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Abstract

This thesis describes several approaches to
the problem of facial feature detection in
pictures. We use various types of artificial
neural networks including convolutional
neural networks, the state of the art in im-
age recognition. The thesis examines up-
sides and drawbacks of those approaches.
It also shows numerous techniques that
can improve results while solving image
recognition tasks. Furthermore, it analy-
ses the results of such techniques.
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Abstrakt

Tato prace popisuje nékolik moznych po-
stupd pri Teseni problému detekce casti
oblic¢eje v obrazcich. K feSeni tohoto pro-
blému je v préaci vyuzito nékolik rtznych
druhi umélych neuronovych siti véetné
konvolu¢nich neuronovych siti, které patii
mezi nejmodernéjsi technologie pro roz-
poznavani obrazu. Déale price popisuje
vyhody a nevyhody pouzitych postupn.
V préci je také popsidno nékolik metod,
které mohou vylepsit vysledky pii feseni
problému tykajicich se zpracovani obrazu.
Dale prace analyzuje vysledky dosazené
pouzitim téchto metod.

Klicova slova: Umeéla inteligence,
Neuronové sité, Strojové uceni,
Pocitacové vidéni

Preklad nazvu:
obliceje

Rozpoznavani ¢asti



Contents

1 Introduction

2 State of the art

2.1 Machine learning .............
2.2 Artificial neural networks ... ...
2.2.1 Activation function.........
2.2.2 Backpropagation ...........
2.2.3 Loss function .. ............
2.2.4 Gradient descent . ..........
2.25 Dropout ......... ... ... ..
2.3 Deep neural networks .........
2.4 Convolutional neural networks. .
2.4.1 Convolutional layer.........
2.4.2 Pooling layer ..............
2.4.3 Fully connected layer .......
2.5 Computational graph .........
2.6 TensorFlow ..................

2.7 Graphics processing unit. ... ...

3 Analysis
31Dataset......................
3.2 Proposed approaches . .........
3.2.1 First model ...............
3.2.2 Second model .............
3.2.3 Third model...............
3.2.4 Fourth model . .............
3.3 Realisation...................

4 Results

41 First model ..................
4.2 Second model ................
4.3 Third model .................
4.4 Fourth model ................
4.5 Results of proposed approaches .
4.6 Reducing overfitting. ..........
4.7 Final result ..................
4.8 Ideas for experiments..........
4.9 Demonstration ...............

5 Conclusion

Bibliography



Figures

2.1 Perceptron. ...................
2.2 Neural network with multiple

layers. . ...
2.3 Graphs of activation functions. .. [6|
2.4 Example of dropout. ..........
2.5 Example of convolutional layer

with kernel size 3 x 3 and stride 2.

2.6 Example of 2 x 2 max-pooling with

stride 2. ... ... L
2.7 Simple computational graph. . ..
3.1 Example of an image from the

dataset with marked facial

keypoints. ........ ... .. .. ...
3.2 Number of images in the dataset

for each facial feature. ...........
3.3 Visualization of the first model.. [17
3.4 Visualization of the second model.
3.5 Visualization of the third model. [19
3.6 Visualization of the fourth model.
4.1 Learning curve of the first model

and example of performance on

testing dataset. .................

4.2 Learning curve of the second model
and example of performance on
testing dataset. ........... ... ...

4.3 Validation loss of previous
approaches compared to the learning
curve of the second model using

Adam optimizer.................
4.4 Learning curve of the third model

and example of performance on

testing dataset. . ................
4.5 Learning curve of the third model

with added dropout and example of

performance on testing dataset. . . .

4.6 Learning curve of the fourth model
and example of performance on
testing dataset. ......... .. ... ...

4.7 Learning curve of the fourth model
with added dropout and example of
performance on testing dataset. . . .

4.8 Heat-map of facial features
compared to the facial features of the
woman with glasses. ............

vi

4.9 Comparison of time used to train
proposed models. Time taken to
train using purely CPU on the left
and time taken to train with the help

of GPU on the right. ...........
4.10 Scoring time of proposed

approaches. ....................
4.11 Example of a flipped image. . ..

4.12 Example of transformed images.
4.13 Learning curve of the fifth model
and example of performance on
testing dataset. .................
4.14 Learning curve of the fifth model
with added dropout and example of
performance on testing dataset.. ..
4.15 Learning curve of the fifth model
using Leaky ReLU. .............
4.16 Comparison of validation loss
among multiple variations of the fifth

model. ...... ... [34
4.17 Error of few selected facial
features. . ..o 135

4.18 Demonstration of the final
solution on multiple faces in a single

image......covvviiiii.. 37|
4.19 Demonstation of the final
solution. ....... ... 37



Tables

2.1 Activation functions and their
derivatives. ......... ... .. .. ... ..

3.1 Layer-wise description of the third

model. ........................ 18l
3.2 Layer-wise description of the
fourth model. ..................

4.1 Comparison of achieved results. .
4.2 Facial keypoints whose y position
needs to be swapped while

horizontally flipping the image. . ..
4.3 Dropout probabilities of the fifth

model. .............. ... .. ..... 32|
4.4 Results of the fifth model. ..... [34]

vii






Chapter 1

Introduction

Detecting facial features can be used in multiple ways. One of them is
analysing facial expressions, which can be used to detect person’s mood.
Probably the most useful application of detecting facial landmark is in face
recognition. The relative positions of facial keypoints from given image can be
compared with faces stored in database to identify a person. Human face can
be compared to other biometrics such as fingerprints. Unlike fingerprints, face
can be scanned from greater distance. Precisely predicting facial landmarks
is key to successful face recognition system, which can be used in everyday
life. Finding facial features correctly in images can be a challenging task, due
to large variation of face expressions, 3D pose, lighting and viewing angle.

Police in the Chinese city of Shenzhen is using face recognition technology
to punish traffic rules violators. Shenzhen based Al firm Intellifusion provides
technology to the local police to recognize jaywalkers and to fine them. The
system uses cameras to capture photos of pedestrians crossing the road on
red light. Facial recognition technology then identifies the offender from a
database and displays a photo of the jaywalking offence along with the family
name of the individual on large LED screens above the pavement. Facial
recognition can also be used to find criminals. Police in the Henan province in
central China is using special glasses equipped with face recognition software
to help search for wanted criminals. Furthermore, China plans to build large
facial recognition database to identify its citizens. The project’s goal is to
identify any of the 1.3 billion citizens within 3 seconds with around 90%
success rate. [1}, 2, 3]

Facial recognition can be divided into several problems. First step is to find
faces in an image. The next step is detecting positions of facial landmarks on
found faces, which is the topic of this thesis. The last step is comparing the
detected positions with faces stored in a database and analysing the results.

The goal of this thesis is to propose multiple approaches to facial feature
detection using state of the art technologies. We will discuss their upsides
and downsides. Furthermore, we will compare their performance, that is how
precisely can we predict facial keypoints on given images and how much time
does it take. Based on the achieved results we will consider possible changes
in order to further improve the outcome. Additionally, we will implement the
proposed changes and analyse achieved results.






Chapter 2
State of the art

B 2.1 Machine learning

Machine learning is a field of computer science that specializes in techniques
that give computers ability to learn. The goal is to teach computer system to
solve tasks without explicitly programming it. Machine learning tasks can be
roughly divided into multiple categories:

® Supervised learning

Classification

Regression
#8 Unsupervised learning
Clustering

B Reinforcement learning

Supervised learning is used to improve results of a function that maps an input
to an output based on example input and output pairs. While performing
classification, the goal is to categorize input into classes. To illustrate, imagine
a training set of pictures containing various kinds of fruits, one type per
picture. For each image, we have a label that tells us which type of fruit is in
the picture. We can use this set of pairs to train a computer system which
we can later utilize to classify images that we do not have labels for. Another
application of supervised learning is for solving regression tasks. In regression
tasks, the output is a continuous value. For example a value of house can be
predicted based on its size. For solving classification tasks, approaches like
decision trees or neural networks can be used. Regression tasks can be solved
by algorithms such as linear regression, regression trees, neural networks and
others.

. 2.2 Artificial neural networks

Artificial neural networks (or simply neural networks) are inspired by biological
brains. They can be used to solve a variety of tasks, such as computer vision,
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2. State of the art

medical diagnosis or speech recognition. Neural networks can improve their
performance on certain task by taking examples into consideration. Such
process can be simply called learning.

A neural network (NN) consists of artificial neurons. An artificial neuron
(simply neuron) is inspired by biological neuron. Artificial neurons are con-
nected together. Each connection is used to transmit a signal to another
neuron. The receiving neuron can process it and signal other neurons con-
nected to it. Each neuron has set of weights. The weights are edges, connected
to each neuron in the previous layer. Neuron has one output value, which
is weighted sum of input values plus a bias passed to an activation function.
The Output value of neuron is defined by the following formula:

y=1r <Z (ziw;) + b) ;
i=1
where:

B g, are input values,

B w; are weights,

® 7 is number of input values,
B ) is bias,

® f(z) is activation function,

B y is output of the neuron.

The simplest type of neural network is called perceptron. It consists of
one neuron and it is able to decide whether an input defined by a vector of
numbers belongs to some specific class or not. Single-layer perceptrons are
capable of solving linearly separable problems [4]. The neuron in single-layer
perceptron uses an activation function which maps the weighted sum of inputs
plus bias to values 0 or 1. The perceptron algorithm was invented in 1958 by
Frank Rosenblatt [5].

Input
Weights
il & Activation o
wq . utput
\ funCthn
\77777 n
wo Y w4+ b i_ y

= -

Bias

Figure 2.1: Perceptron.



2.2. Artificial neural networks

Typically, neurons are organized into groups called layers. A neural network
consists of at least two layers, that is input and output layer. It may also
contain hidden layers. Multi-layer perceptron (MLP) consists of at least
three layers. The output and hidden layers use non-linear activation function.
In contrary to single-layer perceptron, multi-layer perceptron is capable of
learning data that is not linearly separable. MLP uses backpropagation as a
learning algorithm which is further described in [subsection 2.2.2.

Input Hidden Output
layer layer layer

gy

Y2

Figure 2.2: Neural network with multiple layers.

B 2.2.1 Activation function

Activation function defines the output of a neuron given an input. There
is a large amount of activation functions. This subsection describes only a
few of the commonly used activation functions [6] and they are visualised in
Figure 2.3,

® Binary step is a simple activation function which returns 0 or 1. It
represents whether the neuron is firing or not.

® Sigmoid function is defined by f(z) = H% Its curve is similar to
shape of “S”. It maps the resulting values in between 0 and 1. Therefore,
it is usually used in the output layer for tasks where the output is

probability, for example binary classification.

® Tanh or hyperbolic tangent is similar to sigmoid function. It also has
shape similar to “S” and its range is from -1 to 1. The advantage of Tanh
over Sigmoid function is that the zero inputs will be mapped around
zero and negative inputs will be strongly negative.

® ReLU (Rectified Linear Unit) is currently the most used activation
function, since it works well for convolutional neural networks and for
deep neural networks in general. It computes the function f(z) =
max(0,z). The issue with ReLU is that all negative values become zero,
which may decrease the ability of model to train properly.
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® Leaky ReLU attempts to fix that problem. Instead of returning 0 for
x < 0, it will have a small negative value, for example 0.01x.

Sigmoid Tanh
1 1
0 -
0 T T T _1 T T T
Rectified Linear Unit Leaky Rectified Linear Unit
0 0
T : T T : T

Figure 2.3: Graphs of activation functions.

Activation functions share a common attribute. Their derivative can be easily
computed |7], which is used during learning to find the slope of the curve.
The slope is needed to know in which direction and how much to change the
curve to find the optimal values for weights and biases. By using activation
functions with easily computed derivatives, we can save some computations.

Name Equation Derivative
Sigmoid f(@) = 1= f’(ﬂ?) = f(fL’)(l - f(w))
Tanh flz) = S75= (x) =
0 f 0 0 f 0
ReLU f(x) _ or x < _ or x <
x forax>0 1 forx>0
0.0lz forxz <0 0.01 forx <0
Leaky ReLLU =
ey e i@ {x forx >0 f@) = {1 forx >0

Table 2.1: Activation functions and their derivatives.

Sigmoid and Tanh functions share the same disadvantage. The slope of
their curve gets low for x values far from 0, which can slow down the learning.
Neither ReLU nor Leaky ReLU have this problem for z > 0. When choosing
an activation function for our model, ReLLU is the default choice. However,
due to the dying ReLU problem, Leaky ReLLU might be worth trying as
it might improve results. The dead ReLLU always outputs same value, which
is 0. The ReLLU might end up in this state after its weights were updated
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2.2. Artificial neural networks

in such way that it will never activate again. Once it ends up in this state,
it is unlikely to recover because the function’s gradient for 0 is also 0, so
the weights of the neuron will not be changed. The inputs of a dead ReLU
are still being updated via other neurons, so the dead ReLLU can be revived
through updates to the previous layer.

B 2.2.2 Backpropagation

Backpropagation [§] is an algorithm used to calculate adjustments to the
weights during supervised learning. The goal of supervised learning is to
map set of inputs to their correct output. Backpropagation is used to train
neural network with multiple layers by tuning the weights according to loss
function which represents the difference between the network’s output and
the expected output. The algorithm can be split into multiple steps:

® First, an example is shown to the network.

8 The prediction error is computed based on the output and the targeted
value.

® To lower this error, changes to weights, biases and activations in previous
layer are required. Because the activations from previous layer are used
by all neurons in the following layer, each neuron has a different idea how
to change the activation value in order to reduce its error. Those values
are added up for each neuron in the previous layer and they represent
the desired change to the neuron’s output.

® Those differences are then propagated backwards to previous layer by
repeating the very same process until the input layer is reached.

® Finally, after calculating the desired changes for each neuron, the adjust-
ments for each weight can be computed from its output difference and
input activation.

This whole process is repeated for each round of learning and its goal is to
find optimal weights and biases.

B 2.2.3 Loss function

Loss function or cost function is used to represent the error of the neural
network. It can be used to compare the performance of multiple models. The
loss function is chosen based on the type of task being solved. The following
list describes two frequently used loss functions.

8 Cross entropy, which is used to quantify the difference between two
probability distributions is often used as a loss function while solving
multiclass classification tasks. Cross entropy is defined by the following
formula:

H(p,q) = =Y _piloga,
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where p is the ground truth and ¢ is the predicted value. It is used to
measure how close is the true probability distribution to the predicted
probability distribution. Cross entropy is preferred because it takes into
account the closeness of the prediction.

® Mean squared error (MSE) is another function that can be used to
measure the error of a neural network and it is defined by:

1 & R
MSE == (yi — §i)*,
i=1

where n is the number of outputs, y is the actual value and ¢ is the
predicted value. MSE punishes large mistakes much more than small
mistakes and its output is always positive. With that said, it is commonly
used as a cost function for regression tasks where the goal is to predict
n real values.

B 2.2.4 Gradient descent

The goal of optimization is to find optimal weights and biases that lead to
minimal loss function. The most common optimization algorithm is gradient
descent. It uses the first derivative of a function at given point to find the
direction in which the weight and biases need to be tuned in order to lower
the loss. There are multiple variants of gradient descent, which differ in the
amount of data used to calculate the gradient. [9]

B Batch gradient descent uses the whole dataset to calculate the gradi-
ent of the loss function. The descent can be very slow, because only one
update is performed for the whole dataset. Also the whole dataset needs
to fit in the memory which can be a problem especially for very large
datasets.

® Stochastic gradient descent (SGD) calculates the gradient and per-
forms an update for each example. Therefore, it is usually much faster.
On the other hand, performing frequent updates with high variance
causes the loss function to oscillate.

® Mini-batch gradient descent is a combination of previous two ap-
proaches. It performs an update for every mini-batch of size n. Calcu-
lating the gradient over n examples can lead to more stable convergence.
The size of batch is usually chosen in range between 50 and 256, but it
may vary depending on the dataset and application. SGD is generally
the best choice, because it combines the advantages of the other two
approaches.

Gradient descent can be further optimized by addressing its issues:

® Choosing correct learning rate can be difficult. Learning rate is a pa-
rameter used when adjusting the weights during training. Low learning

8



2.2. Artificial neural networks

rate can lead to slow convergence while too high learning rate can pre-
vent convergence by causing the loss function to fluctuate around the
minimum.

® Learning rate schedules [10] try to adjust the learning by pre-defined
schedule. However, those schedules have to be defined beforehand which
makes them unable to adapt to the dataset’s structure.

® The same learning rate applies to all parameter updates. Depending
on the structure of our data, we might want to update parameters that
change often more carefully than parameters that change rarely.

The following list generally describes some of the algorithms that deal with
mentioned issues.

® Momentum [11] is a method that helps to accelerate gradient descent.
It takes into account the gradient of previous step and increases the
updates for the dimensions that lead into the same direction while
reducing the updates for dimensions whose gradients change direction,
which leads to faster convergence and reduced oscillation.

® Adagrad [12] is an algorithm that adapts learning rate to parameters.
It performs larger updates for rarely changed parameters and smaller
updates for parameters that are changed frequently. That is achieved by
taking into account all previous gradients of each parameter. However
that causes the learning rate to decrease with every training step and it
eventually becomes too small for the network to learn anything.

® Adadelta [13] aims to fix the weakness of Adagrad by taking into
account only certain amount of past gradients.

® Adaptive moment estimation (Adam) [14] is an another algorithm
that is used to compute learning rates for each parameter. Adam is a
combitation of momentum and Adadelta. In addition to storing the past
n squared gradients like Adadelta, it also stores past gradients similar to
momentum. The authors show that Adam works well in practice and
that it is comparable to other adaptive learning algorithms.

While choosing optimization algorithm for our model, Adam might be a good
choice because it generally outperforms other described algorithms [14].

Bl 2.25 Dropout

Dropout [15] is a regularization technique that addresses overfitting and
provides an efficient way of approximately combining many different neural
network architectures. The term “dropout” refers to dropping out a unit.
Basically, we temporarily remove a neuron from a neural network along with
all its connections — weights. The neurons to keep are chosen randomly.
The simplest way to select neurons to keep is by using a fixed probability
p. Probability p = 0.5 is commonly used, because it works for wide range of

9
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neural networks. There is not a general rule defining the optimal probability
for keeping neurons, because it depends on multiple factors like the neural
network architecture, structure of the dataset, etc. A validation set can be
used to figure out what probability gives the best results for certain use case.
The neurons to keep are chosen randomly in every training step, which means
that the structure of the neural network is slightly different every time. In a
nutshell, we are combining multiple models and averaging the results.
Using dropout influences a neural network in multiple ways:

® [t is forced to learn more complex features of the data.

® [t increases the number of epochs required for the model to converge.
One epoch represents feeding the dataset through the model once.

B Less weights updates are done during each training stage, which means
lesser training time for each epoch.

® With n units that can be dropped, we have 2" possible models during

training.
Input Hidden Output Input Hidden Output
layer  layer  layer layer  layer  layer

X

~ .
><
EiX

~ /

Figure 2.4: Model of a neural network on the left side and the same model after
applying dropout to the hidden layer on the right side.

B 23 Deep neural networks

A deep neural network (DNN) is an artificial neural network with multiple
hidden layers between the input and output layer. There is not a strict rule
defining which neural network is deep and which is not. Using multiple layers
allows DNNSs to learn more complex relationships between the data. However,
deep neural networks have multiple disadvantages:

® They require a lot of data for successful training. This is to some extent
addressed by transfer learning. Basically, we use a neural network model
pre-trained on a related task and reuse its feature extracting abilities.
However, the issue still remains.

10



2.4. Convolutional neural networks

® Selecting the correct hyperparameters (i.e. learning rate, used activation
function) / training method / structure is not always obvious. However,
we can suggest changes based on achieved results.

8 They require much more computational power, especially during training.
They also require a lot of memory, which is a problem especially on
mobile devices.

B Training takes longer compared to other algorithms.

® It is hard to understand what is going on under the hood (for example
why did the model choose certain decision over the other).

. 2.4 Convolutional neural networks

Convolutional neural networks (CNN) [6] are a class of deep neural networks
that have proven successful for analysing visual imagery [16, (17, 18], for
example image recognition, object detection and classification.

The architecture of convolutional neural networks is designed to take
advantage of the dimensional structure of input data. When working with
images, that can be achieved by preserving the relationship between pixels in
a small group of input image. Each neuron in convolutional layer uses a small
group of pixels as an input. Which means that all inputs that are connected
to a given neuron are close to each other in the input image. Connecting only
a local region of input image to a neuron leads to fewer parameters compared
to fully connected layers.

Layers of convolutional neural network have neurons organized into 3
dimensions: width, height and depth. Neurons in the convolutional layer
share weights with other neurons in the same depth. This reduces the number
of learnable parameters.

Convolutional neural networks typically consist of an input layer, multiple
convolutional layers, pooling layers, fully connected layers and output layer.

B 2.4.1 Convolutional layer

The convolutional layer is the main component of CNN. It is a stack of filters
(sometimes referred as kernels) used to extract features from an input image.
Each filter is used to extract a certain feature. The amount of weights is based
on the kernel size. The weights in each filter are shared among other neurons
in the same filter. The position of a certain feature is not that important.
What matters is whether the feature is present in the picture or not. For
example, imagine kernel of size 3 x 3. Such window is moving across the
image’s x and y axes by a stride which we define and its output is based on
whether the certain feature is present or not. By using multiple filters we are
able to detect multiple features, which can be further analysed by following
layers.

11
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D D
Multiple JJ JJJ JJ JJ D
filters ‘)J ‘)JJ

Kernel
3 x3

Figure 2.5: Example of convolutional layer with kernel size 3 x 3 and stride 2.

The kernel size, stride and number of filters are chosen based on the dataset.
Different values may bring different results. The usual value for kernel size
is between 3 x 3 and 5 x 5. The number of filters in convolutional layer is
usually increasing the deeper the layer is in the network, which improves the
ability of the model to detect more low level features. With that said, it is
better to try multiple values and compare their results.

B 2.4.2 Pooling layer

The pooling layer is used to reduce the number of parameters and amount
of computations in the neural network. The most common type of pooling
is max-pooling. It splits each filter from previous convolutional layer into
non-overlapping rectangles and outputs the maximum value for each rectangle.
The most common shape for such rectangle is 2 x 2. That leads to down-
sampling the previous activations to 25%. It extracts the most important
features detected in convolutional layer. The depth remains unchanged.
Another type of pooling is average pooling, which outputs average of all
values in each rectangle.

7
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Figure 2.6: Example of 2 x 2 max-pooling with stride 2.
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2.5. Computational graph

Bl 2.4.3 Fully connected layer

Neurons in fully connected layers have connections to all activations in the
previous layers. The densely connected layers are identical to the layers in
multi-layer neural network. This layer is used to further analyse the features
detected in the previous convolutional or pooling layer.

B 25 Computational graph

Computational graph organizes a computation. It is a directed graph which
consists of nodes and edges. Each node represents a variable or an operation.
Edges represent passing the result of an operation to another operation as
an operand. Computation organized in a graph can be solved parallelly by
computing the subgraphs that are independent on each other.

d=a+b —  e=cxd

T

Cc

Figure 2.7: Simple computational graph.

If a complex problem is split into simpler subproblems, each subproblem
can be solved only once and its solution can be stored. This technique can
save computational time at the cost of memory.

Derivatives are used to calculate how much does the output changes with
respect to all parameters during backpropagation of error while training a
neural network. Those partial derivatives can be calculated very efficiently in
a computational graph by using reverse mode differentiation. Reverse mode
differentiation tracks how each node in the graph influences one output. This
is used in neural networks to calculate how much does a change in input node
affect the loss function. [19]

. 2.6 TensorFlow

TensorFlow [20, 21] is a machine learning library developed by Google. It can
be used to create and execute neural network models. TensorFlow provides
application programming interfaces (APIs) in Python, C++, Java and Go.
TensorFlow can run on graphics processing unit to speed up the execution.
In TensorFlow, a neural network model is defined as a computational graph
where nodes are tensors. A tensor is basically a multidimensional matrix.
While building the graph, we define how each tensor is computed based on

13
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other variable tensors. We can then run part of this graph to achieve desired
results.

TensorBoard is a part of TensorFlow that can be used to visualise learning.
Probably the most useful information during training is the error of training
and testing dataset based on epoch. TensorBoard also provides a way to
visualize the computational graph of the model, which may be useful for large
and complicated neural network architectures.

. 2.7 Graphics processing unit

Graphics processing unit (GPU) is an application specific integrated circuit
designed to accelerate creation of images intended for output to a display
device. It provides efficient and powerful parallel computing and also high
performance memory. Both of those properties can be used to accelerate
machine learning. To illustrate, we can speed up training of neural network 5
to 10 times by using GPU. The exact ratio depends on the specific hardware
as well as on the structure of the neural network. As described earlier, training
is mostly done by computing simple formulas for lots of data. Most of the
operations are performed with matrices. For example matrix multiplication
can be done in parallel efficiently.

14



Chapter 3

Analysis

We are dealing with a regression problem. The goal is to find correct x and
y positions of 15 facial keypoints. We will use mean squared error as a cost
function to measure the error of proposed approaches.

3.1 Dataset

The dataset used for this thesis comes from Kaggle [22]. It contains 7049

grayscale images with resolution 96 x 96 pixels.

Each facial keypoint is

specified by x and y position in the image. The following 15 facial features
are represented in the dataset:

left__eye_center, right_eye_ center,

left__eye_inner_ corner, left__eye_outer_ corner,

right_ eye_inner_ corner, right_eye_outer_ corner,
left__eyebrow__inner_end, left_ eyebrow_ outer_end,
right_ eyebrow__inner_end, right_ eyebrow_ outer_ end,
nose_ tip,

mouth_ left_ corner, mouth_ right_ corner,

mouth_ center_ top_ lip, mouth__center_bottom_ lip.

Figure 3.1: Example of an image from the dataset with marked facial keypoints.

15



3. Analysis

Even though the dataset contains 7049 images, only 2140 of them have all
15 keypoints marked. We will use the pictures that have all facial keypoints
present in the dataset, because we want our neural network to predict all 15
keypoints,

mouth_center_bottom_lip
mouth_center_top_lip
mouth_right_corner
mouth_left_corner
nose_tip
right_eyebrow_outer_end
right_eyebrow_inner_end
left_eyebrow_outer_end
left_eyebrow_inner_end
right_eye_outer_corner
right_eye_inner_corner
left_eye_outer_corner
left_eye_inner_corner
right_eye_center
left_eye_center

Facial feature

6 10‘00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00
Number of images

Figure 3.2: Number of images in the dataset for each facial feature.

We will split the dataset into two parts. One for training and another one
for testing. By doing that, we can measure the performance of the model on
training images as well as on images that the neural network never trained
on. Both training error and validation error are important when analysing
the model’s results. The training dataset will contain 80% of the original
dataset and the rest 20% will be the testing dataset. That is 1712 training
images and 428 testing images.

Normalizing the inputs to the neural network is common thing to do while
working with multidimensional data in different ranges. The values of pixels
in input pictures are in range from 0 to 255. We will scale that to range
[0,1]. The positions of facial keypoints are in range from 0 to 96. We want
those values to have mean 0 and variance 1. That can be achieved by simple
computation y’ = j& — 1. Using normalized data can help during training
of neural network while finding the gradient of loss function. Imagine if we
had values from range [0,1] and [0, 1000]. In that case, the latter would have
much more impact on the output of the neural network and that could lead
to slower convergence.

B 3.2 Proposed approaches

This section proposes few approaches to facial feature detection problem by
using neural networks with different structures.
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3.2. Proposed approaches

B 3.2.1 First model

First, we will use very simple neural network. In order to feed an input image
to the neural network, we have to reshape the 96 x 96 pixels image to a vector
of 96 x 96 = 9216 pixel values. That vector will be the input to the neural
network, which means that the input layer will have 9216 nodes. The input
layer will be fully connected to the output layer. Because we are predicting 15
facial keypoints given by their  and y positions in the image, we are actually
predicting 30 values. Having said that, the output layer will consist of 30
neurons, each connected with weights to 9216 input values. The output layer
will not use any activation function.

Input layer Output layer

9216 30

Figure 3.3: Visualization of the first model.

We do not expect this model to perform well because it is quite simple.
However, it can be used to get familiar with the dataset and to discover any
potential problems with it in early stages.

B 3.2.2 Second model

We will add two hidden layers to the previous model. The first hidden layer
will contain 300 and the second 150 neurons. The hidden layers will use ReLU
as an activation function which was described in [subsection 2.2.1l
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3. Analysis

Input layer Hidden layer Hidden layer Output layer

9216 300 150 30

Figure 3.4: Visualization of the second model.

We expect this more complex neural network to perform better because the
extra hidden layers might help the model learn more detailed relationships
within the data. It will probably take longer to train due to higher number
of learnable parameters. On the other hand, we might be able to improve
that by experimenting with different settings.

B 3.2.3 Third model

This model will be using convolutional neural networks, which are state of
the art in image recognition. The input data have to be reshaped into three
dimensions, in this case 96 x 96 x 1. The model contains three convolutional
layers followed by one fully connected layer and an output layer. Convolutional
layers and dense layer will use ReLU as their activation function.

Layer | Input shape | Filters | Kernel size \ Stride \ Output shape

input - - - - 96 x 96 x 1
convl 96 x 96 x 1 4 5x5 1 96 x 96 x 4
conv2 96 x 96 x 4 6 5 X b 2 48 X 48 X 6
conv3 48 x 48 X 6 8 4 x4 2 24 x 24 x 8
flatten | 24 x 24 x 8 - - - 4608
dense 4608 - - - 250
output 250 - - - 30

Table 3.1: Layer-wise description of the third model.

This model uses convolutional layers for down-sampling. Notice the different
spatial dimensions (height, width) in the second and third convolutional layer.
That is caused by using stride 2. The aim of down-sampling is to reduce
dimensionality for computational efficiency. On the other hand, we do not
want to lose too much information. The purpose of the fully connected layer
of 250 neurons is to detect relationships between the features detected by
previous layers.

18
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Feature Feature Feature Hidden Hidden
Inputs maps maps maps units units Outputs
1@96x96 4@96x96 6@48x48 8@24x24 4608 250 30

Flatten

Fully Fully
connected connected

Convolution Convolution
5x5 kernel 4x4 kernel

Convolution
5x5 kernel

Figure 3.5: Visualization of the third model.

This is the first model that takes advantage of multidimensional input data.
With that in mind, we expect an increase in performance.

B 3.2.4 Fourth model

Another way to reduce the amount of information from convolutional layers is
by pooling. This model uses max-pooling with receptive field 2 x 2 and stride
2 after every convolutional layer. Using this down-sampling method leads to
75% reduction in information. Using bigger receptive fields (3 x 3, ...) might
be too lossy and it could cause worse results. By using max-pooling, the
most important features are kept while the less influential are ignored. This
is done to reduce computational cost while preserving important information.

Layer | Input shape | Filters | Kernel size ‘ Stride ‘ Output shape

input - - - - 96 x 96 x 1
convl 96 x 96 x 1 4 5x5H 1 96 x 96 x 4
pooll 96 x 96 x 4 - 2x2 2 48 x 48 x 4
conv?2 48 x 48 x 4 6 9 XD 1 48 x 48 X 6
pool2 48 x 48 X 6 - 2 %2 2 24 x 24 X 6
convd | 24 x 24 x 8 8 4 x4 1 24 x 24 x 8
pool3 24 x 24 x 8 - 2x2 2 12 x 12 x 8
flatten | 12 x 12 x 8 - - - 1152

dense 1152 - - - 250

output 250 - - - 30

Table 3.2: Layer-wise description of the fourth model.

The result of this model should be similar to the previous one with few
differences. Because it uses down-sampling on all three layers the number of
used neurons is slightly lower compared to the previous model. Due to that,
the amount of weights will also be lower. This will reduce the computational
complexity by a very small margin, which may lead to faster training.

19



3. Analysis

Feature Feature Feature Feature Feature Feature Hidden Hidden
maps maps maps units units Outputs
6@24x24 8@24x24 8@12x12 1152 250 30

NN\

Flatten Fully Fully
connected connected

Inputs maps maps maps
1@96x96 4@96x96 4@48x48 6@48x48

Max-pool Convolution  Max-pool Convolution Max-pool
2x2 kernel 5x5 kernel 2x2 kernel  4x4 kernel  2x2 kernel

Convolution
5x5 kernel

Figure 3.6: Visualization of the fourth model.

. 3.3 Realisation

We will use Python programming language to implement the above-
mentioned approaches. The exact version used is 3.6.4. One of Python’s
main advantages is its large standard library which contains huge amount
of packages with a wide range of functionality. We will use the following
packages:

® TensorFlow 1.6.0 provides API (application programming inter-
face) to build neural networks models. It allows us to take advantage of
GPU’s computational power to speed up the training of neural networks.

= NumPy 1.14.1 [24] is a package for scientific computing. Among other
things it provides N-dimensional array object or operations with matrices.

® Matplotlib 2.1.2 is a 2D plotting library. It can be used to generate
plots, histograms, scatter plots, etc.

® Pandas 0.22.0 is a library that offers data manipulation and
analysis. We will use it to manipulate with the dataset.
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Chapter 4

Results

. 4.1 First model

For a simple model that is using only 30 neurons, its results are quite good.
Even though it is not a perfect performance, image recognition is not an easy
task.

107!
m—train
w valid

102 4

loss

1073 1+ T T T T T
0 200 400 600 800 1000
epoch

Figure 4.1: Learning curve of the first model and example of performance on
testing dataset.

As we can see in the figure above, the model reached mean squared error of
0.005 on the testing dataset after 1000 epochs. It is also slightly overfitting,
which means that the model is performing better on training data compared
to testing data. Simply said the model fits the training data and it is not able
to generalize that well. We can attempt to fix that by using regularization
technique called dropout described in [subsection 2.2.5| or by using more data
for training. Considering the fact that this is the first and simplest model,
we will experiment with such techniques on more complex models that have
better baseline results.

The right half of the figure contains examples with best and worst perfor-
mance. The images on top are the best results while the images on the bottom
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4. Results

are the worst. The top left image has lowest error and the bottom left has
the highest error. The green markers are the true positions of facial keypoints
while the red markers are the values outputted by the neural network. To
conclude, the model was able to predict some examples almost perfectly.
However, we can see that it has trouble with rotated faces and also with
people wearing glasses.

. 4.2 Second model

As we can see in the graph, the performance of this model is slightly better.
In the beginning, it was learning fast, but the pace went down rapidly. By
adding two layers we added huge amount of learnable parameters. Because
of that, it takes more epochs to train and the convergence of loss function is
slow.

107!

1073

0 200 400 600 800 1000
epoch

Figure 4.2: Learning curve of the second model and example of performance on
testing dataset.

The final value for training loss is 0.0040 and 0.0047 for validation loss. To
improve the model’s performance we can either let it train for more epochs or
we can experiment with different optimizer. Using Adam optimizer instead
of plain gradient descent might lead to faster convergence.
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4.3. Third model

First model

Second model

Second model, Adam optimizer

Second model, Adam optimizer train loss

10-2 4

loss

1073 4

0 200 400 600 800 1000
epoch

Figure 4.3: Validation loss of previous approaches compared to the learning
curve of the second model using Adam optimizer.

From the figure above it is noticeable that Adam optimizer performs better
than vanilla gradient descent. As said in|subsection 2.2.4] it takes into account
the gradient of previous training steps in order to speed up the convergence of
loss function. The minimal validation loss of this model is 0.0024 and training
loss is 0.00086. It is obvious from the figure that this model is overfitting.

B 4.3 Third model

We will use Adam optimizer for further models because plain gradient descent
algorithm proved less effective for deep neural networks.

1072
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0 200 400 600 800 1000
epoch

Figure 4.4: Learning curve of the third model and example of performance on
testing dataset.
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4. Results

As we can see in the figure, the model is learning on training data pretty
well. If we compare the training loss to validation loss, it is evident that
the model is overfitting. We can try to solve that by using aforementioned
regularization technique called dropout. Basically, with certain probability,
we remove neurons during each training step, which helps the model to
generalize. We have to be careful when choosing the dropout probability. If
it is too high, it might make the model unable to learn anything at all. We
will use 25% chance to drop a neuron in the last hidden layer during training.
Using dropout will make the training slightly harder. During testing, we
will not drop any neurons. As you can see in the figure above, the model
reached lowest validation error of roughly 0.0016 after 300 epochs. After that
point, it only gets worse. There is not much point to train after the validation
error stops improving, but it is hard to predict the model’s exact behaviour
beforehand.
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Figure 4.5: Learning curve of the third model with added dropout and example
of performance on testing dataset.

On the loss plot, we can notice that roughly for the first 200 epochs the
training loss is greater than validation loss. That is caused by the dropout, as
the model is only using roughly 75% of its neurons in the last layer. Because
the neurons to drop are chosen randomly, sometimes the important ones are
taken out, which leads to worse training results. On the other hand, it makes
the rest of the neurons improve.

Adding the dropout led to improvement in validation loss. The final values
are 0.00039 for training loss and 0.00128 for validation loss. Unfortunately,
using 25% dropout did not fully solve the model’s problem with overfitting.
We might be able to further reduce overfitting by increasing the dropout
percentage or by adding more examples.
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4.4. Fourth model

B 4.4 Fourth model

This model uses almost the same parameters as the previous one. The main
difference is the use of max-pooling layers. It took this model roughly 10%
less computational time to train using GPU compared to the previous one,
which was caused by the use of pooling layers for down-sampling.

1072

1074

0 200 400 600 800 1000
epoch

Figure 4.6: Learning curve of the fourth model and example of performance on
testing dataset.

This model started performing better than previous around epoch 200.
Its lowest validation loss was 0.00146 while the training loss 0.00032 during
the same epoch. This means that the model is also overfitting. We can use

the same method as in previous approach that proved successful, which was
dropout.

1072

1074
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Figure 4.7: Learning curve of the fourth model with added dropout and example
of performance on testing dataset.
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4. Results

We will use 25% chance to drop a neuron in the fully connected layer for
this experiment. As you can see in the figure above, adding dropout led to
improvement in performance. Even though it did not stop the model from
overfitting, it certainly helped. This model was able to reach 0.0011 validation
loss and 0.00041 training loss after 1000 epochs.

B 45 Results of proposed approaches

So far we have tried multiple proposed models. We also experimented with
some of them which lead to different results. The results are summarized in
the following table.

Model Lowest validation loss | Training loss | Epoch
First 0.005 00 0.003 70 1 000
Second 0.004 70 0.004 00 1 000
Second, Adam optimizer | 0.002 40 0.000 86 1 000
Third 0.001 60 0.000 70 300
Third, dropout 0.001 28 0.000 39 1 000
Fourth 0.001 46 0.000 32 600
Fourth, dropout 0.001 10 0.000 41 1 000

Table 4.1: Comparison of achieved results.

From the results we can conclude that the closer to zero we are getting, the
harder it is to make an improvement. We were able to reduce the validation
error roughly 5 times using the state of the art neural networks in image
recognition.

All of the models above had worst performance measured on the image
of a woman with glasses. Even though the image may not seem hard for
humans to predict, the used approaches seem to have hard time analysing it.
That might be caused by the fact that there is simply not enough examples
of poses like this for the models to learn its key features. We can compare
this image to the heat-map of all facial features in the testing dataset.

Heat-map of facial keypoints

160
B 140

Al =ML 120

R 100

XXy

x

Figure 4.8: Heat-map of facial features compared to the facial features of the
woman with glasses.

It is observable from the heat-map that this image differs from the others.
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4.5. Results of proposed approaches

One way to improve the performance on this type of images is by adding more
examples similar to this one. Unfortunately, we do not have such images. It
is also interesting to note that although the error of the last approach is 78%
lower than the error of the first model, the error measured on the woman
with glasses decreased only by 20%.

We can also analyse the time spent on training of the proposed models and

compare training purely on central processing unit (CPU) to training using
GPU.

Training time for 1000 epochs Training time for 1000 epochs

10508 333

N
©
-

5000

Time (s)

1000

82
s [ | ||

Time (s)

120
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Figure 4.9: Comparison of time used to train proposed models. Time taken to
train using purely CPU on the left and time taken to train with the help of GPU
on the right.

The difference in training time on CPU and GPU for the first model is not
that huge, simply because there is not much to parallelize when the model
consists of 30 neurons. As the number of neurons goes up and the model starts
getting more complex, we can see more noticeable difference. It took 404
seconds to train the second model on CPU compared to 82 seconds with the
help of GPU. The last two models show enormous difference in training time.
It takes roughly 31 times longer to train the third model just by using CPU.
For the fourth model, the difference is even higher. It is 38 faster to train the
fourth model using GPU. Imagine having to wait three hours whenever you
want to experiment with the parameters of the model. Thanks to efficient
parallel computing of GPU, we can try using various values of parameters
and it will not take ages to figure out what combinations of parameters work
better than the others.

Another notable difference between the models is in scoring time. That is
how long does it take the model to predict facial keypoints on images. Scoring
time is something we should also consider while choosing model for certain
application. Depending on the circumstances, we might want to predict
multiple images at once or predict one image at a time, for example while
using video from web camera in real time. The figure below shows measured
values for both scenarios.
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Average scoring time for 428 images using GPU Average scoring time for single image using GPU

25

allanl

First model Second model Third model Fourth model ’ First model Second model Third model Fourth model

Time (ms)
-
&

Time (ms)

,_.
1)
o

«
@

Figure 4.10: Scoring time of proposed approaches.

As we can see in the figure, it takes the CNN models approximately three
times longer to process a batch of images compared to the previous models.
Nonetheless, it is still very fast if we consider the fact that it takes the model
on average around 24 milliseconds to process 428 images. However, it takes
the fourth model roughly one-tenth of that to predict a single image. Faster
results on large batches are achieved by efficient parallel computing. Feeding
an input forward through a neural network is mostly done by operations with
matrices, which can be parallelized, especially when using multiple input
images.

If we want to use our model for example on mobile devices we have to
consider multiple choices. If we choose simpler model that does not require
that much computational power but its performance is worse, the users
might get annoyed because the model does not perform well enough. On
the other hand, if we use more computationally complex model with better
performance, users might not like it because it slows down their device and
drains its battery.

M a6 Reducing overfitting

Almost all of proposed models were overfitting. We tried to solve that by
using dropout, but we were only partially successful. Another way to deal
with overfitting is to use more training data. One way to do that is by finding
images of faces on the Internet and marking all 15 positions manually. We
also could slightly alter the images we have available. We can simply double
the size of our dataset by horizontally flipping its images.

In order to get meaningful data after horizontally flipping an image we also
have to change the positions of certain marked keypoints. For example, the y
position of left eye needs to be swapped with y position of right eye.
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4.6. Reducing overfitting

Target facial keypoint | | Target facial keypoint

left__eye_ center right__eye_ center

left__eye_ inner_ corner
left__eye_outer_corner
left__eyebrow__inner_end
left__eyebrow__outer__end
mouth_left corner

right_ eye_inner_ corner

right__eye_ outer__corner

right__eyebrow__inner_ end

right_ eyebrow__outer__end

N RN O O O

mouth_ right_ corner

Table 4.2: Facial keypoints whose y position needs to be swapped while hori-
zontally flipping the image.

Because we flipped the x axis of the image, we also have to adjust the z
values of each facial keypoint. That can be done by applying simple formula:
' =96 — x.

Original image Flipped image

Figure 4.11: Example of a flipped image.

From the figure above, we can see that everything works as intended and
the image was successfully flipped. Another technique we can use to generate
more data is image transformation. Using this approach, we will be able to
create a huge amount of pictures that are similar to the original images but
slightly different, which helps with overfitting. On the other hand, it requires
more computational time than simply flipping images.

By horizontally flipping the pictures, we doubled the size of our dataset.
Now we have 2 - 2140 = 4280 images. We will split this dataset into two, one
for training and one for measuring the error on images that were not shown
to the neural network. The training dataset will consist of 3424 pictures and
the testing dataset will have 856 images.

To further increase the amount of examples we can use image transfor-
mations. By shifting image by few pixels horizontally and vertically we can
create slightly different image which can be used during training. The number
of pixels to shift by will be chosen randomly from range (—9.6,9.6). The
value 9.6 represents % of the image size. Negative value means that the
image will be shifted to left and positive value means shift to right. The
image will be shifted both vertically and horizontally. We also have pay
attention to the positions of facial keypoints. All keypoints have to remain in
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the shifted image. In order to achieve this, we can use more sophisticated
approach. Instead of choosing random value from range (—9.6,9.6), we can
use the following range.

(max(—9.6, —Zmin), min(9.6, 96 — Tmax))

Where xpniy is the lowest x value of all keypoint and . is the highest x
value of all keypoints. Same method can be used when randomly choosing
value for vertical shift with minor change. Instead of using = positions we
have to use y positions.

Such transformation can be expressed in the form of matrix multiplication
followed by vector addition. This type of transformation is called affine
transformation and it represents relation between two images. We can express
the transformation described above by the following matrix:

|10t
M‘lo 1 ty]’

where ¢, is shift of x axis and ¢, is the shift of y axis. This matrix can be
used to transform the image as well as the positions of facial keypoints. To
address the problems of the previously trained models with rotated faces we
will also use affine transformation to perform rotation of images. Rotation
can be described by the following matrix:

cosa —sina
sinaw cosa |’

where « is the rotation angle.

We will use Python library for computer vision called OpenCV [27] to
transform the images. To be more specific, we will use function called
cv2.warpAffine() to perform the image transformation. This function
applies an affine transformation given by matrix M to an image. To change
the positions of facial keypoints we simply have to add t, to all x positions
and t, to all y positions.

OpenCV provides rotation with adjustable center of rotation. We want to
rotate in the middle of the picture. To calculate the transformation matrix
for rotation of an image we will use function cv2.getRotationMatrix2D(),
which takes the position of center and angle of rotation as an argument. We
will use randomly selected angle from range (—10°,10°). The function creates
matrix M with shape 2 x 3. This matrix can be used to transform the image
similarly to the previous example by using the function cv2.warpAffine().
To calculate the new positions of facial keypoints, we have to split the matrix
My 3 into matrix Asyo and vector Bayi.

M- laoo ap1 boo] _ {A B}
aip ai1 bio

We have to organize the positions of facial keypoints into matrix by putting
their x values into first row and y values in the second row.

pP= o 1 ... T14
Yo yi .- W1af, s
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4.7. Final result

The following formula is used to calculate the new positions of facial keypoints
in the rotated image.

PP=P-A+B
We will use Python library called NumPy to perform the matrix multi-

plication and vector addition mentioned above.

Original image Shifted image Rotated image

Figure 4.12: Example of transformed images.

As we can see the transformations were applied correctly. It is also impor-
tant to note that the empty space created by the transformation is filled by
mirroring the image. It is noticeable in the middle picture above on its left
side.

. 4.7 Final result

With the assumption that humans can solve the facial keypoints detection
problem perfectly we can conclude from the results of proposed approaches
that all of the models have high bias. High bias means that there is big
difference between the model’s performance on training data compared to
human’s performance. The last two models also suffer from high variance,
which means that there is a huge difference between performance on training
dataset and validation dataset. We can try to solve high bias by changing
the neural network’s structure. For the following experiment we will use the
fourth model with minor changes. To be more specific, we will add one fully
connected layer between the fully connected layer and output layer. This will
probably further increase variance, but we can deal with high variance by
using more training data. For the following models, we will be using bigger
dataset. To keep the total time required to train a network in control we will
have to add more data in a smart way. First, we will flip the original dataset
and split it into training and testing dataset. Then we will transform the
training dataset 10 times. Five times by shifting and five times by rotating,
which will create 34240 new examples. We will add those transformed images
to the training dataset. The final amount of training pictures is 37664.
Another way to lower the time required to train the model is by using
changing batch size. In the beginning of training we will use small batches.
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Even though the predicted gradient might not be as accurate as if we used
bigger batch size, it is not a big deal in the beginning. Doing this will lead to
more weight updates per time unit, which speeds up the convergence. As we
get closer to the minimal loss we want to take more precise steps when tuning
the weights. That can be achieved by using more examples when calculating
the gradient which brings more accurate results. We will use the following
formula to calculate the batch size: batchsize = (%1 - 64.

We will split each epoch into 30 training steps. In every training step, we
will randomly select batch from the training dataset. We will not use any
dropout for the following training because we first want to see how the model

performs.
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Figure 4.13: Learning curve of the fifth model and example of performance on
testing dataset.

As we can see in the figure, we were able to increase the model’s performance
by using more examples and by changing the structure. However, the model
is overfitting. Now that we know how the neural network performs, we
can propose dropout probabilities. To further decrease variance we will
add dropout to the fully connected layers and to the max-pooling layers.
Because we have high amount of training images, we propose small dropout
probabilities.

Layer ‘ Dropout probability

pooll 5%
pool2 5%
pool3 5%
dense 10%

Table 4.3: Dropout probabilities of the fifth model.

We have to be careful while choosing dropout probability for max-pooling
layers, because the layer contains important information, which is why this
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model uses only 5% dropout rate for each max-pooling layer. We expect to
achieve lower variance by adding dropout.
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Figure 4.14: Learning curve of the fifth model with added dropout and example
of performance on testing dataset.

The plot shows that we were able to lower the variance while also slightly
lowering the bias. It might be worth to try using Leaky ReLU instead of
ReLU as an activation function. That may improve the model’s performance
due to the dying ReLU problem which was described in [subsection 2.2.1] The
Leaky ReLU activation function if defined by f(z) = a -z for x < 0 and
f(z) = x for x > 0, where « is a small number and its exact value depends
on the implementation. Tensorflow uses o = 0.2 as a default value while
Keras which is high-level neural networks library uses v = 0.3 [30].
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Figure 4.15: Learning curve of the fifth model using Leaky ReLU.

Using Leaky ReLU lead to small improvement in performance which was
probably caused by non-zero gradient of activation function f(z) for x < 0.
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=== Fourth model, dropout
4x1073 === Fifth model, flipped and transformed images
== Fifth model, flipped and transformed images, dropout
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Figure 4.16: Comparison of validation loss among multiple variations of the
fiftth model.

Model Validation loss | Training loss | Epoch ‘ Time (s)
Fifth 0.000 687 0.000 204 1 000 1413
Fifth, dropout | 0.000 604 0.000 576 1 000 1381
Fifth, dropout, | 0.000 530 0.000 542 1 000 1 605
Leaky ReLU

Table 4.4: Results of the fifth model.

To sum up, by adding one fully connected layer to the fourth model, using
different activation function, adding dropout and using image transformations
we were able to lower the error of the fourth model to more than a half. On
the other hand, the time required to train the model rose more than 5 times.

It is also interesting to note that we were able to detect facial features
with different precisions. The following figure shows validation error of few
selected facial features.
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Figure 4.17: Error of few selected facial features.

As we can see in the figure, it is harder for the model to predict the center
of bottom lip compared to the center of upper lip. That may be because the
dataset contains pictures of people talking with their mouths open and while
your mouth is open, the bottom lip moves much more compared to bottom
lip. Basically the position of bottom center lip differs more than the position
of upper lip. We can also see that the model is able to predict center of top
lip much more precisely than outer end of right eyebrow.

To make the performance of the final model mode human-friendly, we
can calculate the average precision of its predictions. By calculating the
root mean square error and scaling it back to the original value (because we
normalized our data, which was mentioned in we can determine
the average precision for each outputted value by: y, = +/0.00053-48 ~ 1.1px.
Because each keypoint consists of two positions, that is its y and x position,
we can compute the average precision for facial feature by using Pythagoras’
theorem: p = ,/ yzz, + ?/127 ~ 1.56pz. To conclude, the final model is able to
predict a position of facial keypoint with precision 1.56 pixels on average. As
mentioned above, some keypoints are easier to predict and some are harder.
It is also very important to note that this is measured on the validation
dataset. Real world results might be similar, but it is not guaranteed.

B 4.8 Ideas for experiments

In order to further improve the model we could experiment with the structure
of the model. For example changing the sizes of kernels in convolutional layer
or using more filters could lead to different results. We could also try more
methods of image transformations, for example scaling, cropping, shearing
or perspective transformation. Another idea is to use more neurons while
increasing the dropout probability.
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4. Results

. 4.9 Demonstration

Predicted positions of facial features can be used in several ways. One of
them is face recognition which is quite complicated task that we will not
get into in this thesis. Another way to use our solution is to alter images or
videos. For example by placing image of sunglasses to a picture of face based
on facial keypoints positions predicted by our neural network. We can realize
that by using OpenCV [27] that allows us to edit images using Python. We
can divide this method into multiple steps:

® First, we need to find images containing faces. In this section, we will
use images downloaded from Pixabay [31] which is a website that offers
free images.

8 Then, we will manually crop faces from those images with their width to
height ratio 1 to 1 and save them to disk drive.

B Next, we will load those images as grayscale, resize them to 96 x 96 and
rescale values of pixels to [0,1] . We will use those images as an input to
our neural network.

m After feeding those images through the neural network, we have to rescale
the output from [—1, 1] to [0,96]. That can be done by simply multiplying
all inputs by 48 and adding 48. Next, we also have to take into account
the original size of the image. If the resolution of the original image
was for example 192 x 192, we have to multiply all positions of facial
keypoints by 2.

® Based on those positions we can now place certain images into the original
image.

To illustrate, we can place image of clown’s nose on the position of nose tip.
We can also scale the size of the nose relatively based on, for example, the
distance of outer eye corners.
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4.9. Demonstration

Figure 4.18: Faces with predicted facial keypoints on the left and altered image
on the right.

As we can see in the figure above, we were able to achieve decent results.
Because cropping the faces manually from images is quite time consuming, we
can take advantage of Viola-Jones object detection framework . OpenCV
provides an implementation of Viola-Jones algorithm that can be used to
detect faces in images . Viola-Jones algorithm is able to achieve high
detection rate and high speeds. That also allows us to use this method while
working with videos, because video is basically a series of images.

Figure 4.19: Detected faces using Viola-Jones algorithm with predicted facial
keypoints on the left and altered image on the right.

The figure above shows an image containing multiple faces. The green
rectangles represent found faces using the Viola-Jones algorithm and the red
dots represent the predicted facial keypoints by our model. We can use those
predicted positions to alter the original image, which is displayed on the right
side of the figure.
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Chapter 5

Conclusion

We have proposed multiple approaches to facial feature detection problem in
this thesis. We have used several types of artificial neural networks, including
the state of the art in image recognition. The results have shown various
upsides and downsides of explored solutions. The results have also shown that
straightforward use of neural networks did not perform well. The proposed
models suffered from high bias as well as high variance. After further analysing
the results of proposed approaches we suggested several changes that aimed
to improve the final outcome.

We have shown a few techniques that can be applied to image recognition
tasks. Those methods have proved to be quite effective for our problem.
Generalization technique named dropout turned out to be successful while
dealing with overfitting. Another approach often used in order to reduce
overfitting is increasing the size of used dataset. We have shown several ways
to do that. By applying affine transformations to images we were able to
expand the size of our dataset.

We have addressed the variance problem of proposed approaches by increas-
ing the size of our dataset. We have lowered the bias of the final approach by
adjusting the structure of the best performing proposed model. By combining
aforementioned changes with the use of dropout technique, we were able to
further improve our solution. To conclude, the final results have shown that
facial feature detection problem is satisfactorily solvable by convolutional
neural networks.
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