
doc. Ing. Hana Kubátová, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 8, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Office IoT

 Student: Mikuláš Formánek

 Supervisor: Ing. Jan Šedivý, CSc.

 Study Programme: Informatics

 Study Branch: Computer engineering

 Department: Department of Digital Design

 Validity: Until the end of summer semester 2018/19

Instructions

Design and implement an IoT system for monitoring the presence and movement of office personnel and
visitors. The system will use the following wireless sensors and actuators; camera, motion detector,
microphone, speaker, socket on/off switch. The sensors will be selected by the supervisor. Review,
compare, select and implement a suitable embedded processor for a communication hub. Use WiFi for
communication with sensors and actuators. Review, select and use appropriate communication protocol.
Use the Google cloud REST services and Dialog Flow tools to provide a voice user interface. On a voice
request the system will inform about a presence of a selected person.

References

Will be provided by the supervisor.

Bachelor’s thesis

Office IoT

Mikuláš Formánek

Department of Digital Design

Supervisor: Ing. Jan Šedivý, CSc.

May 14, 2018

Acknowledgements

Thanks Jan Šedivý for supporting me all the way . . .

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 14, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Mikuláš Formánek. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Formánek, Mikuláš. Office IoT. Bachelor’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2018.

Abstract

Bachelor thesis looks for the design of modern office from saving administrative
tasks point of view. The main goal was to design and implement attendance
system, set of actuators and find proper communication protocol. Attendance
solution is using face recognition and the whole system has been connected
with voice assistant.

Kĺıčová slova Hlasový asistent, Vestavěné systémy, Raspberry Pi, Rozpoznáváńı
obličeje, rozpoznáváńı hlasu, intent, docházkový systém, biomentrické senzory,
autentifikace,cloud computing, Turris Omnia

vii

Abstrakt

Bakalářská práce se zabývá návrhem moderńı kanceláře z hlediska ulehčeńı ad-
ministrativy a běžnýh úkon̊u v kanceláři. Ćılem bylo navrhnout a implemen-
tovat docházkový systém, systém aktuátor̊u a vhodné komunikačńı rozhrańı.
V rámci řešeńı bylo využito rozpoznáváńı obličeje, docházkový systém byl
napojen na hlasový asistent s komunikačńım protokolem HTTP.

Keywords Voice Assistant, Embedded system, Raspberry Pi , Face recog-
nition, Speech to text, intent, Attendence monitoring, Authentication, Cloud
Computing, Turris Omnia

ix

Contents

Introduction 1

Goals 3

1 Analysis 5
1.1 Existing solutions of attendance monitoring 5
1.2 Chat Bot . 8
1.3 Speech to Text . 11
1.4 Communication protocols for IoT 13

2 Implementation 17
2.1 Comparsion of single board computers 17
2.2 Selecting proper sensors . 19
2.3 Face Recognition . 21
2.4 Attention manager . 28
2.5 Remote control of actuators . 31
2.6 Voice Assistant . 31
2.7 Implementation on Raspberry Pi 34

Conclusion 39

Bibliography 41

A Acronyms 43

B Contents of enclosed CD 45

xi

List of Figures

1.1 P9000-SD . 5
1.2 Realand-ZDC60 . 6
1.3 BROADWAY 3D BR . 7
1.4 SYSF203TP . 8
1.5 Google Home Assistant . 8
1.6 Voice Commerce Sales in 2017 . 9
1.7 Voice Assistant (VA) architecture 10
1.8 Speech Recognition Cycle . 11
1.9 MQTT exchange . 16

2.1 Cortex A53 . 18
2.2 Matrix Voice . 21
2.3 Face recognition diagram . 22
2.4 Picture with recognized person . 23
2.5 Nucleus Profile page . 29
2.6 Nucleus presence dashboard . 30
2.7 Turris scheme with jablotrone sensors 31
2.8 TP-83N(thermostat), AC-88(switch relay) 32
2.9 Dialog Flow - create intent . 37
2.10 Dialog Flow - entities and answers 37

xiii

List of Tables

1.1 Comparsion of P9000 . 6
1.2 Comparsion of Realand ZDC60 6
1.3 Comparsion of BROADWAY 3D BR 7
1.4 Comparsion of SYSF203TP . 8

2.1 Single Board Computer (SBC) CPU 18
2.2 SBC RAM . 18
2.3 Time to take photo . 19
2.4 Comparsion of Face Recognition Api 20
2.5 Comparsion of Face Recognition Api 22

xv

Introduction

In these days our society is mainly focused on speed and results, is required
to automate basic operation like monitoring attendance.

In time of writing theses l spend lot of time in the new building of CIIRC
and work under organization named eClub. We were finding unexisting ap-
plication for new technologies and monitoring attendance was one thing we
strongly need for ourselves.

Thesis shows usage voice-assistant like replacement for reception also appli-
cation of using face-recognition for attendance monitoring, brings comparisons
for sensors and embedded processors from usability point of view.

In theoretical part l am dealing with speech recognition and also taking
look at voice-assistant principle.

1

Goals

Main goal of the thesis is creating attendance monitoring system with using
face recognition technology and implement voice assistant, which could replace
reception in the future. Also thesis should bring comparison of Single board
PC.

3

Chapter 1

Analysis

1.1 Existing solutions of attendance monitoring

In these days there are lot of types of monitor attendance on market. It’s
useful instrument how control your employer’s time. We can divide them into
these categories by type of authentication: biometric and batch.

1.1.1 Batch solution

Batch systems are the oldest one, each user has unique chip/paper/key and
manually put them to some machine which recognize current user.

Company Jablotron offers system named PS-9000SD, using RFID reader.

Figure 1.1: P9000-SD;1

1.1.2 Biometric solution

Biometric sensors capture some unique part of our body for example finger-
print, iris, bloodstream or face to recognize particular person. And also you

1Online2018-04-16;https://www.jabloshop.cz/bezkontaktni-vstupni-system-ps-
9000-sd-vnitrni-pamet-slot-na-sd-kartu

5

Online 2018-04-16; https://www.jabloshop.cz/bezkontaktni-vstupni-system-ps-9000-sd-vnitrni-pamet-slot-na-sd-kartu
Online 2018-04-16; https://www.jabloshop.cz/bezkontaktni-vstupni-system-ps-9000-sd-vnitrni-pamet-slot-na-sd-kartu

1. Analysis

Table 1.1: Comparsion of P9000

Pros Cons

Ready to use Cannot be extended

Price(100USD) Manual interaction

Another device in pocket

Easy to copy chip

Table 1.2: Comparsion of Realand ZDC60

Pros Cons

Hard to clone fingerprint No access to fingeprints

Price(500USD) Manual interaction

cannot simply foist your co-worker’s fingerprint easily.
On the market are getting more popular fingerprint sensors, for example

Realand ZDC60 offers fingerprint and also batch authentication.

Figure 1.2: Realand-ZDC60;2

Another possible biometric sensor is dealing with 3D scan. Product BROAD-
WAY 3D BR is 3D scan which can be used at reception, able to scan from
distance up to 1,2m. On the other hand product is extremely expensive.

2 Online 2018-04-16 ; https://eshop.nejdochazka.cz/24-thickbox_default/
dochazkovy-system-realand-biometrie-rfid.jpg

3Online 2018-04-17; http://katalog.abbas.cz/galerie/1_2675/broadway-3d-br-
original.jpg

6

https://eshop.nejdochazka.cz/24-thickbox_default/dochazkovy-system-realand-biometrie-rfid.jpg
https://eshop.nejdochazka.cz/24-thickbox_default/dochazkovy-system-realand-biometrie-rfid.jpg
http://katalog.abbas.cz/galerie/1_2675/broadway-3d-br-original.jpg
http://katalog.abbas.cz/galerie/1_2675/broadway-3d-br-original.jpg

1.1. Existing solutions of attendance monitoring

Figure 1.3: BROADWAY 3D BR;3

Table 1.3: Comparsion of BROADWAY 3D BR

Pros Cons

Secured Expensive

Without interaction

Company SYSDO offers attendance system SYSF203TP with face-recognition,
it uses double camera with IR light for bad light conditions, one thing which
is not positive - you have to be really close - works on maximum distance of
25cm.

4Online 2018-04-17; https://www.sysdo.cz/files/2016/10/sysf2032.png

7

https://www.sysdo.cz/files/2016/10/sysf2032.png

1. Analysis

Figure 1.4: SYSF203TP;4

Table 1.4: Comparsion of SYSF203TP

Pros Cons

Price Maximum distance

No extra device needed

1.2 Chat Bot

Chatbot (sometimes referred to as a chatterbot) is a computer
program that attempts to simulate the conversation or ”chatter”
of a human being via text or voice interactions. A user can ask a
chatbot a question or make a command, and the chatbot responds
or performs the requested action.[1]

Figure 1.5: Google Home Assistant5

VA are being incorporated into a wide range of consumer products,
and nearly half of U.S. adults (46%) say they now use these appli-
cations to interact with smartphones and other devices, according
to a Pew Research Center survey conducted this spring.

5 Online 2018-04-17; https://madeby.google.com/static/images/home/hero.jpg

8

https://madeby.google.com/static/images/home/hero.jpg

1.2. Chat Bot

Voice assistants are present on a wide range of devices, but the
most common way for Americans to use them is on a smartphone:
42% of U.S. adults use voice assistants in this way. Some 14% of
the public has used a voice assistant on a computer or tablet, while
8% say they use them on a stand-alone device such as an Amazon
Echo or Google Home.[2]

1.2.1 Commerce usage

Nowadays are chatbot(also called voice-assistant(“VA”) widely used in many
forms. For example every smartphone with Android 5.0 or higher can simply
use Google Assistant, company Apple provides Siri for their devices, Alexa is
product of Amazon.

Figure 1.6: Voice Commerce Sales in 20176

Many application are developed for VA, they can provide new “easy to
use” - for example Uber has already application in Google Assistant, which
can help make the process faster. You don’t need to type where you want to
go, just say that. Unfortunately this feature is not available in Czech Republic.

Another way of usage shows Domino’s application - you can directly order
through your VA, so it looks that VA overtakes some of the automated jobs
like receptionist, shop assistant, and many others . . .

Good example is Question and Answer systems, which could by typically
used in store, where customer don’t need to wait for shop assistant and just
ask for help. I am expecting this become reality in some shops until 2019.

6Online 2018-04-18; https://www.voicebot.ai/wp-content/uploads/2018/03/voice-
commerce-sales-2017-2022-02.jpeg

9

https://www.voicebot.ai/wp-content/uploads/2018/03/voice-commerce-sales-2017-2022-02.jpeg
https://www.voicebot.ai/wp-content/uploads/2018/03/voice-commerce-sales-2017-2022-02.jpeg

1. Analysis

1.2.2 Intelligence Voice Assistant architecture

We can divide mechanism of Voice Assistant into 3 steps:

1. Speech to text

2. Natural language processing

3. Intent to action

Figure 1.7: VA architecture

Speech to text is process which take voice input from microphone and
try to recognize to text. This particular problem is the main reason why we
still don’t have voice assistant for every language. Special algorithms are using
convolution neural networks, which are pre-trained on millions voice samples.

The software breaks your speech down into tiny, recognizable parts
called phonemes — there are only 44 of them in the English lan-
guage. It’s the order, combination and context of these phonemes
that allows the sophisticated audio analysis software to figure out
what exactly you’re saying, like the bread, cheese and sauce that
differentiate a pizza from a calzone or a sandwich. For words that
are pronounced the same way, such as eight and ate, the software
analyzes the context and syntax of the sentence to figure out the
best text match for the word you spoke.[3]

Natural language processing (NLP) is trying recognize what really
user want to say, for example “How to say good night in german”. Voice
Assistant needs to detect we want translate sentence “good night” to german

10

1.3. Speech to Text

“bis später”. There are many methods how to solve this ranking problem, for
example TF-IDF, Word2Vec etc. . .

Intent to action fulfills user’s request, in our case VA call translate api
to sentence “good night” and responds to user with “bis später”.

1.3 Speech to Text

Speech to text (STT) convert speech from a recorded audio signal to text.
Humans convert words to speech with their speech production mechanism. An
STT system aims to infer those original words given the observable signal. The
most common and as of today best method is the probabilistic approach. A
speech signal corresponds to any word (or sequence of words) in the vocabulary
with a certain probability. Therefore, assuming a word x or word sequence
X was spoken, we compute a score for matching these words with the speech
signal. This score is calculated from the acoustic properties of speech sub-units
(phonemes in the acoustic model), linguistic knowledge about which words can
follow which other words. Including additional knowledge as the pronunciation
score proposed in this work has also shown to be helpful. Finally, we sort the
possible word sequence hypotheses by score, and pick the hypothesis with the
highest score as recognition results. The process of speech recognition can be
divided into the following consecutive steps.[4]

1. pre-processing

2. feature extraction

3. decoding

4. result post-processing

Figure 1.8: Speech Recognition Cycle7;

7Online 2018-05-05; https://doi.org/10.1007/978-3-642-19586-0_2

11

https://doi.org/10.1007/978-3-642-19586-0_2

1. Analysis

1.3.1 Pre-processing

Speech is recorded with a microphone and the signal is sampled with 16 kHz.
The Shannon sampling theorem states that a bandwidth limited signal can be
perfectly reconstructed if the sampling frequency is more than double of the
maximum frequency. That means that in the sampled data, frequencies up to
almost 8 kHz are constituted correctly. While this is not the total frequency
range of human speech, it is more than double of what is transmitted over
telephone networks. In these are typically limited to the 5 Hz–3.7 kHz range,
and has shown in research to be sufficient for speech recognition applications.
It is possible to remove frequencies below 100 Hz with a high-pass filter as
they tend to contain noise but can be considered of little relevance for speech
recognition. An important part of pre-processing is also speech/non-speech
segmentation. As speech recognition systems will classify any sound to any
phoneme with some (even if very low) probability, background noise can cause
insertions of phonemes or words into the recognition result if the noise resem-
bles the parameters of a phoneme model better than those of a silence model.
Such insertions can be reduced by removing areas from the speech signal be-
tween the start of the recording and the point of time when the user starts to
speak, and after the end of the utterance.[4]

1.3.2 Feature extraction

Features extraction is process where acoustic observations are extracted over
time frames of uniform length. These frames, the speech signal is stationary.
The length of these frames is typically around 25 ms, for the acoustic samples
in this window one multi-dimensional feature vector is calculated. The time
frames are overlapping and shifted by typically 10 ms. On the time window,
a fast Fourier transformation is performed, moving into the spectral domain.
Human ears do not perceive all frequency bands equally. This effect can be
simulated with band-pass filters of non-uniform frequency band widths. Until
500 Hz, the width of the filters is 100 Hz, after that it increases logarith-
mically. The spectrum is decorrelated with a discrete cosine transformation.
Of the resulting coefficients, the first coefficients carry the most significance.
Therefore only the first e.g. ten coefficients are selected as feature vector.[4]

1.3.3 Decoding

Decoding is the process to calculate which sequence of words is
most likely to match to the acoustic signal represented by the
feature vectors.

12

1.4. Communication protocols for IoT

1.4 Communication protocols for IoT

Currently in hype of IoT world is necessary to consider connection between
sensors, since every device has different performance, power consumption, it
would be uneconomical to use same communication protocol for each applica-
tion and device.

1.4.1 HTTP

Hyper Text Transfer Protocol (HTTP) is one of the oldest protocol, which
has been introduced in 1991 for exchanging hypertext. HTTP operate under
TCP protocol. It provides (subset)following operations:

• GET - request for specific resources

• POST - request, where usually server accepts data insides

• DELETE - request for delete specific resources

• PUT - creates specified resources if does not exists

• and many others. . .

1.4.1.1 GET request header

Typical request and response for an webserver is:

GET /tutorials/other/top-20-mysql-best-practices/ HTTP/1.1

Host: net.tutsplus.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) Gecko/20091102 Firefox/3.5.5 (.NET CLR 3.5.30729)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Cookie: PHPSESSID=r2t5uvjq435r4q7ib3vtd4654

Pragma: no-cache

Cache-Control: no-cache

Listing 1: Code segment - Get header

13

1. Analysis

HTTP/1.x 200 OK

Transfer-Encoding: chunked

Date: Sat, 28 Nov 2009 04:36:25 GMT

Server: LiteSpeed

Connection: close

X-Powered-By: W3 Total Cache/0.8

Pragma: public

Expires: Sat, 28 Nov 2009 05:36:25 GMT

Etag: "pub1259380237;gz"

Cache-Control: max-age=3600, public

Content-Type: text/html; charset=UTF-8

Last-Modified: Sat, 28 Nov 2009 03:50:37 GMT

X-Pingback: http://net.tutsplus.com/xmlrpc.php

Content-Encoding: gzip

Vary: Accept-Encoding, Cookie, User-Agent

Data...

Listing 2: Code segment - Get header

14

1.4. Communication protocols for IoT

Pros:

• widespread

• libraries support

• well known

Cons:

• implementation is not trivial

• talkative

• client is the one who still has to be active

As we can see the biggest problem of usage HTTP for IoT world is fact
that header is keep growing with information which are not useful.

1.4.2 MQTT

MQ Telemetry Transport (MQTT) is publish-subscribe based protocol, where
aim is to provide protocol to devices with limited bandwidth and small foot-
print. Publisher-subscriber model means, there is any central point in net-
work(let say broker), where is device which is handling all exchange of mes-
sages. Messages are sorted by topic - for example: building, floor, park place
. . . Device could publish some data through this broker - PUBLISH /park-
place/1 free. Or subscribe for receiving messages of chosen topic.[5] Also
MQTT allow 3 level Quality of Service:

• level 1 - fire and forget. Publisher just send message to broker.

• level 2 - at least once. Publisher sends message and waits for PUBACK
from broker.

• level 3 - exactly once. Same as level 2, but publisher has to claim he
received PUBACK message with PUBREL.

Pros:

• small footprint

• not so hard to implementation

• QoS

Cons:

• limited support in libraries

• broker is required

8Online 2018-05-05; https://www.hivemq.com/Screen-Shot-2014-10-22-at-12.21.07.png

15

1. Analysis

Figure 1.9: MQTT exchange8;

16

Chapter 2

Implementation

I have decided to try mix some authentication options for my monitor at-
tendance system. First of all, l am going to use face-recognition to identify
newcoming into workspace, since we have obtained Turris Omnia for internet
connection. I will use data from ARP table, every user will have device with
unique MAC address so l can easily observe who is inside workspace and due
to face-recognition l am going to benefit from 2-step authentication.

2.1 Comparsion of single board computers

SBC is small form factor computer which is built on single circuit board and
includes all functional computer components.[6]

They become popular since 2012, caused by releasing Raspberry Pi by
Raspberry Pi Foundation for education purposes. For comparing SBC l take
these representatives:

• Raspberry Pi 3 (RPI)

• Banana Pi M64 (BRPI)

• ROCK64 3 (RRPI)

• Orange Pi Plus2E H3 (ORPI)

2.1.1 CPU

Every of these SBC includes popular ARM CPU, as mentioned in table only
ORPI offers has different CPU: H3 Quad-core Cortex-A7 and others has
Quad-Core ARM Cortex A53. Main difference between them is fact that
A53(released in 2012) is 64 bit and A7(Released in 2011) is 32 bit. Also A53
unlike A7 offers D-Cache with ECC and I-Cache with parity, and is improved
for AES instructions. From this point l choose A53.

17

2. Implementation

Figure 2.1: Cortex A53;9

Table 2.1: SBC CPU

Raspberry Pi 3 Quad-Core ARM Cortex A53

Banana Pi M64 3 Quad-Core ARM Cortex A53

ROCK64 3 Quad-Core ARM Cortex A53

Orange Pi Plus2E H3 H3 Quad-core Cortex-A7

Table 2.2: SBC RAM

Raspberry Pi 3 1 GB DDR3

Banana Pi M64 3 2 GB LPDDR3

ROCK64 3 4GB DRAM

Orange Pi Plus2E H3 1GB DDR3

2.1.2 RAM

As compared in table each SBC offers different size and type of RAM. BRPI
seems to be more energy saving due to used LPDDR3 which compared to
DDR3 saves about 30% of energy when active and 90% on standby.[7]

9Online 2018-04-25; https://developer.arm.com/-/media/developer/Block%
20Diagrams/Cortex-A%20Processor%20Block%20Diagrams/CortexA53.png

18

https://developer.arm.com/-/media/developer/Block%20Diagrams/Cortex-A%20Processor%20Block%20Diagrams/CortexA53.png
https://developer.arm.com/-/media/developer/Block%20Diagrams/Cortex-A%20Processor%20Block%20Diagrams/CortexA53.png

2.2. Selecting proper sensors

Table 2.3: Time to take photo

RPI cam V2(640x480) RPI cam V2(3264x2448) PlayStation Eye(640x480)

Init time 0.351855039597 0.350429058075 0.00145101547241

Capture time 0.958659172058 1.08443903923 2.35704493523

2.1.3 Peripherals

All of them offers GPIO pins, which l will use to connect for motion sensor,
also usb would be needed, RRPI has USB 3.0, which is “nice to have” feature,
but not so many microphones/webcams supports third version. . .

BRPI with RPI and ORPI includes CSI port for camera. Each of them
offers HDMI ports.

2.1.4 Conclusion

As l realized in test cameras connected through CSI port are much faster than
USB, so although 4GB from RRPI seems pretty interesting in my needs will
be 1GB enough. Main impact for my decision for choosing RPI was fact about
community support and quality, where RPI makes “standard”.

2.2 Selecting proper sensors

For my implementation of Face Recognition attendance and VA l needed to
choose proper microphone, camera and stereo.

2.2.1 Camera

There plenty of options to capture picture, in our case using Raspberry PI
l have a few options. First one is using CSI Camera Port with Raspberry
Camera Module V2. Second one is finding some USB camera. Last one is
using ip camera.

Our goal is choose camera with optimal resolution and with lowest time
to capture. For these l prepared simple script (this one for camera pi module,
but it doesn’t really differs from usb camera).

There are currently being sold two modules for raspberry camera v1 and
v2, these differs from maximum resolution - v2 has 8Mp and v1 5Mp, also each
model has separately sold version “NOIR” without IR filter for capturing in
bad light conditions.

For representative of USB camera l choosed Sony PlayStation Eye with
resolution 640x480 with 60 frames per second and 320x240 120 frames per
second.

From these results l choose Raspberry Camera V2 for my purposes.

19

2. Implementation

Table 2.4: Comparsion of Face Recognition Api

Number of microphones

Google Home Mini 2

Google Home 2

Echo Dot 7

Amazon Echo 7

Home Pod 6

2.2.2 Microphone

For good speech recognition is necessary to have perfect microphone. I re-
searched what microphones are used in commercial VA, they mainly use mi-
crophone arrays with various number of microphones and benefits from beam-
forming.

A beamformer is a processor used in conjunction with an array of
sensors to provide a versatile form of spatial filtering. The sensor
array collects spatial samples of propagating wave fields, which are
processed by the beamformer. The objective is to estimate the sig-
nal arriving from a desired direction in the presence of noise and
interfering signals. A beamformer performs spatial filtering to sep-
arate signals that have overlapping frequency content but originate
from different spatial locations. This paper provides an overview of
beamforming from a signal processing perspective, with an empha-
sis on recent research. Data independent, statistically optimum,
adaptive, and partially adaptive beamforming are discussed. [8]

I found 2 interesting options for me, first one is Sony Playstation Eye,
webcam with 4 microphones, each channel is sampled with 16bit decoder on
rate of 48kHz.

Other option was Matrix Voice. “ MATRIX Voice is an open-source
VOICE RECOGNITION platform consisting of a 3.14-inches in diameter dev
board, with a radial array of 8 MEMS microphones connected to a Xilinx Spar-
tan 6 FPGA & 64 Mbit Flash, a 512Mbit SDRAM and 18 RGBW LED’s.”[9]

Matrix Voice could be really usefull, already implemented Google Home
or Alexa with Rapsberry Pi, or LED array could be used for feedbach, but in
time of creating own VA wasn’t available. . . For these reason I decided for Sony
Playstation Eye, maybe later, when Matrix Voice will be available l would like
to change microphone.

2.2.3 Motion sensor

I chose basic sensor, which is often used in comunity - HC-SR501, which nor-
mally operates on 5V and output signal has 3,3V logic. It also offer adjustable

20

2.3. Face Recognition

length of pulse.

Figure 2.2: Matrix Voice;10

from picamera import PiCamera

import time

start_time = time.time()

camera = PiCamera()

camera.resolution=(640,480)

print("INIT: \t\t %s seconds ---" % (time.time() - start_time))

#pygame.camera.list_camera() #Camera detected or not

camera.capture('image.jpg')

print("CAPTURE: \t %s seconds ---" % (time.time() - start_time))

Listing 3: Code segment - time measure

2.3 Face Recognition

Due to my previous research, l chose Raspberry Pi 3 as my embedded sys-
tem. And Raspberry Pi Camera V2 for face recognition and HC-05 as motion
sensor.

I was wondering if make own neural network for face recognition, but that
would exceed limit of this thesis, anyway l researched few existing solutions.
Almost every big company which provides cloud computing/hosting also have
their own solution for face recognition for example: Microsoft Face API, Cloud
Vision API from Google or IBM Visual Recognition.

I decided to choose Amazon Face Rekognition(not typo) due to available
free tier and mostly for data protection, they claim that they don’t store face
pictures on their servers, just classification vectors. In our office are working
about 10 people and free tier allows you to store 1000 face meta-data and

10Online 2018-04-25; https://matrix-io.github.io/matrix-documentation/matrix-
hal/img/matrix-voice-top.png

21

https://matrix-io.github.io/matrix-documentation/matrix-hal/img/matrix-voice-top.png
https://matrix-io.github.io/matrix-documentation/matrix-hal/img/matrix-voice-top.png

2. Implementation

Table 2.5: Comparsion of Face Recognition Api

Amazon Face Rekognition Microsoft Face API Kairos

Free tier Yes Yes Yes

Privacy Don’t store face image on servers Store face pictures No information

SDK Yes No Yes

API Yes Yes Yes

process 5000 images per month for first 12 moths. After 12 moths we will be
outside free tier so costs are 1$ per 1000 processed images.

Basic cycle:

1. Wait for signal from Motion HC-501

2. Capture few photo

3. Try to recognize person from picture

4. Send information about entrance to server

Figure 2.3: Face recognition diagram

2.3.1 Implementation in Python

I decided use Python to implement behavior, mostly for good libraries to work
with GPIO, neural network, raspberry camera.

In main function we can see first three steps of basic cycle: Waiting for
signal from HC-05 and Capturing photo.

Last step - Face Recognition is defined in two functions: recognize person
, which calls recognize photo for every taken picture.

Function recognize photo gets response from Face Rekognition, l have used
boto3 framework, which communicates with Amazon Web Services(Amazon
Web Service (AWS)). If the person is recognized l save the picture for later
on SD card of Raspberry and also l paint square around recognized face.

Function search faces by image takes few arguments, one of them - most
important is threshold, which means you can setup threshold for accepting
person’s identity.

22

2.3. Face Recognition

if __name__ == "__main__":

init_logging()

load_secrets()

init_gpio()

with picamera.PiCamera() as camera:

while True:

streams = [io.BytesIO() for i in range(NO_OF_PHOTOS)] # prepare streams to be filled with photos

wait and shoot

GPIO.wait_for_edge(MOTION_SENSOR_PIN, GPIO.RISING)

camera.capture_sequence(streams, 'jpeg', use_video_port=True)

logging.info("SHOTS FIRED\n")

recognized = recognize_person(streams)

if recognized is True:

pass

else:

logging.info("Person not recognized.")

Listing 4: Code segment - basic cycle

Figure 2.4: Picture with recognized person

23

2. Implementation

def recognize_photo(stream):

buff = numpy.fromstring(stream.getvalue(), dtype=numpy.uint8) # Convert the picture into a numpy array

image = cv2.imdecode(buff, 1) # Create an OpenCV image

response = get_boto_response(stream)

if response is False:

return False

if len(response.get('FaceMatches')) == 0:

logging.info('Face detected but not recognized.')

cv2.imwrite(

'/var/www/html/good/archiv/unknown/unknown' + time.strftime("%Y-%m-%d-%H:%M:%S", time.gmtime()) + '.jpg',

image)

return None

person_id = response['FaceMatches'][0]['Face']['ExternalImageId']

mark_image_with_response_data(response,image, person_id)

cv2.imwrite('/var/www/html/good/uprava.jpg', image)

url = 'good/archiv/' + time.strftime("%Y-%m-%d-%H:%M:%S", time.gmtime()) + person_id + '.jpg'

cv2.imwrite('/var/www/html/' + url, image)

send_id(person_id, 'http://147.32.69.139/' + url)

return True

Listing 5: Code segment - recognize photo

24

2.3. Face Recognition

def get_boto_response(stream):

client = boto3.client(

'rekognition',

region_name=AWS_DEFAULT_REGION,

aws_access_key_id=AWS_ACCESS_KEY_ID,

aws_secret_access_key=AWS_SECRET_ACCESS_KEY

)

try:

return client.search_faces_by_image(

CollectionId='ciirc',

Image={'Bytes': stream.getvalue()},

MaxFaces=123,

FaceMatchThreshold=50

)

except Exception as inst:

cv2.imwrite('/var/www/html/bad/' + time.strftime("%Y-%m-%d-%H:%M:%S", time.gmtime()) + '.jpg', image)

logging.info('No face in the picture.')

return False

Listing 6: Code segment - recognize photo

def mark_image_with_response_data(response, image, person_id):

b_h = response['SearchedFaceBoundingBox']['Height'] * HEIGHT

b_w = response['SearchedFaceBoundingBox']['Width'] * WIDTH

b_top = response['SearchedFaceBoundingBox']['Left'] * WIDTH

b_left = response['SearchedFaceBoundingBox']['Top'] * HEIGHT

font = cv2.FONT_HERSHEY_SIMPLEX

cv2.rectangle(image, (int(b_top), int(b_left)), (int(b_top + b_h), int(b_left + b_w)), (0, 255, 0), 3)

cv2.putText(image, person_id, (int(b_top - 20), int(b_left)), font, 1, (255, 255, 255), 1)

Listing 7: Code segment - paint square around face

25

2. Implementation

2.3.2 Raspberry implementation

First of all, l made a systemd service from code face recognition, mainly from
two reasons: autostart on boot and also for debugging.

systemd is a suite of basic building blocks for a Linux system. It
provides a system and service manager that runs as PID 1 and
starts the rest of the system. systemd provides aggressive paral-
lelization capabilities, uses socket and D-Bus activation for start-
ing services, offers on-demand starting of daemons, keeps track of
processes using Linux control groups, maintains mount and auto-
mount points, and implements an elaborate transactional dependency-
based service control logic. systemd supports SysV and LSB init
scripts and works as a replacement for sysvinit. Other parts in-
clude a logging daemon, utilities to control basic system configu-
ration like the hostname, date, locale, maintain a list of logged-
in users and running containers and virtual machines, system ac-
counts, runtime directories and settings, and daemons to manage
simple network configuration, network time synchronization, log
forwarding, and name resolution.[10]

I create configuration file located in /etc/systemd/system/ folder, few in-
teresting parts:

• Wants=network.target means that our service requires network connec-
tion

• After=alsa-state.target service should be start after sound system is run-
ning

• Environment=AWS ACCESS KEY ID=XXXX systemd pass shared vari-
able to the script

• ExecStart=/usr/bin/python /home/pi/eclub-camera/motion.py specify
location of script

• Restart=always always when service crash will be automatically restarted

26

2.3. Face Recognition

[Unit]

Description=Motion for raspberry

Wants=network.target

Before=network.target

After=alsa-state.target

[Service]

User=pi

Restart=always

RestartSec=3

Environment=HUB_TOKEN=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Environment=AWS_ACCESS_KEY_ID=XXXXXXXXXXXXXXXXXXXXXXXX

Environment=AWS_SECRET_ACCESS_KEY=XXXXXXXXXXXXXXXXXXXX

Environment=XDG_RUNTIME_DIR=/run/user/1000

Environment=AWS_CONFIG_FILE=/home/pi/.aws/config

Environment=AWS_SHARED_CREDENTIALS_FILE=/home/pi/.aws/credentials

ExecStart=/usr/bin/python /home/pi/eclub-camera/motion.py

WorkingDirectory=/home/pi/eclub-camera

[Install]

WantedBy=multi-user.target

Listing 8: Code segment - configuration of face recognition service

27

2. Implementation

2.4 Attention manager

As mentioned at the beginning, l want to mix facial recognition + arp obser-
vation. For these purposes l used starpin project.

starpin (STealthy ARP INformer, developed under eClub) is a
simple app meant to be run as a daemon on a networked device.
starpin gets a fresh copy of the neighbor (ARP) table every once in
a while and evaluates the result, e.g. a device that hasn’t been in
the table for several ticks is considered to have been disconnected, a
device that goes stale and never drops out of the table is considered
to be a ’rogue’ entry and triggers a flush of the table etc.

starpin can send out two kinds of requests the DELETE request that tells
the server to reset its current session and the POST request that informs
the server of a client connecting/disconnecting that contains a JSON in the
following format:

[

{

"event" : "disconnect",

"mac_address": "AA:AA:AA:AA:AA:AA",

"ipv4_address": "192.168.0.1"

},

{

"event" : "connect",

"mac_address": "BB:BB:BB:BB:BB:BB",

"ipv4_address": "192.168.0.2"

}

]

Listing 9: Code segment - starpin request

That’s becoming useful with some information system, which collects these
requests, and updates some user-table. For this particular purpose l have used
Nucleus Hub project(https://gitlab.com/eclubiot/django-nucleus-hub/),
,which has been also developed in E-Club. Which combines these applications:

• attendace monitoring - backend for starpin

• webhook - backend for dialog flow

• accounts - profile page

Nucleus Hub is based on Django framework, which is Python framework.
Each user which is in E-club and is connected in our Turris network could

28

https://gitlab.com/eclubiot/django-nucleus-hub/

2.4. Attention manager

register via Google account(which everybody ows due to CTU emails), we
are benefiting from Outh security and also haves some access to any shared
values - name, surname. There is also last image captured from the camera
and registered device for observing arp table.

Figure 2.5: Nucleus Profile page

Also nucleus contains dashboard for actual presence with adjustable gran-
ularity of refreshing 1/5/10/15 seconds. Last usage of Nucleus is webhook im-
plementation, it is used for fulfillment, briefly said when VA is asked how many
people are inside, then because VA don’t store attendance itself, send a POST
request to nucleus, nucleus takes request and calls function get number of people
which looks for tables who is present and responds with parameter fulfillment-
Text, which could be ”There are currently three people”. Another way how
to communicate with Nucleus Hub is REST API, where you can simply list
users, devices and entries, you can use GET method or Json.

29

2. Implementation

def get_number_of_people(params):

present_users = User.objects.exclude(devices=None).filter(

devices__entry__is_connected=True).distinct()

if not present_users.exists():

return {

'speech': f'Nobody is currently present, the place is dark and lonely.',

'displayText': f'Nobody is currently present, the place is dark and lonely.'

}

return {

'speech': f'There are currently {len(present_users)} people.',

'displayText': f'There are currently {len(present_users)} people.'

}

Listing 10: Code segment - Nucleus hub webhook get number of people

Figure 2.6: Nucleus presence dashboard

30

2.5. Remote control of actuators

2.5 Remote control of actuators

I wanted to implement some kind of lights controlling for people, so l found
in our stock some devices from Jablotron namely: TP-83N(thermostat), AC-
88(switch relay) also with included Turris Dongle, where you can remotely
control these devices from Turris Omnia, however, l want to use rather RPI
to control that, specially with voice interface, which Turris Omnia does not
really offers. . .

Figure 2.7: Turris scheme with jablotrone sensors;11

As long as we have new kitchen in E-club we had to change them and
one that was occasion for implement voice control, l selected some lights and
used library called jablotron-python-interface (also developed in E-club, main
author is Alexej Popovič popoval2@fel.cvut.cz and l am co-author) which pro-
vides interface to control jablotron’s devices from any machine with imple-
mented python. Usage is really simple, because Turris Omnia comunicates
through serial link so you need to specify where is dongle located in /dev/usbX
and bind events(thermostat reports, button switch) to functions.

2.6 Voice Assistant

To make own VA was dissatisfaction about current solution, l need to imple-
ment just some voice interface for our three or four functions on the same
device which implements face-recognition.

First idea was to make own application to Google Home Assistant or Ama-
zon Alexa, but first problem l realized was a fact you have to say attention
word - cannot be triggered by motion sensor. Another problem is you have to
firstly say: “Talk to my Attendace application” and that decided.

11 Online 2018-04-29; https://doc.turris.cz/gadgets/_media/bl_diagram.png?w=
770&tok=665789

11Online 2018-04-25; https://www.jabloshop.cz/image/cache/catalog/jablotron/
Regulace%20topen%C3%AD\/83n-650x650.jpg

31

https://doc.turris.cz/gadgets/_media/bl_diagram.png?w=770&tok=665789
https://doc.turris.cz/gadgets/_media/bl_diagram.png?w=770&tok=665789
https://www.jabloshop.cz/image/cache/catalog/jablotron/Regulace%20topen%C3%AD\/83n-650x650.jpg
https://www.jabloshop.cz/image/cache/catalog/jablotron/Regulace%20topen%C3%AD\/83n-650x650.jpg

2. Implementation

Figure 2.8: TP-83N(thermostat), AC-88(switch relay);

dongle = devices.Dongle(port="/dev/ttyUSB0")

dongle.init()

def switch(event):

sn = event.invoker.sn

btn = event.data['btn']

timestamp = event.timestamp

print("{0} - btn {1} press from {2}.".format(timestamp, btn, sn))

dongle.req_send_state(pgx="{0}".format(btn))

events.bind(events.Event.ev_remote_btn_press, switch)

dongle.req_send_state(pgx="0") # switch off

dongle.req_send_state(pgx="1") # switch on

Listing 11: Code segment - jablon-python-interface usage

There are basically 2 problems that you have tackle: STT and Text to
speech (TTS).

32

2.6. Voice Assistant

2.6.1 Speech to text implementation

There are plenty implementations of speech of text on the Internet, how ever
it’s mostly available as service. We take a look for options from Raspberry Pi
side:

2.6.1.1 Google Cloud API

Google Cloud Speech-to-Text offers to translate audio in more than 120 lan-
guages, using modern neural networks, also could be used in real-time appli-
cation.

Result of Speech-to-Text is also compensated with surroundings, for ex-
ample when you are in the rush street Speech-to-Text can compute the noise
around you. Google also implemented his speech-to-text, in some way into
Android phone, that means you don’t have to need Internet connection for
realizing speech-to-text. Google also provides API for lot of platforms.

With Google you have first 60 minutes of using Speech-to-Text free, than
15 seconds is per 0.006 USD.

2.6.1.2 Bing Speech Api

Whichever approach developers choose (REST APIs or client
libraries), Microsoft speech service supports the following:

• Advanced speech recognition technologies from Microsoft that
are used by Cortana, Office Dictation, Office Translator, and
other Microsoft products.

• Real-time continuous recognition. The speech recognition
API enables users to transcribe audio into text in real time,
and supports to receive the intermediate results of the words
that have been recognized so far. The speech service also sup-
ports end-of-speech detection. In addition, users can choose
additional formatting capabilities, like capitalization and punc-
tuation, masking profanity, and text normalization.

• Supports optimized speech recognition results for interactive,
conversation, and dictation scenarios. For user scenarios which
require customized language models and acoustic models, Cus-
tom Speech Service allows you to create speech models that
tailored to your application and your users. Support many
spoken languages in multiple dialects. For the full list of sup-
ported languages in each recognition mode, see recognition
languages.

• Integration with language understanding. Besides converting
the input audio into text, the Speech to Text provides appli-
cations an additional capability to understand what the text

33

2. Implementation

means. It uses the Language Understanding Intelligent Ser-
vice(LUIS) to extract intents and entities from the recognized
text.

2.6.1.3 IBM Watson Speech to Text API

IBM also offers their STT, but compared to previous listed their are quite
limited, for example you can translate real-time just from 7 languages. And
my personal experience wasn’t so good, vice versa only them have also im-
plementation through websockets, which are more powerful for real-time than
HTTP requests.

2.6.2 Text to Speech

Each company mentioned in previous section also provides some text-to-
speech, but there is one specialty: Google translator! This is really old feature,
free, not so much configurable as other services, where you can choose person
voice, intents and so on...

2.6.3 Usage

All you need to do is create GET request for url https://translate.google.com/
translate_tts?ie=UTF-8&tl=cs-CZ&client=tw-ob&q=Jak%C3%BD+to+%C3%

BA%C5%BEasn%C3%BD+n%C3%A1stroj

• argument tl - targer language

• argument client - this is for bypassing captcha on Google side.

• argument q - is the query

Server simply responds with download able mp3 file, which you can simply
run.

2.6.4 Usage in Python

2.7 Implementation on Raspberry Pi

For implementation simple VA l choose Python for developing. My idea was
to create basic cycle which consists of:

1. Wait for interruption from motion sensor

2. Apply Speech to Text

3. Process text via Dialog Flow

34

https://translate.google.com/translate_tts?ie=UTF-8&tl=cs-CZ&client=tw-ob&q=Jak%C3%BD+to+%C3%BA%C5%BEasn%C3%BD+n%C3%A1stroj
https://translate.google.com/translate_tts?ie=UTF-8&tl=cs-CZ&client=tw-ob&q=Jak%C3%BD+to+%C3%BA%C5%BEasn%C3%BD+n%C3%A1stroj
https://translate.google.com/translate_tts?ie=UTF-8&tl=cs-CZ&client=tw-ob&q=Jak%C3%BD+to+%C3%BA%C5%BEasn%C3%BD+n%C3%A1stroj

2.7. Implementation on Raspberry Pi

def tts(q):

q = q.replace(' ', '+')

tr_url = "http://translate.google.com/translate_tts?ie=UTF-8

&client=tw-ob&q=" + q + "&tl=en";

content = req(tr_url);

#print(content)

file = open('tts.mp3', 'wb')

file.write(content)

file.close()

mixer.init()

mixer.music.load('tts.mp3')

mixer.music.play()

while mixer.music.get_busy() == True:

continue

Listing 12: Code segment - TTS using Google Translator

4. Get response from previous step and make an interaction (Speech to
Text, Light control)

For STT l choose Google Cloud API and for TTS my favorite Google
Translator, but main think remains - how process the text.

2.7.1 Dialog Flow(ex API AI)

Dialog Flow (DF) is powerful tool, which even uses Google for their Home
Assistants, it let you create dialogs, recognizing intents, storing the context -
when told name of your pet in previous sentence, it stores it for future usage
in dialog.

When creating intent you have to fill some training phrases, so it can use
machine learning to recognizing similar input sentences. Also you can add
entities - names, dates etc. . . Last think you have to mention are answers -
what will be the answer for this. Another option are webhooks - all you have
to do is create function on your “web-server” - in our case the Nucleus HUB,
then Dialog Flow send there which intent and which phrase has user told
to microphone and Nucleus HUB responds with Speech Synthesis Markup
Language (SSML).

For recognizing text l used package https://pypi.org/project/SpeechRecognition/,
which supports several STT API including Google STT.

35

2. Implementation

...

while(True):

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BOARD)

GPIO.setup(7, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

Read output from PIR motion sensor

GPIO.wait_for_edge(7, GPIO.RISING) # wait for interrupt

#tts("Hi there how can help ? ")

os.system("cvlc --play-and-exit /home/pi/chat-bot/hi.mp3")

#welcome intent "Hi how can l help you"

try:

r = sr.Recognizer()

#index = pyaudio.PyAudio().get_device_count() - 1;

i=0

while (i!=2):

with sr.Microphone(2) as source:

print("Say something!")

audio = r.listen(source)

Speech recognition using Google Speech Recognition

try:

break

text_input = r.recognize_google(audio,language='cs');

print("translate : " + text_input);

ai = apiai.ApiAI(CLIENT_ACCESS_TOKEN);

request = ai.text_request();

request.lang = 'en' # optional, default value equal 'en'

request.session_id = "<SESSION ID, UNIQUE FOR EACH USER>";

request.query = text_input

response = request.getresponse().read().decode('utf-8')

text_response = response;

j = json.loads(text_response);

response_text = j["result"]["fulfillment"]['speech']; # get file

tts(response_text)

i = 0;

except sr.UnknownValueError:

i = i + 1;

print("Google Speech Recognition could not understand audio")

Listing 13: Code segment - Voice Assistant - basic cycle

36

2.7. Implementation on Raspberry Pi

Figure 2.9: Dialog Flow - create intent

Figure 2.10: Dialog Flow - entities and answers

37

Conclusion

In this thesis l tackle with implementation of monitoring attendance system,
which is connected to simple Voice assistant, which also could control lights.
Device is currently in CIIRC building and improves our office life at all. It
also brings comparison of Single Board CPU and some theory behind Voice
Assistant, especially Speech Recognition.

Although face recognition keeps running (over 9 months) we can say that
system itself is degrading, caused probably by our visage changes(length of
hair, sunglasses, clothes), this is point which would be improved in recent
future - adding automatically new photos of members to AWS. Also there is
lot of work on voice interface, l hope l can decrease response time and add
some attention lights for user to respect that machine is now processing. Also
l would like try to implement authentication trough voice, which seems to be
very impressive.

39

Bibliography

[1] What is chat bot? - Definition from WhatIs.com. [Cited 2018-04-
17]. Available from: https://searchcrm.techtarget.com/definition/
chatbot

[2] Olmstead, K. Nearly half of Americans use digital voice assistants,
mostly on their smartphones. Dec 2017, [Cited 2018-04-18]. Available
from: http://www.pewresearch.org/fact-tank/2017/12/12/nearly-
half-of-americans-use-digital-voice-assistants-mostly-on-

their-smartphones/

[3] Ossola, A. Ever Wondered: How does speech-to-text software
work? � Scienceline. Aug 2014, [Cited 2018-04-17]. Available
from: http://scienceline.org/2014/08/ever-wondered-how-does-
speech-to-text-software-work/

[4] Gruhn, R. E.; Minker, W.; et al. Automatic Speech Recognition. In Sig-
nals and Communication Technology, Springer Berlin Heidelberg, 2011,
pp. 5–17, doi:10.1007/978-3-642-19586-0 2. Available from: https://

doi.org/10.1007/978-3-642-19586-0_2

[5] Malý, M. Protokol MQTT: komunikačńı standard pro IoT. Jun 2016,
[CITED 2018-05-01]. Available from: https://www.root.cz/clanky/
protokol-mqtt-komunikacni-standard-pro-iot/

[6] Beal, V. SBC - single-board computer. [CITED 2018-04-25]. Avail-
able from: https://www.webopedia.com/TERM/S/sbc_single_board_
computer.html

[7] Greenberg, M. Committed to Memory ¿ When is LPDDR3 not
LPDDR3? When it’s DDR3L... Jan 2014, [CITED 2018-04-26]. Available
from: https://blogs.synopsys.com/committedtomemory/2014/01/10/
when-is-lpddr3-not-lpddr3-when-its-ddr3l/

41

https://searchcrm.techtarget.com/definition/chatbot
https://searchcrm.techtarget.com/definition/chatbot
http://www.pewresearch.org/fact-tank/2017/12/12/nearly-half-of-americans-use-digital-voice-assistants-mostly-on-their-smartphones/
http://www.pewresearch.org/fact-tank/2017/12/12/nearly-half-of-americans-use-digital-voice-assistants-mostly-on-their-smartphones/
http://www.pewresearch.org/fact-tank/2017/12/12/nearly-half-of-americans-use-digital-voice-assistants-mostly-on-their-smartphones/
http://scienceline.org/2014/08/ever-wondered-how-does-speech-to-text-software-work/
http://scienceline.org/2014/08/ever-wondered-how-does-speech-to-text-software-work/
https://doi.org/10.1007/978-3-642-19586-0_2
https://doi.org/10.1007/978-3-642-19586-0_2
https://www.root.cz/clanky/protokol-mqtt-komunikacni-standard-pro-iot/
https://www.root.cz/clanky/protokol-mqtt-komunikacni-standard-pro-iot/
https://www.webopedia.com/TERM/S/sbc_single_board_computer.html
https://www.webopedia.com/TERM/S/sbc_single_board_computer.html
https://blogs.synopsys.com/committedtomemory/2014/01/10/when-is-lpddr3-not-lpddr3-when-its-ddr3l/
https://blogs.synopsys.com/committedtomemory/2014/01/10/when-is-lpddr3-not-lpddr3-when-its-ddr3l/

Bibliography

[8] Veen, B. V.; Buckley, K. Beamforming: a versatile approach to spatial
filtering. IEEE ASSP Magazine, volume 5, no. 2, apr 1988: pp. 4–24,
doi:10.1109/53.665. Available from: https://doi.org/10.1109/53.665

[9] Voice. Available from: https://matrix-io.github.io/matrix-
documentation/matrix-hal/datasheets/voice/

[10] systemd System and Service Manager. [Cited 2018-04-22]. Available from:
https://www.freedesktop.org/wiki/Software/systemd/

42

https://doi.org/10.1109/53.665
https://matrix-io.github.io/matrix-documentation/matrix-hal/datasheets/voice/
https://matrix-io.github.io/matrix-documentation/matrix-hal/datasheets/voice/
https://www.freedesktop.org/wiki/Software/systemd/

Appendix A

Acronyms

AWS Amazon Web Service.

BRPI Banana Pi M64.

DF Dialog Flow.

HTTP Hyper Text Transfer Protocol.

MQTT MQ Telemetry Transport.

NLP Natural language processing.

ORPI Orange Pi Plus2E H3.

RPI Raspberry Pi 3.

RRPI ROCK64 3.

SBC Single Board Computer.

SSML Speech Synthesis Markup Language.

STT Speech to text.

TTS Text to speech.

VA Voice Assistant.

43

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

scripts implementation sources - python
configurations implementation sources - systemd
ltx the directory of LATEX source codes of the thesis

text...video directory
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

45

	Introduction
	Goals
	Analysis
	Existing solutions of attendance monitoring
	Chat Bot
	Speech to Text
	Communication protocols for IoT

	Implementation
	Comparsion of single board computers
	Selecting proper sensors
	Face Recognition
	Attention manager
	Remote control of actuators
	Voice Assistant
	Implementation on Raspberry Pi

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

