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Instructions
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Abstract

In this thesis, we study the m-eternal domination problem. Given graph G,
guards are placed on vertices of G. Then vertices are subject to sequential
attacks. After each attack, a guard must move into the attacked vertex. At
most one guard is allowed to occupy any vertex. We denote the minimum
number of guards, that can defend G indefinitely as γ∞m (G).

We consider cactus graphs G, such that every edge in G is on a cycle of
size 3k + 1 for some k ∈ N. We show that for every such G on n vertices,
γ∞m (G) = 1 + (n− 1)/3.

We introduce the m-eternal guard configuration problem, being the same
as the m-eternal domination problem, except it allows multiple guards on sin-
gle vertex. We denote the minimum number of required guards in G as Γ∞m (G).
We present a linear algorithm for computing Γ∞m (G) in cactus graphs, where
every articulation is in two blocks. Moreover, we design a linear-time algo-
rithm for computing γ∞m in clique trees. We include a C++ implementation of
these algorithms, together with an exponential algorithm for both problems
in general graphs.

Keywords eternal domination, graph protection, cactus graph, clique tree,
combinatorial game, eternal security
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Abstrakt

V této práci studujeme problém věčné dominace grafu, který je známý pod
názvem m-eternal domination problem. Je zadán graf G a na vrcholy G
umístíme ochránce. Následně jsou na vrcholy postupně vedeny útoky. Po
každém útoku se musí nějaký ochránce přesunout na ohrožený vrchol. Každý
vrchol smí okupovat nejvýše jeden ochránce. Nejmenší počet ochráců, který
ochrání G, značíme γ∞m (G).

Zabýváme se kaktusovými grafy G takovými, že každá hrana v G je na
cyklu o velikosti 3k + 1 pro nějaké k ∈ N. Ukazujeme, že pro každé takové G
na n vrcholech platí γ∞m (G) = 1 + (n− 1)/3.

Představujeme problém m-eternal guard configuration, který je stejný jako
m-eternal domination problem, ale povoluje více ochránců na jednom vr-
cholu. Nejmenší nutný počet ochránců pro graf G označujeme jako Γ∞m (G).
Popisujeme lineární algoritmus pro výpočet Γ∞m (G) v kaktusových grafech,
kde každá artikulace je ve dvou blocích. Navíc předkládáme lineární algo-
ritmus pro výpočet γ∞m (G) v klikových stromech. Přikládáme implementaci
v C++ těchto algoritmů spolu s exponenciálním algoritmem, který řeší oba
problémy v obecných grafech.

Klíčová slova věčná dominace, eternal domination, bránění grafu, kak-
tusový graf, klikový strom, kombinatorická hra, věčné zabezpečení
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Chapter 1
Introduction

The problem which we explore in this paper can be described as a combinato-
rial game played on a graph. The first player controls a set of guards, which he
initially places on vertices of the graph. The second player repeatedly chooses
one vertex, which he attacks. The first player must defend against the attack
by moving one of his guards to the attacked vertex. During his turn, he can
move each of his guards past at most one edge. While one of the guards must
move to the attacked vertex, the others can take a different position in order to
prepare for future attacks. If the configuration of guards can defend against
any infinite sequence of attacks, we say that the configuration is eternally
dominating. We are interested in finding the smallest such configuration.

We study two different models in this text. The first model is commonly
referred to as the m-eternal domination problem and allows only one guard
on a vertex at a time. Guards can therefore be understood as a set of vertices
D. If it is possible for the guards to defend against any infinite sequence
of attacks with D as its configuration, D is an m-eternal dominating set.
The second studied model relaxes this condition and permits multiple guards
on one vertex. We refer to this model as the m-eternal guard configuration.
Some other texts also refer to the m-eternal domination problem as the eternal
secure set problem or “all-guards move” model [1].

Both of those models can, for example, be used to model a strategy of
soldiers defending a city against quick guerilla attacks, if we assume that each
attack can be defended before another one appears. Alternatively, the guards
can represent a set of firefighters, extinguishing fires appearing throughout a
city.

We present the definitions used in this text. All graphs G = (V,E) in this
text are undirected, unless stated otherwise. V (G) is the set of vertices of G.
E(G) is the set of edges of G. N(v) denotes the set of neighbors of v ∈ V , also
N [v] = N(v) ∪ {v}. We say that D ⊆ V is a dominating set if every vertex
not in D has some neighbor in D. The size of the smallest dominating set on
G is denoted by γ(G).
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1. Introduction

The m-eternal domination problem is concerned with finding the smallest
possible m-eternal dominating set, which can be defined as follows. A set of
vertices D ⊆ V is an m-eternal dominating set on G = (V,E) if these following
conditions are satisfied:

• D is a dominating set.

• For every v ∈ V \ D, there exists D′ such that D′ is an m-eternal
dominating set, v ∈ D′ and there exists some bijection f : D → D′

which satisfies that for every u ∈ D : f(u) ∈ N [u].

The size of the smallest m-eternal dominating set on G is denoted by γ∞m (G).
We present a definition of the m-eternal guard configuration, the second

studied model in this text. Let P be a finite set of guards, then an m-eternal
guard configuration on G is a function g : P → V satisfying the following:

• g(P ) is a dominating set.

• For every v ∈ V \ g(P ), there exists some g′ : P → V such that g′
is an m-eternal guard configuration, g−1(v) ∈ P and for every p ∈ P ,
g′(p) ∈ N [g(p)].

We denote the size of the smallest set P , such that there is an m-eternal guard
configuration for P on G, as Γ∞m (G).

G[U ] is the subgraph of G induced by the set of vertices U ⊆ V . We say
that a vertex is protected in respect to some U ⊆ V if it has some neighbor in
U or is itself in U . C(G) is the set of all cycles in G. A block or a biconnected
component of graph G is a maximal biconnected subgraph of G.

Leaf vertex is a vertex with degree 1. A cycle in G is a leaf cycle if exactly
one of its vertices has degree greater than 2. Similarly, we say that induced
subgraph H of G is a leaf clique, if for every v ∈ V (G) \V (H), graph induced
by V (H)∪ {v} is not a clique and exactly one vertex in H has degree greater
than |V (H)| − 1. Pn denotes a path on n edges, therefore on n− 1 vertices.

Cactus is a graph that is connected and its every edge lies on at most
one cycle. An equivalent definition is that it is connected and any two cycles
have at most one vertex in common. Clique tree is a graph in which every
biconnected component is a clique. For example, every tree is a clique tree.
Noose is a graph, which is a cycle with a set of pairwise disjoint cliques, such
that each of them shares exactly one vertex with the cycle.

The m-eternal domination problem was first introduced by Goddard et.
al. [2]. A lot of research has focused on finding bounds of γ∞m in different
conditions or graph classes. Goddard et al. [2] determine γ∞m exactly for
paths, cycles, complete graphs and complete bipartite graphs. We list the
results in a brief form below:

• γ∞m (Pn) = dn/2e
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• γ∞m (Cn) = dn/3e

• γ∞m (Kn) = 1

• γ∞m (Km,n) = 2

Another often studied model, often referred to as eternal domination, al-
lows moving only one guard during one turn. The minimal number of guards
required to defend a graph in this model is denoted by γ∞. Goddard, Hedet-
niemi and Hedetniemi [2] prove one set of bounds on γ∞m . Together with
bounds proved by Burger et. al. [3] we get the following chain of inequalities.

Theorem 1 (Goddard et. al. [2, 3]). For any graph G,

γ(G) ≤ γ∞m (G) ≤ α(G) ≤ γ∞(G) ≤ θ(G).

Here α(G) denotes the size of the maximum independent set in G and
θ(G) denotes the clique covering number of G. The clique covering number
of G is defined as the minimum number of cliques in G required to cover the
vertex set of G.

Braga, de Souza and Lee [4] show that γ∞m (G) = α(G) in all proper-
interval graphs. As the problem of finding the maximum independent set
in an interval graph on n vertices can be solved in time O(n logn), or O(n)
in the case endpoints of the intervals are sorted [5], we can compute γ∞m (G)
efficiently on proper interval graphs.

Henning, Klostermeyer and MacGillivray [6] explore the relationship be-
tween the minimum degree of a graph, denoted by δ, and γ∞m . The authors
prove the following theorem

Theorem 2 (Honning, Klostermeyet, MacGillivray [6]). If G is a connected
graph with δ(G) ≥ 2 of order n 6= 4, then γ∞m (G) ≤ b(n − 1)/2c, and this
bound is tight.

Finbow, Messinger and van Bommel [7], prove the following result about
m-eternal domination of 3× n grids

Theorem 3 (Finbow, Messinger, van Bommel [7]). For n ≥ 2,

γ∞m (P3�Pn) ≤ d6n/7e+
{

1 if n ≡ 7, 8, 14 or 15 (mod 21)
0 otherwise

Here G�H denotes the Cartesian product of graphs G and H.
Van Bommel and van Bommel [8] prove the following results for 5 × n

grids:

Theorem 4 (van Bommel, van Bommel [8]).

b6n+ 9
5 c ≤ γ∞m (P5�Pn) ≤ b4n+ 4

3 c

3



1. Introduction

Concerning algorithmic research, there is a description of a linear algorithm
for computing γ∞m in trees presented by Klostermeyer and MacGillivray [9].
There is also a description of a brute-force algorithm presented by Bard et.
al. [10], which we use in the Chapter 3. This algorithm solves the problem in
exponential time and space.

In this text, we show that for a special subset of cactus graphs, whose
every edge lies on a cycle of size 3k+1, the m-eternal domination number can
be computed directly from the sizes of the cycles. We also present a linear
algorithm for computing the minimum number of required guards in the m-
eternal guard configuration model in a restricted subclass of cacti. We require
that every articulation is contained in exactly two blocks.

Our main results are summarized in the following theorems.

Theorem 6. Let G = (V,E) be a cactus, whose every edge lies on a C3k+1.
Let n be the number of vertices of G. Then γ∞m (G) = γ(G) = 1 + (n− 1)/3.

Theorem 14. Let G be some cactus graph on n vertices and m edges, with
each articulation contained in two biconnected components. Then there exists
an algorithm that computes Γ∞m (G) and runs in time O(n+m).

In Chapter 2 in Section 2.1, we present a theorem, which gives us an
upper bound on γ∞m in graphs with some articulation by describing a general
strategy. Then we show a direct computation of γ∞m in cactus graphs, which
have every edge on a cycle of size 3k + 1 for some k ∈ N. We also show a
direct computation of γ∞m in noose graphs.

Next we consider the m-eternal guard configuration problem and present
an algorithm computing Γ∞m (G) in cactus graphs, in which every articulation
is in exactly two blocks. We provide a pseudo-code of the algorithm.

In Section 2.2, we show an extension of the linear algorithm by Kloster-
meyer and MacGillivray [9] from trees to clique trees. We present a pseudo-
code of the algorithm.

Lastly, in Chapter 3 we provide an overview of the implemented algorithms.
In Section 3.1 we describe the idea of the exponential brute-force algorithm
including optimizations.

4



Chapter 2
Our results

2.1 Cactus graphs

Regarding the m-eternal guard configuration model and m-eternal domina-
tion model, we make a simple observation. Because every m-eternal guard
configuration must induce a dominating set, we derive the following result.

Observation 1. For every graph G, γ(G) ≤ Γ∞m (G) and γ(G) ≤ γ∞m (G).

Also, because every strategy used in the m-eternal domination model can
be applied in the m-eternal guard configuration, the following holds.

Observation 2. For every graph G, Γ∞m (G) ≤ γ∞m (G).

In the following text, we make use block-cut trees, which are described by
Frank Harary [11] under the name block-cutpoint trees. It is a tree represen-
tation of biconnected components of a graph G. We define block-cut tree of
graph G as a graph BC(G) = (A ∪B,E′), where A is the set of articulations
in G and B is the set of biconnected components in G. A vertex a ∈ A is
connected by an edge to some b ∈ B if and only if a lies in b in G.

We will show that every cactus can be built by attaching leaf cycles and
leaf vertices. By attaching a Cn to a vertex v, we mean adding some Pn−2
and connected both of its end vertices to v by edges.

Lemma 3. Every cactus can be constructed in the following manner: We
start with either a single vertex or a cycle and then extend it by following
operations.

• Attach a leaf to one vertex.

• Attach a cycle to a single vertex.

5



2. Our results

3

5

2 4

2

2 2

Figure 2.1: On the left is a cactus graph G, on the right its block-cut tree.
Vertices representing biconnected components are labeled with their size, the
unlabeled vertices represent articulations

Proof. Let G be any cactus graph. We will create a sequence of graphs
H1, ...,Hk, such that H1 = G. If i > 1 and Hi−1 is neither a single ver-
tex nor a cycle, let Hi be Hi−1 with either a leaf vertex removed or a leaf
cycle removed. Removing a leaf cycle means removing all its vertices, except
the one which has degree greater than 2.

In both those cases, Hi will not contain any new cycles and remain con-
nected, therefore it will be a cactus.

We can observe that there is always a leaf vertex or a leaf cycle. Consider
the block-cut tree BC(G) for G. Because G is a cactus, every block in G is
either a cycle or a pair of vertices connected by an edge. Every leaf in BC(G)
is some block in G. Such a leaf is either a leaf cycle or a pair of vertices
connected by an edge, one of which is a leaf vertex.

Therefore we can reduce the whole cactus to a vertex or a cycle. By
reversing the sequence, we obtain a sequence of graphs I1, ..., Ik starting with
a single vertex or a cycle and ending with G. Every Ii with i ≥ 2 is constructed
from Ii−1 by attaching a leaf vertex or a leaf cycle.

The following text concerns m-eternal domination in graphs containing
some articulation. In this context, we will say that we partition the vertices
of G into two subset H and I, such that H ∪ I = V (G) and H ∩ I = ∅. We
say that H and I are two partitions of G. By partitioning by articulation v,
we mean splitting the vertices of G into two partitions H and I, such that H
contains v and a strict subset of neighbors of v.

Another concept which we introduce are restricted edges. At one turn,
only one of the restricted edges may be used by a guard to move through. We
will use the introduced concepts in the statement of the following theorem.

Theorem 4. Let G be a graph with articulation v. Let us partition the vertices
of G by the articulation v into H and I. Let I ′ be the copy of G[I] with added
set R of restricted edges between every pair of neighbors of v.

Let C be the set of all minimum m-eternal dominating sets on I ′, such
that at most one guard passes through R during any move. Let D be the set

6



2.1. Cactus graphs

State 1 State 2

attack on H

attack on I

attack on H attack on I

Figure 2.2: In State 1, v has to be occupied and I has a configuration of
guards from C. In State 2, v may not be occupied and I has a configuration
of guards from D.

v

v1 v2

H

I

v

v1 v2

H

I

State 1 State 2

Figure 2.3: Partitioning of the graph into sets of vertices H and I, with
possible guard configurations in each of the states. The edge {v1, v2} in state
1 is the restricted edge in I ′.

of all dominating sets on G[I]. Let G be such a graph, that D ∩ C 6= ∅, then
γ∞m (G) ≤ γ∞m (G[H]) + γ∞m (I ′).

Proof. Let us illustrate with the state machine in Figure 2.2. We can start in
either of its states. Also see Figure 2.3 for an example of two possible guard
configurations corresponding to the two states.

Let us describe state 1, that is, v is occupied and guards on I are in any
configuration of C. We will show how to simulate a guard passing through
some edge e = {v1, v2} ∈ R, as that is the only difference between I ′ and G[I].
Without loss of generality, assume the movement is from v1 to v2. By moving
the guard from v to v2 and from v1 to v, we simulate a guard passing through
e. Therefore, we can guard G[I] with the set of configurations C, assuming
that v is occupied.

In case of attack on one of vertices in I, guards on H will not move and
we will move from one configuration in C to another one in C. Therefore, we
will remain in state 1.

In case of attack on a vertex inH, the guards inH may leave v unoccupied,
therefore the guards in I may no longer use the edges in R. Therefore, the
guards on I will move into some configuration in D ∩ C, so that it does not
require edges in R to be dominating. We move into state 2.

7



2. Our results

w

v1

v2

P

C

G′

Figure 2.4: Vertices of the cycle removed in the inductive step

Now, let us describe state 2. Guards on I must be in some configuration
in D∩C. The strategy for G[H] is used to defend against attacks on H, while
the guards on I remain in the same configuration.

In case of attack on a vertex in I, the guards on I move into any config-
uration in C. Also, we will suppose an attack on v to force a guard on H to
move to v. We will move into state 1.

We have described a strategy for G which will keep the guards of I and H
separated and is m-eternally dominating, while using the minimum number
of guards on both I ′ and G[H], therefore it holds that γ∞m (G) ≤ γ∞m (G[H]) +
γ∞m (I ′).

Lemma 5. Let G be a cactus whose every edge lies on a C3k+1. Let n be the
number of vertices of G. Then γ(G) = 1 + (n− 1)/3.

Proof. Let β(G) = 1 + (|V (G)| − 1)/3.
First, let us show that γ(G) ≤ β(G). |C(G)| is the number of C3k+1 in G.

We will use induction on |C(G)|.
If |C(G)| = 1, then G ∼= C3k+1 and it holds that γ(C3k+1) = k + 1 =

1 + (|V (C3k+1)| − 1)/3 = β(C3k+1).
Let us show that γ(G′) ≤ β(G′) implies γ(G) ≤ β(G), where G′ is G with

3k vertices of a leaf C3k+1 removed, thus with one less C3k+1. By removing
the leaf C3k+1, we mean removing all the vertices of the C3k+1, except the
articulation connecting the C3k+1 to the rest of G.

Let C be the removed leaf C3k+1. Let w be the vertex in C which is
common to G′ and C. Next, let v1 and v2 be vertices on C which are incident
to w and let P be the remaining set of vertices on C. It holds that G′ =
G \ ({v1, v2}∪P ). P will induce a subgraph P3k−3. This notation is displayed
in Figure 2.4. It holds that C(G) = C(G′) ∪ C.

By the induction hypothesis, there exists a dominating set on G′ with size
at most β(G′). Let D be such a dominating set.

Let us denote the vertices of P as P = {p1, p2, . . . , p3k−2} in such a way,
that the edges in G[P ] are {pi, pi+1} for all i ∈ {1, . . . , 3k − 3}. Let DP =

8



2.1. Cactus graphs

{p1, p4, . . . , p3k−2} be the subset of the vertices of P . It is clear that DP is
a dominating set on G[P ]. It holds that |DP | = k = (|V (C3k+1)| − 1)/3.
Vertices D∪DP form a dominating set on G, because all the vertices possibly
not dominated by D must be in P or are v1 and v2. Both v1 and v2 are
dominated, because in DP , we placed guards on both endpoints of P .

The inequality |D| ≤ β(G′) implies |D ∪ DP | ≤ β(G′) + k ≤ β(G′) +
(|V (C3k+1)|−1)/3 = 1+(|V (G′)|−1+|V (C3k+1)|−1)/3 = 1+(|V (G)|−1)/3 =
β(G) , therefore γ(G) ≤ β(G)

Now, let us show that γ(G) ≥ β(G). By Lemma 3, we can build G from a
single C3k+1 by attaching a new C3k+1 one by one. LetG1, ..., Gp be a sequence
of graphs, where G1 ∼= C3k+1 and Gp = G. Also, for every i, 1 < i ≤ p, it
holds that Gi is Gi−1 with one C3k+1 attached. We will use the same notation
as above for vertices of the leaf C3k+1 removed in every Gi, i ∈ {2, ..., p}.
Therefore, Gi−1 = Gi \ ({v1, v2} ∪ P ). Let C be the cycle removed from Gi.

We will show a proof by contradiction: let there exist some cactus G,
whose every edge lies on a C3k+1 such that γ(G) < β(G). Then, there is
a smallest i such that γ(Gi) < β(Gi). For i = 1, this can not hold, as
γ(C3k+1) = k + 1 = (|V (C3k+1)| − 1)/3 + 1 = β(C3k+1).

Therefore i > 1. Then Gi has 3k more vertices than Gi−1. Let us denote
the vertices of the new C3k+1 in Gi the same way as above, that is w, v1,
v2 and P . Let the new C3k+1 be C. Let D be a dominating set on Gi with
size γ(Gi) ≤ β(G) − 1. For every vertex in Gi to be dominated, it must be
true that C is dominated. Dominating C requires at least k + 1 vertices. Let
us consider DC = D ∩ (C \ {w}). It holds that |DC | ≥ k, as at least k + 1
guards are required to dominate C3k+1 and one of those can occupy w. It
holds that D \ DC must be a dominating set on Gi \ (C \ {w}) = Gi−1. It
also holds that |D \ DC | ≤ β(Gi) − 1 − k = β(Gi) − 1 − (|V (C)| − 1)/3 =
(|V (Gi)| − 1 − |V (C)| + 1)/3 = (|V (Gi−1)| − 1)/3 − 1 = β(Gi−1) − 1, thus
γ(Gi−1) < β(Gi−1). This is a contradiction with the assumption that i is the
smallest possible such that γ(Gi) < β(Gi).

Theorem 6. Let G = (V,E) be a cactus, whose every edge lies on a C3k+1.
Let n be the number of vertices of G. Then γ∞m (G) = γ(G) = 1 + (n− 1)/3.

Proof. Let β(G) = 1 + (|V (G)| − 1)/3.
It holds that γ(G) ≤ γ∞m (G). By Lemma 5 it holds that γ(G) = β(G) ≤

γ∞m (G).
Let us show that γ∞m (G) ≤ β(G) by induction on |C(G)|. If |C(G)| = 1,

then G ∼= C3k+1, therefore it holds that γ∞m (G) = γ∞m (C3k+1) = k+ 1 = β(G).
We will show that γ∞m (G′) ≤ β(G′) implies γ∞m (G) ≤ β(G), where G′ is G

with the leaf C3k+1 removed, except its articulation shared with the rest of
G. Let C be the C3k+1 removed in G. Let us denote the vertices of C in the
same way as in Lemma 5, that is w, v1, v2 and P . The notation is displayed
in Figure 2.4. We can see that G′ = G \ ({v1, v2} ∪ P ).

9
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L1

L2L3 L1 L2
L3 Cn−k

Figure 2.5: On the left is an example of a noose graph with cycle of size n = 7
and attached cliques L1, L2 and L3. On the right is a graph, whose strategy
we claim is equivalent to the strategy of the noose on the left. The red edges
in the noose on the left are the edges, which will be guarded as a cycle of size
n− k, with the dashed edges on being part of the noose.

Let I be C with w removed. We will show that partitioning of vertices of G
by the articulation w into V (G′) and V (I) satisfies the condition of Theorem
4. In this case, G′ is the induced subgraph of G containing the articulation
and I is the induced subgraph of G, such that V (I) = V (C) \ w, therefore
V (I) ∪ V (G′) = V (G) and V (I) ∩ V (G′) = ∅.

Let I ′ be I with the added restricted edge {v1, v2}, as those are the two
vertices in I that are incident to the articulation w in G. It holds that I ′ ∼=
C3k. Also I ∼= P3k−1. Because I ′ ∼= C3k, there will be exactly 3 m-eternal
dominating sets on I ′ of size k and one of those sets is a dominating set on
P3k−1. Therefore, the condition that the intersection of the set of all m-eternal
dominating sets on I ′ and the set of all dominating sets on I is not empty, is
satisfied. As I ′ will have only one restricted edge, the condition that only one
restricted edge may be used during a move is satisfied.

By Theorem 4, γ∞m (G) ≤ γ∞m (I ′) + γ∞m (G′) = γ∞m (C3k) + γ∞m (G′)
≤ (|V (C3k)|)/3 + β(G′) = (|V (C3k)|)/3 + (|V (G)| − 1)/3 + 1 =
(|V (C3k)|+ |V (G′)| − 1)/3 + 1 = (|V (G)| − 1)/3 + 1 = β(G).

Theorem 7. Let G be a noose graph. Then γ∞m (G) = d(n− k)/3e+ k, where
n is the number of vertices on the cycle and k is the number of vertices with
exactly one clique attached.

Proof. Any noose graph G′ can be created by placing an initial cycle and then
repeatedly attaching cliques to its vertices. Let C ′ be the cycle of G′ of size
n′, and let L1, . . . , Lk′ be the cliques attached to C ′. By attaching a clique of
size ` to v ∈ C ′, we mean adding a disjoint clique of size `− 1 and connecting
its vertices to v. See Figure 2.5 for illustration.

This way of constructing any G′ will allow us to do a proof by induction
on the number of cliques attached. The proof will work for a starting cycle of
any size. We will show, that the optimal guarding strategy of any G′, which
is a noose, is equivalent to separately guarding L1, . . . , Lk′ and a cycle of size
n′ − k′. In case n′ = k′, the strategy for the cycle will be omitted.

10
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Let β(G′) = d(n′ − k′)/3e+ k′. First let us show that γ∞m (G′) ≤ β(G′) for
every noose graph G′.

Consider the case k′ = n′. The strategy of placing one guard on every
clique is eternally dominating for the whole G′. Therefore, γ∞m (G′) ≤ β(G′) =
k′.

Consider the case k′ = 0, it holds that G′ ∼= C ′n, therefore γ∞m (G′) =
dn′/3e = β(G′).

For cases 0 < k′ < n′, we show a proof by induction on the number of
cliques attached to the cycle. Let H be a noose graph consisting of cycle Cp

and cliques K1, . . . ,Kq. We claim that (γ∞m (H ′) ≤ d(p− (q − 1))/3e+ (q − 1)
and (q − 1) < p) implies γ∞m (H) ≤ d(p − q)/3e + q, where H ′ is H with one
less clique attached to the cycle. Let Kq be the clique missing in H ′. We
also claim that if the strategy of H ′ is equivalent to guarding all its cliques
separately and all vertices of H ′\(K1∪· · ·∪Kq−1) as a cycle of size p−(q−1),
then the same will be true for H, with the size of the cycle being p − q and
the set of cliques being K1, . . .Kq.

In the base case q = 1, it holds that H ′ ∼= Cp, therefore γ∞m (H ′) ≤ dp/3e.
It holds that H ′ is guarded by the strategy of a cycle.

By the inductive hypothesis, H ′ is guarded as disjoint cliques and a cycle.
Let B′ a cycle Cp−q+1, the strategy of guarding this cycle is equivalent to
guarding the vertices of H ′ \ (K1 ∪ · · · ∪Kq−1). Now we show how to extend
the strategy on H ′ to H. Let v′ be the vertex on H ′ to which we will attach
Kq. Because all cliques of H ′ are guarded independently, it suffices to extend
the strategy on B′, when we attach a clique to some v ∈ B′. Let B be B′ with
the new clique Kq attached to v. The new strategy on B will be applied on
H.

Let us now apply Theorem 4 to get an upper bound on γ∞m (B). We can
see that v is an articulation in B connecting the subgraphs Kq and B′. Let I
be the vertices of B \Kq. Note that I ∼= Pp−q−1. Now I ′ will be G[I] with the
restricted edges R added. The set R contains only a single edge which connects
the two vertices of degree one in I. Therefore, I ′ is a cycle of size p−q. Because
I ′ is a cycle, there must a minimum m-eternal dominating set on I ′ dominating
G[I] without the restricted edges. From Theorem 4 follows that γ∞m (B) ≤
γ∞m (K ′) + γ∞m (I ′) = γ∞m (K ′) + γ∞m (Cp−q) = 1 + d(p − q)/3e. The strategy
used will be that which is described in Theorem 4, therefore the strategy will
separately guard K ′ and Cp−q. We already assumed that K1, . . . ,Kq−1 are
guarded separately and we have shown that Kq will be guarded separately as
well by applying Theorem 4. Also, it holds, that H \ (K1 ∪ · · · ∪Kq) will be
guarded as Cp−q. Therefore, γ∞m (H) ≤ γ∞m (Cp−q) + q ≤ d(p− q)/3e+ q.

This shows that for any noose graph G′, it holds that γ∞m (G′) ≤ β(G′),
therefore also for G, it holds that γ∞m (G) ≤ d(n− k)/3e.

Now let us show that γ∞m (G) ≥ d(n− k)/3e+ k.
Let K1, . . . ,Kk be the cliques of G. Let C = G \ (K1 ∪ · · · ∪Kk). Let C ′

be the cycle of G, which shares exactly one vertex with each K1, . . . ,Kk. Let

11
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β(G) = d(n− k)/3e+ k.
In case k = 0, therefore G ∼= Cn, it holds that γ∞m (G) = dn/3e = β(G). In

case of every vertex of the cycle having a clique attached to it, the fact that
no guard can dominate two cliques at once implies γ(G) ≥ k, which implies
γ∞m (G) ≥ k = β(G).

Let us consider other cases. For contradiction, let G be any noose such
that γ∞m (G) < β(G), therefore d(n− k)/3e+ k − 1 guards is enough to guard
G.

We can see that each K1, . . . ,Kk must be always occupied by at least one
guard. Therefore at least k guards will always occupyK1, . . . ,Kk. That leaves
d(n − k)/3e − 1 guards to defend C. Now suppose some attack on C. The
guard on some Ki can move outside of Ki only if some other guard takes his
place in the same turn. This allows the defender to move guards along paths
induced by vertices of C ′ ∩ (K1 ∪ · · · ∪Kk). Let P be some induced connected
component of C ′ ∩ (K1 ∪ · · · ∪ Kk) in G. Observe, that if the guard on one
end of P moves outside of P into C, the guards must move along P to keep
every Ki which shares a vertex with P occupied. Therefore, either one guard
moves from C into P or some Ki was occupied by more than one guard and
the additional guard moves into P during this move. We can see that the only
use for more than one guard on some Ki placed on P is to move it into P to
keep P occupied.

There will be at most d(n − k)/3e − 1 guards on C. While attacking
only C, the defending strategy of the guards will be equivalent to defending a
cycle without the vertices C ′ ∩ (K1 ∪ · · · ∪Kk), therefore a Cn−k. The guards
moving along some P , with one guard from C entering P and other leaving
P , is equivalent to one guard moving across an edge in Cn−k. In case some Ki

was occupied by more than one guard and the guard moves into C at some
later time, the move is equivalent to adding a guard to one endpoint of an
edge. Moving the guard back into some Kj such that Kj would be occupied
by two guards is equivalent to removing the guard from the strategy, only for
it to be placed back into the strategy later. We map this move to keeping the
guard on the vertex from which it would disappear, which may only give the
defender an advantage. Note that this would allow more than one guard on
the vertex.

Therefore, a defending strategy against the attacks on C with only d(n−
k)/3e − 1 guards would give us a strategy defending Cn−k with only d(n −
k)/3e − 1 guards in the eternal guard configuration model. This implies
Γ∞m (Cn−k) ≤ d(n − k)/3e − 1, which is a contradiction, as Γ∞m (Cn−k) ≥
γ(Cn−k) = d(n− k)/3e.

Now we consider the m-eternal guard configuration problem, therefore
from now on, we allow multiple guards on one vertex. We now present a

12
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v1 v2 v3 v4 v5 v6

Figure 2.6: Example of a configuration of guards in the alternating pattern
on P5 for k = 1.

v

u u′

H

v

u u′

H

Figure 2.7: Situation in graph G when performing Reduction 1. H is the set
of 3k − 3 vertices of the leaf C3k that are removed during the reduction. The
added edge is {u, u′}. On the left is the configuration of guards in case v is
occupied, on the right is the case when u is occupied.

collection of reductions, which will allow us to compute Γ∞m in cactus graphs,
whose every articulation lies in exactly two blocks.

Reduction 1. Replace a single leaf C3k, where k ≥ 2, with K3.

Reduction 2. Replace a single C3k+1 with K1.

Reduction 3. Replace a single C3k+2 with K2.

Reduction 4. Let H be some leaf clique which does not share any vertex with
any induced cycle of size more than 3. Then remove H.

Reduction 5. Let H be some leaf clique which shares exactly one vertex only
with exactly one cycle and the size of that cycle is more than 3.

First we describe a general way, in which we can place guards on induced
paths. Let P3n−1 be a path on 3n vertices. Let V (P3n−1) = {v1, v2, . . . , v3n},
so that the edges of the P3n−1 are {vi, vi+1} for every 1 ≤ i < 3n. We say
that we keep the guards on P3n−1 in the alternating pattern, if the guards are
placed on the set of vertices {vk+1, vk+4, vk+7, ..., vk+3n−2} for some 0 ≤ k ≤ 2.
An example is displayed in Figure 2.6.

Lemma 8. Let G be a cactus. Let C be a leaf C3k on G. Let G′ be G after
application of Reduction 1 with C. Then G′ is a cactus and Γ∞m (G) = Γ∞m (G′)+
k − 1.

Proof. Let H be the induced subgraph of G which we removed when we re-
placed C with K3.

13



2. Our results

v

u u′
H

v

u u′
H

Figure 2.8: Situation in graph G in case of Reduction 2. On the left is
one possible configuration when v is occupied. On the right is the required
configuration when v stops being occupied.

First we show that Γ∞m (G) ≥ Γ∞m (G′) + k − 1. H is some path on 3k − 3
vertices, with at most two of its vertices dominated from G[V (G′)]. Therefore,
we need to add guards to dominate at least 3k− 5 vertices, which requires at
least d(3k − 5)/3e = k − 1 guards.

Let us now show that Γ∞m (G) ≤ Γ∞m (G′) + k− 1. Any optimal strategy on
G′ can be easily extended to G by adding k − 1 guards to H. We keep the
guards on H in the alternating pattern at all times.

Let K be the new K3 in G′. Because K has to be dominated at all times,
at least one guard must be placed on it. Now we describe the movement of the
k − 1 guards on H in G in accordance to the movement of the guard placed
on K in G′.

Let v be the vertex on K which is not incident to H. Let u and u′ be the
vertices on K incident to H. The notation is displayed in Figure 2.7. If the
guard on K moves to v, we move the guards on H such that none of them is
incident to K.

Without loss of generality, if a guard moves to u, we move the guards on
H such that one of them is incident to u′. If the strategy on G′ requires a
guard to pass from u to u′, we simulate that by having one guard from H
move to u′ and from u to H.

Now suppose an attack comes on H. We move the guards along H to
repel the attack. Depending on the resulting configuration of guards on H,
we suppose some attack on one of vertices v, u or u′. If none of the guards onH
is incident to u or u′, suppose an attack on v to force a guard moving there, so
u and u′ are still dominated. Without loss of generality, if one of the guards
is incident to u, the vertex in H incident to u′ would be left unprotected.
Therefore, we suppose an attack on u′ in G′, to force a guard to move there.
Now, if the strategy on G′ requires a guard to pass through {u, u′}, we are
able to simulate that, because the neighbor of u in H is occupied.

Lemma 9. Let G be a cactus. Let C be a leaf C3k+1. Let G′ be G after
application of Reduction 2 with C. Then G′ is a cactus and Γ∞m (G) = Γ∞m (G′)+
k.

Proof. Let H be the induced subgraph of G which we removed when we re-
placed C with K1. Let v be the vertex of K1. The notation is in Figure
2.8.
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v

uv′

u′

H v

uv′

u′

H

Figure 2.9: Situation in graph G in case of Reduction 3. On the left is the
configuration after an attack on H that forced a guard to move into v′. On
the right is a situation after an attack that forced a guard to move in to u′.

We show that Γ∞m (G) ≥ Γ∞m (G′)+k, as H is some path on 3k vertices, with
at most 2 of those dominated from G′. Thus we need at least d(3k−2)/3e = k
additional guards to protect it.

We now show that Γ∞m (G) ≤ Γ∞m (G′) + k. We extend an optimal strategy
on G′. We place k guards on H. We keep the guards on H in the alternating
pattern at all times and move them depending on the presence of the guard on
v. If the guard moves away from v, we move the guards on H so that none of
them is incident to v. In case the guard moves to v, we may leave the guards
on H as they are.

Now suppose an attack on H. If the guards are forced to move so that one
of them is incident to v, we suppose an attack on v to move a guard there.
Now, if there comes another attack so that the guard is forced to move from
v to H, we made sure to have a guard incident to v in H, so we move all the
guards on H in the direction of v, to keep v occupied and to keep the eternally
dominating configuration on H.

Lemma 10. Let G be a cactus. Let C be a leaf C3k+2. Let G′ be G after
application of Reduction 3 with C. Then G′ is a cactus and Γ∞m (G) = Γ∞m (G′)+
k.

Proof. Let H be the induced subgraph of G which we removed when we re-
placed C with C3. Let K be the new K2 in G′.

We show that Γ∞m (G) ≥ Γ∞m (G′) +k, as H is some path on 3k vertices and
we have at most two of those dominated from G′, therefore we need at least
d(3k − 2)/3e = k vertices to dominate it.

We show that Γ∞m (G) ≤ Γ∞m (G′) + k by extending an optimal strategy on
G′. We place k guards on H and keep them in the alternating pattern at all
times.

Let u be the leaf vertex in K and v be the other vertex on K. Let v′ ∈ H
be the vertex incident to v and u′ ∈ H be the vertex incident to u. The
notation is displayed in Figure 2.9.
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There must always be at least one guard on K. Suppose there is some
attack on vertices of G′. Then we move the guards on H such that none of
them is incident to u or v.

Now suppose an attack on H. If a guard on H is forced to move into v′,
we suppose an attack on u in G′, to make sure that u is occupied. If after this
comes an attack on H such that the guard on u must move to u′, we move
the guard on v′ into v and move the rest of guards in G′ as if there was an
attack on v, that required the guard on u to move into v.

Similarly, if some attack on H requires a guard on H to move into u′,
we suppose an attack on v in G′. Therefore if u′ is occupied, v will also be
occupied. Suppose some attack on H requires a guard to move from v to v′,
in the previous moves we made sure that u′ is also occupied. Therefore we
move the guard on v to v′ and at the same time move the guard from u′ into
u and also move the rest of guards in G′ as if some attack on v required the
guard on u to move into v.

Lemma 11. Let G′ be G after applying Reduction 4 with H being the leaf
clique that is removed. Then G′ is a cactus and Γ∞m (G) = Γ∞m (G′) + 1.

Proof. If H does not share any vertex with any induced cycle of size more
than 4, it must share exactly one vertex with some clique of size 2 or 3. We
will show Γ∞m (G′) ≤ Γ∞m (G) − 1, which implies Γ∞m (G) ≥ Γ∞m (G′) + 1. As H
is a clique, there must be always at least one guard on H to defend it. If we
assume, that there is always exactly one guard, we may remove H along with
the guard and same strategy will defend G′. Suppose there was another guard
on H. Because one guard suffices to defend against any attacks on H, the
only use of the second guard was to move outside of H in case of an attack
somewhere else. We may as well place the guard on the clique, which shares
one vertex with H and the strategy will be the same.

Also, any strategy on G′ can be easily extended to G by placing one guard
on the newly added H. Therefore Γ∞m (G) ≤ Γ∞m (G′) + 1.

Lemma 12. Let G′ be G after applying Reduction 5, with H being the leaf
clique. Then G′ is a cactus and Γ∞m (G) = Γ∞m (G′) + 1.

Proof. First, we show that Γ∞m (G) ≤ Γ∞m (G′) + 1. Let u and v be the vertices
incident to H in G \ H. Let w be the vertex in H incident to u and v. We
will use Theorem 4. Let us partition the vertices of G into V (H) and V (G′),
with V (H) being the set containing the articulation w and {u, v} being the
restricted edge added to G[V (G′)]. Because there is only one restricted edge,
the condition that at most one restricted edge is used is always satisfied and
therefore G[V (G′)] = G′. The notation is displayed in Figure 2.10.
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u

u′

v

v′

w

V (H)

V (G′) u

u′

v

v′

w

V (H)

V (G′)

Figure 2.10: Displayed is an example of the graph G. The red vertices are
occupied by a guard, the dashed {u, v} edge is the added restricted edge in
G[V (G′)]. On the left is the situation, where we suppose there is no m-eternal
dominating configuration on G′ inducing a dominating set without {u, v}. On
the right is the situation after an attack on v′, with at least one of the gray
vertices being occupied.

We need to show that there is at least one eternally dominating configura-
tion on G′, which induces a dominating set even without the edge {u, v}. Let
C be the cycle in G sharing one vertex with H and let C ′ be the cycle in G′
such that V (C ′) = V (C) \ V (H). We assumed that the size of C is at least 4,
therefore, C ′ has size at least 3.

For contradiction, suppose there is not an m-eternally dominating config-
uration in G′, such that it induces a dominating set without the edge {u, v}.
Then every m-eternally dominating configuration, without loss of generality,
has u occupied and N [v] contains no guard. Let v′ be the neighbor of v, such
that v′ 6= u and let u′ be the neighbor of u, such that u′ 6= v. It is possible,
that v′ = u′, in case the size of C ′ is 3. Now suppose some attack on v′. The
guard occupying u must stay in N [u], therefore u will still be dominated, and
because v′ has to be occupied, v will also be dominated, even without the
{u, v} edge.

To show Γ∞m (G) ≥ Γ∞m (G′)+1, which is equivalent to Γ∞m (G′) ≤ Γ∞m (G)−1,
we adapt the strategy on G for G′ while removing one guard. At least one
guard must always occupy H to defend it. Suppose exactly one guard always
occupies H. Without loss of generality, the guard can move from H to v only
if some guard moves from u to H. That is equivalent to a guard moving across
the edge {u, v}. Suppose another guard occupies H. Its only possible use is
to move into v or u in case of an attack. We can place this guard on v, where
it can perform the same movements. When we remove H from G, we can also
remove the one guard which always had to occupy it.

Lemma 13. Let G be a graph. Then we can construct its block-cut tree BC(G)
in linear time.

Proof. Using Tarjan’s algorithm [12], we can find the biconnected components
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of a graph in linear time. After running this algorithm, we will have every
vertex of G labeled with the set of its biconnected components. Finding all
articulations now consists of iterating through all vertices of G and checking,
which are in more than one biconnected component. Now we can simply create
the vertices of the block-cut tree from the set of articulations and biconnected
components, and connect each articulation to the biconnected components,
which it is a part of. The number of biconnected components is bounded by
the number of edges in G and the number of articulations is lower than the
number of vertices in G. Let n be the number of vertices in G and m be
the number of edges. Then the block-cut tree will have at most O(n + m)
vertices, and because it is a tree, also O(n + m) edges. Constructing each
vertex and edge is done in constant time, therefore the whole construction is
done in O(n+m).

We present a description of a polynomial algorithm, which computes Γ∞m (G)
in cactus graphs, in which every articulation is in two blocks. We follow a
general description with a detailed pseudo-code. The general algorithm is as
follows.

1. Construct block-cut tree BC of the input graph G.

2. Try to apply one of the Reductions 1, 2, 3, 4 or 5 on BC.

3. If one the reductions was applied, then let G′ be G after application
of the reduction and let p be the appropriate number of guards that
was removed from G by applying the reduction. Recursively apply the
algorithm on G′ and return Γ∞m (G′) + p.

4. If none of the reductions were applied, then G ∼= Cn, therefore return
Γ∞m (Cn).

We present a pseudo-code implementation of the algorithm, such that its
running time is linear with the size of the input. We use an iterative approach,
which is easier to implement and also easier to analyze.
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Algorithm 1 m-Eternal guard configuration in a cactus
1: procedure m-EGC-Cactus-Graph(G)
2: . Size −1 means that the vertex is an articulation
3: BC = (V ′, E′, size, deg)← the block-cut tree of G
4: . Set the number of deleted cliques of every articulation to zero
5: for v ∈ V ′ do
6: if size(v) = −1 then
7: cliques(v) = 0
8: end if
9: end for

10: stack ← ∅
11: for v ∈ V ′ do
12: if deg(v) ≤ 1 then
13: push v into stack
14: end if
15: end for
16: g ← 0 . The resulting Γ∞m (G)
17: while stack 6= ∅ do
18: pop from stack into v
19: . Pick an undeleted neighbor of v
20: u← the only neighbor of v, such that deg(u) > 0.
21: del← false
22: if size(v) 6= −1 then . A block
23: (g, stack, size, clique, del)←

block(u, v, g, stack, size, clique, del)
24: else if size(v) = −1 then . An articulation
25: (g, stack, size, clique, del)←

articulation(u, v, g, stack, size, clique, del)
26: end if
27: if del = true then
28: deg(u)← deg(u)− 1
29: deg(v)← 0 . Deletion of v
30: if deg(u) = 1 then
31: push u into stack
32: end if
33: end if
34: end while
35: return g
36: end procedure
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Algorithm 1 m-Eternal guard configuration in a cactus
37: procedure block(u, v, g, stack, size, clique, del)
38: if size(v) > 3 then . Cycle of size > 3
39: (g, stack, size, del)← leaf-cycle(v, g, stack, size, del)
40: else if 2 ≥ size(v) ≥ 3 then . Reduction 4 or 5
41: if deg(v) = 0 then . The block was reduced to Kn

42: g ← g + 1
43: else
44: clique(u)← clique(u) + 1
45: end if
46: del← true
47: else if size(v) = 1 then . A leftover vertex from reduced block
48: if deg(v) = 0 then . The block was reduced to a single vertex
49: g ← g + 1
50: end if
51: del← true
52: else if size(v) = 0 then . A completely reduced block
53: del← true
54: end if
55: return (g, stack, size, clique, del)
56: end procedure
57: procedure leaf-cycle(v, g, stack, size, del)
58: if size(v) mod 3 = 0 then . Reduction 1
59: g ← g + size(v)/3− 1
60: size(v)← 3
61: push v into stack
62: else if size(v) mod 3 = 1 then . Reduction 2
63: g ← g + (size(v)− 1)/3
64: if deg(v) = 0 then . v is not a leaf cycle, but a disjoint cycle
65: g ← g + 1
66: end if
67: del← true
68: else if size(v) mod 3 = 2 then . Reduction 3
69: g ← g + (size(v)− 2)/3
70: size(v)← 2
71: push v into stack
72: end if
73: return (g, stack, size, del)
74: end procedure
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2.1. Cactus graphs

Algorithm 1 m-Eternal guard configuration in a cactus
76: procedure articulation(u, v, g, stack, size, clique, del)
77: if clique(v) = 1 then . Part of a noose
78: size(u)← size(u)− 1
79: g ← g + 1
80: del← true
81: else if clique(v) = 0 then . Was adjacent to a C3k+1 cycle
82: del← true
83: end if
84: return (g, stack, size, clique, del)
85: end procedure

Theorem 14. Let G be some cactus graph on n vertices and m edges, with
each articulation contained in two biconnected components. Then Algorithm
1 correctly computes Γ∞m (G) and runs in time O(n+m).

Proof. First we show correctness of Algorithm 1. We perform the reductions
in the while loop at line 17. At the start of every iteration, we process one
leaf vertex in BC. In case the last iteration deleted a block vertex from BC,
the next vertex processed must be the articulation which became a leaf. This
is ensured because we use a stack to hold the leaves and after every deletion,
at most one vertex may become a leaf. Also, this ensures that BC is a valid
block-cut tree whenever we perform a reduction on a block vertex in BC.

Let v be the leaf vertex currently processed in the loop. Consider the
case where v is some leaf cycle of size more than 3, therefore size(v) > 3.
We simulate one of the Reductions 1, 2 or 3 in leaf-cycle at line 57. It
suffices to decrease the size of the cycle in case of Reductions 1 or 3. In case of
Reduction 2, we simply delete the block, except the articulation contained in
it. In case v is a disjoint cycle and does not have any articulation incident to
it which would be processed later, we increase Γ∞m immediately and correctly
compute Γ∞m for the disjoint cycle.

Consider the case where v is a leaf clique, therefore 2 ≤ size(v) ≤ 3. We
simulate Reduction 4 or 5 in Procedure block at line 37. In both reductions,
we remove the whole clique and decrease the size of the incident block by one.
We mark the incident articulation u as having been part of the reduction, so
that when we process u, we increase Γ∞m by one and decrease the size of the
incident block by one.

We have to check for the case where v is a disjoint clique and does not
have any articulation incident to it. In that case, we increase Γ∞m right away.

We finish the reduction in the next iteration, when u becomes a leaf. It
will be processed by Procedure articulation at line 76. In cases of both
reductions, we now increase Γ∞m by one and decrease the size of the incident
block, therefore removing the articulation from it.
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This concludes the simulations of the reductions. In the algorithm, we
have to consider more cases that can appear as a consequence of previous
reductions. One is when a block has size 1, therefore its size was decreased by
some other reductions. This block is either an isolated vertex or it contains a
single vertex, which was previously an articulation and therefore is contained
in some other block, which will be processed later. This is taken care of at
line 47.

Another case is that some block was completely deleted in previous reduc-
tions, therefore has size zero. This case is taken care of at line 58.

This concludes the analysis of correctness of the algorithm. Now we show
that Algorithm 1 runs in time O(n+m).

By Lemma 13, we can construct BC in linear time, therefore line 3 will
run in time O(n + m). We can modify the construction of BC, so that we
receive every block vertex in BC labeled with the size of the block. This can
still be performed in linear time.

Note that the number of vertices of BC is bounded 2n, therefore the
same holds for the number of edges in BC. Therefore |V (BC)| = O(n) and
|E(BC)| = O(n).

Now consider the while loop at line 17. We claim that every vertex in BC
is processed at most twice in the loop and every iteration takes constant time.
Let v be the currently processed vertex. In case it is a block of size at most
3 or an articulation, it will be deleted at the end of the iteration. In case it
is a block of size more than 3, it will be processed at line 37. In that case, it
becomes a block of size at most 3 and will be deleted in the next iteration.

To show that every iteration takes constant time, first consider the way we
pick an undeleted neighbor of v on line 20. This can be done by iterating over
all edges incident to v. Because every vertex in BC is processed at most twice,
we iterate over every edge at most four times. The rest of operations in the
while loop at 17 clearly takes constant time. Therefore the whole algorithm
runs in time O(n+m).
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u v u v

Figure 2.11: On the left is an example of a graph G. On the right is the graph
G after application of Reduction 6.

2.2 Clique trees
Klostermeyer and MacGillivray [9] describe a linear algorithm for solving the
m-eternal domination problem on trees. We show an extension, which allows
its use on clique trees. It is based on a set of reductions, which we are able to
execute in linear time.

We say that two cliques in a graph G are incident if they share exactly
one vertex.

Reduction 6. Remove a leaf clique which is incident to only one other clique.

Reduction 7. Let x be a vertex incident to more than 2 leaf vertices which
is also incident to at most one clique of size greater than 2. Remove all leaves
incident to x.

Reduction 8. Let v be some vertex which is contained in more than one leaf
clique and lies on at most one non-leaf clique. Remove all edges on leaf cliques
that v is contained in, except those edges which are incident to v.

Repeated applications of these reductions will end with G being either a
Kn or a star, both of which are trivial to solve.

Lemma 15. If G′ is the result of applying Reduction 6 to G, then G′ is a
clique tree and γ∞m (G) = γ∞m (G′) + 1.

Proof. The proof is adapted from the proof by Klostermeyer and MacGillivray [9]
of their Lemma 21 in the cited work. See Figure 2.11 for illustration.

It is clear that G′ is a clique tree. No new clique or a cycle could have
been created.

Let H be the leaf clique removed from G. At least one guard must always
occupy H to defend against attacks on H and one guard suffices. Therefore,
in an optimal strategy of G, one guard always occupies H. After removing
H, we may remove one guard with it. Therefore γ∞m (G′) ≤ γ∞m (G)− 1 implies
γ∞m (G) ≥ γ∞m (G) + 1.

Also, any strategy of G′ can be extended to G by adding one guard to H.
Therefore γ∞m (G) ≤ γ∞m (G′) + 1. �

23



2. Our results

Figure 2.12: On the left is an example of a graph G, with the encircled vertices
being the leaf vertices removed during application of Reduction 7. On the right
is G after the application of Reduction 7.

Lemma 16. If G′ is the result of applying Reduction 7 to G, then G′ is a
clique tree and γ∞m (G) = γ∞m (G′) + 1.

Proof. The proof is adapted from the proof by Klostermeyer and MacGilliv-
ray [9] of their Lemma 20 in the cited work. See Figure 2.12 for illustration.

Let H be the clique of size at least 2 that x lies on. Let `1, `2, ..., `k, k ≥ 2
be the leaves adjacent to x such that none of them is in H. In order to
defend against the sequence of attacks `1, `2, ..., `k, there must always be one
guard on one of the leaves `1, `2, ..., `k and one on x, and also those two
guards suffice. Thus, in a minimum m-eternal dominating set, there are two
guards that defend these leaves. After removing `1, `2, ...., `k and the guard
which was required to move to the leaves in case of an attack, the same
strategy eternally defends G′. Therefore γ∞m (G′) ≤ γ∞m (G)− 1, which implies
γ∞m (G) ≥ γ∞m (G′) + 1.

Now we show that γ∞m (G) ≤ γ∞m (G′)+1. In any strategy on G′, there must
be a guard on H to defend against attacks on H. We place the one additional
guard on `1 and suppose an attack on x in G′ to force a guard moving there.

Now suppose there is an attack on y ∈ H \{x}. The guard on the occupied
leaf will move to x to protect the leaves `1, `2, ..., `k, while the other guard on
H moves to y. Suppose there is an attack on y′ ∈ {`1, `2, ..., `k}. One of two
cases is possible. In the first case is one of the other leaves `1, . . . , `k occupied,
therefore we made sure that x is also occupied. Let `p be the occupied leaf.
We move the guard on `p to x and the guard on x to y′. In the second case,
none of the leaves `1, . . . , `k is occupied. In that case, the additional guard
has moved to x. We move the guard on x to y′ and suppose an attack on x
in G′ to make sure that x is occupied.

Lemma 17. If G′ is the result of applying Reduction 8 to G, then G′ is a
clique tree and γ∞m (G) = γ∞m (G′).

Proof. We want to show that those removed edges do not need to be used in
an optimal strategy. Let L1, . . . , Lk be the cliques from which we removed the
edges. Let R be the set of the removed edges. Let v be the vertex shared by
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v v
L1

L2

L3

Figure 2.13: On the left is an example of a graph G, with the red edges
being the set R removed during application of Reduction 8. The leaf cliques
that contain v are L1, L2 and L3. On the right is G after the application of
Reduction 8.

L1, . . . , Lk. We claim that it is sufficient to keep a guard on v at all times and
occupy at most one of L1, . . . , Lk, namely the one that was last attacked. See
Figure 2.13 for illustration.

For contradiction, suppose that in every optimal strategy, at least one edge
{r1, r2} ∈ R is used. For a guard to pass through {r1, r2}, he had to be on r1
or r2, therefore was placed on the leaf clique. As all the other leaf cliques has
to be dominated, either there is a guard on v or on every leaf clique.

Suppose that there is a guard on every leaf clique. That requires at least
k ≥ 2 guards. Moving one of the guards on L1, . . . , Lk to v instead keeps
all L1, . . . , Lk protected while using only 2 guards. This is at least as good
as the previous configuration, therefore we can assume that at least one op-
timal strategy uses it. We will show that this configuration is still eternally
dominating.

Without loss of generality, we can replace the move from r1 to r2 by a move
from v to r2 and move the other guard on L1, . . . , Lk to v. Therefore, we can
assume that at least one of the optimal strategies on G keeps v occupied and
does not use the edges in R.

We now present the description of the algorithm, which uses the reductions.
The algorithm is as follows.

1. Construct block-cut tree BC of the input graph G

2. Try to apply one of the Reductions 6, 7 or 8 on BC.

3. If one the reductions was applied, then let G′ be G after application
of the reduction and let p be the appropriate number of guards that
was removed from G by applying the reduction. Recursively apply the
algorithm on G′ and return γ∞m (G′) + p.

4. If none of the reductions were applied, then G is a star or a Kn. Return
γ∞m (G) directly.
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We provide a pseudo-code implementation the algorithm, such that its
running time is linear with the size of the input. We use an iterative approach,
which is easier to implement and also easier to analyze.
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Algorithm 2 m-Eternal domination number in clique trees
1: procedure m-EDN-Block-Graph(G)
2: . Size −1 means that the vertex is an articulation
3: BC = (V ′, E′, size, deg)← the block-cut tree of G
4: . Set the number of deleted cliques of every articulation to zero
5: for v ∈ V ′ do
6: if size(v) = −1 then
7: cliques(v) = 0
8: end if
9: end for

10: stack ← ∅
11: for v ∈ V ′ do
12: if deg(v) ≤ 1 then
13: push v into stack
14: end if
15: end for
16: edn← 0
17: while stack 6= ∅ do
18: pop from stack into v
19: u← the only neighbor of v such that deg(u) > 0.
20: if size(v) ≥ 1 then . An undeleted clique
21: edn← Clique(edn, v, u)
22: else if size(v) = −1 then . An articulation
23: edn← Articulation(edn, v, u)
24: end if
25: if deg(v) > 0 then
26: deg(u)← deg(u)− 1
27: deg(v)← 0 . Deletion of v
28: end if
29: if deg(u) = 1 then
30: push u into stack
31: end if
32: end while
33: return edn
34: end procedure
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Algorithm 2 m-Eternal domination number in clique trees
35: procedure Clique(edn, u, v)
36: if size(v) > 1 then . An undeleted clique
37: if deg(v) = 0 then . An isolated Kn

38: edn← edn+ 1
39: else . A leaf clique
40: cliques(u)← cliques(u) + 1
41: end if
42: else if size(v) = 1 then
43: if deg(v) = 0 then . An isolated vertex
44: edn← edn+ 1
45: end if
46: . Otherwise v must be contained in another
47: . block and will be reduced there
48: end if
49: return edn
50: end procedure
51: procedure Articulation(edn, u, v)
52: if cliques(v) = 1 then . Reduction 6
53: size(u)← size(u)− 1
54: edn← edn+ 1
55: else if cliques(v) > 1 then . Reductions 8 and 7
56: edn← edn+ 1
57: end if
58: . Otherwise v was part of a block reduced to size 0 or 1
59: . by some previous reductions
60: return edn
61: end procedure

Theorem 18. Let G be a clique tree on n vertices and m edges, then Algo-
rithm 2 correctly computes γ∞m (G) and runs in time O(n+m).

Proof. First we show the correctness of the algorithm. After constructing BC
for G, we repeatedly pick a leaf from BC and after simulating a reduction on
it, we delete it. This is done in the loop at line 17. Let v be the currently
processed leaf of BC. In case v is a block, we want to perform either Reduction
6 or Reductions 8 and 7. Let u be the articulation incident to v in BC.
Which reduction we want to execute depends on the number of blocks that u
is contained in. Therefore we keep a track of how many blocks incident to u
in BC we deleted and postpone the reductions to the point in time, when u
is processed.

It is guaranteed that after every block containing some articulation u is
processed, u will be the next processed vertex in the loop at line 17. This is
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ensured by using a stack to keep our leaf vertices. We insert vertices into the
stack as soon as they became a leaf, therefore at most one vertex is inserted
after deletion of some vertex. This is done at line 25.

Suppose we now process some articulation v in BC. In case it was in one
deleted clique, we want to perform Reduction 6. This is done in Procedure
Articulation at line 52. It suffices to increase the resulting γ∞m by one
and decrease the size of the incident block, from which the articulation was
removed during Reduction 6.

In case v was in more than one deleted clique, we want to perform Reduc-
tion 8 and subsequently Reduction 7. As the cliques are already deleted, we
simply increase γ∞m by one and continue.

When none of the reductions can be applied, BC represents either a single
clique or a star. Let v be the currently processed vertex of BC. In case BC
represents a single clique, then v has no incident articulation in BC. This is
checked at line 37. In this case, we increase γ∞m by one.

Suppose that we reduced BC so that it represents a star. Let G′ be the
graph represented by BC. We will show that the algorithm runs in such a
way, that it correctly outputs Γ∞m (G′) as 2. First, the leaf vertices of G′ will
be removed one by one at line 36. After this is applied, the resulting graph is
a single clique of size one. Therefore the resulting Γ∞m (G′) is 2.

In the course of the algorithm, there can appear other cases we have to
take care of. Let v be a processed block vertex in BC. Suppose the size
of v is one, therefore its size was decreased by previous reductions. If it is
not an isolated vertex, it must be contained in some other clique and will be
processed with it. This is checked at line 42. In case the size of v is zero, all of
its vertices were deleted in the previous reductions. Any reductions will now
be skipped and v will be simply deleted.

Suppose the case is that we process some articulation v in BC, which is
marked as not being a part of any deleted cliques. That can happen only if
the articulation was contained in some blocks, which were previously reduced
to size 1 or 0. In both cases, v is not an articulation. Therefore we simply
delete v and continue.

This concludes the proof of correctness of the algorithm. We now show
that the algorithm runs in time O(n+m). By Lemma 13, the construction of
BC at 3 will take time O(n+m). The loop at line 17 processes every vertex
exactly once, as it is always deleted at the end of every iteration.

Consider the way we pick an undeleted neighbor of the processed vertex
v at line 19. This is achieved by iteration over all edges incident to v. As
every vertex in BC is processed once, every edge will be iterated over exactly
twice. Note that the size of BC is linear in the size of G. Therefore, the whole
algorithm runs in time O(n+m).
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Chapter 3
Implementation

3.1 Brute-force algorithm

We include implementation of an exact algorithm for finding either all mini-
mum m-eternal dominating sets or minimum m-eternal guard configurations,
therefore also computing γ∞m or Γ∞m . The idea is described by Bard et. al. [10].
It consists of creating a configuration graph, whose vertices are possible place-
ments of guards on the input graph, while edges represent the fact that one
placement may be turned into another during one turn.

More formally, let Dk(G) = (V ′, E′) be the directed configuration graph
for G and some k ∈ N, where V ′ ⊂ Z|V (G)|. Let us order the vertices of G as
V = {v1, v2, ..., vn}. Then every I ∈ V ′, where V ′ = (p1, p2, ..., pn) represents
some configuration, where for every i ≤ n, there is pi guards placed on vi. We
require that for every I ∈ V ′, it holds that

∑n
i=1 pi = k. Let I, J ∈ V ′, then

(I, J) ∈ E′ if and only if the set of guards represented by I can move into the
configuration represented by J .

For Dk(G) to represent a valid strategy, every I ∈ V ′ must be an eternally
dominating configuration. That is true if and only if, for every I ∈ V ′, the
union of the endpoints of edges starting in v equals to V (G) \ I. That is, in
case of an attack on any unoccupied vertex, we are able to move into some
configuration which defends against this attack, and is also able to respond to
any attack.

It is therefore true that γ∞m (G) ≤ k if and only if the corresponding con-
figuration graph is not empty. The general idea is to build Dk(G) with all
possible configurations of k guards on V (G) and iteratively remove those ver-
tices in Dk(G), which do not represent an eternally dominating configuration.
This solution is exponential in time and space, as the number of vertices of
Dk(G) is exponential in the size of G.

To make sure this approach produces a valid strategy for the m-eternal
domination model, we restrict every configuration to have at most one guard
on every vertex.
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We present a polynomial algorithm which decides whether one configura-
tion can move into another during one move.

Lemma 19. Let Dk(G) = (V ′, E′) be the configuration digraph for G = (V,E)
and k. Let I, J ∈ V ′. Then deciding whether (I, J) ∈ E′ can be done in
polynomial time.

Proof. We use a max flow algorithm on an auxiliary network to decide whether
(I, J) ∈ E′. Let T = (VT , ET ) be the auxiliary network, such that VT =
V1 ∪ V2 ∪ {s, t}. The sets V1 and V2 are copies of V (G). We connect v1 ∈ V1
to v2 ∈ V2 by an arc if and only if v2 ∈ N [v1] in G. We connect s to every
v1 ∈ V1 and every v2 ∈ V2 to t. We construct the capacities of the arcs as
follows. Let L ∈ V ′, then L(v) is the number of guards on v ∈ V (G) in the
configuration represented by L. Let c : ET → Z be the capacity function

defined as c(v, u) =


∞ if v ∈ V1 and u ∈ V2

I(u) if v = s and u ∈ V1

J(v) if v ∈ V2 and u = t
Observe that a flow moving from some v1 ∈ V1 to v2 ∈ V2 represents

guards moving across an edge between those vertices. The size of the flow
going from every v1 ∈ V1 is at most the number of guards on v1 ∈ V (G) in the
configuration I. Similarly, the size of flow going from every v2 ∈ V2 is at most
the number of guards on v2 ∈ V (G) in the configuration J . We can move
from configuration I into J in one turn if and only if the size of the maximum
flow from s to t is equal to k. That is, every guard in I was moved into some
other position in J .

In our implementation, we choose the Ford Fulkerson algorithm to compute
the maximum flow. The fact that its worst case running time is O(|EN |f) [13],
where f is the size of the resulting flow, is suitable for this use. Let n be that
number of vertices of G and m be the number of edges of G. We can see that
|EN | = 3n+m, therefore the total running time is O((n+m)k).

Also regarding the implementation, one basic optimization is checking all
configurations in V ′ and discarding those, which do not induce a dominating
set on G, as those can not be a part of any valid strategy.

3.1.1 Heuristic speed-up

We employ a heuristic, which in practice provides a significant speed-up
against the naive brute-force, while still guaranteeing correctness of the re-
sult. The idea is based on the observation, that for many graphs, an optimal
strategy with k guards requires a significantly lower number of configurations,
than is the number of all dominating sets on G of size k.

Consider for example a graphG consisting of k disjoint P1. While γ∞m (G) =
γ(G) = k and the number of m-eternal dominating sets is 2k, just two different
dominating sets suffice to defend against all attacks.
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While building the edges of the configuration graphDk(G), we periodically
check if the graph already contains some valid strategy and we return the result
if it does. Because the construction of vertices of Dk(G) is implemented in an
iterative way, many similar configurations are placed next to each other in the
array holding all the configurations. To increase the chances of configurations,
which would produce a valid strategy, being processed close to each other, we
randomly shuffle the array of vertices.

3.2 Cactus graphs
We implement our algorithm for cactus graphs, in which every articulation is
in two blocks. First, we construct the block-cut tree, as described in Lemma
13. Then we perform the check if the input graph is of correct class. To do
that, we use the following

Observation 20. Graph G is a cactus if and only if it is connected and every
block is either a cycle or a pair of vertices connected by an edge

This holds as if any edge was lying on two cycles, that edge would be part
of some block which is not a cycle. Also, every articulation is in exactly two
blocks if and only if the degree of every articulation in the block-cut tree of
the input graph is 2.

The implementation of the algorithm is described Algorithm 1.
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Chapter 4
Future work

4.1 Open problems
There are many interesting problems regarding the m-eternal domination
problem still unanswered. The complexity of the decision variant of the m-
eternal domination problem is still largely unknown. The approach of creating
the configuration graph with all possible placements of guards as its vertices
shows that the problem is solvable in exponential time and space, therefore it
belongs to EXPTIME. It is not clear whether the problem lies in PSPACE.
Our experiments hint at the fact, that the size of the minimum possible config-
uration graph, such that it represents a valid strategy with optimal number of
guards, is often small. It is therefore an interesting question, whether we can
bound the size of the minimum optimal configuration graph by some function
of the size of the input. Bounding the size of the minimum optimal config-
uration graph by some polynomial of the input size would imply that the
m-eternal domination problem lies in PSPACE.

The natural extension of the algorithm from cactus graphs is to the more
general case of graphs with treewidth equal to 2. It is an interesting question,
whether we can design an algorithm, whose running time would be parame-
terized by the treewidth of the input graph.

It is also interesting to show for which graph classes is γ∞ equal to Γ∞m
and which conditions are either necessary or sufficient, so that this equality
holds.
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Appendix A
Contents of the enclosed media

readme.txt.....................the file with media contents description
implementation ............................... implementation sources

Makefile ............. the Makefile used to build the implementation
thesis.................the directory of LATEX source codes of the thesis

Makefile..............the Makefile used to build the thesis PDF file
BP_Kristan_Jan_Matyas_2018.pdf.......the thesis text in PDF format
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