof of concept is described in
chapters 2, 3 and 4.

3. Implement prototype of a chosen simplified game for multiple
mobile devices and one central screen. Prototype of the game
NUMBERS has been realised. The game can accommodate from 2 to
40 players and has been primarily developed for an UHD projection
screen. The process of realisation is decribed in chapter 5.

4. Test and assess the prototype in real operational environment.
Although the prototype is yet to be stress tested, it has been tested both
for functionality and user usability on multiple occasions. The process
of evaluation is described in chapter 6.

5. Write down and analyze your observations. The analysis of sev-
eral questionnaires filled by testers resulted in mostly positive feedback.
The prototype was viewed positively in regards to the use of mobile
phones and local Wi-Fi, which assessed it as a viable solution to local
cooperative gaming. While some testers struggled with few tasks, the
prototype has been mostly evaluated as easy to use and provided a pos-
itive gaming experience. The testing also resulted in a list of improve-
ments for upcoming update of the prototype. Because of the mostly
positive feedback, the prototype will be further developed into a fully
fledged application.

68

Bibliography

[1] HANCHAR, T. The Top 10 Event Networking Games. [online], 2018-
01-09, [cit. 2018-05-02]. Available from: https://www.gevme.com/blog/
top-10-event-networking-games/

[2] Z/YEN. Event Games. [online], 2016, [cit. 2018-05-02]. Available from:
http://www.zyen.com/what-we-do/training-games.html

[3] BENFORD, S.; Gabriella Giannachi, T. R., Boriana Koleva. From Inter-
action to Trajectories: Designing Coherent Journeys Through User Ex-
periences. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’09, New York, NY, USA: ACM, 2009, ISBN
978-1-60558-246-7, pp. 709–718, doi:10.1145/1518701.1518812. Available
from: http://doi.acm.org/10.1145/1518701.1518812

[4] KINO SVĚTOZOR. Kinoautomat. [online], [cit. 2018-05-02]. Available
from: http://www.kinoautomat.cz/index.htm

[5] FUSTER, J. ’Choose Your Own Adventure’ Interactive Movie
in Works at Fox. The Warp. [online], 2018-04-26, [cit. 2018-05-
02]. Available from: https://www.thewrap.com/choose-adventure-
interactive-movie-works-fox/

[6] CTRLMOVIETM. CtrlMovie. [online], [cit. 2018-05-02]. Available from:
http://www.ctrlmovie.com/

[7] SLEEPING BEAST GAMES. SpaceTeam. [software]. Available from:
http://spaceteam.ca/

[8] KLOPFER, E.; Judy Perry, e. a. Mystery at the museum: a
collaborative game for museum education. In Proceedings of th
2005 conference on Computer support for collaborative learn-
ing: learning 2005: the next 10 years!, International Society
of the Learning Sciences, 2005, pp. 316–320. Available from:

69

https://www.gevme.com/blog/top-10-event-networking-games/
https://www.gevme.com/blog/top-10-event-networking-games/
http://www.zyen.com/what-we-do/training-games.html
http://doi.acm.org/10.1145/1518701.1518812
http://www.kinoautomat.cz/index.htm
https://www.thewrap.com/choose-adventure-interactive-movie-works-fox/
https://www.thewrap.com/choose-adventure-interactive-movie-works-fox/
http://www.ctrlmovie.com/
http://spaceteam.ca/

Bibliography

https://www.researchgate.net/publication/221033626_Mystery_
at_the_museum_a_collaborative_game_for_museum_education

[9] LI, L.; Zhou, J. Virtual Reality Technology Based Developmental De-
signs of Multiplayer-interaction-supporting Exhibits of Science Muse-
ums: Taking the Exhibit of ”Virtual Experience on an Aircraft Car-
rier” in China Science and Technology Museum As an Example. In Pro-
ceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality
Continuum and Its Applications in Industry - Volume 1, VRCAI ’16,
New York, NY, USA: ACM, 2016, ISBN 978-1-4503-4692-4, pp. 409–
412, doi:10.1145/3013971.3014018. Available from: http://doi.acm.org/
10.1145/3013971.3014018

[10] BELLADA, L. Rybolov. [software], VIDA! center in Brno, The Czech
Republic. 2014. [cit. 2018-04-17].

[11] BROWN, M. Spaceteam Apple TV Review: Can A Fun Mo-
bile Game Work On The Big Screen?. International Business
Times. [online], 2015-11-05, [cit. 2018-05-06]. Available from:
http://www.ibtimes.com/spaceteam-apple-tv-review-can-fun-
mobile-game-work-big-screen-2171177

[12] WEISSKER, T.; Andreas Berst, F. E., Johannes Hartmann. The Mas-
sive Mobile Multiuser Framework: Enabling Ad-hoc Realtime Inter-
action on Public Displays with Mobile Devices. In Proceedings of the
5th ACM International Symposium on Pervasive Displays, PerDis ’16,
New York, NY, USA: ACM, 2016, ISBN 978-1-4503-4366-4, pp. 168–
174, doi:10.1145/2914920.2915004. Available from: http://doi.acm.org/
10.1145/2914920.2915004

[13] MEINHARDT, T. Fußball für alle: MMM Ball. [online], [cit. 2018-
05-02]. Available from: https://www.uni-weimar.de/en/university/
profile/events/archiv/events-2015/summaery2015/summaery2015-
in-progress/fussball-fuer-alle-mmm-ball/

[14] BELLADA, L. [personal communication], 2017-10-26, [cit. 2018-04-17].

[15] SAVIČ, D. Návrh a implementace ř́ıdićıho systému pro exponát Ku-
latý st̊ul ve VIDA! science centru. Master’s thesis, Mendel Univer-
sity in Brno, 2017. Available from: https://theses.cz/id/qicf2q/
zaverecna_prace.pdf

[16] AV MEDIA. ZÁBAVNÍ VĚDECKÝ PARK VIDA! [online], [cit. 2018-
05-02]. Available from: http://www.avmedia.cz/reference/detail/59_
2484-zabavni-vedecky-park-vida

70

https://www.researchgate.net/publication/221033626_Mystery_at_the_museum_a_collaborative_game_for_museum_education
https://www.researchgate.net/publication/221033626_Mystery_at_the_museum_a_collaborative_game_for_museum_education
http://doi.acm.org/10.1145/3013971.3014018
http://doi.acm.org/10.1145/3013971.3014018
http://www.ibtimes.com/spaceteam-apple-tv-review-can-fun-mobile-game-work-big-screen-2171177
http://www.ibtimes.com/spaceteam-apple-tv-review-can-fun-mobile-game-work-big-screen-2171177
http://doi.acm.org/10.1145/2914920.2915004
http://doi.acm.org/10.1145/2914920.2915004
https://www.uni-weimar.de/en/university/profile/events/archiv/events-2015/summaery2015/summaery2015-in-progress/fussball-fuer-alle-mmm-ball/
https://www.uni-weimar.de/en/university/profile/events/archiv/events-2015/summaery2015/summaery2015-in-progress/fussball-fuer-alle-mmm-ball/
https://www.uni-weimar.de/en/university/profile/events/archiv/events-2015/summaery2015/summaery2015-in-progress/fussball-fuer-alle-mmm-ball/
https://theses.cz/id/qicf2q/zaverecna_prace.pdf
https://theses.cz/id/qicf2q/zaverecna_prace.pdf
http://www.avmedia.cz/reference/detail/59_2484-zabavni-vedecky-park-vida
http://www.avmedia.cz/reference/detail/59_2484-zabavni-vedecky-park-vida

Bibliography

[17] DUKOVANY POWER PLANT INFORMATION CENTRE. [personal
communication], 2018-04-06, [cit. 2018-04-06], comunication with nony-
mous guide at the information centre.

[18] BARCLAY, P. Trustworthiness and competitive altruism can also solve
the âĂĲtragedy of the commonsâĂİ. Evolution and Human Behavior,
volume 25, no. 4, 2004: pp. 209–220.

[19] KOU, Y.; Gui, X. Playing with Strangers: Understanding Temporary
Teams in League of Legends. In Proceedings of the First ACM SIGCHI
Annual Symposium on Computer-human Interaction in Play, CHI PLAY
’14, New York, NY, USA: ACM, 2014, ISBN 978-1-4503-3014-5, pp. 161–
169, doi:10.1145/2658537.2658538. Available from: http://doi.acm.org/
10.1145/2658537.2658538

[20] ROCHA, J. B.; S. Mascarenhas, R. P. Game mechanics for cooperative
games. ZON Digital Games 2008, 2008: pp. 72–80.

[21] KAMEDA, T. e. a. Social dilemmas, subgroups, and motivation loss in
task-oriented groups: In search of an “optimal” team size in division of
work. Social Psychology Quarterly, 1992: pp. 47–56.

[22] ZAGAL, J. P.; Jochen Rick, I. H. Collaborative games: Lessons learned
from board games. Simulation & Gaming, volume 37, no. 1, 2006: pp.
24–40.

[23] REUTER, C.; Viktor Wendel, R. S., Stefan Göbel. Game Design Patterns
for Collaborative Player Interactions. In DiGRA, 2014.

[24] RED DIGITAL CINEMA CAMERA COMPANY. Video aspect ratios.
[online], [cit. 2018-05-08]. Available from: http://www.red.com/learn/
red-101/video-aspect-ratios

[25] PENNINGTON, A. The resolution war: is cinema falling behind
home entertainment on innovation? [online], 2017-11-07, [cit. 2018-05-
08]. Available from: https://www.screendaily.com/features/the-
resolution-war-is-cinema-falling-behind-home-entertainment-
on-innovation/5124023.article

[26] SAGE2TM. [online], [cit. 2018-05-02]. Available from: http://
sage2.sagecommons.org/

[27] CRUZ-NEIRA, C.; D .Sandin, T. D. Surround-screen Projection-based
Virtual Reality: The Design and Implementation of the CAVE. In Pro-
ceedings of the 20th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’93, New York, NY, USA: ACM, 1993,
ISBN 0-89791-601-8, pp. 135–142, doi:10.1145/166117.166134. Available
from: http://doi.acm.org/10.1145/166117.166134

71

http://doi.acm.org/10.1145/2658537.2658538
http://doi.acm.org/10.1145/2658537.2658538
http://www.red.com/learn/red-101/video-aspect-ratios
http://www.red.com/learn/red-101/video-aspect-ratios
https://www.screendaily.com/features/the-resolution-war-is-cinema-falling-behind-home-entertainment-on-innovation/5124023.article
https://www.screendaily.com/features/the-resolution-war-is-cinema-falling-behind-home-entertainment-on-innovation/5124023.article
https://www.screendaily.com/features/the-resolution-war-is-cinema-falling-behind-home-entertainment-on-innovation/5124023.article
http://sage2.sagecommons.org/
http://sage2.sagecommons.org/
http://doi.acm.org/10.1145/166117.166134

Bibliography

[28] YU, K.; Dan Neafus, R. W. Filmmaking for Fulldome: Best Practices
and Guidelines for Immersive Cinema (Part I). volume 45, 12 2016: pp.
26–32,34,36,38.

[29] GERLA M. and D. Maggiorini, C.E. Palazzi, A. Bujari. A sur-
vey on interactive games over mobile networks. Wireless Commu-
nications and Mobile Computing, volume 13, no. 3: pp. 212–229,
doi:10.1002/wcm.2197, https://onlinelibrary.wiley.com/doi/pdf/
10.1002/wcm.2197. Available from: https://onlinelibrary.wiley.com/
doi/abs/10.1002/wcm.2197

[30] LE, A. e. a. MicroPlay: A Networking Framework for Local Multiplayer
Games. In Proceedings of the First ACM International Workshop on
Mobile Gaming, MobileGames ’12, New York, NY, USA: ACM, 2012,
ISBN 978-1-4503-1487-9, pp. 13–18, doi:10.1145/2342480.2342485. Avail-
able from: http://doi.acm.org/10.1145/2342480.2342485

[31] NILSON, B.; Söderberg, M. Game Engine Architecture. Mälardalen Uni-
versity, 2007. Available from: http://www.idt.mdh.se/kurser/cd5130/
jgms/2007lp4/report9.pdf

[32] KELLEHER, F. Understanding Socket.IO. [online], 2014-08-10,
[cit. 2018-04-28]. Available from: https://nodesource.com/blog/
understanding-socketio/

[33] QVEFLANDER, N. Pushing real time data using HTML5 Web Sock-
ets. Master’s thesis, Ume̊aUniversity, Faculty of Science and Technol-
ogy, Department of Computing Science, 2010. Available from: http:
//www.diva-portal.org/smash/get/diva2:354621/FULLTEXT01.pdf

[34] WODEHOUSE, C. Front-End Web Development: Client-Side Scripting
and User Experience. [online], 2016, cit. [2018-05-11]. Available from:
https://www.upwork.com/hiring/development/how-scripting-
languages-work/

[35] W3SCHOOLS. HTML5 Tutorial. [online], [cit. 2018-04-29]. Available
from: https://www.w3schools.com/html/

[36] SHEPHERD, E. e. a. Writing Websocket servers. article, 2017-08-16, [cit.
2018-04-28]. Available from: https://developer.mozilla.org/en-US/
docs/Web/API/WebSockets_API/Writing_WebSocket_servers

[37] SCHOLZ, F. e. a. User-Agent. [online], 2018-01-24, [cit. 2018-04-
28]. Available from: https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/User-Agent

[38] STUDIO, U. socket.io-unity. [software], [cit. 2018-05-02]. Available from:
https://github.com/floatinghotpot/socket.io-unity

72

https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcm.2197
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcm.2197
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.2197
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcm.2197
http://doi.acm.org/10.1145/2342480.2342485
http://www.idt.mdh.se/kurser/cd5130/jgms/2007lp4/report9.pdf
http://www.idt.mdh.se/kurser/cd5130/jgms/2007lp4/report9.pdf
https://nodesource.com/blog/understanding-socketio/
https://nodesource.com/blog/understanding-socketio/
http://www.diva-portal.org/smash/get/diva2:354621/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:354621/FULLTEXT01.pdf
https://www.upwork.com/hiring/development/how-scripting-languages-work/
https://www.upwork.com/hiring/development/how-scripting-languages-work/
https://www.w3schools.com/html/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://github.com/floatinghotpot/socket.io-unity

Bibliography

[39] UNITY TECHNOLOGIES. Unity User Manual (2018.1). [online], [cit.
2018-05-05]. Available from: https://docs.unity3d.com/Manual

[40] RUBIN, J.; Chisnell, D. Handbook of usability testing: howto plan, design,
and conduct effective tests. John Wiley & Sons, 2008, ISBN 978-0-470-
18548-3.

73

https://docs.unity3d.com/Manual

Appendix A
Acronyms

AJAX Asynchronous JavaScript And XML

BYOD Bring Your Own Device

CAVE Cave Automatic Virtual Environment

CSS Cascading Style Sheets

FHD Full High Definition resolution

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

SAGE Scalable Adaptive Graphics Environment

SAGE2 Scalable Amplified Group Environment

TCP Transmission Control Protocol

UHD Ultra High Definition

UI User Interface

WebGL Web Graphics Library

75

Appendix B
Contents of enclosed DVD

readme.txt..................................DVD contents description
installation.pdf installation guide for the game NUMBERS
src

numbers web...............the directory containing web applications
numbers the directory with Unity3D application

text
thesis..............the directory of LATEX source codes of the thesis
latex......................................the thesis text directory

77

Appendix C
Examples of prototype GUI

Figure C.1: PlayerController – welcome screen, waiting screen, game over.

79

C. Examples of prototype GUI

Figure C.2: PlayerController – screens during game play: choose answer,
answer screen, change answer.

Figure C.3: ModController : Round settings, 8 players are connected and
divided into 4 teams.

80

Figure C.4: ModController : Game play, 8 players are connected and divided
into 4 teams.

Figure C.5: UnityApplication: Waiting for players to connect.

81

C. Examples of prototype GUI

Figure C.6: UnityApplication: Waiting for new round.

Figure C.7: UnityApplication: Game play, 9 players are divided into 4 teams.

82

Figure C.8: UnityApplication: Leader board after 2 rounds. Four teams are
competing.

Figure C.9: UnityApplication: Game over after three rounds.

83

	Introduction
	State of the art
	Forms of cooperative gaming
	Existing solutions
	Which features should be used in own solution?
	Principles used in cooperative gaming

	Analysis
	Initial Game Idea
	Target audience
	Applicable games
	Initial game Design: Idea Refinement
	Requirements
	Detailed gameplay description
	Actors and Roles
	Use Cases
	Game Flow
	Domain model
	State Machine Diagram

	Technologies for prototype development
	Immersive environment
	Network architecture
	Platforms

	Prototype Design
	Scenes and controller screen design
	Connection and communication sequence
	Class diagrams
	Graphical user interface
	Logging and data gathering
	Modularity

	Realisation
	Project structure
	Implementation
	Data manipulation
	Issues and solutions
	Installation and configuration

	Prototype Evaluation
	Testing during implementation
	Usability testing
	Concluded issues
	Future testings

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed DVD
	Examples of prototype GUI

