
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 17, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Compression method LZFSE

 Student: Martin Hron

 Supervisor: Ing. Jan Baier

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2018/19

Instructions

Introduce yourself with LZ family compression methods. Analyze compression method LZFSE [1] and
explain its main enhancements. Implement this method and/or these enhancements into the ExCom library
[2], perform evaluation tests using the standard test suite and compare performance with other
implemented LZ methods.

References

[1] https://github.com/lzfse/lzfse
[2] http://www.stringology.org/projects/ExCom/

Bachelor’s thesis

Compression method LZFSE

Martin Hron

Department of Theoretical Computer Science

Supervisor: Ing. Jan Baier

May 12, 2018

Acknowledgements

I would like to thank my supervisor, Ing. Jan Baier, for guiding this thesis
and for all his valuable advice.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 12, 2018 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2018 Martin Hron. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hron, Martin. Compression method LZFSE. Bachelor’s thesis. Czech Techni-
cal University in Prague, Faculty of Information Technology, 2018.

Abstract

This thesis focuses on LZFSE compression method, which combines a dictio-
nary compression scheme with a technique based on ANS (asymmetric nu-
meral systems). It describes the principles on which the method works and
analyses the reference implementation of LZFSE by Eric Bainville.

As part of this thesis, the LZFSE method is added as a new module into the
ExCom library and compared with other implemented compression methods
using the files from the Prague Corpus. The impacts that different settings of
adjustable LZFSE parameters have are also examined.

Keywords LZFSE, ExCom library, data compression, dictionary compres-
sion methods, lossless compression, finite state entropy, asymmetric numeral
systems

vii

Abstrakt

Tato práce se zabývá kompresńı metodou LZFSE, která kombinuje slovńıkovou
kompresi s technikou založenou na ANS (asymmetric numeral systems). Práce
popisuje principy, na kterých tato metoda funguje, a analyzuje referenčńı im-
plementaci, jej́ıž autorem je Eric Bainville.

V rámci této práce je metoda LZFSE přidána jako nový modul do knihovny
ExCom a porovnána s ostatńımi implementovanými metodami na datech
Pražského Korpusu. Dále je prozkoumán vliv nastavitelných parametr̊u metody
LZFSE.

Kĺıčová slova LZFSE, knihovna ExCom, komprese dat, slovńıkové kom-
presńı metody, bezeztrátová komprese, finite state entropy, asymmetric nu-
meral systems

viii

Contents

Introduction 1

1 Data compression 3
1.1 Basic data compression concepts 3
1.2 Information entropy and redundancy 3
1.3 Classification of compression methods 4
1.4 Measures of performance . 6
1.5 ExCom library . 7
1.6 Hash function and hash table 7

2 LZ family algorithms 9
2.1 LZ77 . 9
2.2 LZ78 . 11

3 Asymmetric numeral systems 15
3.1 Entropy coding . 15
3.2 Asymmetric numeral systems 16
3.3 Finite state entropy . 19

4 LZFSE 21
4.1 Compression . 21
4.2 Decompression . 29

5 Implementation 33
5.1 Implementation of LZFSE module 33

6 Benchmarks 37
6.1 Methodology . 37
6.2 Testing platform specifications 37
6.3 Results . 38

ix

Conclusion 51

Bibliography 53

A Acronyms 55

B Reference implementation 57
B.1 Source files . 57
B.2 The API functions . 59

C Prague Corpus files 61

D Building the ExCom library 63

E Scripts used for benchmarking 65

F Detailed benchmark results 69
F.1 Tables . 70
F.2 Additional graphs . 76

G Contents of enclosed CD 79

x

List of Figures

2.1 LZ77 sliding window . 9
2.2 Example of LZ77 compression . 11
2.3 Example of LZ77 decompression 12

3.1 Standard numeral system and ANS 18

4.1 LZFSE history table . 24

6.1 Comparison of compression time of LZFSE, LZ78 and LZW 39
6.2 Comparison of decompression time of LZFSE, LZ78 and LZW . . 39
6.3 Comparison of compression ratio of dictionary methods 41
6.4 Comparison of compression time of LZFSE and non-dictionary

methods . 43
6.5 Comparison of decompression time of LZFSE and non-dictionary

methods . 43
6.6 Comparison of compression ratio of LZFSE and non-dictionary

methods . 44
6.7 Comparison of compression time and compression ratio of all tested

methods on flower file . 46
6.8 Comparison of decompression time and compression ratio of all

tested methods on flower file . 46
6.9 Impact of good match parameter on compression time and ratio . 47
6.10 Impact of hash bits parameter on compression time and ratio . . . 48

F.1 Comparison of compression time of LZFSE, LZ78 and LZW on all
files . 76

F.2 Comparison of decompression time of LZFSE, LZ78 and LZW on
all files . 77

F.3 Comparison of compression ratio of LZFSE, LZ78 and LZMW on
all files . 78

xi

List of Tables

C.1 The Prague Corpus files [19] . 61

F.1 Compression time of dictionary methods 70
F.2 Decompression time of dictionary methods 71
F.3 Compression ratio of dictionary methods 72
F.4 Compression time of non-dictionary methods 73
F.5 Decompression time of non-dictionary methods 74
F.6 Compression ratio of non-dictionary methods 75

List of Algorithms

1 LZ77 compression . 10
2 LZ77 decompression . 11
3 LZ78 compression [12] . 13
4 LZ78 decompression . 13

5 FSE symbol encoding . 29
6 LZFSE match decoding step . 31
7 Decoding of a literal using FSE 32
8 Decoding of one L, M or D value using FSE 32

xiii

Introduction

Motivation

The amount of computer data produced by various information systems and
applications is huge and grows every day. Therefore, vast quantity of data
needs to be transmitted over the network or stored on some medium. To
speed up data transmission and conserve storage space it is useful to reduce
size of computer data while still maintaining the information that is contained
in it. This is the purpose of data compression. Compression achieves data size
reduction by decreasing redundancy and changing information representation
to one that is more efficient.

Data compression is used very commonly even by non-professional com-
puter users. Often we want to archive some files, transfer them to another
computer or share them with other users. In those common cases, compres-
sion ratio (i.e. how much space is saved) and speed are typically more or less
equally important, so we generally need to make a compromise between speed
and compression quality. Also for compressing general files, a lossless method
is usually required so that no vital information is lost.

For example, ZIP is frequently used archive file format that is probably
known to most computer users. ZIP archives are usually compressed using a
lossless algorithm called DEFLATE, which is designed to keep good balance
between compression ratio and speed.

LZFSE is a new open source data compression algorithm developed by
Apple Inc. It is designed for similar purpose as DEFLATE algorithm but is
claimed to be significantly faster (up to three times) and to use less resources
while preserving comparable compression ratio. LZFSE combines dictionary
compression with an implementation of asymmetric numeral systems. Asym-
metric numeral systems is a recent entropy coding method based on the work
of Jaros law Duda, which aims to end the tradeoff between compression ratio
and speed.

1

Introduction

Various compression methods are collected in the ExCom library. ExCom
is a library developed as part of Filip Šimek’s thesis on CTU in 2009, which
supports benchmarking and experimenting with compression methods. ExCom
contains many dictionary algorithms. However, it does not yet contain the
LZFSE method, nor any other method that would use asymmetric numeral
systems. Integrating LZFSE into the ExCom library will allow to run, experi-
ment with this method and perform benchmarks on it to confirm its enhance-
ments.

Goal

The goal of this thesis is to analyse the LZFSE compression method, explain its
main enhancements and implement it into the ExCom library. Then evaluate
the implementation using the standard test suite, perform benchmarks and
compare results with other dictionary compression methods to verify these
enhancements.

Organization of this thesis

The first chapter explains basic concepts of data compression. It also intro-
duces various classifications of compression methods and defines terms used
further in this thesis.

The second chapter focuses on the LZ family of dictionary compression
algorithms. It describes the LZ77 and LZ78 compression methods, which
commonly serve as a foundation for other dictionary methods.

Asymmetric numeral systems, a family of entropy encoding methods, is
addressed in the third chapter. This chapter first introduces basic concepts
of entropy coding and briefly summarises most common approaches. The
principles on which asymmetric numeral systems work are then explained. A
variant of asymmetric numeral systems called finite state entropy, which is
used in the LZFSE method, is also discussed further in this chapter.

The fourth chapter focuses on the LZFSE method. It describes how
this method works and analyses its reference implementation written by Eric
Bainville.

The fifth chapter deals with the integration of LZFSE into the ExCom
library. It describes the steps taken to implement LZFSE into ExCom and
lists deviations from the reference implementation.

Finally, the sixth chapter presents the results of benchmarks made using
the ExCom library and compares performance of LZFSE with other com-
pression methods. The impacts that different settings of adjustable LZFSE
parameters have on compression ratio and speed are also discussed here.

2

Chapter 1
Data compression

This chapter introduces basic concepts of data compression and defines terms
used further in the text. Classification of compression methods into various
categories and performance measurement of methods are also discussed in this
chapter.

1.1 Basic data compression concepts

Data compression is a process of transforming computer data into a represen-
tation requiring fewer bits while preserving information contained in the data.
The reverse process of reconstructing the original data from this representa-
tion is called decompression. The terms encoding and decoding will also be
used to refer to the compression and decompression processes respectively.

The input data (for the compression process) are referred to as the original
or unencoded data. The output data are considered compressed or encoded.

Algorithm that takes the original data and generates a representation with
smaller size (compresses data) is called compression algorithm. Algorithm
that operates on this compressed representation to reconstruct the original
data or produce their approximation is called reconstruction algorithm. Both
the compression and reconstruction algorithms are referred to together by the
term compression method.

1.2 Information entropy and redundancy

Two concepts of information theory, entropy and redundancy, are introduced
in this section.

Information entropy is a term introduced by Claude Shannon in 1948 [1].
Entropy measures the amount of information contained in the data. Intu-
itively, the more diverse and unpredictable the data are, the more information

3

1. Data compression

they contain. It is possible to view entropy as an average minimum number
of bits needed to store the information.

Redundancy measures the inefficiency of information representation. It is
a difference between entropy of data of given length and its maximum value.
Compression methods may attempt to reduce data redundancy.

1.2.1 Entropy

Let X be a random variable that takes n values with probabilities p1, p2, . . . , pn

respectively. Then entropy of X, denoted H(X), is defined to be [1]:

H(X) = −
n∑

i=1
pi log2 pi

1.2.2 Redundancy

Let S be a string of l characters and H(ci) be the entropy of its i-th character.
Then entropy of string S is H(S) =

∑l
i=1 H(ci) = l ·HAV G, where HAV G is

average symbol entropy. [2]

Let L(S) be the length of S in bits. Then redundancy of string S, denoted
R(S), is defined as

R(S) = L(S)−H(S)

Lossless methods of compression (see Section 1.3.1) work by minimizing re-
dundancy in the input data. [2]

1.2.3 Source coding theorem

The source coding theorem formulated by C. Shannon in 1948 in [1] establishes
theoretical limits of data compression.

Let S be a sequence of N symbols. Each of those symbols is an independent
sample of a random variable X with entropy H(X). Let L be the average
number of bits required to encode the N symbol sequence S. The source
coding theorem states that the minimum L satisfies [3]:

H(X) ≤ L < H(X) + 1
N

1.3 Classification of compression methods

There exists a large variety of data compression methods intended for several
different purposes. Some basic classifications of compression methods based
on their various properties are discussed here.

4

1.3. Classification of compression methods

1.3.1 Lossy/lossless compression

Lossless compression methods allow the exact reconstruction of the original
data, and thus no information is lost during the compression. Lossless com-
pression methods should be used when even a small change to the data would
have serious impact. For instance, when compressing text files, a change to
just a few letters may alter the meaning of the original text or render it un-
readable. This is especially true for compression of source codes.

Lossy compression methods, on the other hand, lose some information dur-
ing the compression process. They achieve better compression at the expense
of preventing the exact reconstruction of the data. They are generally used
for applications where this is not a problem. An example of such application
is video compression. We generally do not care that the reconstruction of a
video is slightly different from the original as long as noticeable artifacts are
not present. As such, video is usually compressed using lossy compression
methods [4, p. 5].

1.3.2 Adaptability

Another possible classification of compression methods is according to how
they manage their model of the input data and how they modify their opera-
tions.

A nonadaptive compression method does not modify its operations based
on the data being processed. They may be faster because there is no time
spent on updating the model. However, they would generally achieve worse
compression ratio. Such methods perform best on data that is all of a single
given type [5, p. 8].

An adaptive compression method, on the other hand, modifies its algo-
rithms according to the input data. The model is updated dynamically as the
input is processed. Unlike for semi-adaptive methods, the input is processed
in single run.

If the method adapts itself to local conditions in the input stream and
changes its model as it moves through the input, it is called locally adaptive.
For example move-to-front algorithm uses this approach [5, p. 37].

Semi-adaptive methods use a 2-pass algorithm. During the first pass,
whole input data are read and a model is built. In the second pass this model
is used for compression. As the model is built specifically for the data being
compressed, they generally achieve very good compression. However, it is not
possible to infer the model from the compressed data. For this reason, the
model must be appended to the compressed data for reconstruction algorithm
to work, thus worsening the compression ratio. Moreover, these methods may
be slow as the input is read twice.

5

1. Data compression

1.3.3 Symmetrical compression

The situation when compression algorithm is similar to the reconstruction
algorithm but works in the “opposite” direction is called symmetrical com-
pression [5, p. 9]. In such case, complexity of the compression algorithm is
generally the same as complexity of the reconstruction algorithm. Symmet-
rical methods are useful when compression and decompression are performed
equally frequently.

Asymmetrical compression is useful when decompression is performed much
more often than compression and vice versa. For instance, when a file is com-
pressed once, then uploaded to a server and downloaded by users and decom-
pressed frequently, it is useful to have simple and fast reconstruction algorithm
at the expense of a more complex compression algorithm.

1.3.4 Types of lossless compression

• Dictionary methods use some form of dictionary, a data structure where
previously seen occurrences of symbol sequences are saved. When a
sequence present in the dictionary is encountered in the input again,
a reference to the dictionary is written to output instead. LZ family
algorithms belong to this category.

• Statistical methods work by assigning shorter codes to symbols with
higher probability of occurrence and longer codes to rare symbols. They
often use semi-adaptive approach (see Section 1.3.2). During the first
pass, frequencies of symbols are counted and statistical model is built.
During the second pass, the input is then encoded. Examples of this
category include Huffman coding and arithmetic coding, which are both
very briefly described in Chapter 3.

Apart from those two main types, other types exist such as contextual
methods (for example PPM and DCA algorithms).

1.4 Measures of performance

Performance of compression methods may be expressed using various mea-
sures. One of commonly used metrics is compression ratio.

1.4.1 Compression ratio

Compression ratio is defined to be:

Compression ratio = size of compressed data
size of original data

6

1.5. ExCom library

The lower the compression ratio is, the bigger amount of space was saved
thanks to the compression. For instance compression ratio of 0.8 (or 80%)
means that the compressed data size is 80% the original size.

If the compression ratio has value greater than 1, in other words the size
of compressed data is greater than the size of original data, then we will say
negative compression occurred.

1.4.2 Data corpora

To test and compare performance of different compression algorithms various
corpora exists. Corpus is a standardized set of files containing most common
types of binary and text files to test compression performance on.

Several corpora were published, for instance Calgary Corpus (1987) or
Canterbury Corpus (1997). In 2011, the Prague Corpus was established on
Czech Technical University in Prague [6].

1.5 ExCom library

ExCom [7] is a modular compression library written in C++. ExCom contains
many compression methods and is extensible by adding new modules. It
provides support for module testing, time measurement and benchmarking.
It is described in detail in [2].

1.6 Hash function and hash table

1.6.1 Hash function

Hash function is a mathematical function that maps input of arbitrary length
to fixed-size output. This output value is called a hash.

Let U be a set of all possible inputs: U =
n⋃

i=1
{0, 1}i, n is maximum input

length (theoretically n may even be infinity). Then function

f : U → {0, 1}l

is a hash function that maps any element of U to output of fixed length l.

The hash function must be deterministic. If k1 = k2, then also f(k1) = f(k2).
So for given input, hash function f always produces the same output value.
If k1 6= k2, but f(k1) = f(k2), then we say a collision occurred.

7

1. Data compression

Good hash function (for use in hash tables) is usually required to have the
following properties:

• It should distribute the output values evenly to minimize number of
collisions.

• It should be very fast to compute.

1.6.2 Multiplicative hash

One possible method to obtain a good hash function is described in [8, Sec-
tion 11.3]. The input value k is multiplied by a constant A ∈ [0, 1] and the
fractional part of the result is then multiplied by integer m. The floor of this
number is the hash value. The hash function then looks as follows:

f(k) = bm(kA mod 1)c

kA mod 1 = kA−bkAc is the fractional part of kA. Value of m is not critical,
it is usually chosen as a power of 2. [8]

See [8] for implementation details of this method. This type of hash func-
tion is also used in the LZFSE reference implementation.

1.6.3 Hash table

Hash table is a data structure which implements dictionary used by dictionary
compression methods. It stores its elements in an array and uses hash function
for indexing. When accessing an element, its hash is computed and used as
an index. However, since hash function may produce collisions, two different
elements may get mapped to same position in the array.

Various techniques are used to resolve collisions:

• Separate chaining – For each position in the array (i.e. each possible hash
value), list of elements that map to this position is kept. Linked list is
most commonly used for this purpose. When collision occurs during
insertion, element is simply added at the end of the corresponding list.
When accessing elements, the list on given position must be scanned
until the element being accessed is found.

• Open addressing – All elements are stored directly in the array. Insertion
is done by searching for first empty position using some predefined order.
When accessing an element, the array is searched in the same order until
either the required element or an empty cell is encountered.

8

Chapter 2
LZ family algorithms

LZ family algorithms is a family of dictionary compression algorithms named
after LZ77 and LZ78, two algorithms published by Abraham Lempel and
Jacob Ziv in 1977 [9] and 1978 [10] respectively. LZ77 and LZ78 will both be
described in this chapter.

LZ77 and LZ78 form the basis for many other dictionary compression
methods, for example LZSS, LZW or LZ4 methods. LZFSE described in this
thesis is also Lempel-Ziv style compression method.

2.1 LZ77

LZ77 (also referred to as LZ1) is a dictionary compression method designed
by Abraham Lempel and Jacob Ziv and published in 1977 [9]. The main
idea of this method is using the previously proccesed part of input as the
dictionary [5, p. 176]. It is suitable for data that are compressed once and
decompressed frequently. LZ77 is commonly used as a foundation for more
complex compression methods.

2.1.1 Compression

LZ77 maintains part of input data in a structure called sliding window. Sliding
window is divided into two parts called search buffer and look-ahead buffer.
Search buffer contains part of already processed input, while look-ahead buffer
contains unencoded data yet to be compressed. Sliding window has a fixed
size. Size of the search buffer is commonly 8 192 bits, while the look-ahead
buffer usually has about 10 to 20 bits [11].

processed data ← search buffer look-ahead buffer ← data to be encoded

Figure 2.1: LZ77 sliding window

9

2. LZ family algorithms

As the input is processed, the sliding window moves forward in the input.
Compressed data from look-ahead buffer transit into the search buffer. Data
from the beginning of the search buffer are shifted out and look-ahead buffer
is filled with new unencoded data.

In each step, the compression algorithm searches the whole search buffer
to find the longest prefix of look-ahead buffer that is present in it. It scans
the search buffer backwards until the symbol look-ahead buffer starts with
is encountered. Then it counts how many characters following this symbol
match the look-ahead buffer prefix. If this match is the longest found so far,
its position and length are saved. The position of the longest match is kept as
an offset, distance from the beginning of the look-ahead buffer. Those steps
are repeated until the beginning of the search buffer is reached. A triplet
containing offset of the longest prefix, its length and the symbol that follows
it is then written to the output. The sliding window is then moved and the
whole process is repeated. See Algorithm 1 for pseudocode of the compression
process.

Algorithm 1: LZ77 compression
1 initialize moving window (divided into search and look-ahead buffer)
2 fill look-ahead buffer from input
3 while look-ahead buffer is not empty:
4 find longest prefix p of look-ahead buffer by scanning the search

buffer backwards
5 offset := distance of p from the beginning of the look-ahead buffer
6 length := length of p
7 X := first character after p in look-ahead buffer
8 output triplet (offset, length, X)
9 shift (move) window by length + 1

2.1.2 Compression example

An example of LZ77 compression on input string “possessed posy” is shown
in Figure 2.2. Size of the sliding window in this example is 8 characters, half
of which is search buffer.

As seen in the example, size of the sliding window strongly affects compres-
sion ratio. For instance, in step 7 we search for a prefix beginning with “p”.
No match is found. However string “pos” was encountered earlier in the input
and would yield a match of length 3 if present in the search buffer.

The example input string was 14 characters long and it was encoded into
10 triplets. Depending on the representation of triplets, this could result in
negative compression in this case.

10

2.2. LZ78

step
sliding
window

output

1. poss essed posy ⇒ (0, 0, p)
2. p osse ssed posy ⇒ (0, 0, o)
3. po sses sed posy ⇒ (0, 0, s)
4. pos sess ed posy ⇒ (1, 1, e)
5. p osse ssed posy ⇒ (3, 3, d)
6. posse ssed pos y ⇒ (0, 0,)
7. posses sed posy ⇒ (0, 0, p)
8. possess ed p osy ⇒ (0, 0, o)
9. possesse d po sy ⇒ (0, 0, s)
10. possessed pos y ⇒ (0, 0, y)

Figure 2.2: Example of LZ77 compression

2.1.3 Decompression

Decompression uses sliding window of the same size as compression to keep
previous output. For each triplet, the sequence from previous output it points
to is copied on the current position in the output and then the following
symbol contained in the triplet is also written to output. See Algorithm 2
for simplified pseudocode of the decompression process. Decompression is
much simpler and faster than compression. Therefore, LZ77 is classified as an
asymmetric compression method.

Algorithm 2: LZ77 decompression
1 while input is not empty:
2 read triplet (offset, length, X) from input
3 go back by offset characters in previous output and output length

characters starting on that position
4 output X
5 move the sliding window by length + 1

2.1.4 Decompression example

Figure 2.3 shows LZ77 decompression of data encoded earlier in the compres-
sion example (see Figure 2.2). Size of the sliding window is always the same
as during compression. In this case it is 8 characters.

2.2 LZ78

LZ78 (sometimes referred to as LZ2) was introduced by Abraham Lempel
and Jacob Ziv in 1978 [10].

11

2. LZ family algorithms

step input output
sliding
window

1. (0, 0, p) ⇒ p p
2. (0, 0, o) ⇒ o p o
3. (0, 0, s) ⇒ s po s
4. (1, 1, e) ⇒ se pos se
5. (3, 3, d) ⇒ ssed p osse ssed
6. (0, 0,) ⇒ posse ssed
7. (0, 0, p) ⇒ p posses sed p
8. (0, 0, o) ⇒ o possess ed p o
9. (0, 0, s) ⇒ s possesse d po s
10. (0, 0, y) ⇒ y possessed pos y

Figure 2.3: Example of LZ77 decompression

Unlike LZ77, which uses a fixed size sliding window (see Section 2.1), LZ78
maintains a dictionary of previously seen phrases (sequences of symbols). This
dictionary is built as the input is processed and it may potentially contain
unlimited number of phrases. When a repeated occurrence of a phrase is
found during encoding, dictionary index is output instead.

2.2.1 Compression

In each step, the dictionary of previously seen strings is searched for the
longest prefix of the unprocessed part of the input. A pair (index(w), K) is
written to the output, where index(w) is an index referring to the longest
matching dictionary entry w and K is a symbol immediately following w in
the input [12]. Additionally, new phrase consisting of w concatenated with K
(denoted wK) is inserted into the dictionary. This process is repeated until
the whole input is encoded. See Algorithm 3 for the compression pseudocode1.

2.2.2 Decompression

During decompression, the dictionary is gradually build in a similar way as
during compression. See Algorithm 4 for the pseudocode of LZ78 reconstruc-
tion algorithm. LZ78 also preserves an important property of LZ77 that the
decompression is generally significantly faster than the compression [12].

2.2.3 Dictionary

To represent the dictionary a structure called trie (or prefix tree) may be
used. Trie is an ordered tree data structure used to store strings. All vertices

1NIL denotes an empty string. The dictionary starts with an empty string as its only
element.

12

2.2. LZ78

Algorithm 3: LZ78 compression [12]
1 w := NIL
2 while input is not empty:
3 K := next symbol from input
4 if wK exists in the dictionary:
5 w := wK
6 else:
7 output pair (index(w), K)
8 add wK to the dictionary
9 w := NIL

Algorithm 4: LZ78 decompression
1 while input is not empty:
2 read pair (i, K) from input
3 w := get phrase pointed to by i from dictionary
4 output wK
5 add wK to the dictionary

with common parent begin with the same prefix. The root node represents
an empty string and going from it to a certain node yields a phrase from the
dictionary.

In the beginning, dictionary contains only one phrase – an empty string. As
mentioned before, the dictionary may conceptually contain unlimited number
of phrases. Because of this, some LZ78 implementations may have very high
space requirements. To avoid this problem, it is possible to limit the size of
dictionary by some upper bound and remove the least common phrase when
this bound is reached or simply clear the dictionary and start building it from
scratch.

Several algorithms based on LZ78 exists, differing mainly in dictionary
implementation and usage. One of the most popular modifications is LZW
made by Terry Welche in 1984. In LZW the dictionary is initialized with all
symbols from the input alphabet and so a match is always found. Therefore,
only the index to the dictionary is output in each step [12].

13

Chapter 3
Asymmetric numeral systems

Asymmetric numeral systems (ANS) is a family of entropy coding methods
based on the work of Jaros law Duda. A variant of asymmetric numeral sys-
tems called finite state entropy (FSE) is also part of the LZFSE compression
method.

This chapter will introduce important entropy coding concepts and some
of the most common methods. Asymmetric numeral systems and their FSE
variant will be described further in the chapter.

3.1 Entropy coding

Entropy coding (or entropy encoding) is a lossless data compression scheme. It
achieves compression by representing frequently occurring symbols with fewer
bits and rarely occurring elements with more bits.

Huffman coding and arithmetic coding are two of the most common en-
tropy coding methods and will be briefly described below.

Asymmetric numeral systems is another family of entropy coding meth-
ods. ANS methods are increasingly used in compression as they combine
compression ratio of arithmetic coding with compression speed similar to that
of Huffman coding method [13]. ANS is described in Section 3.2 and finite
state entropy, which is their variant, in Section 3.3.

Entropy coding methods are commonly used in combination with some
dictionary compression scheme. For instance, the algorithm DEFLATE2 uses
a combination of LZ77 (see Section 2.1) and Huffman coding. LZFSE also
belongs to this category as it combines a LZ-style compression algorithm with
finite state entropy coding [14].

2DEFLATE is a lossless compression algorithm originally designed for the ZIP file format.

15

3. Asymmetric numeral systems

3.1.1 Huffman coding

Huffman coding is an entropy coding technique developed by David A. Huff-
man. Huffman coding approximates probability of symbol occurrence as a
(negative) power of 2. Unlike more complex methods, Huffman coding always
uses integral number of bits to represent a symbol and it encodes each symbol
separately.

Every occurrence of one symbol is always encoded into same code word.
Code words are assigned to symbols in a way that no code word is prefix of
any other (such code is called a prefix code). Shorter codes are assigned to
common symbols.

When the probabilities of the symbols are negative powers of two, Huffman
coding produces the best results [5, p. 74].

Huffman coding is a simple compression method with low procession cost.
Other entropy coding methods, such as arithmetic coding or ANS, may achieve
considerably better compression ratio.

3.1.2 Arithmetic coding

Arithmetic coding is another entropy coding technique. It encodes the in-
put data as an interval of real numbers between 0 and 1. This interval be-
comes smaller as the input is encoded and number of bits needed to specify it
grows [15].

Unlike Huffman coding, which approximates symbol probabilities by pow-
ers of 2, arithmetic coding is very precise but it is also more complex. De-
scription of arithmetic coding is not the focus of this work and may be found
in [15].

3.2 Asymmetric numeral systems

Asymmetric numeral systems is an entropy coding technique introduced by
Jaros law (Jarek) Duda.

Apart from ANS, most common approaches to entropy coding are Huffman
coding and arithmetic coding (both were briefly described in previous section).
Huffman coding approximates symbol probabilities with powers of 2 and so
it generally does not achieve as good compression ratio. Arithmetic coding
uses almost exact probabilities and so it achieves compression ratio close to
the theoretical limit (see Section 1.2.3), but it has larger computational cost
than Huffman coding. According to its author, asymmetric numeral systems
achieve comparable compression ratio as arithmetic coding while having pro-
cession cost similar to that of Huffman coding. [13]

16

3.2. Asymmetric numeral systems

While arithmetic coding uses two numbers (states) to represent a range,
asymmetric numeral systems uses only one state – a single natural number.
ANS works by encoding information into this single natural number. To add
new information to the information already stored in this number (state), new
digits could be appended either in the most or the least significant position.
Arithmetic coding is an example of the first approach. ANS uses the second
option, new digits are added in the least significant position. [16]

In the standard binary numeral system a sequence of n bits (s0, s1, . . . , sn−1)
would be encoded as a natural number x =

∑n−1
i=0 si2i. To add information

from a symbol s ∈ {0, 1}, all bits of x are shifted left and the least signifi-
cant bit value is changed to s (i.e. s is appended to x). This changes x to
x′ = C (x, s) = 2x + s, where C is a coding function. The reverse process
of decoding value of s and previous state x would use a decoding function
D(x′) = (x, s) = (bx′/2c, x′ mod 2). Encoding a symbol sequence would be
done by starting with some initial state and repeatedly using the coding func-
tion until all symbols are encoded. To decode, decoding function would be
applied until state x is equal to the initial state. Symbols are recovered in
reverse order.

The scheme with coding and decoding functions presented above is optimal
for any input with uniform probability distribution of symbols P (si = 0) =
P (si = 1) = 1

2 . The basic concept of ANS is to change this behaviour to make
it optimal for any chosen asymmetric probability distribution. In the above
example, x′ is either even or odd, based on the value of s. Therefore, x′ is
x-th even or odd number, depending on s. As stated before, this scheme is
optimal for storing uniformly distributed symbols. In ANS this division into
even and odd subsets of natural numbers is replaced with division into subsets
whose densities correspond with the chosen distribution [16].

To optimize the coding procedure for the assumed probability distribution:
P (si = s) = ps, subsets are redefined in such way, that their densities corre-
spond to this probability distribution. The rule to add information from sym-
bol s to the information that is already stored in number x is: x′ = C (s, x).
The coding function C (s, x) returns the x-th appearance of s in the corre-
sponding subset [16].

Figure 3.1 shows example of asymmetric binary system for probability
distribution: P (si = 0) = 1

4 , P (si = 1) = 3
4 . Encoding a binary sequence 1101

using tables shown in the figure and starting with initial state x = 1 would
produce:

standard binary system: 1 1−→ 3 1−→ 7 0−→ 14 1−→ 29

asymmetric binary system: 1 1−→ 2 1−→ 3 0−→ 12 1−→ 17

17

3. Asymmetric numeral systems

Figure 3.1: Adding information to state x in standard binary numeral sys-
tem (up) and ANS (bottom) [16]. The new state becomes x-th element of the
s-th subset. In ANS subsets are defined so that their densities correspond to
the assumed probability distribution3.

As seen in this example, encoding the sequence using ANS produces smaller
final state (number) than using the standard binary system, because it adapts
the subsets to given probability distribution of input symbols. This difference
would grow with the input size.

Decoding would work similarly by following the steps in opposite direction.
As seen in the example figure, the previous state and symbol are unambiguous
for each state. It is always possible to get previous state and symbol from the
table, for instance for state x = 17, the previous state is 12 and the symbol is 1.
This way, previous state would be retrieved until the initial state is reached,
decoding the whole sequence in the process. The symbols are retrieved in
reverse order.

In practice it is preferable to avoid operations on very large numbers
(states), as such operations may be very demanding. When a state is larger
than some maximum value during encoding, some of its least significant bits
are transferred to the output stream. This way the state will always remain
in some fixed range. Naturally, decoding has to be modified accordingly and
it must be ensured that encoding and decoding steps are inverse of each other.
The exact mechanisms to achieve that are described in [16].

3In the original figure, the probabilities of symbols are defined as P r(0) = 3/4 and
P r(1) = 1/4, but here they were changed to correspond to the subsets.

18

3.3. Finite state entropy

Also, because encoding works in opposite direction than decoding, it might
be preferable to encode backwards starting from the last symbol so that de-
coding would start from the beginning and proceed forward.

Concepts described in this section could also be generalized for numeral
systems of different base than 2 (i.e. for more possible input symbols). Several
variants of ANS exists. An abstract description of finite state entropy (tANS),
variant used in LZFSE, may be found in the next section (see Chapter 4 for
details of its implementation in LZFSE). Detailed description of asymmetric
numeral systems and all their variants may be found in [13] and [16].

3.3 Finite state entropy

Finite state entropy is a variant of asymmetric numeral systems (described in
previous section). It is also called tANS (or table ANS) because the entire
behaviour is put into a single coding table, yielding finite state machine.

For the assumed probability distribution, given usually in form of symbol
frequencies, symbols must be distributed into subsets (as shown in previous
section). Densities of those subsets must correspond to given probability dis-
tribution. “Unfortunately, finding the optimal symbol distribution is not an
easy task.” It could be done by checking all possible symbol distributions.
However, in practice some simple heuristic is usually used instead [13]. A sim-
ple and fast method of pseudorandomly distributing symbols into subsets is
described in detail in [16].

The table used for encoding is called encoding table. For each symbol and
state, the next state is stored in it. So the table stores results of coding func-
tion C (x, s) for all possible (x, s) pairs. This table is created based on symbol
distribution into subsets described in previous paragraph. The encoding ta-
ble may also be stored in one-dimensional array as it is better for memory
handling efficiency [16].

The encoding process is similar to the ANS encoding described in Sec-
tion 3.2, but instead of computing the coding function C (s, x) in each step,
the next state is obtained from the encoding table.

Additionally, the mechanism of ensuring that states remain in some fixed
range, which was discussed in previous section, is usually employed. If a
state is bigger than given upper bound, its least significant bits are written
to the output and the state is shifted right until it fits into the range. The
number of bits that will have to be transferred to the output stream may be
computed beforehand and stored for each possible transition (or symbol) to
avoid additional computations during encoding.

The table that is used for decoding is called decoding table. For decoding
to work, it is necessary to be able to get this table, and so some information

19

3. Asymmetric numeral systems

must be added to the compressed data when encoding. This may be table of
symbol frequencies, which was also used to construct the encoding table. This
information is usually part of some header and may itself be compressed.

As with the encoding step, the decoding step of FSE is similar to the
decoding step of general ANS (see Section 3.2). Instead of computing the
result of decoding function D(x), the previous state and symbol are looked-up
in the decoding table.

This section contains only abstract description of finite state entropy, as
there are several different possibilities of how to implement this method. More
thorough description of this method along with exact pseudocodes for initial-
ization and encoding and decoding steps may be found in [16]. Implementation
of finite state entropy in LZFSE is described in Chapter 4.

20

Chapter 4
LZFSE

LZFSE is a lossless compression algorithm that was developed by Apple Inc.
and later released as open-source. The algorithm is based on Lemple-Ziv
dictionary compression (described in Chapter 2) and uses finite state entropy,
a variant of ANS described in Chapter 3, for entropy coding [17].

According to its authors, LZFSE matches the compression ratio of zlib4

level 5, while being between two to three times faster for both compression
and decompression and having better energy efficiency. LZFSE is a balanced
compression method intended for situations when compression ratio and de-
compression speed are equally important [18].

A reference implementation of LZFSE in C language written by Eric
Bainville was released in 2016 [14]. This reference implementation serves as a
definition of the LZFSE method, as Apple did not publish any other detailed
description of it (e.g. pseudocodes or format description).

This chapter describes the reference implementation of the LZFSE method.
All details pertain to the version from 22 May 2017, which is the most recent
version as of March 2018 [14]. The file structure of the reference implementa-
tion and its main functions are described in Appendix B.

4.1 Compression

LZFSE combines LZ-style dictionary compression algorithm with finite state
entropy. The dictionary algorithm serves as a frontend and the finite state
entropy serves as a backend and is used to encode the matches and literals
produced (emitted) by the frontend.

4zlib is a compression library that provides an abstraction over the DEFLATE compres-
sion algorithm. zlib implementation of DEFLATE allows users to choose a compression level
between 0 and 9. Lower level means preferring speed and higher level means prioritizing
compression ratio. Level 5 provides a good balance between speed and compression ratio.

21

4. LZFSE

LZFSE compresses the input data and generates one or more compressed
blocks. There are several types of blocks that may be produced by the reference
implementation. Each block starts with a header containing information about
this block. Headers for different types of blocks differ not only in constitution
but also in size. Regardless of block type however, the first four bytes of a
header consist of special value identifying the block type (referred to as a block
magic). There is also a special value indicating the end of file.

The blocks produced by LZFSE compression are described at the end of
Section 4.1.2. There is also an uncompressed block type for unencoded data.
If the input is really small (the default threshold is 8 bytes) or if LZFSE
compression fails for some reason, the input is just copied unaltered and saved
as an uncompressed block.

The reference implementation also contains a heuristic that will fallback
to a simpler compression algorithm called LZVN when the input is smaller
than a given threshold. The reason is that on small data LZFSE does not
perform as well according to the author [14]. Because this thesis focuses on
LZFSE, this algorithm will not be covered here. LZVN compression also was
not implemented as part of the LZFSE module into ExCom, as the goal was
to test the performance of the LZFSE method.

4.1.1 Frontend

The LZFSE frontend works by searching for matches in the input. A match is
a sequence of bytes that exactly matches other sequence encountered earlier
in the input. The frontend scans the input for matches using a procedure
described below. These matches are then emitted – sent to the backend,
where they are encoded.

The frontend produces matches in form of triplets (L, M, D), where M is
the length of the match, D is the distance to the previous occurrence (i.e.
offset) and L is the number of literals emitted with this match. Literals are
values from the original input stream. When a match is emitted, all literals
between this match and the previous one are also emitted with it. Emitted
literals are kept in concatenated form and then encoded separately in the
backend. For details on how the emitted matches and literals are processed
in the backend, see Section 4.1.2.

Triplets that represent the LZFSE matches are somewhat similar to triplets
produced by the LZ77 algorithm (see Section 2.1). The difference is that while
LZ77 triplets contain only one symbol following the match, in case of LZFSE
the L symbols (literals) before the match are emitted with it.

Because LZFSE uses a 32-bit offset for encoding matches, if the input
is large, it must be divided into smaller blocks and each of them processed

22

4.1. Compression

separately. This is done for inputs significantly smaller than the 2 GiB upper
bound, as it is better for algorithm efficiency [14].

4.1.1.1 History table

LZFSE uses a history table and hashing to search for matches. The history
table resembles a hash table with separate chaining (see Section 1.6.3) to some
extent. It is an array indexed by hash values. On each position in the array,
there is a history set containing locations of four-byte sequences encountered
earlier in the input that hash to the same value – the index of this history set
in the array.

Apart from the position, the first four bytes at that position are also stored
for each element in the history set to quickly eliminate false-positive matches
caused by hash function collisions. By default, each history table set can hold
up to four positions. When more positions of four-byte sequences with this
hash are found, the oldest element from the set is removed and the new entry
is added in the beginning of this set.

For the hash function, an implementation of multiplicative hash described
in Section 1.6.2 is used. This implementation also allows to change the hash
length (how many bits the hash function produces), which is controlled by a
parameter. The hash length also determines the size of the history table.

To find match candidates for some position in the input, hash function is
computed for the first four bytes on that position. The hash value is then used
as an index into the history table, yielding a set of match candidate positions.
Because entry for each candidate also contains the first four bytes on that
position, collisions can be quickly eliminated by comparing these bytes with
bytes on current position. Figure 4.1 depicts the history table and illustrates
this process.

As already mentioned, the size of the history table depends on the hash
length. If the hash function produces 14-bit values, which is the default,
the table will contain 214 = 16384 elements (sets).

4.1.1.2 Searching for matches

Algorithm that searches for matches keeps a pending match – the best match
found so far, which will be emitted unless a better one is found. Note that the
matches are internally kept by the frontend in a slightly different form than
how they are then emitted to the backend. Here the position where the match
starts, the position where the previous occurrence starts (called source) and
the length of the match are stored.

The matches are searched by repeating the following procedure for each
position in the input. First, a hash value of first four bytes starting on current

23

4. LZFSE

Figure 4.1: The history table used by LZFSE frontend to search for matches.
A set on index i contains positions of previously seen four-byte sequences (and
their values) with hash equal to i. To get match candidates for a position in
the input, the hash of the four-byte sequence starting on that position is
computed. This value is than used as an index into the history table.

position is computed. An entry for this position is later added into the correct
set of the history table before moving on to the next position.

The current position may be inside some previous match. This can be
detected by keeping track of the next unencoded literal (i.e. the first literal in
the input that was not part of any previous match). If the current position is
before this literal, it is inside a previously emitted match. In that case, the
history table is just updated and the algorithm continues on the next position.

The computed hash value for current position is used to get match candi-
dates from the history table as described above. The best match is then chosen
from these candidates. This is done by counting how many bytes on each of
the candidate positions match the bytes following the current position. The
longest match is taken. Only matches of length at least 4 are considered [14].

The best match found is also expanded backwards if possible. While the
bytes preceding the starting position of the match and the bytes before the
source position are equal, the match length is incremented and both positions
are moved back by one.

24

4.1. Compression

If the best match found for this position (the current match) has length
greater than some given threshold (default is 40), it is immediately emitted.
Otherwise, if there is no pending match, the current match will become the
new pending match and the algorithm will continue on the next position. If
there is already a pending match however, it should be emitted first and then
the current match should become the new pending match. This may not be
possible if the pending match overlaps with the current match (i.e. the current
match starts inside the pending match). In that case, the longer of these two
will be emitted.

If no match is found for the current position, it may still be desirable
to emit some literals so that the current position is not too far ahead of the
next unencoded literal. If the distance is larger than some given threshold, the
pending match is emitted (if there is one) along with some literals. Otherwise,
the algorithm just moves on to the next position.

This procedure is repeated until the end of input buffer is reached. Then
the pending match and any remaining literals are also emitted and a method
of backend is called to produce the final block and an end-of-file marker.

4.1.2 Backend

The backend of the LZFSE encoder uses an implementation of finite state
entropy described in Section 3.3. It encodes the matches and literals emitted
by the frontend.

The frontend emits matches and literals by calling the appropriate function
of the backend. The matches are emitted as (L, M, D) triplets described in
Section 4.1.1.When literals need to be emitted separately (i.e. not as a part of
match), they are emitted by creating a fake match, a match of length 0, and
emitting them along with this match.

The encoder backend keeps buffers for emitted matches and literals. For
each element of the (L, M, D) triplet there is a separate buffer and there is
also a buffer for emitted literals. Whenever a match is emitted, each of its
L, M and D elements is pushed into its respective buffer and the L literals
emitted as a part of this match are pushed into the literals buffer. When any
of these buffers is full, all stored matches and literals are encoded using finite
state entropy and a compressed block is produced by the backend.

Contents of each of the four buffers is encoded separately – the numbers
of literals (L), the match lengths (M), the offsets (D) and the concatenated
literals are each encoded separately using finite state entropy. How the finite
state encoder is implemented in the reference implementation is described in
Section 4.1.2.1 below.

Before encoding, the frequencies of symbols are counted. These frequencies
are then normalized and used to create the coding tables for finite state entropy

25

4. LZFSE

encoders. The exact process is described in Section 4.1.2.1. The frequency
tables are also saved into the header to be used during decoding.

The backend internally uses two types of headers. A v 1 header contains
frequency tables, final encoder states and all the other information in unen-
coded form. However, the header is written to output in a different form
called v 2 header. This type of header contains all the information from
v 1 header, but the frequency tables are compressed using a form of Huffman
coding. Moreover, the other fields from v 1 header are “packed” – copied in
compact form to shared continuous block of memory to save some space5.
This header will be output in the beginning of the compressed block.

The literals are encoded first. They are encoded bytewise but four literal
bytes are encoded in each step using one FSE encoder for each. So there
are four FSE encoders for literals, which rotates in encoding the literal bytes.
The four literal FSE encoders all use the same frequency tables and they also
share the encoding tables but each of them has its own state. The reference
implementation also uses an output stream that allows to output individual
bits by accumulating them and outputting whole bytes when the accumulator
is full. The four literal encoders share one such output stream.

The process described in previous paragraph requires that the number of
literal bytes is divisible by four. This is ensured before the literals are encoded
by adding up to three additional literals (to increase the number to nearest
multiply of four). Note that even with the added literals, the original data
can still be decoded unambiguously, because the number of preceding literals
is kept for each match (as a L in the (L, M, D) triplet).

The FSE encoders for literals have 28 = 256 possible input symbols (i.e. all
possible byte values) and they use 1024 states in the reference implementation.
The encoding also uses the procedure mentioned in Section 3.2: the literals
are encoded backwards starting from the last literal. Because decoding works
in the opposite direction, it will start from the first. When all literals are
encoded, the final encoder state for each of the four FSE encoders is saved
into the header.

The L, M and D elements of match triplets are encoded next. Three
separate FSE encoders for each of the elements are used. In each step, the
L, M , D elements of one match triplet are encoded and the algorithm then
continues with the next match. Similar output stream as was used when
encoding literals is also used here to allow outputting individual bits. One
such stream is shared by the three FSE encoders.

The L, M and D values may be possibly very large, so the FSE encoders
would need to have many symbols and the encoding tables would be huge.

5For instance the final state of FSE encoder for M elements is stored as a 16-bit integer
in v 1 header. However, since it can only take values in range 0–63, such representation is
inefficient. It is copied into fewer bits in v 2 header.

26

4.1. Compression

Instead, each encoder has a fixed number of possible symbols (it is 20 for L
and M , 64 for D). There is also a limit on the values L, M and D may
take. If either L or M is larger than its maximum value, the match must
be split into multiple matches and each of them encoded separately. These
maximums are still considerably larger than the number of FSE symbols, for
instance it is 2359 for match length (M), while its FSE encoder has only 20
possible symbols. To map the values of L, M and D elements to symbols used
by FSE, tables6 are used. For each possible value, they contain its base value.
The element is encoded as its base value and the extra bits representing the
difference between value of the element and its base value are also written
to output. In the reference implementation the extra value bits are written
before the extra state bits (produced by FSE). Because lower values are more
probable, they generally map to same base value and no extra bits need to be
written. For each base value (i.e. symbol), the number of extra bits is stored
in another table7 to be used during decompression.

As in the case of literals, the match triplets are also encoded starting from
the last, so that they can be decoded starting from the first. The final state
for each of the FSE encoders is also saved into the header when all matches
are encoded.

Compressed block structure

In summary, the LZFSE compressed block (with the v 2 header) has the
following structure:

• It begins with a header that contains the following elements:

– block magic identifying the type of this block (LZFSE compressed
block)

– number of decoded (output) bytes in block
– number of literals8 (i.e. number of bytes taken by literals in unen-

coded form, will be multiple of 4)
– size of the encoded literals (i.e. number of bytes taken by literals

in encoded form)
– number of (L, M, D) matches

6These tables do not change with input data. They are hard-coded as constant static
arrays in the reference implementation (see lzfse encode tables.h and lzfse internal.h).

7This is also hard-coded in the reference implementation.
8Slightly different terminology is used in the reference implementation. There, all the

bytes between the previous and the next emitted match are referred to as one literal. There-
fore, as noted in a comment there, this number is not the number of literals defined in this
way.

27

4. LZFSE

– three bits representing internal state of literal FSE output stream
– the final states of the four literal FSE encoders
– number of bytes used to encode the (L, M, D) matches
– three bits representing internal state of matches FSE output stream
– size of the header
– final states of the L, M and D FSE encoders
– compressed frequency tables for FSE encoders

• Then it contains all the compressed literals.

• Then it contains the compressed (L, M, D) triplets representing matches.

All fields of the header starting with number of literals are kept in compact
form. All fields between number of literals and final states of L, M, D encoders
(inclusive) are stored into shared continuous block of memory. The frequency
tables for L, M, D and literal encoders are compressed using a form of static
Huffman coding.

4.1.2.1 Finite state entropy encoding

The finite state entropy encoding as implemented in the reference implemen-
tation of LZFSE is described here (see Section 3.3 for general description).

Before the actual encoding can take place, the encoding table must be
initialized. This is done based on the symbol frequencies, which are counted
in advance. Using the frequencies of symbols, the states9 are distributed into
subsets (corresponding to symbols). Each symbol is assigned a number of
states based on its frequency. Symbols with higher frequency of occurrence
will get more states but every symbol that has non-zero frequency is given at
least one. For instance, if a symbol has frequency of 15% (i.e. 15% of input
symbols are equal to this symbol), then approximately 15% of possible states
will be assigned to it.

In this implementation of FSE, the encoder table contains an entry for
each possible symbol. Each entry contains a value called delta. This value
is relative increment used to obtain the next state [14]. When a symbol is
encoded, the next state is computed by adding delta (from the table entry for
this symbol) to the current state. The value of delta for each symbol depends
on the number of states that were assigned to this symbol. The more states
the symbol has the lower the delta. Thus, symbols with larger frequencies are
assigned more states and so they have lower delta.

9The number of states for FSE encoders is fixed. It is hard-coded for each encoder
type (L, M, D and literals) in the reference implementation.

28

4.2. Decompression

The mechanism to ensure that states remain in a fixed range that was
described in Chapter 3 is also used here. When a state would be larger than
the maximum state, its k least significant bits are shifted – transferred to
the output. This k is computed before encoding and saved for each symbol.
However, this number also depends on the current state, larger states may
require to transfer more bits to the output to keep in the range. Because
of this, the first state requiring more bits to be shifted (denoted s0) is also
computed and saved for each symbol in the table. If the current state is
smaller than s0, only its k−1 bits are shifted. Otherwise, if the state is larger
or equal, its k bits are shifted. Naturally, for both of these variants a different
delta will be used to get to the next state. Both variants are stored in the
table, denoted delta0 and delta1 respectively.

The encoding of a symbol using FSE as it is done in the LZFSE reference
implementation is summarised in the following pseudocode:

Algorithm 5: FSE symbol encoding
input : symbol, current state s, encoding table t
output: new state s′

1 if s < t[symbol].s0:
2 nBits := t[symbol].k − 1
3 delta := t[symbol].delta0
4 else:
5 nBits := t[symbol].k
6 delta := t[symbol].delta1
7 output nBits least significant bits of s
8 s′ := (s >> nBits) + delta

4.2 Decompression

The decompression is done block by block. The header for the current block
is loaded first. As described in Section 4.1, the first four bytes of each block
contain a special value identifying type of that block (called block magic).
If the block magic is equal to the special value denoting the end of file, the
decompression is finished. Otherwise, the header is decoded in a way specific
to the particular block type. Information about the current block is obtained
from it and saved to be used during decoding.

If the current block is of uncompressed block type, it is decoded simply
by copying the block content to the output unchanged. The decompression
algorithm then moves on to the next block.

As mentioned in the compression section, there is a fallback algorithm
called LZVN, which is used for compressing small files in the reference im-
plementation (for speed reasons). It also has its own block type and its own

29

4. LZFSE

decompression algorithm, which is used if a block of this type is encountered.
As stated before, this algorithm will not be covered here, because this work
focuses on the LZFSE algorithm.

There are two types of headers for blocks compressed by LZFSE, which
were described in Section 4.1.2. As also mentioned there, only the v 2 header
(the header with compressed frequency tables) is actually used in practice.
The other header type (v 1) is only used internally, but the decoder also
supports blocks starting with header of that type.

When the compressed header is encountered, it is decoded first and all
the information, including frequency tables for FSE, is obtained. Four FSE
encoders were used to encode the literals, there also was one encoder for each
of the (L, M, D) elements (see Section 4.1.2). For each of these FSE encoders,
a corresponding FSE decoder is used during decoding. The final states of
all encoders were saved inside the header, from which they are now read and
used to initialize all the FSE decoders. As in the case of encoding, one shared
decoding table is used by all four literal decoders.

The literals were encoded first and so they are present in the beginning
of the block immediately following the header. Thus, all the literals are de-
coded first using the four FSE decoders, which rotates in decoding the liter-
als. Decoded literals are stored in a buffer to be used later when decoding
the matches. Thanks to the literals being encoded in reverse order (starting
from the last), they are now decoded starting from the first10. This also ap-
plies to the L, M, D values decoded later. The finite state entropy decoding
is described in a separate section below, see Section 4.2.1.

The matches produced by the encoder in a form of (L, M, D) triplets are
present next in the block. The matches are decoded successively in the process
described below. The output is not written directly but it is rather kept in a
buffer so that the previous output can be copied when decoding the matches.
This buffer is referred to as the output buffer. The current position in the
output buffer is kept and updated when executing the matches (as described
further in the text).

For each match, the L, M, D values are decoded first using their respective
FSE decoders. As described in Section 4.1.2, the values were encoded as their
base value and bits representing the difference between their actual value and
base value were written to the output. Therefore, additional bits must be
read from the input and added to the base value yielded by FSE decoding
step. This is done in the FSE decoder, the number of additional bits for each
symbol is known in advance11 and so it is saved in the decoder entries during
the initialization.

10As described in Section 3.2, ANS decoding works in opposite direction than encoding.
11As described in the backend section of encoder, the tables used to convert values to

their base values are hard-coded in the reference implementation.

30

4.2. Decompression

When the L, M, D values of match are decoded, the match is executed.
Firstly the L literals from the literal buffer are copied on the current position
in the output buffer. The pointer to the literal buffer is then moved by L
positions (to point to the next literal that was not yet written to output).
Then the M bytes starting D positions before the current position in the
output buffer are copied on the current position in the output.

The process of executing matches is similar to how LZ77 decodes the
matches. A portion of previous output pointed to by the current match is
copied on the current position. In case of LZ77, the previous output is kept
in a sliding window, from which symbols are removed and new ones added
every step. In case of LZFSE, all output is accumulated in the output buffer.
The values are copied within the output buffer and only the pointer to current
position needs to be updated, so no costly operation (as is the sliding window
management in case of LZ77) needs to be done.

The process of decoding one match is formalized in Algorithm 6, dst is
pointer to the current position in the output buffer and lit is pointer to the
literal buffer. Note that the literal buffer contains all literals, which were
decoded during initialization. The L, M, D symbols are decoded using their
FSE decoder (the FSE decoding is described in Section 4.2.1 below).

This is repeated until all matches are decoded. If the output buffer runs
out of space, the decoding is interrupted. When all matches are decoded, the
output buffer contains the whole decoded block. Subsequently, the decoder
state is updated and the decompression continues with the next block.

Algorithm 6: LZFSE match decoding step
1 decode the next L, M, D symbols (using FSE decoders)
2 copy L bytes (literals) from lit to dst
3 dst := dst + L
4 lit := lit + L
5 copy M bytes from dst - D to dst
6 dst := dst + M

4.2.1 Finite state entropy decoding

4.2.1.1 Decoding literals

The decoder for literals is simpler than the L, M, D values decoder (described
further in the text). It is an implementation of the finite state entropy de-
coding. The decoding table is initialized before the decoding may take place.
The initialization uses the same frequency table as was used for initializing
the encoding table.

31

4. LZFSE

The decoding table contains an entry for each state. Each entry must
contain an information on how to get to the previous state12 and the decoded
symbol13. The decoded symbol is simply stored in each table entry.

The decoder table entry also contains values called delta and k. The value
of k is the number of bits that were transferred to output during encoding to
ensure the state is lower than given maximum (see Section 4.1.2.1). During
decoding, these k bits must be read from input and added to the delta value
to get to the previous state. The decoding step is described in the following
pseudocode:

Algorithm 7: Decoding of a literal using FSE
input : current state s, decoding table t
output: decoded symbol (literal), new state s′

1 n := read t[s].k bits from input
2 s′ := t[s].delta + n
3 return t[s].symbol

4.2.1.2 Decoding L, M, D values

The L, M, D values are decoded in a similar way as the literals. The values
were encoded as their base values (this was described in Section 4.1.2) and the
difference was written to the output. When they are decoded, this difference
must be read from input before reading the bits that are added to delta to
obtain the previous state.

Each entry of the decoding table contains: delta (as in the case of liter-
als), the value base (vbase), the number of bits that will be read from input
(called total bits) and a number indicating how many of these bits represent
the difference from the base value (called value bits).

The following pseudocode shows how a L, M or D value is decoded14:

Algorithm 8: Decoding of one L, M or D value using FSE
input : current state s, decoding table t
output: decoded value (L, M or D), new state s′

1 value extra := read t[s].value bits bits from input
2 state extra := read (t[s].total bits− t[s].value bits) bits from input
3 s′ := t[s].delta + state extra
4 return t[s].vbase + value extra

12From the decoding viewpoint, this state is actually the next state, but it will be referred
to as the previous state to conform to the description of asymmetric numeral systems in
Chapter 3.

13This is the symbol that was encoded by transitioning to this state during encoding.
14Note that in the reference implementation, all the extra bits are read together. They

are then separated on state and value bits using bit operations. However, they are read
separately in the pseudocode for simplicity reasons.

32

Chapter 5
Implementation

The goal of this thesis was to integrate LZFSE method into the ExCom library.
This chapter describes the steps taken to achieve it. LZFSE was implemented
as a new ExCom module. The process of adding new methods into ExCom
is described in detail in [2], only changes from this procedure and important
steps will be listed here.

5.1 Implementation of LZFSE module

The LZFSE module was implemented as a new class CompLZFSE extending the
CompModule class from the ExCom library. The source code for this class is
present in lzfse.hpp and lzfse.cpp files.

As there exists an open source reference implementation of LZFSE written
in C language (described in previous chapter), it was possible to use this
implementation and integrate it into ExCom by writing a wrapper over it.
The reference implementation provides an interface for block compression.
There are two methods lzfse_encode_buffer and lzfse_decode_buffer
that performs compression and decompression respectively. They take a source
buffer as an input and write their output to a given output buffer.

The LZFSE module was implemented as a wrapper over these methods.
It performs the required operation (i.e. either compression or decompression)
by executing the following steps:

1. Load the input into a source buffer.

2. Allocate an output buffer15.
15Because it is not known in advance how big the output of encode/decode operation will

be, it is assumed that for compression the output will not be larger than the input. For
decompression, the output buffer size is chosen to be four times the input size. If the output
buffer is too small, the operation fails. In such case, the output buffer is enlarged and the
operation is run again.

33

5. Implementation

3. Call the appropriate method that will process data from the input buffer
and write the result into the output buffer.

4. Write contents of the output buffer as an output of the operation.

The ExCom library API supports reading/writing by bytes or by whole
blocks. Initially, the first variant was used and the input was loaded byte by
byte using a loop and also written in similar way. However, this proved to
be a significant bottleneck. By rewriting the I/O operations using the block
functions from the API (readBlock() and writeBlock()), the compression
time was improved (lowered) by nearly 15% in average. The improvement of
decompression time was even higher, using block I/O operations decreased it
by approximately 40% in average on Prague Corpus files.

The modified LZFSE reference implementation is placed in a subfolder
named lzfse inside the LZFSE module. The changes made to the code of the
reference implementation are listed below in Section 5.1.2.

Furthermore, unit tests were created for the LZFSE module to validate the
implementation. They test the compression and decompression operations and
other functions of the module.

5.1.1 Implemented parameters

The following adjustable parameters were implemented for the LZFSE module
(for details of their implementation see Section 5.1.2):

• good match (g) – This parameter sets the threshold for immediately
emitting matches. As described in Section 4.1.1 when a found match is
bigger than this threshold, it is immediately emitted. Default value of
this parameter is 40. Only values equal or larger than 4 are accepted.

• hash bits (h) – This parameter controls the number of bits produced by
hash function that is used in frontend to search for matches (see Sec-
tion 4.1.1). Integer values between 10 and 16 (inclusively) are possible,
14 is the default.

5.1.2 Changes in reference implementation

All changes made to the reference implementation are described here. The
version of LZFSE reference implementation from 22 May 2017 as published
at [14] was used.

As mentioned in Chapter 4, the reference implementation contains a heuris-
tic that uses a different algorithm called LZVN for small inputs. Because the
goal was to implement and measure performance of the LZFSE algorithm, the

34

5.1. Implementation of LZFSE module

LZVN compression was removed here by commenting out the corresponding
part of the code. While the LZVN compression was removed from the en-
coding function, the ability to decompress LZVN blocks was preserved in the
decoding function to maintain compatibility with the reference implementa-
tion16.

Further changes were necessary in order to implement the adjustable pa-
rameters described above. Since these parameters affect only the compression
operation, only the encoder was needed to be modified.

The reference implementation contains four adjustable parameters in the
lzfse_tunables.h header. However, they are implemented as preprocessor
constants there, so it is not possible to change their value at runtime.

The LZFSE_ENCODE_GOOD_MATCH and LZFSE_ENCODE_HASH_BITS prepro-
cessor constants were replaced by parameters that are part of structure de-
fined in lzfse_params.h. This structure is kept by the LZFSE module and
its fields (the parameters) are updated when parameter change is requested
through the module API. When the compression operation is run, this struc-
ture is passed to the appropriate method and saved inside the compression
state. Its fields are then used instead of the constants.

Because the LZFSE_ENCODE_HASH_BITS affects the size of the history table,
it was also necessary to modify the history table allocation. It is now allocated
dynamically with size depending on the parameter value.

The LZFSE_ENCODE_LZVN_THRESHOLD constant was used to control the
LZVN compression mentioned before. But since LZVN is not used here, this
constant is unnecessary and was removed.

The last constant called LZFSE_ENCODE_HASH_WIDTH controls the number
of entries stored in each set of the history table. Implementing this parameter
would require even more complex allocation of the history table and various
additional changes in code where the history table is manipulated with. Fur-
thermore, this parameter may take only two values: 4 or 8. Because of this,
it was left as a preprocessor constant and may be modified by changing its
definition in the lzfse_tunables.h header file and recompiling the module.

5.1.3 Testing

Unit tests were implemented for the LZFSE module. The unit tests are similar
to unit tests for other modules in ExCom. The functionality of the module is
tested: input/output operations, setting of parameters, and finally the com-
pression and decompression operations. The cxxtest framework is used for
unit tests in ExCom, as described in [2].

16Therefore, LZVN compressed block will never be produced by the LZFSE module, but
the module is able to decode them (so it can decode files compressed by the LZFSE reference
implementation).

35

5. Implementation

Additionally, when running benchmarks, all files from Prague Corpus were
always tested if they were decompressed correctly by the method (i.e. whether
the decompressed file was identical to the original file).

5.1.4 Other changes

Additional minor changes outside of the LZFSE module were necessary in
order to compile the ExCom library using a modern g++ compiler.

Also the explicit call to search buffer object destructor present in LZ77
and LZSS modules was removed, because it was causing double delete (as the
object is deleted using delete later) and the methods could not be run.

36

Chapter 6
Benchmarks

The results of benchmarks made on the newly added LZFSE module and other
ExCom modules are presented in this chapter. The benchmarks were made
using the ExCom library benchmarking and time measurement capabilities as
described in [2].

6.1 Methodology

The Prague Corpus files were used for benchmarking, see Appendix C for list
of files and file details. Every method was run 50 times for both compression
and decompression operations on each file. The minimal time from those 50
runs was taken for each operation to eliminate bias caused by other running
processes in the system.

ExCom supports multiple runs of a method on one file, but it does not
support computing minimum time or compression ratio [2]. Two bash scripts
were written to automate the process of measuring performance of methods.
Both scripts are part of this work, they are described in Appendix E.

6.2 Testing platform specifications

The ExCom library was built and the benchmarks were made on a system
with the following specifications:

Operating system Fedora 26 (Linux kernel version 4.14.18)
Processor Intel R© CoreTM2 Duo CPU T6570 @ 2.10GHz × 2
Architecture 64 bit
L2 cache size 2048 kB
Memory size (RAM) 4 GB
Compiler g++ 7.3.1

37

6. Benchmarks

6.3 Results

6.3.1 Comparison with other compression methods

Because LZFSE was designed as a balanced method and intended for general
use cases, it was expected to be among above average methods both in terms
of compression ration and speed. Furthermore, its compression ratio would
likely benefit from the ANS entropy coder. The benchmarks proved those
assumptions.

For all benchmarks presented in this subsection, default values were used
for all adjustable LZFSE parameters.

6.3.1.1 Dictionary methods

LZFSE was compared to LZ77, LZ78, LZAP, LZMW, LZW and LZY dictio-
nary methods implemented in ExCom. Unfortunately, most files from Prague
Corpus were not decompressed correctly using the LZSS method (i.e. the de-
compressed file was not identical to the original), and so it was not used in
comparisons.

Compression time
Because LZFSE compression operation is relatively complex (as described in
Chapter 4) and it is considerably more complex than its decompression opera-
tion, it was not expected to be the fastest method in this regard. Nevertheless,
LZFSE had the lowest compression time on 23 from 30 tested files and so on
most files, it was the fastest from tested methods. On each of the abbot,
firewrks and nightsht files, LZFSE had around 50% lower compression
time than LZW – the second fastest method on most files. LZFSE generally
performed well on larger files, especially on audio and graphic files. On the
largest tested file nightsht, LZFSE had nearly 53% lower compression time
than LZW, the absolute difference being more than 642 milliseconds.

However, LZFSE struggled on very small files, where compression time
was negatively impacted by its complex compression algorithm. On the three
smallest files collapse, xmlevent and usstate, which are all source codes,
LZFSE had significantly worse compression time than LZW. The largest rel-
ative difference occurred on the smallest file collapse, where LZFSE was
almost 2 times slower than LZW (0.313 ms versus 0.167 ms) and was the
fourth slowest method. On xmlevent and usstate files, LZFSE had around
20% larger compression time than LZW. However, apart from collapse and
usstate files, LZFSE was always at worst the second fastest method.

Based on these observations, it seems only logical to use a simpler algo-
rithm instead of LZFSE for compressing very small files. Still, in absolute
values, LZFSE was at most by 1.3 milliseconds slower than LZW (on file
modern, where relative difference was only approx. 6%).

38

6.3. Results

 0.1

 1

 10

 100

 1,000

 10,000

abbot collapse firewrks modern nightsht usstate xmlevent

C
o
m

p
re

ss
io

n
 t

im
e

[m
s]

Input file

LZFSE

LZ78

LZW

Figure 6.1: Comparison of compression time of LZFSE, LZ78 and LZW dic-
tionary methods

 0.01

 0.1

 1

 10

 100

 1,000

collapse cyprus hungary mailflder nightsht venus

D
ec

o
m

p
re

ss
io

n
 t

im
e

[m
s]

Input file

LZFSE

LZ78

LZW

Figure 6.2: Comparison of decompression time of LZFSE, LZ78 and LZW
dictionary methods

39

6. Benchmarks

Decompression time
For decompression operation, LZFSE proved to be significantly faster than all
dictionary methods implemented in ExCom that it was compared to. It had
the lowest decompression time on all files and on most of them (27 from 30
files) it was more than 60% faster than any other dictionary method.

LZ78 was the dictionary method with fastest decompression so far. LZFSE
achieved approximately 65% lower decompression time than LZ78 in aver-
age. The only two files where the relative difference was significantly lower
than 60% were collapse and mailfldr text files, where LZFSE had only 42%
and 45% respectively lower decompression time than LZ78.

The largest relative difference occurred on cyprus and hungary files, which
contain data in XML format. There, LZFSE had approximately 78% bet-
ter (lower) decompression time than LZ78. The largest absolute difference was
on nightsht and venus image files. These files took LZFSE approximately
264 milliseconds less than LZ78 to decompress (151.06 ms versus 415.21 ms
on nightsht), having more than 66% lower decompression time on both.

Compression ratio
In terms of compression ratio, LZFSE proved to be the best from all tested
dictionary methods. Thanks to its efficient compressor and robust entropy
encoder, LZFSE achieved more than 20% lower compression ratio than the
second best method in average. It had the lowest compression ratio on all but
one files from corpus and its compression ratio was always lower than 1 (i.e.
negative compression never occurred using LZFSE). On hungary XML file,
LZFSE even had 55% lower compression ratio than the second best dictio-
nary method LZMW. The only file where LZFSE ranked second was wnvcrdt
database file, where it had 6.31% ratio and LZMW had 5.74%.

The strength of LZFSE compressor was demonstrated on abbot, firewrks
and nightsht files, where it was the only method to have compression ratio
below 1. On nightsht and firewrks graphical files, all other tested dictio-
nary methods produced negative compression, as it is hard for them to find
matches in these files. However, thanks to its ANS entropy coder, LZFSE had
compression ratio of 92% on both files.

The file abbot is a ZIP archive and contains data compressed using the
DEFLATE algorithm. The contents of this file was originally compressed with
54.3% compression ratio using the said algorithm. While other dictionary
methods failed to compress this archive further (each of them had at least
110% compression ratio), LZFSE achieved compression ratio of 91.4%. This
indicates that the LZFSE compression method is slightly more sophisticated
than the version of DEFLATE used to compress this ZIP archive.

40

6.3.
R

esults

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 140%

abbot bovary corilis emission firewrks higrowth hungary lzfindmt nightsht wnvcrdt

C
o

m
p
re

ss
io

n
 r

at
io

Input file

LZFSE

LZ77

LZ78

LZAP

LZMW

LZW

LZY

Figure 6.3: Comparison of compression ratio of LZFSE and other dictionary methods

41

6. Benchmarks

6.3.1.2 Statistical methods

Compression time
In terms of compression speed, the fastest statistical method was static Huff-
man coding. It was also faster than LZFSE on more than half of corpus files.
However, LZFSE was always at worst the second fastest method and it had
the lowest compression time on 11 from 30 files from the Prague Corpus.

LZFSE achieved comparable compression time to static Huffman coding
in most cases, as the average relative difference was fewer than 5 percent.
The biggest relative difference was on modern file, where compression time of
LZFSE was 64% larger. The biggest absolute difference was, unsurprisingly,
on large graphic files. On flower and venus the difference was substantial –
it was more than 200 milliseconds on flower and nearly 170 milliseconds for
venus. In contrast, on nightsht, LZFSE had comparable compression time
to static Huffman coding and was only approximately one millisecond slower.

LZFSE performed best mainly on database and XML files. It did excep-
tionally well on cyprus and hungary XML files, where it had around 40%
lower compression time than static Huffman coding.

Decompression time
LZFSE decompression was decisively faster than that of any tested statistical
method. It outperformed statistical methods on all files and always had at
least 90% lower decompression time than the second fastest method (usually
static Huffman coding, Shannon-Fano coding on some files). LZFSE did espe-
cially well on hungary and cyprus XML files, where it was around 36 times
faster than the closest contender. Additionally, on corilis graphic file, it was
more than 33 times faster than the second best static Huffman coding.

This difference is particularly noticeable on large graphic files. On each
of the nightsht, flower and venus images, LZFSE had at least 95% lower
decompression time than the second fastest method. In case of nightsht file,
this difference was more than 3 seconds (0.15 s versus 3.48 s static Huffman).

Compression ratio
LZFSE achieved better compression ratio than any statistical method on 29
from 30 files. The only exception was nightsht file, where it had compression
ratio of 92.3% while arithmetic coding had 91.8%.

On 7 files from corpus, the LZFSE method had at least 70% lower compres-
sion ratio than the second best compressing method on that file. On hungary
XML file, it had 3.38% compression ratio while the closest arithmetic coding
had 56.82%. Similarly, on cyprus XML file, LZFSE had ratio of 3.98% and
arithmetic coding 56.27%, which is more than 14 times larger.

42

6.3. Results

 10

 100

 1,000

 10,000

 100,000

cyprus firewrks flower hungary modern nightsht venus

C
o
m

p
re

ss
io

n
 t

im
e

[m
s]

Input file

LZFSE

Arithmetic coding

Adaptive Huffman coding

Static Huffman coding

Shannon−Fano coding

PPM

Figure 6.4: Comparison of compression time of LZFSE, statistical methods
and contextual method PPM

 1

 10

 100

 1,000

 10,000

 100,000

corilis cyprus firewrks flower hungary nightsht venus

D
ec

o
m

p
re

ss
io

n
 t

im
e

[m
s]

Input file

LZFSE

Arithmetic coding

Adaptive Huffman coding

Static Huffman coding

Shannon−Fano coding

PPM

Figure 6.5: Comparison of decompression time of LZFSE, statistical methods
and contextual method PPM

43

6.
B

enchm
arks

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

abbot bovary cyprus emission firewrks flower hungary modern nightsht

C
o

m
p

re
ss

io
n
 r

at
io

Input file

LZFSE

Arithmetic coding

Adaptive Huffman coding

Static Huffman coding

Shannon−Fano coding

PPM

Figure 6.6: Comparison of compression ratio of LZFSE, statistical methods and contextual method PPM

44

6.3. Results

6.3.1.3 Prediction by partial matching

Prediction by partial matching (PPM) from the contextual methods category
was generally the best compressing method from all those tested. Excluding
LZFSE, it had lower compression ratio than other tested methods on all files
except one.

Because compression ratio is not the main focus of the LZFSE method,
but rather it seeks balance between compression quality and speed, it could be
expected to be outperformed by PPM in this regard. PPM had better com-
pression ratio than LZFSE on 26 from 30 corpus files. The largest difference
was on bovary PDF document, where LZFSE had almost 55% larger compres-
sion ratio than PPM (34.53% ratio versus 22.34% ratio) – and so produced
1.55 times larger compressed file. Also on emission, flower and modern files,
LZFSE had more than 1.4 times worse compression ratio. However, apart
from these four files, the relative difference between LZFSE and PPM ratios
was always lower than 35%. On 22 from 30 corpus files, LZFSE had at most
25% larger compression ratio than PPM.

On four files from the Prague Corpus, LZFSE even achieved better com-
pression ratio than PPM. When compressing the hungary file, LZFSE achieved
ratio of 3.38%, which is by 20% lower than the 4.23% ratio produced by PPM.
Also on cyprus file, LZFSE had approximately 15% lower compression ratio
(3.98% versus 4.68%). On abbot and firewrks files, LZFSE had only slightly
better compression ratio (by no more than 2%).

However, in terms of compression and decompression speed, LZFSE was
substantially better than PPM. LZFSE had lower both compression and de-
compression time on all files from corpus. On 25 files, LZFSE had at least 65%
lower compression time than PPM. The largest difference was on firewrks
audio file, where LZFSE had more than 26 times smaller compression time
than PPM (59 ms versus 1564 ms). On nightsht image, the largest file
from corpus, PPM compression took 13.68 seconds longer and was 25 times
slower (574 ms LZFSE versus 14372 ms PPM).

In case of decompression time, the difference between these two methods
was even greater. On all files from corpus, LZFSE had more than 85% lower
decompression time than PPM, the average relative difference being approx-
imately 95%. The largest difference was again on the firewrks file, where
LZFSE had more than 131 times lower decompression time (13 ms versus
1733 ms). The nightsht file was decompressed by LZFSE in 151 ms, while
the same operation took PPM 15546 ms, which is more than 100 times longer.

In summary, LZFSE usually achieved slightly worse compression ratio
but with significantly better speed than PPM. So unless compression ratio is
greatly important, LZFSE would almost always be better choice. Figures 6.7
and 6.8 contain comparison of relative performance of all tested methods.
From these graphs, LZFSE seems to be best choice for general applications.

45

6. Benchmarks

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

C
o
m

p
re

ss
io

n
 r

a
ti

o
 [

%
]

Compression time [s]

LZFSE
LZ77
LZ78
LZAP

LZMW
LZW
LZY

ARITH
DHUFF

PPM
SFANO
SHUFF

Figure 6.7: Comparison of compression time and compression ratio of all
tested methods on flower file. This graph shows the tradeoff between com-
pression ratio and speed. Lower values are better for both axis, so methods
closer to the origin have better performance.

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o
m

p
re

ss
io

n
 r

a
ti

o
 [

%
]

Decompression time [s]

LZFSE
LZ77
LZ78
LZAP

LZMW
LZW
LZY

ARITH
DHUFF

PPM
SFANO
SHUFF

Figure 6.8: Comparison of decompression time and compression ratio of all
tested methods on flower file

46

6.3. Results

6.3.2 Adjustable parameters

6.3.2.1 The good match parameter

As stated before, this parameter controls the minimum size for matches to
be emitted immediately in the frontend (see sections 5.1.1 and 4.1.1). Value
of this parameter has an impact on compression ratio and speed. Setting it
to higher value may yield better compression ratio as the matches are not
emitted prematurely and longer matches may be found. However, this also
increases the compression time.

Increasing the value of this parameter always slightly increased the com-
pression time, because it prolonged the search for matches in the frontend.
However, larger values of this parameter did not always improve the achieved
compression ratio. On nightsht file, in which it is hard to find matches,
the compression ratio was exactly the same for 10 and 100 values of this pa-
rameter. Similarly, on venus and flower image files, only very small values
(smaller than 20) of the good match parameter produced different compression
ratios.

The largest impact on compression ratio was on the emission database
file, as shown in the graph below. This file contains many matches and some
of them are very long. Therefore, when the parameter had lower values, the
long matches were not found and the compression ratio was worse (higher).

 66

 67

 68

 69

 70

 71

 72

 73

 10 20 30 40 50 60 70 80 90 100 110 120 130
 11.8

 11.9

 12

 12.1

 12.2

 12.3

 12.4

 12.5

C
o
m

p
re

ss
io

n
 t

im
e
 [

m
s]

C
o
m

p
re

ss
io

n
 r

a
ti

o
 [

%
]

good match

Compression time Compression ratio

Figure 6.9: The impact of good match parameter on compression time and
compression ratio on the emission file

47

6. Benchmarks

6.3.2.2 The hash bits parameter

This parameter controls the number of bits produced by hash function when
searching for matches (see sections 5.1.1 and 4.1.1). Larger values reduce
the probability of hash collisions and increase the size of the history table.
Because the history table contains a history set for each possible hash value,
the size grows exponentially. Increased size allows more match candidates to
be present in the history table and potentially improves achieved compression
ratio. However, it also causes more cache misses and subsequently larger
compression time.

Increasing this parameter always caused an increase in compression time.
In case of nightsht and flower graphic files, the time increased significantly.
The impact on compression ratio differed for each file. On nightsht, compres-
sion ratio remained basically the same (92.15% for 10 vs. 92.23% for 16). In
contrast, the compression ratio changed significantly on the flower image (see
the graph below).

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 10 11 12 13 14 15 16
 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

C
o
m

p
re

ss
io

n
 t

im
e
 [

m
s]

C
o
m

p
re

ss
io

n
 r

a
ti

o
 [

%
]

hash bits

Compression time Compression ratio

Figure 6.10: The impact of hash bits parameter on compression time and
compression ratio on the flower file

6.3.2.3 The hash width parameter

The hash width parameter controls the number of entries for each set of the
history table. Its value is defined in the lzfse_tunables.h header file as a
preprocessor constant called LZFSE_ENCODE_HASH_WIDTH. This parameter was
not implemented for the LZFSE module, so its value can not be controlled

48

6.3. Results

through the ExCom API. To change the value of this parameter, its definition
was modified and the LZFSE module was recompiled.

Possible values for this parameter are 4 and 8, the default is 4. If it is
set to 8, the history table size doubles. Having more match candidates for
each position increases the chance of finding (longer) matches [14]. However,
similarly to the hash bits parameter, this results in more cache misses and
slower compression speed.

Benchmarks showed that the impact on compression time is significant.
Compression time for hash bits set to 8 was in average about 70% larger than
for value of 4. Biggest impact was on collapse file, where the compression
time was 86% larger.

The impact on compression ratio was barely noticeable on most files. Set-
ting the parameter value to 8 decreased compression ratio by approximately
1.4% in average. The largest impact occurred on hungary and cyprus files17,
where the ratio decreased by 7% and 6% respectively.

6.3.2.4 Impact on decompression time

Only compression time and compression ratio were discussed for all three
parameters. All three parameters apply only to the compression operation.
Therefore, decompression time is only affected indirectly by parameter set-
tings. Compressing with different parameter values may produce slightly dif-
ferent output.

However, the actual measured impact on decompression time was negli-
gible. It changed by no more than 5% in average for various settings of the
three tested parameters.

17Both these files are XML files containing air quality monitoring data (see Appendix C).

49

Conclusion

As part of this thesis, the LZFSE compression method was analysed and then
implemented into the ExCom library as a new module. This was done by using
the reference LZFSE implementation as a base for the module and modifying
it to work inside ExCom and to allow two adjustable LZFSE parameters to
be controlled through the ExCom library API.

Benchmarks were then made using the files from the Prague Corpus and
utilizing the ExCom library time measurement capabilities. The newly added
LZFSE method was compared with other methods implemented in ExCom
in terms of speed and compression ratio. The effects that adjustable LZFSE
parameters have were also examined.

LZFSE did exceptionally well both in terms of decompression speed and
compression ratio and was the best from tested methods in these two cate-
gories.

In terms of compression speed, LZFSE was not the fastest method because
of its more complex compressor. It was surpassed by static Huffman coding
in this regard. However, it was the fastest from dictionary methods on most
tested files and it always placed among faster methods.

The decompression of LZFSE was the fastest from all tested methods on
all files from corpus. It had considerably lower decompression time than other
dictionary methods on most files, usually being substantially faster than any
of these methods.

Furthermore, LZFSE achieved the lowest compression ratio on all but one
files when compared with dictionary methods and usually outperformed them
significantly in this regard. It also surpassed statistical methods in similar way.
Moreover, negative compression never occurred when compressing corpus files
with LZFSE. The only method that had better compression ratio on most files
was a contextual method PPM. However, this method was incredibly slower
than LZFSE for both compression and decompression operations.

51

Conclusion

In summary, LZFSE proved to be a balanced method providing both de-
cent compression speed and excellent speed of decompression. It also achieved
very good compression ratio. As such, this method is appropriate for common
usage, when the speed and the compression ratio have similar priority.

LZFSE achieves its outstanding performance by combining a fast match-
searching scheme, which employs hashing to find matches, and an entropy
coder based on the finite state entropy, a variant of asymmetric numeral sys-
tems.

Future work

The strength of entropy coding based on the asymmetric numeral systems
was demonstrated in the benchmarks. Thanks to it, LZFSE achieved size
reduction even on files, where other dictionary methods produced negative
compression. It would be interesting to add the different variants of ANS
into the ExCom library and compare them with each other to identify the
strengths of each variant. And also compare them with other entropy coding
methods already implemented in the library.

Furthermore, another lossless algorithm called Zstandard (or Zstd), which
uses the finite state entropy variant of ANS, was developed recently by Yann
Collet at Facebook. This method is gaining popularity (it is used by Face-
book and it is, for instance, already supported in Linux kernel) and it would
probably be a valuable addition into the ExCom library. It would be partic-
ularly interesting to compare performance of this method with LZFSE and
determine which one is better for which situations.

52

Bibliography

[1] Shannon, C. E. A Mathematical Theory of Communication. The Bell
System Technical Journal, volume 27, no. 3, July 1948: pp. 379–423,
623–656, ISSN 0005-8580, doi:10.1002/j.1538-7305.1948.tb01338.x.

[2] Šimek, F. Data compression library. Master’s thesis, Czech Technical Uni-
versity in Prague, Faculty of Electrical Engineering, Prague, May 2009.

[3] Wang, R. Shannon’s source coding theorem. 2012, accessed: 2018-
03-28. Available from: http://fourier.eng.hmc.edu/e161/lectures/
compression/node7.html

[4] Sayood, K. Introduction to Data Compression. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., third edition, Dec. 2005, ISBN 0-12-
620862-X.

[5] Salomon, D.; Motta, G.; et al. Data compression: the complete reference.
London: Springer, fourth edition, Dec. 2006, ISBN 1-84628-602-6.

[6] Holub, J.; Řezńıček, J.; et al. Lossless Data Compression Testbed: Ex-
Com and Prague Corpus. In 2011 Data Compression Conference, March
2011, ISSN 1068-0314, pp. 457–457, doi:10.1109/DCC.2011.61.

[7] The ExCom Library. Accessed: 2018-02-12. Available from: http://
www.stringology.org/projects/ExCom/

[8] Cormen, T. H.; Leiserson, C. E.; et al. Introduction to Algorithms,
Third Edition. The MIT Press, third edition, 2009, ISBN 0262033844,
9780262033848.

[9] Ziv, J.; Lempel, A. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, volume 23, no. 3, May 1977:
pp. 337–343, ISSN 0018-9448, doi:10.1109/TIT.1977.1055714.

53

http://fourier.eng.hmc.edu/e161/lectures/compression/node7.html
http://fourier.eng.hmc.edu/e161/lectures/compression/node7.html
http://www.stringology.org/projects/ExCom/
http://www.stringology.org/projects/ExCom/

Bibliography

[10] Ziv, J.; Lempel, A. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, volume 24,
no. 5, September 1978: pp. 530–536, ISSN 0018-9448, doi:10.1109/
TIT.1978.1055934.

[11] Data Compression - LZ-77. Accessed: 2018-03-30. Available from: http:
//www.stringology.org/DataCompression/lz77/index_en.html

[12] Senthil, S.; Robert, L. Text Compression Algorithms - A Comparative
Study. ICTACT Journal on Communication Technology, volume 2, Dec.
2011: pp. 444–451, doi:10.21917/ijct.2011.0062.

[13] Duda, J. Asymmetric numeral systems: entropy coding combining
speed of Huffman coding with compression rate of arithmetic coding.
ArXiv e-prints, Nov. 2013, arXiv:1311.2540. Available from: https:
//arxiv.org/abs/1311.2540

[14] Bainville, E. LZFSE compression library and command line tool. June
2016, accessed: 2018-03-30. Available from: https://github.com/
lzfse/lzfse

[15] Witten, I. H.; Neal, R. M.; et al. Arithmetic Coding for Data Com-
pression. Commun. ACM, volume 30, no. 6, June 1987: pp. 520–540,
ISSN 0001-0782, doi:10.1145/214762.214771. Available from: http://
doi.acm.org/10.1145/214762.214771

[16] Duda, J.; Tahboub, K.; et al. The use of asymmetric numeral systems
as an accurate replacement for Huffman coding. In 2015 Picture Coding
Symposium (PCS), May 2015, pp. 65–69, doi:10.1109/PCS.2015.7170048.

[17] De Simone, S. Apple Open-Sources its New Compression Algorithm
LZFSE. July 2016, accessed: 2018-03-31. Available from: https://
www.infoq.com/news/2016/07/apple-lzfse-lossless-opensource

[18] Apple Inc. Data Compression — Apple Developer Documentation. Ac-
cessed: 2018-03-31. Available from: https://developer.apple.com/
documentation/compression/data_compression

[19] Řezńıček, J. Corpus for comparing compression methods and an ex-
tension of a ExCom library. Master’s thesis, Czech Technical Univer-
sity in Prague, Faculty of Electrical Engineering, May 2010. Available
from: http://www.stringology.org/projects/PragueCorpus/data/
papers/Reznicek-MSc_thesis-2010.pdf

54

http://www.stringology.org/DataCompression/lz77/index_en.html
http://www.stringology.org/DataCompression/lz77/index_en.html
arXiv:1311.2540
https://arxiv.org/abs/1311.2540
https://arxiv.org/abs/1311.2540
https://github.com/lzfse/lzfse
https://github.com/lzfse/lzfse
http://doi.acm.org/10.1145/214762.214771
http://doi.acm.org/10.1145/214762.214771
https://www.infoq.com/news/2016/07/apple-lzfse-lossless-opensource
https://www.infoq.com/news/2016/07/apple-lzfse-lossless-opensource
https://developer.apple.com/documentation/compression/data_compression
https://developer.apple.com/documentation/compression/data_compression
http://www.stringology.org/projects/PragueCorpus/data/papers/Reznicek-MSc_thesis-2010.pdf
http://www.stringology.org/projects/PragueCorpus/data/papers/Reznicek-MSc_thesis-2010.pdf

Appendix A
Acronyms

ANS Asymmetric Numeral Systems

API Application Programming Interface

DCA Data Compression using Antidictionaries

ExCom Extensible Compression Library

FSE Finite State Entropy

I/O Input/Output

LZ Lempel-Ziv

LZAP Modification of LZMW, AP stands for “all prefixes”

LZFSE Lempel-Ziv Finite State Entropy

LZMW Lempel-Ziv-Miller-Wegman

LZSS Lempel-Ziv-Storer-Szymanski

LZW Lempel-Ziv-Welch

LZY Lempel-Ziv-Yabba

PDF Portable Document Format

PPM Prediction by Partial Matching

XML Extensible Markup Language

55

Appendix B
Reference implementation

The reference implementation of LZFSE is available from GitHub at [14]. It
is licensed under the open source 3-Clause BSD License. The file structure of
the reference implementation and important functions are described here. All
details pertain to the version from 22 May 2017.

B.1 Source files

The source codes are present in the src subfolder of the reference implemen-
tation. It contains the following files (listed alphabetically):

• lzfse.h – This header file contains the declarations of the API functions
for both the encode and decode operations. See Section B.2 for details
of the API functions.

• lzfse_decode.c – The implementation of the decode function declared
in the lzfse.h file is present here. The actual LZFSE decompression
is not implemented in this file. Here, it is only assured that an auxil-
iary buffer is allocated and an initialization is performed. An internal
function called lzfse_decode is then invoked to perform the actual de-
coding.

• lzfse_decode_base.c – The lzfse_decode function is implemented
here. The decoding of the compressed blocks is done here. Functions
implemented in the lzfse_fse.h and lzfse_fse.c files are used for the
FSE decoding.

• lzfse_encode.c – Similarly to lzfse_decode.c, this file contains an
implementation of the API function that performs compression. Same
as in the case of decompression, initialization is done here and another
function is called to do the actual encoding. However, the heuristic that

57

B. Reference implementation

chooses which function will be called to encode the input is implemented
here. If the input is very small, it is copied uncompressed. Otherwise,
if it is smaller than a given threshold, it is encoded using LZVN. If it
is not, it is encoded using LZFSE by calling the appropriate function
implemented in lzfse_encode_base.c file.

• lzfse_encode_base.c – This source file contains an implementation of
the LZFSE compression. It contains both the implementation of the
frontend and the backend, both were described in Chapter 4. For the
FSE encoding, functions from lzfse_fse.h and lzfse_fse.c are called.

• lzfse_encode_tables.h – This file contains the tables used to map
values to their base values in a technique described in Section 4.1.2,
which is used in the LZFSE compression backend.

• lzfse_fse.c – This file contains an implementation of the finite state
entropy.

• lzfse_fse.h – This header file contains declarations of the finite state
entropy functions (and also an inline implementation of some of them).

• lzfse_internal.h – This header file contains definitions for the func-
tions implemented in lzfse_decode_base.c and lzfse_encode_base.c.
It also contains definitions of structures used in other files and preproces-
sor constants. Unlike the constants in lzfse_tunables.h, values defined
here should not be changed.

• lzfse_main.c – An implementation of the LZFSE command line tool.

• lzfse_tunables.h – Adjustable LZFSE parameters are defined in this
header file (as preprocessor constants).

• lzvn_decode_base.c, lzvn_decode_base.h, lzvn_encode_base.c and
lzvn_encode_base.h – These files contain an implementation of the
LZVN algorithm, which is used as a fallback for small files.

58

B.2. The API functions

B.2 The API functions

B.2.1 Encoding

To compress a block of data using LZFSE, a function called lzfse_encode_buffer
has to be called. This function is declared as:

LZFSE_API size_t lzfse_encode_buffer(uint8_t * dst_buffer,
size_t dst_size,
const uint8_t * src_buffer,
size_t src_size,
void * scratch_buffer);

The dst_buffer is a destination buffer, which must be provided to this
function and which will contain the result of the compression operation. The
src_buffer is an array containing the input block.

The scratch_buffer is is an auxiliary buffer, it is a pointer to memory
that should be allocated by the caller and passed to the lzfse_encode_buffer
function. This will be used during compression for storing the encoder state.
If it is not provided (i.e. a NULL is given), then the function will allocate the
needed memory itself. The function lzfse_encode_scratch_size() should
be called to get the required scratch_buffer (i.e. the auxiliary buffer) size.

If the compression succeeds, lzfse_encode_buffer function returns the
number of bytes written to the destination buffer. If the provided destina-
tion buffer is too small or if the compression fails from other reason, zero is
returned. The contents of the destination buffer is undefined in such case.

B.2.2 Decoding

LZFSE decompression has a similar interface as the compression described
above. The function is declared as:

LZFSE_API size_t lzfse_decode_buffer(uint8_t * dst_buffer,
size_t dst_size,
const uint8_t * src_buffer,
size_t src_size,
void * scratch_buffer);

The src_buffer is the input block and the dst_buffer is the output
buffer. A scratch buffer should also be passed to this function. To find out the
required size, the lzfse_decode_scratch_size() function should be called.

Unlike lzfse_encode_buffer, this function always returns the number of
bytes written to the output. Even if the entire output will not fit into the
output buffer, it will contain a portion of decoded data.

59

Appendix C
Prague Corpus files

Table C.1: The Prague Corpus files [19]
File Size [Bytes] Description Type
firewrks 1,440,054 Sound of fireworks Audio
thunder 3,172,048 Sound of thunder Audio
drkonqi 111,056 KDE crash handler Binary
libc06 48,120 A dynamic-link library Binary
mirror 90,968 A part of the software package Binary
abbot 349,055 Part of interior design application Binary
gtkprint 37,560 A shared object Binary
wnvcrdt 328,550 A database file Database
w01vett 1,381,141 A database file Database
emission 2,498,560 Waterbase emissions data Database

bovary 2,202,291 Gustave Flaubert: Madame Bovary, in Ger-
man Documents

modern 388,909 Axel Lundeg̊ard, Ernst Ahlgren: Modern. En
berättelse, in Swedish Documents

ultima 1,073,079 Mack Reynolds: Ultima Thule, in English Documents

lusiadas 625,664 Lúıs Vaz de Camões: Os Luśıadas, in Por-
tuguese Documents

venus 13,432,142 Ultraviolet image of Venus’ clouds Graphics
nightsht 14,751,763 A photo of a city at night Graphics
flower 10,287,665 A photo of a flower Graphics
corilis 1,262,483 CORILIS land cover data Graphics
cyprus 555,986 Air Quality Monitoring in Cyprus Markup languages
hungary 3,705,107 Air Quality Monitoring in Hungary Markup languages
compress 111,646 Wikipedia page about data compression Markup languages
lzfindmt 22,922 C source code from a file archiver Scripts
render 15,984 C++ source code from an action game Scripts

handler 11,873 Java source code from the GPS tracking sys-
tem Scripts

usstate 8,251 Java source code from the GPS tracking sys-
tem Scripts

collapse 2,871 JavaScript source code from the project man-
agement framework Scripts

xmlevent 7,542 PHP source code from the calenedar generator Scripts
mailflder 43,732 Python source code from the ECM framework Scripts
age 137,216 Age structure in the world Spreadsheets
higrowth 129,536 Financial calculations Spreadsheets
Total 58,233,774

61

Appendix D
Building the ExCom library

The process of building the ExCom library with all its modules is described
in detail in [2, Appendix E].

To build the ExCom library on Unix system, execute the following
commands in shell from the excom directory:

autoreconf -i -s -f
mkdir bin
cd bin
../configure -C --enable-perf-measure
make

Additionally, to generate the Doxygen documentation, run:

make doxygen-doc

The compiled testing application is located in bin/src/app directory,
execute ./app -h for its usage.

Unit tests

Unit tests require the Python interpreter to be installed. To enable unit
tests for the library and its modules, add the --enable-test-cases
parameter to the configure command when building the library:

../configure -C --enable-perf-measure --enable-test-cases

The tests may then be run by invoking:

make tests-run

63

Appendix E
Scripts used for benchmarking

Two bash scripts were developed to automate the process of running multiple
methods on given corpus files and measuring their performance.

The first script called benchmarks.sh was used to compare performance of
implemented compression methods with each other. The second script called
benchmarks params.sh was used to measure impact of different settings of
LZFSE method adjustable parameters.

These two scripts perform compression and decompression multiple times
on all given files and measure the minimal time taken by each operation.
Compression ratio is also computed for each file. Usage of these scripts is
described below. Both scripts are present on the CD attached to this thesis.

Script benchmarks.sh

This script will run compression and decompression of given methods on all
corpus files and measure the time taken by these operations and resulting
compression ratio. Each operation is run multiple times (default is 50) and
the minimum from measured times is taken.

This script produces three files in the folder from which it is run. The
benchmarks_comp.csv and benchmarks_decomp.csv contain compression and
decompression times measured in microseconds. Compression ratios are com-
puted as percentage (by default) and output into benchmarks_ratio.csv file.
All three files are csv files containing data in form of comma-separated values.
If files with these names already exist in the folder, they will be overwritten.

The script should be called from a directory containing both the ExCom
testing application (app) and a folder containing corpus files (PragueCorpus
by default). If it is run elsewhere, locations of these files must be given as
arguments (see below).

65

E. Scripts used for benchmarking

Usage

./benchmarks.sh [options] [-l method...]

Possible options are:

-h Show help.

-r T Each operation will be repeated T times. Default is 50.

-f Do not exit on failure. All files are tested for equality with the
original when they are decompressed. Whenever a method fails to
compress and decompress a file correctly, the benchmarks are
stopped by default. This option disables this behaviour, a ’?’ is
written into results instead of compression ratio and the
benchmarking continues.

-s, -b These flags control how much information is output during the
process. The -b flag means brief and disables messages for
individual files. The -s flag stands for silent and disables all
output.

-d DIR The benchmarks will be performed on all files from DIR directory.
Default is PragueCorpus. If the corpus files are on different
location, it must be given with this parameter.

-c APP Relative path to the ExCom testing application. Default is app.

-n Disables using percentage for compression ratio.

-l If this option is used, a list of methods must be given as script
arguments following the options. The benchmarks will be run for
given methods. Methods must be given by the names ExCom uses
for them, use ./app -m? for list of possible methods.

Example

./benchmarks.sh -r 30 -d ˜/PragueCorpus -l lzfse lz78 shuff

This command will perform benchmarks on LZFSE, LZ78 and static
Huffman coding methods. It will run each operation 30 times for each file
from the PragueCorpus folder in user home directory and save results in the
folder from where it is run.

66

Script benchmarks params.sh

This script is similar to benchmarks.sh but measures the impact of differ-
ent parameter settings on method speed and compression ratio. This script
produces same files as benchmarks.sh script.

Usage

./benchmarks_params.sh [options] method param min max

Four arguments must be given after the optional arguments:

method The name of the method to run benchmarks for. Use ./app -m?
for list.

param Name of the parameter. Use ./app -m method -p? for list.

min, max These two arguments define the range of tested values of the
parameter. By default all parameter values from [min, max]
range (inclusive) are tested.

All options available for benchmarks.sh (with the exception of -l and -f)
can also be used here with the same effect. Additional options are:

-i INC Parameter value increment. First tested value of parameter is
defined by min, then the value is incremented by INC every step
until it is larger than max.

-a Apply parameters to both compression and decompression
operations. The parameter is used only for compression by default.

Example

./benchmarks_params.sh -i 10 lzfse g 10 130

This command will perform benchmarks on LZFSE and measure the impact
of good match parameter on compression/decompression times and
compression ratio. Values 10, 20, . . . , 130 will be tested.

67

Appendix F
Detailed benchmark results

69

F. Detailed benchmark results

F.1 Tables

Table F.1: The measured compression time of dictionary methods on the files
from the Prague Corpus

Compression time [ms]
File LZFSE LZ77 LZ78 LZAP LZMW LZW LZY

abbot 13.20 210.09 32.44 42.71 90.94 27.86 46.18
age 6.97 343.09 7.84 9.99 30.56 7.40 16.35
bovary 109.28 3145.75 120.02 163.26 474.50 111.81 251.18
collapse 0.31 1.25 0.19 0.23 0.63 0.17 0.35
compress 4.04 73.49 5.74 7.02 22.32 5.21 11.21
corilis 45.86 765.06 86.05 104.68 284.98 71.49 130.23
cyprus 12.65 219.23 18.67 25.73 96.67 17.53 42.40
drkonqi 5.09 243.70 6.22 7.49 23.41 5.52 12.49
emission 68.70 1463.37 98.45 118.85 456.74 92.19 209.19
firewrks 59.45 1604.06 135.44 181.85 384.62 118.65 209.53
flower 576.02 9766.73 834.11 922.71 2435.40 638.22 1316.52
gtkprint 1.69 100.95 1.85 2.25 7.75 1.63 3.77
handler 0.60 9.31 0.63 0.75 2.44 0.57 1.18
higrowth 5.95 338.03 7.80 9.37 28.31 7.15 15.42
hungary 79.52 1563.44 130.30 176.64 643.19 123.30 289.45
libc06 2.34 113.08 3.09 4.37 11.57 2.97 7.55
lusiadas 28.33 1305.54 30.17 41.38 132.27 28.78 67.74
lzfindmt 1.05 17.12 1.35 1.46 4.76 1.13 2.34
mailflder 1.89 70.45 2.24 2.75 9.04 2.03 4.46
mirror 4.33 113.42 5.39 6.43 19.58 4.68 10.36
modern 23.44 648.67 23.62 31.82 89.29 22.11 51.30
nightsht 573.53 13360.66 1348.75 1897.11 3970.51 1215.88 2158.22
render 0.80 13.95 0.93 1.05 3.41 0.79 1.70
thunder 143.46 13411.37 241.70 334.75 806.45 216.63 464.75
ultima 46.15 797.51 79.88 108.78 258.19 71.01 135.04
usstate 0.47 7.57 0.43 0.51 1.72 0.39 0.80
venus 663.14 19600.65 1056.07 1395.64 3371.38 926.30 1803.15
wnvcrdt 7.69 473.05 8.00 12.20 57.50 8.37 20.11
w01vett 30.21 2069.62 36.00 51.54 241.25 36.10 81.51
xmlevent 0.44 4.03 0.44 0.50 1.57 0.38 0.77

70

Table F.2: The measured decompression time of dictionary methods on the
files from the Prague Corpus

Decompression time [ms]
File LZFSE LZ77 LZ78 LZAP LZMW LZW LZY

abbot 2.95 35.55 9.78 26.87 29.76 13.41 30.48
age 1.22 17.55 3.17 7.02 7.93 3.98 12.41
bovary 16.06 284.30 54.21 102.63 115.64 59.17 192.07
collapse 0.05 0.38 0.09 0.15 0.17 0.10 0.26
compress 0.83 14.87 2.65 4.74 5.24 2.94 8.70
corilis 8.60 151.69 30.34 68.17 76.98 36.90 96.30
cyprus 2.28 75.25 10.35 18.24 18.71 10.64 34.16
drkonqi 0.99 14.53 2.60 5.12 5.94 3.09 9.83
emission 17.50 332.99 47.88 82.20 87.27 53.35 165.89
firewrks 13.19 145.45 40.79 112.87 124.26 53.88 140.66
flower 90.74 1213.86 264.15 599.39 667.27 330.64 972.41
gtkprint 0.26 5.05 0.84 1.56 1.79 0.98 3.12
handler 0.09 1.64 0.30 0.50 0.59 0.31 0.89
higrowth 0.89 16.76 3.28 6.38 7.19 3.77 11.69
hungary 14.93 502.07 68.83 121.20 116.57 73.31 229.62
libc06 0.36 6.21 1.11 2.77 3.24 1.31 5.80
lusiadas 4.02 81.38 12.48 26.83 31.86 14.63 52.35
lzfindmt 0.25 3.17 0.60 0.97 1.12 0.63 1.83
mailflder 0.55 5.90 1.00 1.84 2.22 1.09 3.45
mirror 0.81 11.79 2.21 4.41 5.21 2.60 8.19
modern 2.98 49.66 9.31 20.23 23.18 10.74 39.31
nightsht 151.06 1504.05 415.21 1168.21 1285.17 554.34 1446.11
render 0.12 2.15 0.41 0.70 0.80 0.43 1.33
thunder 28.99 360.54 81.41 209.96 234.00 100.61 342.98
ultima 8.43 123.64 27.75 69.58 75.82 35.95 94.76
usstate 0.08 1.14 0.21 0.35 0.40 0.23 0.63
venus 135.47 1503.16 400.34 874.96 992.97 447.70 1285.37
wnvcrdt 1.45 45.07 4.94 8.87 11.64 5.14 16.62
w01vett 7.76 188.18 21.09 36.87 41.34 22.35 66.88
xmlevent 0.07 1.03 0.20 0.33 0.36 0.21 0.60

71

F. Detailed benchmark results

Table F.3: The measured compression ratio of dictionary methods on the files
from the Prague Corpus

Compression ratio [%]
File LZFSE LZ77 LZ78 LZAP LZMW LZW LZY

abbot 91.41 131.52 113.68 125.60 125.20 126.16 125.93
age 43.89 58.40 54.99 53.46 51.20 55.15 54.64
bovary 34.53 51.19 55.07 49.21 43.34 47.08 48.31
collapse 43.08 58.72 70.32 50.71 51.89 56.67 51.51
compress 19.31 37.14 51.77 40.49 30.40 42.19 43.70
corilis 51.58 78.11 77.35 76.76 73.51 78.36 78.36
cyprus 3.98 23.67 27.80 23.08 6.36 20.78 26.30
drkonqi 36.03 48.58 54.68 46.07 44.19 48.37 47.33
emission 11.96 36.44 34.91 26.75 17.02 29.28 31.10
firewrks 92.21 130.87 112.91 123.66 123.87 124.09 123.39
flower 52.89 92.31 87.45 83.91 87.36 85.41 81.46
gtkprint 31.66 44.92 47.30 36.95 36.93 40.83 38.49
handler 25.32 40.35 50.13 38.37 31.71 39.50 40.73
higrowth 38.24 56.52 60.95 53.09 50.75 55.82 54.51
hungary 3.38 24.58 30.34 24.13 7.51 23.03 27.38
libc06 35.06 62.56 51.99 46.73 45.13 47.81 46.85
lusiadas 32.49 50.90 47.54 42.15 41.17 41.27 41.23
lzfindmt 23.07 36.37 54.62 38.89 31.93 42.01 41.97
mailflder 23.13 38.03 46.76 38.54 30.74 36.96 40.36
mirror 40.18 55.98 58.46 51.05 48.38 53.19 51.64
modern 40.08 61.27 64.10 56.70 53.62 52.83 54.94
nightsht 92.33 132.99 114.77 125.52 126.19 125.20 124.78
render 25.81 39.73 54.04 42.64 32.93 43.53 44.63
thunder 75.87 98.48 91.06 96.35 96.14 93.61 94.32
ultima 65.72 96.03 87.24 91.28 87.47 90.05 90.79
usstate 26.28 40.86 48.83 37.52 31.97 39.30 39.43
venus 75.13 106.17 92.70 95.99 97.20 94.15 93.66
wnvcrdt 6.31 22.49 13.60 9.99 5.74 10.21 11.87
w01vett 5.75 22.45 16.11 11.04 7.78 12.20 13.19
xmlevent 29.66 45.30 57.33 40.05 36.75 45.33 42.76

72

Table F.4: The measured compression time of statistical methods and PPM
on the files from the Prague Corpus

Compression time [ms]

File LZFSE
Arithmetic

coding

Adaptive
Huffman
coding

Static
Huffman
coding

Shannon-
Fano

coding
PPM

abbot 13.20 114.69 93.11 13.12 112.22 327.53
age 6.97 26.54 28.34 6.05 34.62 58.59
bovary 109.28 410.21 391.19 83.41 589.91 396.59
collapse 0.31 0.62 0.69 0.22 0.97 0.76
compress 4.04 21.32 20.48 4.68 30.36 13.38
corilis 45.86 331.49 294.55 48.28 403.55 609.80
cyprus 12.65 94.46 87.86 20.52 125.18 19.67
drkonqi 5.09 21.76 24.72 4.89 29.95 30.82
emission 68.70 398.25 400.56 89.31 514.02 230.40
firewrks 59.45 436.39 351.40 55.32 461.67 1564.29
flower 576.02 2453.48 2184.70 372.31 2789.61 4206.57
gtkprint 1.69 6.58 7.76 1.79 10.12 8.68
handler 0.60 2.15 2.29 0.61 3.07 1.92
higrowth 5.95 26.39 28.51 5.67 35.16 42.01
hungary 79.52 632.66 585.16 135.53 836.26 115.12
libc06 2.34 8.82 10.08 2.29 14.74 13.52
lusiadas 28.33 96.96 103.25 24.05 145.48 144.15
lzfindmt 1.05 4.44 4.69 1.06 6.18 3.10
mailflder 1.89 7.16 6.99 1.88 9.77 5.80
mirror 4.33 18.07 20.79 4.11 24.95 28.90
modern 23.44 68.65 62.37 14.25 95.79 86.69
nightsht 573.53 4312.98 3512.18 572.33 4561.62 14371.82
render 0.80 3.06 3.24 0.77 4.26 2.51
thunder 143.46 818.57 690.55 124.30 907.97 2957.50
ultima 46.15 285.58 248.74 41.93 326.58 632.79
usstate 0.47 1.50 1.58 0.48 2.15 1.40
venus 663.14 3102.40 2782.17 494.11 3957.87 8231.30
wnvcrdt 7.69 32.44 25.87 11.08 41.30 12.60
w01vett 30.21 150.49 126.29 45.82 206.96 59.56
xmlevent 0.44 1.49 1.67 0.44 2.28 1.47

73

F. Detailed benchmark results

Table F.5: The measured decompression time of statistical methods and PPM
on the files from the Prague Corpus

Decompression time [ms]

File LZFSE
Arithmetic

coding

Adaptive
Huffman
coding

Static
Huffman
coding

Shannon-
Fano

coding
PPM

abbot 2.95 140.40 145.33 82.44 84.24 368.65
age 1.22 34.06 40.19 22.32 22.39 64.06
bovary 16.06 529.34 596.27 369.10 368.35 423.12
collapse 0.05 0.78 0.96 0.54 0.57 0.85
compress 0.83 27.48 31.30 19.27 19.41 14.63
corilis 8.60 416.10 466.36 288.37 292.29 664.85
cyprus 2.28 123.21 131.90 81.88 81.58 21.53
drkonqi 0.99 27.66 35.36 19.37 19.67 33.85
emission 17.50 548.80 583.52 353.17 355.52 248.29
firewrks 13.19 531.71 552.90 338.11 343.15 1732.61
flower 90.74 3053.32 3499.23 2228.08 2241.07 4454.61
gtkprint 0.26 8.55 10.73 5.45 5.61 9.65
handler 0.09 2.75 3.36 1.91 1.93 2.15
higrowth 0.89 33.72 41.22 23.06 23.58 46.27
hungary 14.93 822.54 880.18 542.89 548.21 126.35
libc06 0.36 11.37 14.56 8.18 8.24 15.00
lusiadas 4.02 129.29 153.67 92.85 94.58 157.51
lzfindmt 0.25 5.77 6.75 4.08 4.05 3.52
mailflder 0.55 9.35 10.26 6.05 6.21 6.36
mirror 0.81 23.37 29.64 16.13 16.15 32.20
modern 2.98 89.52 95.16 59.82 60.07 92.71
nightsht 151.06 5227.51 5558.35 3477.31 3515.17 15545.83
render 0.12 3.89 4.69 2.71 2.67 2.83
thunder 28.99 1018.62 1081.85 643.89 657.24 3169.79
ultima 8.43 354.91 393.15 238.56 236.84 715.67
usstate 0.08 1.90 2.30 1.30 1.32 1.56
venus 135.47 3910.76 4419.54 2798.94 2779.44 8736.13
wnvcrdt 1.45 48.84 37.31 21.98 21.68 14.29
w01vett 7.76 216.64 188.68 112.84 114.05 65.95
xmlevent 0.07 1.94 2.36 1.35 1.38 1.63

74

Table F.6: The measured compression ratio of statistical methods and PPM
on the files from the Prague Corpus

Compression ratio [%]

File LZFSE
Arithmetic

coding

Adaptive
Huffman
coding

Static
Huffman
coding

Shannon-
Fano

coding
PPM

abbot 91.41 98.03 99.50 99.43 99.66 91.50
age 43.89 59.43 62.75 62.69 63.19 36.98
bovary 34.53 62.70 64.88 64.87 65.03 22.34
collapse 43.08 67.53 66.00 66.07 66.38 34.06
compress 19.31 66.30 67.19 67.16 67.30 15.76
corilis 51.58 89.11 94.18 94.17 94.63 45.30
cyprus 3.98 56.27 56.52 56.51 56.55 4.68
drkonqi 36.03 64.45 69.38 69.30 69.62 30.54
emission 11.96 50.33 52.91 52.90 53.00 8.32
firewrks 92.21 93.30 96.00 95.95 96.17 93.81
flower 52.89 83.87 89.14 89.13 89.42 37.61
gtkprint 31.66 54.10 55.67 55.54 55.62 26.49
handler 25.32 60.16 59.93 59.82 59.93 20.72
higrowth 38.24 65.55 69.51 69.44 69.89 34.31
hungary 3.38 56.82 57.00 57.00 57.11 4.23
libc06 35.06 59.74 64.80 64.78 64.85 30.43
lusiadas 32.49 45.73 58.07 58.05 58.22 25.66
lzfindmt 23.07 66.22 66.39 66.33 66.45 17.62
mailflder 23.13 52.33 53.05 53.00 53.20 18.00
mirror 40.18 65.03 69.31 69.22 69.67 34.76
modern 40.08 58.07 58.37 58.37 58.53 27.63
nightsht 92.33 91.84 95.48 95.46 95.73 75.40
render 25.81 62.82 62.67 62.58 62.85 20.96
thunder 75.87 76.49 79.98 79.96 80.36 67.07
ultima 65.72 84.26 90.35 90.32 90.43 59.98
usstate 26.28 57.02 56.74 56.62 56.74 22.17
venus 75.13 77.75 84.37 84.37 84.59 62.66
wnvcrdt 6.31 21.54 23.39 23.38 23.41 5.51
w01vett 5.75 27.91 29.69 29.68 29.88 5.26
xmlevent 29.66 66.50 66.13 66.05 66.20 23.78

75

F
.

D
etailed

benchm
ark

results

F.2 Additional graphs

 0.1

 1

 10

 100

 1,000

 10,000

abbot
age
bovary
collapse
com

press
corilis
cyprus
drkonqi
em

ission
firew

rks
flow

er
gtkprint
handler
higrow

th
hungary
libc06
lusiadas
lzfindm

t
m

ailflder
m

irror
m

odern
nightsht
render
thunder
ultim

a
usstate
venus
w

nvcrdt
w

01vett
xm

levent

C
o

m
p

re
ss

io
n

 t
im

e
[m

s]

Input file

LZFSE

LZ78

LZW

Figure F.1: Comparison of compression time of LZFSE, LZ78 and LZW dictionary methods on all files from the Prague
Corpus

76

F.2.
A

dditionalgraphs

 0.01

 0.1

 1

 10

 100

 1,000

abbot
age
bovary
collapse
com

press
corilis
cyprus
drkonqi
em

ission
firew

rks
flow

er
gtkprint
handler
higrow

th
hungary
libc06
lusiadas
lzfindm

t
m

ailflder
m

irror
m

odern
nightsht
render
thunder
ultim

a
usstate
venus
w

nvcrdt
w

01vett
xm

levent
D

ec
o

m
p
re

ss
io

n
 t

im
e

[m
s]

Input file

LZFSE

LZ78

LZW

Figure F.2: Comparison of decompression time of LZFSE, LZ78 and LZW dictionary methods on all files from the Prague
Corpus

77

F
.

D
etailed

benchm
ark

results

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 140%

abbot
age
bovary
collapse
com

press
corilis
cyprus
drkonqi
em

ission
firew

rks
flow

er
gtkprint
handler
higrow

th
hungary
libc06
lusiadas
lzfindm

t
m

ailflder
m

irror
m

odern
nightsht
render
thunder
ultim

a
usstate
venus
w

nvcrdt
w

01vett
xm

levent
C

o
m

p
re

ss
io

n
 r

at
io

Input file

LZFSE

LZ78

LZMW

Figure F.3: Comparison of compression ratio of LZFSE, LZ78 and LZMW dictionary methods on all files from the Prague
Corpus

78

Appendix G
Contents of enclosed CD

/
excom.........sources of the ExCom library with the LZFSE module
PragueCorpus.....the directory containing files of the Prague Corpus
readme.txt....................the file with CD contents description
scripts directory containing scripts used for benchmarking
text.......................................the thesis text directory

src the directory of LATEX source codes of the thesis
thesis.pdf........................the thesis text in PDF format

79

	Introduction
	Data compression
	Basic data compression concepts
	Information entropy and redundancy
	Classification of compression methods
	Measures of performance
	ExCom library
	Hash function and hash table

	LZ family algorithms
	LZ77
	LZ78

	Asymmetric numeral systems
	Entropy coding
	Asymmetric numeral systems
	Finite state entropy

	LZFSE
	Compression
	Decompression

	Implementation
	Implementation of LZFSE module

	Benchmarks
	Methodology
	Testing platform specifications
	Results

	Conclusion
	Bibliography
	Acronyms
	Reference implementation
	Source files
	The API functions

	Prague Corpus files
	Building the ExCom library
	Scripts used for benchmarking
	Detailed benchmark results
	Tables
	Additional graphs

	Contents of enclosed CD

