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Abstract

This bachelor’s thesis describes the recommendation system and two ma-
jor approaches, Collaborative filtering and Content-based recommendation.
The new hybrid approach, which combines these two methods, is proposed.
This method increases recall of content-based recommendation by up to 216%
and allows more precise recommendation for newly added items, which suf-
fers from the cold-start problem. This designed and implemented approach
uses machine learning methods such as embedding or artificial neural net-
works, which will also be briefly introduced along with a way of evaluating
the quality of the recommendation.

Keywords recommendation system, embedding, deep learning, artifical neu-
ral network, Python
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Abstrakt

Tato bakalarska prace se zabyva doporucovacimi systémy a jejich zakladnimi
pristupy: Kolaborativni filtrovani a Atributové doporucovani. Je predstaven
novy hybridni pristup, ktery kombinuje tyto dva pristupy. Tato metoda
zvySuje recall atributového doporucovani az o 216% a umoznuje presnéjsi do-
porucovani pro nové pridané véci, které trpi cold-start problémem. Tento
navrzeny a implementovany pristup vyuziva metod strojového uceni jako je
embedding nebo umélé neuronové sité, které budou taktéz stru¢né predstaveny,
spolu se zpusobem vyhodnocovani kvality doporuc¢ovani.

Klicova slova doporucovaci systém, embedding, hluboké uceni, umélé neu-
ronové sité, Python

ix






Contents

Introduction
Goal
1 Analysis
1.1 Recommendation system . . . . .. ... ... oL
1.1.1 Collaborative filtering . . . . . .. ... ... ... ...
1.1.2 Content-based recommendation . . . . . . .. ... ...
1.1.3 Hybrid methods, cold-start problem . . . .. ... ...
1.1.4 Evaluation . ... ... ... ... ... ... ...,
1.2 Embedding . . .. ... ... ...
1.2.1 tSNE . . . . .
1.22 Words . . . . . . .. e
1.2.3 Sets . . . ..
1.2.4 Numbers . . . ... ... . ..
1.2.5 Meta-Prod2Vec . . . . . . . . . . ...
1.2.6 Latent semantic analysis . . . . . . ... ... ... ...
1.3 Artificial neural network . . . . . ... ... ...
1.3.1 Basics . . . . . . . e
1.3.2 Training . . . . . . . . . oo
1.3.3 Testing . . .. .. ... ..
1.3.4 Hyperparameters . . . . . . . . ... ...
2 Design
2.1 Data preprocessing . . . . . . . ... Lo
2.1.1 Embedding of each product . . . .. ... ... .....
2.1.2 Interaction similarity . . . . . . . ... ...,
2.1.3 Dataset . . . . . ...
2.2 Training . . . . . . . .
2.3 Recommendation . . . .. . ... ... oL

xi



3 Experiments
3.1 Technology and hardware

3.2 Data exploration . . . ... ... ... oL
3.3 Embeddings . . . . ... ..o
3.4 Hyperparameters . . . . . . . . . .. ... oo
3.5 Results. . . . . . . e

Conclusion
Bibliography
A Acronyms
B Figures

C Contents of enclosed CD

xii

33
33
34
35
36
38

43

45

49

51

63



1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

B.1
B.2

List of Figures

Interaction matrix . . . . . . ... ... ... 7
Mlustration of bag of words . . . . . ... ... ... ... ..., 14
Two steps of word2vec . . . . . . . .. ... o 15
DM and DBoW versions of the Paragraph Vector . . . . . . . . .. 16
The artificial neuron . . . . . . .. .. L oL 19
Feedforward network with multiple layers . . . . .. .. ... ... 19
The logistic function . . . . . . . ... ... oL 20
The hyperbolic tangent function . . . . . ... ... ... .. ... 20
The linear function . . . . . . . . ... ... ... .. ... ..., 21
Changes of weight during learning . . . . . . ... ... ... ... 22
Correctly fitted and overfitted sin(z) . . . . . ... ... ... ... 23
Underfitting and overfitting . . . . . . ... ... ... ... ... 24
Example of overfiting . . . ... ... ... oL 24
Neural net before and after applying dropout . . . . . . . ... .. 25
Illustration of proposed method . . . . . . . .. . ... ... .... 28
Concatenation of embedding of each type . . . . . ... ... ... 29
Joining more types of interactions . . . . ... ... ... ... .. 30
Building dataset . . . . . . ... o oo 31
Interaction histograms for items and users for dataset A . . . . . . 35
Clusters of items by interactions . . . . . ... ... ... ..... 36
Clusters of items by embeddings . . . . . ... ... ... ..... 36
Interaction cluster labeled by category of product . . . . . . . . .. 37
Embedding cluster labeled by category of product . . . ... ... 37
No regularization, dropout, and L2 regularization . . . . . . . . .. 38
Training of NN on dataset B using all attributes . . . . . ... .. 40
Training of NN on dataset B using words and sets . . . . . .. .. 41
Architectures of Neural Networks . . . . . . ... ... ... .... 52
Training of NN on dataset A from HV . . . . ... ... ... ... 53

xiii



B.3 Training of NN on dataset A from Doc2Vec . . . . . . . . ... .. 54
B.4 Training of NN on dataset A from BoW . . . . ... ... ... .. 55
B.5 Training of NN on dataset A from BoW and Sets . . . . ... ... 56
B.6 Training of NN on dataset A from BoW, Sets and Numbers . . . . 57
B.7 Training of NN on dataset B from HV . . .. ... ... ... ... 58
B.8 Training of NN on dataset B from Doc2Vec . . . . . .. .. .. .. 59
B.9 Training of NN on dataset B from BoW . . ... .. ... ... .. 60
B.10 Training of NN on dataset B from BoW and Sets . . . . . . .. .. 61
B.11 Training of NN on dataset B from BoW, Sets and Numbers . . . . 62

Xiv



List of Tables

3.1 Datasets . . . . . . .. 35
3.2 Results for dataset A . . . . . . . ... 39
3.3 Resultsfordataset B.. . . . . . . . . . .. ... ... 39

XV






Introduction

Nowadays, articles, videos, e-shop items, or songs and movies offered by
streaming services are being added every day on the Internet. No one can
go through this vast amount of available content, so recommendation systems
become more important than ever before, as they help to pick only those rel-
evant items for a particular customer. These systems, however, have some
problems they have to deal with. One such problem is a cold-start problem,
which in some circumstances prevents newly added items from being recom-
mended.

This work presents a new hybrid method that solves this problem and
thus increases the success of the recommendation systems. To fully under-
stand this method, I first introduce the recommendation systems, their fun-
damental principles, usage, evaluation, and problems. Next, I will say what
is embedding, present examples and highlight their advantages and disadvan-
tages. Then I will briefly introduce the neural networks from the basics to the
Deep Feed Forward Networks that are used in the proposed method. After
clarifying this theory, I will design this new method with emphasis on data
preprocessing, implement it in Python using technologies such as Jupyter,
Keras, and PySpark, and in the final chapter I will publish the results on
actual datasets of two e-shops and evaluate the success.






Goal

The aim of the research part of this bachelor thesis is to explain the impor-
tance of the recommendation systems and describe their two main approaches
to recommending: Collaborative Filtering and Content-Based Recommenda-
tion. After familiarizing with the basic principles, I analyze the problems
of these approaches with emphasis on the cold-start problem. Next, embed-
ding is defined, and various embeddings for different data types (such as a text
description, set, or numbers) are explored. After this introduction to RS and
machine learning, the practical part of the thesis is to design and implement
algorithm capable of predicting the interaction similarity of items through
neural networks from created embeddings. This model will be used in the
Nearest Neighbor algorithm for the recommendation, and evaluated in the
light of the success of the recommendation on multiple different datasets that
will be presented in detail. The results will be compared with traditional
recommendations, and its contribution will be discussed.






CHAPTER 1

Analysis

1.1 Recommendation system

In this chapter, I will introduce what the recommendation systems are, why
they are so important today and where is possible to meet them. I will also
describe the principles of the functioning of the recommendation systems,
introduce basic approaches such as collaborative filtering and content-based
recommendation, describe the cold-start problem and finally explain how the
quality of the recommendation algorithm can be evaluated.

A recommendation system, also known as recommender system, is a plat-
form that tries to predict user’s preferences for an item and allows to find
relevant content for him. “Recommendations made by such systems can help
users navigate through large information spaces of product descriptions, news
articles or other items.” [1]

These systems are widely used virtually wherever there is more content
available. A typical example of service using the recommendation system is
an e-shop that aggressively and continually endeavors to impose some mer-
chandise through first screens, banners, emails, or other channels. Some form
of the recommendation system can be found of course in giants such as Face-
book that uses it, among other things, when selecting a relevant feed, or Google
to suggests similar videos on Youtube. They will also find use in online news-
papers, streaming services like Spotify, or even at finance. Also, “a number of
successful startup companies like Firey, Net Perceptions, and LikeMinds have
formed to provide recommending technology.” [2]

There are two basic approaches to selecting from the vast amount of avail-
able content the one that is most interesting for a particular user. However, it
is possible to combine these methods into so-called ensembles, which number
is growing in practice due to better results. The primary goal of this work is
to create a new hybrid approach.
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1.1.1 Collaborative filtering

Collaborative filtering (CF) is the first of these basic approaches. It is widely
used because of its versatility across different domains, as well as through its
efficiency, accuracy, and scalability. This method uses the fact that user’s
behavior is not random, but there are some patterns in it. The primary
concern when looking for content for a particular user is to find the user’s
most similar user and to inspire with his interactions. Interactions are thought
to be some actions of the user in the system such as product view, rating,
purchase, search, like or dislike, a recommendation to another user, add to
cart or favorites, etc. Some value can be assigned to these actions indicating
their importance, such as the purchase of the item is far more important than
its mere view. All these interactions together define user. When RS looks
for recommendations, it can find users who have the similar past and predict
the future of one user according to the past of the other. Unfortunately,
“a collaborative filtering system must be initialized with a large amount of data
because a system with a small base of ratings is unlikely to be very useful.” [2]

Now I will introduce the concept of the user’s interaction vector and show
how to get it. For simplicity, I only suppose interactions of the type of product
view. I’ll take a list of all the items on the platform, for example, all the
articles in the newspaper or the products in the e-shop, and for each of them,
I will put the number one in the resulting vector if the user has seen the item,
otherwise, it is zero. I get a vector of size n, where n equals the number of
all items. When interaction vectors are stacked, interaction matrices arise.
I assume that all items are unique. Formally:

e U is sequence of all users
e m = |U|, number of all users

e [ is sequence of all items

n = |I], number of all items

M’ is set of items that user U; has seen

v is n-tuple for user Uj;, also called user’s interaction vector, where

1 if I), € M*

0 otherwise

Vk € {l.n}: v} = {

o V™MXM is interaction matriz, where Vp € {1.m} : V,.,, = vP

By definition, this matrix contains the user’s interaction vector in each row,
but if the columns are taken as vectors, the vector will be created for each
item as well. I will call it the item’s interaction vector and use it in my
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approach. The interaction matrix is also sometimes called the rating matrix
and is usually huge but very sparse. This definition is limited to values zero
and one, but in practice, the interaction matrix can contain any numbers,
especially if RS takes into account other types of interactions than simple
views. The rating matrix is not the only possible interpretation of the list of
interactions, but it is undoubtedly the most used one. For example, unlike
the time series recommendation, the information, when the interaction was
performed, is not used. Example of real interaction matrix with more types
of values and the appropriate vectors can be found in Figure 1.1.

N I i
)\@}Q’ . {@&/ {&"\V )\@}Q’ ,@&/ ; {&"\V )\@}Q’ )\@}Q’
user_5748 | 1 -1 0 e o o 1
user_3816 |-0.5 0.5 e o o
user_6491 -1 e o o
user_8039 0.51]-0.5 o o o 0.25
user-2970 0.75 e o o
user_6176 | 1 0.25 e o o
user_1015 -1 e o o 0.5
user’s interaction vector

([ ] [ ] [ ]

[ ] [ J [

[ ] [ J [
user_7719 -1 0.5 e o o -1

item’s interaction vector

Figure 1.1: Interaction matrix

Each user, therefore, has his sparse interaction vector that characterizes
him. If RS looks for similar users, just needs to find similar vectors. The meth-
ods for measuring vector similarities used in collaborative filtering according
to [3] are:

e Cosine similarity (COS)
e Pearson correlation coefficient (PCC)

“PCC calculates similarity as the covariance of two users’ preferences (ratings)
divided by their standard deviations based on co-related items.” [3]
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However, I will measure similarity of vectors using cosine similarity, which
returns values from the interval [—1,1] and is expressed as the cosine of the
angle between the two vectors. The formula is:

COS(,v7) = > h=1Yk " Vh _
VIR W) SR (v])?

This metric is widely used not only in recommendation systems but through-
out machine learning. I will use it in my new approach, but I will not apply
it to the user’s interaction wvector, but to the item’s interaction vector, thus
gaining similarity between items.

Of the stated formulas, you may notice the main benefits of collabora-
tive filtering, that is the domain independence. There is no need for more
profound information about users or items. It is enough for each of them to
have a unique identifier. In this case, collaborative filtering differs from the
approach that I will refer next.

1.1.2 Content-based recommendation

The second main approach is called the Content-based (CB) recommenda-
tion. This method requires knowledge of the recommended products. Not
just identifiers like the previous approach, but an additional information is
needed. Such information may be, for example, textual description of items,
name, images, tags, category or binary content of the item, if it is the mu-
sic, etc. First, I will explain the general principle of such a recommendation
and then show how to handle a variety of additional information about items
automatically, without the need of manual intervention.

Compared to collaborative filtering, where RS recommends what similar
users liked, here RS is looking for items similar to those I liked. Suddenly,
there is no need for a metric as similar users, but how are items similar. The
first and easiest option I have mentioned is to use the item’s interaction vector
and cosine similarity. However, this approach has many potential problems,
such as cold-start, which I will explain later. There are better and more ac-
curate ways to capture the similarity of items. One approach, which is very
demanding, expensive and inexplicable in practice, is to manually define rela-
tions between items. An e-shop administrator writes that dog and dog food
are related to each other, and if the customer purchases a dog, the system
should recommend a dog food. The recommendation will then only depend
on how the administrator describes the relationship between products, which
makes it very likely to miss unexpected coercion. That was is just for illus-
tration. Of course that such systems are not used today. With the boom of
machine learning, a whole range of automatic methods was developed to find
similarities between all kinds of items.

As part of my project, I restrict myself to the idea that I have for each
item a vector in space that best describes it. How to obtain such a vector is

8



1.1. Recommendation system

described in Section 1.2. So I can measure the similarity of vectors representing
items as I measured the similarity of users.

1.1.3 Hybrid methods, cold-start problem

Besides such strictly separate methods, there are mixed ones that take some-
thing from both to generate better results. In general, a combination of several
different models into one big better is called an ensemble, in the case of rec-
ommendation systems we talk about hybrid approaches, which are mainly
designed concerning their problems. In cases where one system fails, another
one will be used. [4]

A typical problem with CF is according to [5] a cold-start problem. This
problem mainly concerns new items that have little or no interaction. Accord-
ing to [4], the cold-start problem is one of the biggest problems with which to
deal with the recommendation systems. If the e-shop only recommends using
CF and cosine similarity, new products without a single interaction will never
be recommended. Content-based recommendation system, on the other hand,
does not suffer from this problem because it does not use the interactions at
all. Several cold-start solutions use machine learning methods such as a ma-
trix factorization or deep learning and neural networks. Their list, including
the description, can be found in [4]. This list will be complemented by a ex-
planation of the Meta-Prod2Vec method, introduced in 2016 in [5]. However,
for the description of Meta-Prod2Vec, it is necessary to explain some other
principles, so it will be fully introduced in Subsection 1.2.5.

At the very end, I will introduce one more category, Knowledge-based
recommendation systems. These programs are expert systems and require
a specific interaction from the user, for example, displaying the decision tree
and letting him click through, or requesting list of requirements from the user
and then recommend. An example might be when a user wants to buy a
house, he will fill out a form on the real estate website, and the system will
suggest the house with the highest match of parameters.

1.1.4 Evaluation

I have already described several different methods of recommendation, but how
to determine which one is more accurate and gives better recommendations?
There are a couple of methods of evaluation, and none of them is standardized
and ubiquitous. Nevertheless, I will show and describe one of the most used
methods for evaluating the success and use it in my experiments. But first, I
say the general division of the evaluation.

Evaluation can take place online or offline. In general, there is a much
more conclusive online metric, where the success of the engine is tested on
real users. An example of this can be Facebook, that has hundreds of versions
all over the world. Generally, a huge traffic is needed, because people are split

9
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into the groups and different recommendation model is given to each group.
Then the one with higher click-through rate is chosen as better.

In this work, I will use offline evaluation, that is, the evaluation using
already collected data without the need for new ones. There are also methods
somewhere between based on offline evaluation using artificially created users
whose behavior is learned from the real ones using Reinforcement Learning.
Recall and catalog coverage (CC) were chosen as offline metrics for this thesis.

Recall, also called sensitivity, is a general metric in the information re-
trieval calculated as the ratio of recommended relevant items to all relevant.
According to [6], recall does not punish wrong recommendations, so if RS
recommends all items, recall will be 100%. There is also a metric called pre-
cision (confidence) addressing this imperfection, which indicates how much
data labeled as relevant was truly relevant. As a catalog coverage, the amount
of recommended content will be measured. For example, RS can recommend
bestsellers and nothing more, most of the customers will not mint, but the CC
will be very low. Also, since RS’s goal is to help the customer to discover new
products, my effort will be to maximize the recall and CC in my experiments.

Calculation of recall as defined above is very trivial when it comes to
classification. How to measure recall for recommendation? I will describe
it in details. On input of the algorithm is required a model that measures
similarity of two items. A random group of users, where each of them has
interacted with more than one product and whose interactions have not been
used in model learning, is also required. The recall for the model is then as
follows:

For each user, a list of products interacted by him is taken. Each entry in
this list can be considered as relevant to that user. Now one entry is hidden.
For other products in the list, the distances to all products are calculated
and multiplied by the user’s rating for the given product. Those similarities
are summed together and trimmed to k most similar. If there is a hidden
entry in the gained list, one is written as result, otherwise zero. This step is
executed for each item, the results are summed up and divided by the number
of all items interacted by the user. Obtained value is the recall for particular
user. The procedure is repeated for all users in the selected group and the
average recall is returned. While counting the recall, CC can be calculated
too. Just save all recommendation for each hidden item, join them to set, take
the amount of this set and divide it by the total number of products to get
CC. Formal description of this can be found in Algorithm 1.

1.2 Embedding

It is a well-known fact that the computer can handle numbers without any
problems, but other data representations are incomprehensible to it. At the
first sight, a human can distinguish the objects in the image, recognize covers

10



1.2. Embedding

Data: set of all items (I),

set of tested users (U),

relation of interactions r: U x I — R
Input: number of recommended items k,

model (M), represented by relation of similarity m : I x I — R
Output: recall and catalog coverage of model

(i) = {0 ifi+j

m(i,j) otherwise
A =0 (set of recommended items)
R :=0 (recall)
G:=0
foreach v € U do
T:=0
C:=0
foreach h € I : r(u,h) # 0 do
fl)y =5 (m*(j,i) X r(u, )
JEI:j#h
S = (f(zl)a f(ZQ)a s >f(2n))
= indexes of k highest values in sequence S
h € L then
T:=T+1
end
C:=C+1
A:=AUL

end

RxG+ZL
R:= G+1C
G:=G+1
end

L
if
\

cC = % (catalog coverage)

Return R (recall) and CC (catalog coverage)
Algorithm 1: Measurement of recall and catalog coverage

of one song, or find the same information in different grammatical interpre-
tations. The computer cannot do this by itself. Some computer science dis-
ciplines try to teach a computer to perceive things as a human. One of the
most significant breakthroughs in last couple years is Computer vision, which
attempts to learn computers to see as people using advanced image process-
ing. [7] Other is Nature Language Processing (NLP), which allows to build
voice assistants, translators, etc.

Each of these disciplines, including recommendation systems, must trans-
form their objects of interest, such as images or videos, into vectors of real
numbers, because most of the machine learning methods are designed to work
with vectors. According to [8], this transformation is called embedding. High-

11
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quality embedding should also reveal the similarity between real objects and
is able to transfer it to n-dimensional space. Embeddings are the absolute
foundation for creating a high-quality recommendation system. [9]

Ways of embeddings are many and continually growing. Probably for
every type of object (image, text) there already exist some embedding. In this
section, I am going to show the embeddings of text, numbers, and sets, but first
I will introduce how to visualize the embedding result and thereby evaluate
its quality. At the end I describe the Meta-Prod2Vec method promised in
Subsection 1.1.3.

1.2.1 t-SNE

To maintain information about objects, most embeddings return a high-dimensional
vector. It’s not a problem for a computer, and all machine learning works in a
high-dimensional space, but a human cannot imagine it and verify that similar
objects are truly mapped to neighboring areas.

Fortunately, the T-distributed stochastic neighbor embedding (t-SNE) al-
gorithm was introduced in 2008. This method is “capable of retaining the
local structure of the data while also revealing some important global struc-
tures (such as clusters at multiple scales).” [10] In practice, all that is needed
to be provided are the high-dimensional vectors, the target dimension (usually
2 or 3) and a pair of hyperparameter. Unfortunately, t-SNE is very sensitive
to hyperparameter setting. How to appropriately choose hyperparameters and
get the desired result is greatly described in [11]. This algorithm will be used
to compare the embedding qualities with respect to interactions. t-SNE be-
longs to the dimensionality reduction techniques in addition to PCA or matrix
factorization.

1.2.2 Words

Because of the use of text as a general media, it is no wonder that word
embeddings are among the oldest and most discussed. According to [12], the
first attempts to manually translate text into vectors took place in the 1950s,
automatic feature selection techniques then came in the 1980s. Of a large
number of such methods, I have chosen three:

e Bag-of-words (BoW)
e Hashing Vectorizer (HV)
e Paragraph Vector (doc2vec)

While describing the following algorithms, I assume that I have a document
(list of sentences) for each input item and the output is a vector of real num-
bers. The number of items equals n.

12



1.2. Embedding

Bag-of-words is the oldest of these methods. The first use of this term is
noted in the 1954 in [13]. However, it is only an expression, the algorithm itself
was introduced later. This technique has, with minor modifications, a general
use when processing the discrete objects to vectors. The algorithm proceeds
first by going through all the sentences and splitting them into words. These
words can be lemmatized (converted to basic form) but it is not necessary.
The first step of the algorithm is to create a dictionary containing all used
words. Next, each document is taken and converted to the vector with size
equal to the number of words in the dictionary. For each word in the dic-
tionary represented by the position in the vector, the frequency of the word
in the sentence is written. As a result, the vectors have for each position
a number signaling the count of represented word occurrences in each sen-
tence. These vectors, like the dictionary, are usually very large (e.g., 100,000)
and very sparse (contain 99% zeros). In addition to lemmatization, it is pos-
sible to make other adjustments to the text such as correcting misspellings,
converting to lowercase, or removing stop words (and, with, or, etc.). This
method does not reflect the order of the words in the sentence, the synonyms
and other linguistically significant phenomenas. “For example, “powerful”,
"strong” and "Paris” are equally distant.” [14] Two steps of BoW, without
lemmatization or any other modification, are illustrated in Figure 1.2.

Typically, a term frequency—inverse document frequency (tf-idf) transfor-
mation is applied to BoW embedding, which determines how the individual
elements of the vector (words) are relevant for the document. It works by re-
ducing the weight of words that occur in most documents (such as stop words)
and increase it to unique words. Implementation differs slightly across appli-
cations, but the basic procedure is as follows. “Given a document collection
D, a word w, and an individual document d € D, we calculate

D
Wq = fuw,d - log e

fw,D

where fy, 4 equals the number of times w appears in d, |D| is the size of the cor-
pus, and fy, p equals the number of documents in which w appears in D.” [15]

The tremendous size of the dictionary and the resulting vectors may nega-
tively affect the memory and algorithm speed requirements. A way of compress
this dictionary and vectors called LSA will be shown at the end of this section.
The compromise is the Hashing Vectorizer, which is capable of generating vec-
tors of the desired length n. It works by hashing words to one of the number
[0,n). There is no need to create an extensive dictionary, just hash each word
and enter the number of occurrences at the appropriate vector position. It
can happen that a position contains the sum of multiple words, especially
for a small n. [16] Great advantage over BoW is the ability to process new
documents containing unique words without having to recalculate all other
documents.
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1. ANALYSIS

Adam is terrified of heights but he is not afraid to sail on the sea.

—

Adam
is
terrified He is not terrified of the sea.
of L
heights
- lof1[1]1]ofo[1[1]olo]o[0]1]1]
he
not Adam is afraid of heights.
afraid
to J7
sail [1{1{o[1]1]ojo[o[1]o]olo]0]0]
on
the
sea

Figure 1.2: Illustration of bag of words

Finally, I describe the doc2vec method, which was introduced under name
Paragraph Vector in 2014 in the article Distributed Representations of Sen-
tences and Documents. [14] Tomas Mikolov builds on his work and the
word2vec method which he introduced a year before in [17]. Therefore, to
understand doc2vec, it is necessary to first explain word2vec.

As I have already mentioned, bag-of-words suffers from the loss of seman-
tics. All words are equally distant from each other, although it is not in
natural language. Word2vec allows for each word to find its numeric repre-
sentation while capturing relationships such as synonyms or analogies. [18]
During this process it uses two algorithms that work the opposite to each
other. The first one is called Continuous bag-of-words (CBoW), and it differs
from the standard BoW in that it takes the neighborhood where the word
is found (context). Explicitly, the Feedforward Neural Net Language Model
(NNLM) takes this context as input and tries to predict that word. Thanks
to this step, meaning (and representation of words) depends on the order in
the sentence. The second model is the Skip-gram, which works very much
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w(t-2) wi(t2)
w(t-1) w(t-1)
SUM
w(t) w(t)
w(t+1) w(t+1)
w(t+2) w(t+2)
CcBOwW Skip-gram

Figure 1.3: Two steps of word2vec [17]

like CBoW, just does not return the word according to the context, but the
context according to the word. Both algorithms are illustrated in Figure 1.3.
The greater the amount of text is given to word2vec, the more accurate it is.
The hyperparameters of this method are the context size (the number of words
around), the target vector dimension, or the length of the training. There are
freely available models trained on data from Wikipedia or Google News. [17],
[18], [19]

This model is able to return a vector representation for each word. The
linearity of these words also applies, i.e., queen + man = king. But how to
build embedding of the whole text? Before doc2vec was introduced, it was
common practice to take the vectors of each word and join them into one
vector using some operation (sum, average). Now when word2vec has been
described, the explanation of doc2vec is trivial because its learning uses very
similar algorithms. The CBoW model, which had on the input the context
of the word to predict, now also processes the input vector referred to as
paragraph-id. The value of this vector does not truly matter. It is just the
identifier for the paragraph (or any other part of the text). Such a model
is called the Distributed Memory version of the Paragraph Vector (PV-DM).
The Skip-gram model is modified so that there is no input word and the output
context but takes only paragraph-id, and the content is modeled. Both steps
are illustrated in Figure 1.3. [18]

1.2.3 Sets

Set embeddings are far more straightforward than word embeddings, as well as
a variety of written literature about both topics. In recommendation systems
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Classifier Classifier [the] [cat] [sat] [on ]
Average/Concatenate I

Paragraph Matrix-----» * * * Paragraph Matrix --------- >

Paragraph the ca Paragraph
id id
Figure 1.4: Distributed Memory (left) and Distributed Bag of Words (right)
versions of the Paragraph Vector [14]

are typically stored in sets different categorization of items, tags or even names.
All fields that do not make much sense to ask for their own meaning, but they
are more about labeling. This fact is also used for embedding. The word
embedding should reflect the meaning of words and map semantically nearby
words to close vectors. Of course, the sets are depending on the content, but
most of the uses mentioned above does not have a separate meaning, and
the elements are semantically equally distant. A model that did not reflect
semantics and only took into account the presence of content has already been
introduced. Speech is about bag-of-words. It is a little confusing, but it is
possible to use BoW, even though the content does not have to be words at
all. An example may be a set of identifiers for a category where the whole bag
is a list of all identifiers used. In the word embedding, the resulting vector
contains the number of occurrences of a word in a piece of text, but in the case
of sets, is captured only the presence (1) or the absence (0) of the element in
the set. A huge and sparse vector might arise again.

1.2.4 Numbers

As I mentioned earlier, embedding is needed because most machine learning
methods assume vectors of real numbers to input. A number can be considered
as a vector in 1D space, especially after standardization. However, I will show
two basic embeddings of numbers. Both consist of dividing the numerical
axis into bins and then assigning numbers to these intervals. This method is
called as discretization or binning. Interval sizes can be the same, then we
talk about equal-width, or they can contain approximately the same number
of items (equal-frequency). A very sensitive parameter, how many bins to
produce, is required. The number of bins equals the size of the resulting
vector. It is not possible to say that one method is better for every single
case but in most cases, it is recommended to use an equal-frequency method
that works better with outliers. But it always depends on the nature of the
data. Both ways have their advantages and disadvantages. For example, for
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data where there is an uneven number of nominal values (ratings 1, 2, 3, 4, 5),
there is no reasonable equal-frequency distribution. [20]

Here ends the list of embeddings for basic data types. Boolean processing
does not need to be commented. In addition to basic data types, it is possible
to create embedding for whole items as well. The suggested approach includes
one, but I will introduce another one called Meta-Prod2Vec.

1.2.5 Meta-Prod2Vec

Meta-Prod2Vec has already been mentioned in Subsection 1.1.3. It is embed-
ding, which takes into account product attributes as well as interactions. It
builds on and expands the Prod2Vec method proposed in [21] a year earlier.
The reason I put it down to the end of this chapter is its association with the
word2vec method, specifically with its Skip-gram algorithm. Prod2Vec pro-
ceeds interactions including their timestamp. It is possible to sort the products
as they were viewed by a particular user. This sequence gives a “sentence”
for each user. The list of sentences is proceeded by the Skip-gram model,
which returns the vector for each “word” (product). From the description, it
must be clear that Prod2Vec also suffers from a cold-start problem because it
dependents on interactions only. Therefore, this method has been extended
to Meta-Prod2Vec, which, in addition to interactions, also takes into account
product metadata (attributes). “Because of the shared embedding space, the
training algorithm used for Prod2Vec remains unchanged. The only difference
is that, in the new version of the generation step of training pairs, the original
pairs of items are supplemented with additional pairs that involve metadata.”
[5], [21]

1.2.6 Latent semantic analysis

Latent semantic analysis (LSA), method introduced in 1988, improves in-
formation retrieval by reducing dimensionality. It focuses on revealing the
relationship between the used terms, especially in bag-of-words, such as syn-
onymy, homonymy, or polysemy. “[22] showed that people generate the same
keyword to describe well-known objects only 20 percent of the time.” LSA tries
to find these different expressions describing one object and merge them. In-
put is a term-document matrix (build by bag-of-words), which contains raw
term frequencies in its cells. On this matrix is applied a tf-idf or similar op-
eration to get the characteristic expressions for the documents. The most
important step is a dimensional reduction by matrix factorization, specifically
singular value decomposition (SVD), that is able to decompose the matrix into
a multiplicity of three others. The middle of these three matrices contains ex-
pressions “sorted in decreasing order”. Next, a truncated SVD algorithm is
applied, which means that it takes only k highest values and their correspond-
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ing vectors. As a result, each expression can be represented by a vector of the
k dimension. [23]

1.3 Artificial neural network

“Although the first articles about Artificial Neural Networks (ANN) were pub-
lished more than 50 years ago, this subject began to be deeply researched on
the early 90s, and still have an enormous research potential.” Everyone has
probably heard of them lately, as their signature can be found under most new
methods of artificial intelligence. Also, they help solve the problems of other
disciplines. Applications are found in biology, medicine, finance, transport,
military, law, and many others. Their great advantage over classical models
is the ability to find non-linear dependencies. One example I have already
introduced is word2vec, which uses neural networks in both inner algorithms
to predict word and context. ANNs must be variable to have so many applica-
tions. Each neural network consists of smaller elements. How these elements
are stacked and what algorithms are used, defines network’s properties and us-
age. You can see an overview of the architectures of the networks in Figure B.1.
Simple Feed Forward Network is great for explaining basic principles. All the
information in this chapter, including an introductory quotation, is from the
book Artificial Neural Network, A Practical Course. [24]

1.3.1 Basics

Neural networks have been inspired from the very beginning by the structure
of a human brain. The first paper describing the neural computational model
was written in 1943 by McCulloch and Pitts. The result was the creation
of the first artificial neuron. Like its biological template, this neuron had
multiple inputs called dendrites (z1,...x,), one output called the axon (y),
and the body where the computation is performed. Body consists of the so-
called activation function (g) applied to the activation potential (u), which
equals to the weighted sum of inputs (with weights wq,...w,) adjusted for
bias (6). Formally:

y= Q(Z wiz; — 0) = Q(Zwﬂi) for xg = —1; wg =10
=1 =0

Inputs are invariant, just like activation functions, and learning of neurons
is through weight and bias (also called threshold) changes. A more detailed
description of learning will be given below. There is only one axon, but is able
to branch out. That allows neurons to be connected to larger system that exist
in the brain as well. Simply connect output (axon) of a neuron to the input
(dendrite) of another neuron to create a neural network. There are many ways
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Figure 1.5: The artificial neuron [24, p. 12]
of connecting neurons. For Feed Forward architecture we talk about linking
to the layers. Labeling of these layers varies, but I will distinguish these:

Input layer is not made of any neurons, but provides input for the next
layer. Technically it is only a vector (z1,...xzy).

Hidden layer can be zero, one or hundred times in the ANN and allows
more complex calculations.

Output layer is the last layer, which combines an output of neurons to pro-
vide output vector of the whole network.

15t Hidden neural
layer
2d Hidden neural
layer

Figure 1.6: Example of a feedforward network with multiple layers [24, p. 23]

As can be seen in Figure 1.6, each neuron in the I; layer is connected
with its output to input of each neuron in the [;;1 layer. This way stacked
layers are also sometimes referred to as fully connected layers. The number
of such layers is just one of many hyperparameters in the Deep Feed Forward
Network. The others will be introduced in the following sections.
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Such interconnection is the main reason for the existence of the already
mentioned activation function because its task is to normalize the output
of the neuron. Activation functions add complexity to neural networks be-
cause without them, the multilayer network could be summed up to one layer.
The activation function is required to be fully differentiable for the purpose
of learning. There are justifiable cases where they are only partially differen-
tiable, but I will not deal with them. Here are three examples of commonly
used and fully differentiable activation functions:

Logistic function produces a real number in the range [0, 1] and is expressed
by the mathematical formula:

1

9 = T3 e

where [ is a constant declaring the slope. Special case, when 8 =1, is
called the sigmoid function.

glu)

‘ Bincreasing

T u

Figure 1.7: The logistic function [24, p. 16]

Hyperbolic tangent function is very similar to the logistic function but
provides values in the range [—1, 1]. Its mathematical expression is:

1— e Pu

) = e

with the same meaning of 5 as above.

A

B increasing

gl)

1

-1

Figure 1.8: The hyperbolic tangent function [24, p. 17]
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Linear function, also called identify function, is against reasons listed above,
why to use the activation function, but in certain justified cases is used,
usually when a full range of output on the last layer is wanted. For
completeness, its formula is:

9(u) =u

glu)

Figure 1.9: The linear function [24, p. 17]

This list contains only the basic functions. There are many more. Other
example could be a Gaussian function or a group of ReLU functions, whose
popularity has been rising for the benefit of faster convergence.

1.3.2 Training

One of the main advantages of ANN is their ability to learn. For learning
Forward Networks is needed not only input, but also the desired output (su-
pervised learning). The network tries to figure out what the relationship
between input and output is. That allows “generalizing solutions, meaning
that the network can produce an output that is close to the expected output of
any input values.” The training process consists of the following partial steps:

1. calculate the output (yi,...yn) from the input for current setting of
weights and bias

2. compare the obtained output with the desired one (9;...¢,) through
the loss function and get an error

3. propagate an error back to the network and change weights (including
bias)

How to calculate network output from input has already been shown. I will
only add that this phase is also called forward propagation. The difference
between the calculated and desired output is indicated by another of the hyper-
parameters, namely the loss function. The choice of loss function depends on
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the nature of the problem. Some function is selected for the classification
and another for the regression problem. I will introduce Mean squared error
(MSE), which is used extensively for regression problems. Its mathematical
expression is:

MSE(y,7) —y;)?

||M:

3\)—‘

Calculated error is used in the third step called backpropagation. This
algorithm was introduced in 1974 by Paul Werbosen and caused a significant
breakthrough in learning. It uses, among other things, the derivation of the
activation functions to determine the effect of the weight W;; on the output.
This weight is adjusted for the next iteration (¢ 4+ 1) with the formula:

Wii(t+1) = Wyi(t) +1 - qjs

where 7 is the learning rate, that indicates the step size. The learning rate can
be changed during the calculation, typically starting at a higher value when
exploring the space, and gradually decreasing to find the global minimum.
These changes can be controlled manually, but there are also so-called opti-
mizers that change the learning rate automatically. Perhaps the most popular
are the optimization algorithms Adam or SGD. The search of the value of
weight W to get minimal error is shown in Figure 1.10.

Enror,

WoPT

w(4)  w(s) w(7) w(6) w(3) w2 wa) Ww() w

Figure 1.10: Changes of weight during learning [24, p. 74]

The variable g;; reflects the weighting of Wj; on the error and the direction
(sign) of the change. Its calculation includes partial derivatives of activation
functions, varies according to whether it is an output or hidden layer and its
full description is beyond the scope of this work. For shallow nets, this is a
very accurate calculation, but for very deep nets, due to the massive number
of variables, it is difficult to propagate the error from the output to the first
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layers. It is possible to use tricks such as residual connections, but I will not
take care of them here.

Training of NN is an iterative process that includes these three steps over
and over. The m input vectors (z1,...x,) and the desired outputs (g1, ... Jn)
are required for learning. The dataset needs to be randomly divided into
training and test (validation) data. The first one is used to train the network,
the other to evaluate the ability of the network to generalize. Because forward
and backward propagation can be implemented by matrix multiplication, it
is possible to calculate outputs for multiple rows from dataset at once. This
is used in learning because evaluating each element separately and adjusting
scales would be terribly inefficient. For smaller datasets, it is possible to
take the entire training dataset. For larger is used batch learning, when a
fixed number of samples is taken (e.g., 512), passed through the network, the
average error is calculated, and then the weights are adjusted. When all the
training data is used, the epoch ends. Training is completed by the condition
or after the execution of a defined number of epochs.

1.3.3 Testing

The aim of the training NN is not only to minimize the result of the loss
function (error) calculated on the training data. From the network is wanted
much more, namely to recognize patterns and rules between input and output.
Deep neural networks are capable of incredibly complex calculations but are
also very sensitive to overfitting. That is a situation where the network is
not able to generalize. It does not find any patterns, but simply by setting
hundreds of weights returns the desired output, but is unable to cope with
new input. You can find the example of results of the correctly fitted network
(a) and overfitted network (b) in Figure 1.11.
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Figure 1.11: Correctly fitted (a) and overfitted (b) sin(x) [24, p. 103]
Evaluation the ability to generalize is provided by test subset of the dataset
that the neural network must not use for learning. Test dataset is given to

input of NN that calculates output and error but no longer propagates the
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Enror,

Error on the test subset

Error on the training subset

2 4 6 8 1(|) 12 14 16 Epochs
Underfitting ' Overfitting

Figure 1.12: Underfitting and overfitting [24, p. 102]

error back, so the weights remain unchanged. Then, errors for training and
testing subset are compared. The traditional course of these two errors during
training is described in Figure 1.12.
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Figure 1.13: Example of overfiting [24, p. 104]

The moment, when the error on the test data starts to grow, and the
network begins to overfit, can come in the tenth or even thousandth iteration.
It depends on data and NN topology. Due to the vulnerability of NN for
overfitting, a number of techniques have been developed to try to eliminate or
at least to delay overfitting as much as possible. The list of the most popular
methods is:

L1 and L2 regularizations increase the error by adding a sum of weights
to returned loss and thus forces the weights to have low values. For MSE
and the linear activation function on the last layer with the addition of
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Figure 1.14: Neural net before and after applying dropout [25]

L2 regularization, the resulting error can be written as

1 n m m

" 2 2

- S @i = wijwi)? + A w;
i=1 j=0 §=0

where A is another, very sensitive, hyperparameter. L1 regularization

works the same way, only instead of the sum of the quadrates of weights

uses the sum of the absolute values of weights. [26], [27]

Dropout method randomly skips neurons in hidden layers, including their
connection, during the training phase. That “prevents the units from
co-adapting too much.” You can see the demonstration in Figure 1.14.
Choosing which neurons to omit, can take place once for the whole epoch
or better for each batch separately. The number of omitted neurons is
given by the hyperparameter. Dropout is not used when evaluating test
data. [25]

Batch normalization is primarily designed to accelerate the calculation but
also has a regularization function. As input data is normalized, “batch
normalization normalizes the output of the previous activation layer by
subtracting the batch mean and dividing the batch standard deviation.”
It is recommended to use it in combination with a dropout. [28], [29]

1.3.4 Hyperparameters

I have already mentioned many hyperparameters, that is, the possibility of
setting up a network that is invariant in the training process. In addition to
the fact that training itself is an iterative process, the design of network is also
iterative. There is no general procedure to determine the correct setting of
the hyperparameters for a particular problem. There are only recommenda-
tions for specific situations. The hyperparameter list depends on the chosen
architecture. For FFN, the following are the primary ones:
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Number of layers and neurons per layer

Activation function

Loss function

e Optimizer
e Regularization

The procedure for selecting hyperparameters along with the results will be
listed in Section 3.4.
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CHAPTER 2

Design

All the necessary theory is described, so I can now propose new hybrid recom-
mendation method. First, I will explain its main idea and describe approach
from a high-level perspective. The new approach is designed to address the
cold-start problem described in Subsection 1.1.3 as a fundamental lack of the
collaborative filtering. Technically it is an extension of a content-based rec-
ommendation where attribute information along with interactions contributes
to determining similarity. The goal of this method is to teach the neural net-
work to predict interaction similarity using the embedding of items. For a
schematic of the method, see Figure 2.1.

To train the FNN, I need to build a dataset of inputs and outputs. The whole
process is described in the next section. When the dataset is ready, it is neces-
sary to design NN and iteratively choose hyperparameters. At the end of this
chapter, I will use the output model of the trained network to recommend,
and measure its quality by the already presented recall.

2.1 Data preprocessing

Data preprocessing is an essential part of this method, and therefore I will
describe it in detail. The entry point of my work is dataset containing items,
their attributes and interactions. The output of this section is a training set
prepared for the input of a neural network.

There is a little problem with terminology here because until now the
term dataset was meant to be the data prepared for the input of the neural
network and their corresponding outputs. Now, this term has been extended
to all data (products and their information and interactions) originating from
one domain. Therefore, the data prepared for the network will be now referred
to as a training dataset.
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Name | Description | Categories | Price
Beachshorts Elastic quick-dry bermudas ... | {’casual’,’men’} 4.89
Military Jacket | Army coat for men ... {’cotton’,’khaki’} | 38.98
Ttem 1 (Beachshorts) Item 2 (Military Jacket)
Word Set Number Word Set Number
embeddings embeddings
Embedding of item 1 Embedding of item 2

Interaction similarity

Figure 2.1: Illustration of proposed method

2.1.1 Embedding of each product

I begin by creating an embedding of each product in the dataset. I assume
that the product information includes text (name, description), numerical
data (price, number of pieces in stock) and sets (category, brand). For each
of these attributes, embedding is created. These data types go through the
following embeddings.

Because of sharing the dictionary between the individual text attributes,
they are all joined, and one vector is retrieved for all of them together. In this
work, I compare all three word embeddings listed in Subsection 1.2.2, namely
Bag-of-words, Hashing Vectorizer and Doc2Vec.

BoW and HV are further regulated by tf-idf to reduce the stop words
effect and highlight characteristic words. Since I require a vector of predefined
size for the input of NN, the LSA method introduced in Section 1.2.6 is also
applied in case of BoW. That allows all text attributes to be transformed into
one vector of size n. The experiments are performed for n = 64.

Numeric attributes are not joined together like text but are processed indi-
vidually by the equal-width binning method. Again, there is an option to set
the size of the resulting vector, that equals the number of bins at discretiza-
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tion. Here I have chosen 8 to be the width of each numerical attribute.

The sets go through exactly the same transformation as the words, that is
BoW — tf-idf — LSA. The only difference is that they do not build a common
dictionary for all set attributes, but each attribute has a separate one. As with
numbers, the resulting vector for each set attribute has a width of 8.

Now embeddings are ready for each attribute, and it is time to get em-
bedding of the whole product. To preserve all information, the summing or
averaging of the vectors is not chosen, but they are simply concatenated.
The resulting embedding will then have a width of 64 4 8: 4 84, where ¢ equals
the number of numeric attributes and j equals the number of set attributes.
You can find an example of such concatenation in Figure 2.2, where vectors
are limited to binary values for clarity, but in reality contain real numbers.

Name ] Description ] Categories ] Price
Beachshorts | Elastic quick-dry bermudas ... | {’casual’,’men’} 4.89
BoW Hashing B(iw Equal
i. Vectorizer e d
tdlldf or i or Doc2Vec tf-idf Width
. } Binning
LSA td-idf LSA

l 0010111010111111101110011101010110011011101110111110101110110011 |(]11()[)(]01|()1()111()()

Figure 2.2: Concatenation of embedding of each type

2.1.2 Interaction similarity

Dataset contains a list of interactions. The types of observed interactions and
their weights are:

e Detail view, 0.25

e Purchase, 0.75

e Cart addition, 0.75
e Bookmarks, 0.75

e Rating

For each type of interaction there is a list of triplets (user,item,weight),
where weight equals the explicitly given weight. The rating does not have
weight because it contains the value, which the user has rated the product.
These lists of triplets for each type can be combined into one large list. Since
there is required only one value for each (user,item) pair, weight in this list
is summed up for each unique pair (user,item). The maximum result is set
to 1, so weight = min(1,weight). This is illustrated in Figure 2.3. From this
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list of interactions, a very sparse interaction matrix is constructed according
to the definition and algorithm listed in Subsection 1.1.1. The matrix contains
the item’s interaction vector for each product with at least one interaction.
Products without any interaction are not present.

Detail views Bookmarks
user | item | weight user | item | weight
235 | 486 0.25 288 | 597 0.75 Interactions
288 | 883 0.25 270 | 83 0.75 wser | item | weight
275 | 83 0.25 218 | 486 0.75 575 183 T
238 | 883 -0.25
Cart additions Purchases 288 | 597 1
user | item | weight user | item | weight 288 | 883 0.25
275 | 966 0.75 275 | 83 0.75 218 | 444 0.75
288 | 83 0.75 238 | 883 075 TP 270 | 83 0.75
218 | 444 0.75 275 | 486 0.75 235 | 486 0.25
275 | 966 0.75
Ratings 263 | 83 0.5
user | item | weight ;;g 322 8;?
263 | 83 0.5 '
238 | 883 -1
288 | 597 1

Figure 2.3: Joining more types of interactions

There are typically, besides users, crawlers, which visit all the products and
index them, in this matrix. Their interactions interfere with the pattern of
behavior of average users, and their effect is undesirable. I designate a crawler
like a user who has interacted with more than % of all products, and remove
it from the matrix. Next, I put aside the users on whom the target model will
be tested. Therefore, the rows (users) of this matrix are shuffled, and the part
of the matrix is cut off and stored separately. I will refer to these users as
unused users. The size of the cut-off is dependent on the total number of users
and the desired precision of the measurement. I separate 5% of users. To see
how the final model recommends for products that never saw, it is needed to

shuffle and separate some of the products (unused items) as well.

2.1.3 Dataset

Interaction matrix along with embedding of all products is ready. I create
the training dataset by taking all the products from the interaction matrix
(except unused items) and tagging them as used items. From them, I create
pairs with each other, even product with itself, connect their embeddings and
compute the interaction similarity of them. The number of generated records
is |used items|?. You can see an illustration of this pairing in Figure 2.4, where
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Sim(x,y) is a cosine interaction similarity calculated from the remaining in-
teraction matrix. Again, for clarity of the illustration, the vectors contain
only zero and one. All these records build training dataset.

Item ID | Name | Embedding
8461 Beachshorts 0101101100
7812 Military Jacket | 1101001011
9743 Biker Jeans 0111011010
Input | Output
01011011000101101100 | Sim(8461, 8461) = 1.00
01011011001101001011 | Sim(8461, 7812) = 0.53
01011011000111011010 | Sim(8461, 9743) = 0.19
11010010110101101100 | Sim(7812, 8461) = 0.53
11010010111101001011 | Sim(7812, 7812) = 1.00
11010010110111011010 | Sim(7812, 9743) = 0.38
01110110100101101100 | Sim(9743, 8461) = 0.19
01110110101101001011 | Sim(9743, 7812) = 0.38
01110110100111011010 | Sim(9743, 9743) = 1.00

Figure 2.4: Building dataset

The output of the entire data preprocessing is a created training dataset
and a list of users with interactions that were not used for measuring the
interaction similarity (unused users).

2.2 Training

The data is almost ready. There is the last thing left before designing the neu-
ral network. In Subsection 1.3.3 I have described how to test NN functionality.
It is necessary to put aside data that will not be used for training, but for
testing the network and its generalization capabilities. As a last part of the
data preparation, it is needed to randomly mix the entire training dataset and
divide it into training and validation subset. Sometimes they are divided into
a training, test and validation parts, where the latter is used to compare the
models with each other, but this is not necessary because I will compare the
models according to the achieved recall. The division ratio is dependent on
the size of the dataset. The larger the validation subset, the more accurate
the measurement, but the fewer data to train, and vice versa. I used 10% of
the dataset as validation in my measurements.

Now is the time to design a NN. I use Deep Feed Forward Neural Network
with 15 layers. The number of layers was set after few iterations. With more
layers (> 20), the network had a learning problem, and with less (< 10) did
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not achieve such results. Other hyperparameters that I have found after few
iterations and have not changed since in my experiments are:

As an activation function for all neurons in hidden layers, I have chosen
the sigmoid. For the output layer containing only one neuron, it has
been selected a linear activation function.

As a loss function has been chosen Mean squared error (MSE) because the
problem is regressive by its character.

Optimizer = Adam
Batch size = 1,024

On the other hand, it took many iterations to find other hyperparameters
like the method of regularization or the number of neurons on each hidden
layer. The process of choice of these hyperparameters is described in Sec-
tion 3.4. Batch normalization along with the 25% neuron dropout for each
hidden layer is used in experiments. The number of neurons in hidden layers
was established as the twice of the width of one training sample.

The network is assembled. Now I need to train it, test it on validation
subset and evaluate its use in the recommendation.

2.3 Recommendation

The aim of this work is not only to train the network but also use it in the
recommendation system. Quality of a model is measured by recall, described
in Subsection 1.1.4. The number of recommended items (k) in this algorithm
equals 5. A trained neural network is used as a model, that gives the similarity
of two products. As a sample of users, for which is recall measured, a part
of the interaction matrix named unused users is used. For measurements,
users with more than one interaction are needed. I have randomly selected
250 users from this sample. Of course the more significant number of users is
better, the measurement is more accurate, but it would also take much longer.
It is not problem for a one-time evaluation, but I measure the recall regularly
during the training to see how network learning affects the recommendation.

Training and evaluation took place in steps. I train the NN for 50 epochs
(along with measuring validation error) and calculate recall along with catalog
coverage of model. This step is repeated 20 times. At the end, the network
was trained for 1,000 epochs. The measurement results along with the hyper-
parametrization course are in the next chapter.
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CHAPTER 3

Experiments

In this chapter, I will first introduce two real datasets which were used for
evaluation of the proposed method. Then I will demonstrate quality of chosen
embedding using t-SNE. Finally, I will present the results of the proposed
method.

3.1 Technology and hardware

Before I go to the measurement results, I have to briefly introduce the used
technologies. Python is the most popular language in the academic world and
machine learning specially, so it cannot be a surprise that I have also used it to
implement proposed method. The main advantage of this language is the hun-
dreds of available libraries and their interdependence. In the included source
code, you can find the NumPy, PySpark, Pandas, Scikit-learn, SciPy libraries,
or the Polyglot library for tokenization in word embeddings. I used the Keras
APT library for high-level work with neural networks implemented in Tensor-
flow. That is the software used. As far as hardware is concerned, the entire
experiment was run on a computing server with the following configuration:

CPU Intel® Core™ i7-6700
RAM 64GB

GPU GeForce® GTX 1080

What is important is the presence of a high-quality graphics card that com-
putes all the neural network calculations (training, evaluation, recommenda-
tion). NN can also be trained on a processor that has a much smaller overhead
to prepare data for the calculation, so it makes sense to use it to pass a sin-
gle record, but on more extensive data, it is significantly slower. Conversely,
counting the GPU records one by one would be incredibly inefficient, as it
would take over most of the time to send and retrieve the data. That is why I
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introduced the batch, set its size to 1,024, and I train NN by proceeding this
many records at once. The processor provides all other calculations including
all preprocessing of data.

3.2 Data exploration

I have tested the proposed method on actual datasets of two e-shops. I will
introduce both of them briefly. T add that if I talk now about interactions, then
it is about the resulting triplets after merging the multiple types described by
Figure 2.3.

Dataset A comes from a healthy nutrition store in the USA. It contains
2,725 products that were visited by 1,401,937 users and left 2,948,952 interac-
tions. These values include crawlers. Products have the following attributes
besides of their ID:

e Text: name, description, department, primary category, brand
e Number: rating (integer), price (real), sales rank (integer)
e Set: categories, collections

Some text attributes, such as brand, would be better to take as sets, but the
supplied dataset looks like this, and the proposed embedding must be able to
handle it.

Dataset B offers home furnishings in Brazil, so its language is Portuguese.
This entire dataset is too large for available hardware, as it contains over
8,000 products. For the entire experiment, I chose 2,500 with the highest
number of interactions. Together they have 3,253,753 interactions created by
2,502,613 users. The following attributes are available:

e Text: name
e Number: price (real), discount price (real), brand (integer)
e Set: categories

The brand is a numeric value because it is a reference to another table that I
do not have. It does not matter because the number is similarly informative as
the brand name. It would be better to perceive it again in sets. To summarize
and compare these statistics, see Table 3.1.

The interaction count histogram is very similar for most of these datasets.
A handful of users have more interactions, but most of them have one or
two. The distribution of interactions in dataset A can be seen in Figure 3.1.
In the user interaction histogram (b), you can also find crawlers whose in-
teractions are separated from the interaction matrix. Similar outliers can be
detected for products, but I do not remove them. It may be a bestseller or

34



3.3. Embeddings

Table 3.1: Datasets

Dataset A ‘ Dataset B
Products 2,725 2,500
Users 1,401,937 | 2,502,613
Interactions | 2,948,592 | 3,253,753

some additional service offered by e-shops for every merchandise. Histograms
for dataset B look almost identical thus are not shown.

Interaction histogram for items Interaction histogram for users

Frequency
Frequency

10

0 10000 20000 30000 40000 50000 60000 70000 200 100 600 800 1000 1200
# Interactions # Interactions

(a) (b)

Figure 3.1: Interaction histograms for items (a) and users (b) for dataset A.
Crawlers are marked with red.

3.3 Embeddings

In the experiment, one of my goals is to show that product attributes have
some information about user interactions, and the involvement of multiple
attributes leads to the more accurate recommendation. Therefore, training
datasets, which take only a part of their attributes, are created and tested.
Testing different types of embedding take place in the following steps:

1. A training dataset is formed only from text attributes as described in
Section 2.1.1 and the best word embedding is selected.

2. Next training dataset contains the word embedding selected in the first
step, and it is added set embedding of each product.

3. The last dataset extends the second one by containing numbers process-
ing.

The quality of used embedding methods can also be demonstrated by pro-
jecting the resulting vectors into 2D using t-SNE. If embedding is proper,

35



3. EXPERIMENTS

g

Figure 3.2: Clusters of items Figure 3.3: Clusters of items
by interactions by embeddings

products should be in clusters. Similarly, it is possible to project item’s in-
teraction vectors, where clusters arise depending on how users have interacted
with the products together. Since the dimensions of these vectors in a dense
representation are equal to the number of users, which is a huge number, it
is not possible to use only t-SNE, that is able to handle the 100-dimensional
vectors playfully, but it is unusable for such large numbers. But I can use LSA
to reduce the dimension to 100 and then apply t-SNE.

In Figure 3.2 you can see clusters of products from the dataset A according
to the interactions, in Figure 3.3 the clusters according to the embedding of all
the attributes. The marked red cluster contains the products belonging to the
category called Essential Oils. It is obvious and no surprise that these products
are associated together with interactions. Similarly, embedding seems to be
of good quality because it has transformed the text into vectors and keep
relationships between them. Details of both of these clusters can be found in
Figures 3.5 and 3.4.

3.4 Hyperparameters

Most of the hyperparameters have already been set in Section 2.2. Problem
was to determine the number of neurons on individual layers. I tried to as-
semble the pyramid with 128-64-32-16-8-4-2-1 or set the fixed layer size to
50-250 neurons. Since the length of the input vectors is variable depending
on the processed attributes, I have chosen also variant number of neurons in
the hidden layers, specifically twice the size of the input vector, which equals
to four times the size of embedding. As a result, this means that if I process
only the text, each hidden layer has 256 neurons. For example, embedding
containing all attributes for dataset A has a dimension of 104, so a number of
neurons equals 416. Output layer connected to last hidden layer has in this
experiment always only one neuron with linear activation function.

The worst hyperparameter regarding finding was a regularization. You can
see learning outcomes in the form of a graph of the evolution of training and
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validation errors for the various ways of regularization in Figure 3.6. Part (a)
shows the training of the neural network without any regularization. You
can see textbook overfitting after a few epochs. To (b) was added a dropout
with the o = 0.5 parameter specifying the number of omitted neurons, and
the result is too much regularization that prevents learning. As promising,
though unused in final, appeared L2 regularization with A = 1076 illustrated
in (c¢). Such a small A value is chosen because the average output of training
set is very close to zero.

TN
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| |
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™ ~
Mtnct b gl —_—

(a) (b) (c)

Figure 3.6: No regularization (a), dropout of half of neurons (b) and L2
regularization (c¢). Validation error is orange, training error is blue.

As a final regularization methods were chosen batch normalization after
each hidden layer with the cooperation of dropout of i neurons.

3.5 Results

Now the promised results. Recall is always measured using the same users
who were randomly selected from the interaction matrix. I compare recall of
the three models:

Interaction recall uses the cosine similarity of item’s interaction vectors as
a metric of similarity between items. It is measured at the beginning of
the experiment and does not change over time.

Embedding recall is the same, only items are represented by embeddings,
not by interactions. It changes according to the embedding method and
the used attributes.

Neural recall includes a trained neural network as a metric of similarity. It
changes and is measured during network training. The table below lists
the highest achieved and the appropriate catalog coverage.

The Tables 3.2 and 3.3 provide the final results of each measurement.
The number in front of the arrow is embedding recall and catalog coverage,
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Table 3.2: Results for dataset A

| Recall [%] | Catalog coverage [%]

Interaction | 18.06 | 19.56
Doc2Vec 2.70 — 4.48 28.15 — 10.64
Hashing vectorizer 448 — 5.49 23.63 — 10.02
Bag-of-words 4.69 — 7.39 22.50 — 17.00
BoW, Sets 4.49 — 10.47 23.30 — 17.76
BoW, Sets, Numbers || 3.91 — 12.38 21.47 — 17.83

Table 3.3: Results for dataset B

| Recall [%] | Catalog coverage [%]

Interaction H 19.60 \ 19.16
Doc2Vec 5.15 — 4.51 31.16 —» 9.92
Hashing vectorizer 8.41 — 3.99 28.36 — 23.20
Bag-of-words 6.23 — 15.09 27.56 — 21.24
BoW, Sets 7.57 — 16.67 26.88 — 24.32
BoW, Sets, Numbers || 8.40 — 18.47 27.56 — 21.20

after the arrow is the result of the network (neural recall and CC). From
the word embeddings, Bag-of-words has the best results. In the case of the
dataset B, it was even overwhelming, as the network barely learned to work
with Doc2Vec and did not even cope with the Hashing Vectorizer. The BoW
victory may seem very surprising, but it should be borne in mind that it
is not only BoW, but embedding goes through other filters like tf-idf and
especially LSA. In addition, the word embedding on the dataset B involves
processing only a product name that is mostly unique, so Doc2Vec is not
able to achieve the same quality as when processing full sentences in a native
language. Adding additional attributes to embedding shows improvements in
network performance. In the case of the dataset B, the embedding itself is
more valuable for the recommendation. To the dataset A, the neural network
must help with interpretation of embeddings. The biggest increase of recall
can be seen on the last row of dataset A, when the network increase recall by
216%.

However, the greatest success of this method is the gained model trained
using all the attributes from the dataset B. It reaches almost the same recall
as the interaction and even goes beyond the interaction CC, which means
that this model, created by proposed method, is able to recommend as well
as the collaborative filtering, but it does not have a cold-start problem and
can handle these recommendations for new products without interactions.
Figure 3.7 shows the learning process along with the recall, and it can be
expected that the resulting neural recall could still grow and possibly match
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the interaction one. The red and purple curves depict the evolution of training
and validation error and are related to the left axis. On the right axis, you can
see the values of recall. The embedding and interaction recall does not change
during the learning process and is added to the graph only for illustration.
Important is the evolution of neural recall shown in blue.

Dataset B: Training of NN, Bow & Sets & Numbers
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Figure 3.7: Training and validation error and recall during training of NN on
dataset B using embedding of words, sets and numbers

For comparison, I supply Figure 3.8, which is very similar, but numbers
are skipped, and only words and sets are embedded. It can be seen that the
neural recall does not reach the results as in the case of Figure 3.7. In both
cases, there is a tendency for moderate overfitting starting around the 200th
epoch, but due to regularization, the validation error continues to fall, albeit
not as quickly as a training error. Chart for each result from Tables 3.2 and 3.3
can be found in Appendix B.
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Dataset B: Training of NN, BoW & Sets
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Figure 3.8: Training and validation error and recall during training of NN on
dataset B using embedding of words and sets
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Conclusion

This thesis aimed to design, implement and evaluate a new approach of the
recommendation systems, which will be able to predict the interaction similar-
ity based on the attributes of items. This goal has been fully achieved. Model,
created by the proposed method, is able to give a more accurate recommen-
dation by up to 216% than traditional content-based recommendations. In
some cases the model matches the performance of collaborative filtering but
does not require interactions and, therefore, solves the cold-start problem.

Different word embedding for processing of textual information about
products has been compared within this method. The Bag-of-words model
was chosen as the best (even better than Doc2Vec), and was used for the final
embedding of product, which was later proceeded by the neural network. It
was demonstrated that including more information about product leads to
better recommendation. The proposed method can be extended to process,
besides text, numbers, and sets, also images, videos, and others.

The work is designed to be a successful proof of the concept, and the
developed method can process an utterly arbitrary dataset. Future work on
this approach includes incorporating into complex recommendation engines
and online evaluation using real users.
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APPENDIX A

ANN Artificial neural network
BoW Bag-of-words

CB Content-based recommendation
CBoW Continuous Bag-of-Words
CC Catalog coverage

CF Collaborative filtering

FFN Feed Forward Network

HYV Hashing Vectorizer

LSA Latent semantic analysis
MSE Mean squared error

NN Neural network

Acronyms

PV-DM Distributed Memory version of the Paragraph Vector

RS Recommendation system

tf-idf term frequency—inverse document frequency
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Figure B.1: Architectures of Neural Networks [30]
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Dataset A: Training of NN, BoW & Sets
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Figure B.5: Training of NN on dataset A from BoW and Sets
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Dataset A: Training of NN, Bow & Sets & Numbers
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Dataset B: Training of NN, Hashing Vectorizer
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Dataset B: Training of NN, Doc2Vec
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Dataset B: Training of NN, BoW
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Dataset B: Training of NN, Bow & Sets & Numbers
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Figure B.11: Training of NN on dataset B from BoW, Sets and Numbers
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APPENDIX C

Contents of enclosed CD

thesis.pdf ... the thesis text in PDF format
L oo the directory of source codes
method.ipynb .................. implementation of proposed method
SettingsS . Py ..o vt dataset settings
portuguese-stop-words.txt......... list of stop words for dataset B
thesis.............. the directory of IXTEX source codes of the thesis
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