
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 30, 2017

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Automata Approach to XML Data Indexing: Selecting Unknown Nodes

 Student: Maria Karzhenkova

 Supervisor: Ing. Eliška Šestáková

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2018/19

Instructions

Study the following automata-based XML data indexing methods [1]: Tree String Path Automaton (TSPA)
and Tree String Path Subsequences Automaton (TSPSA).
1) Modify these methods so they would also support XPath wildcards (asterisk) to select unknown XML
nodes.
2) Discuss theoretical time and space complexities of proposed methods and implement them in the Java
programming language.
3) Perform appropriate testing of your implementation.

References

[1] Šestáková, E. Indexing XML documents. Diss. Master’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, Prague, 2015.

ii

Acknowledgements
I would like to express my gratitude to my
supervisor, Eliška Šestáková, for her great
support and useful remarks during my
studies. Her guidance helped me through-
out the whole process of writing this the-
sis.

Also, I would like to thank my family,
friends and my partner who encouraged
me and gave me their support.

Declaration
I hereby declare that the presented the-

sis is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

I acknowledge that my thesis is subject
to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the
Copyright Act, as amended, in particular
that the Czech Technical University in
Prague has the right to conclude a license
agreement on the utilization of this thesis
as school work under the provisions of
Article 60(1) of the Act.

In Prague on 15th May 2018

...

iii

Abstract
Being a part of the “Automata Approach
to XML Data Indexing” project, this the-
sis is concerned with studying the existing
methods of indexes creation algorithms
based on the automata theory and extend-
ing them to deal with more significant
fragment of XPath queries.

The presented methods allow us to con-
struct XML data indexes that support
evaluation of all XPath queries using any
combinations of child (/), descendant-or-
self (//) axes, asterisk (*) and nodename
node tests.

Given an XML document D and its
corresponding XML tree model T with n
nodes, the tree is preprocessed and the
index for the document D is constructed.

The searching phase time of each of
the constructed indexes for a query Q is
bounded by O(m), where m is size of the
query Q, and does not depend on the
indexed XML document size n.

Moreover, the space and time complex-
ities for each of the proposed indexes are
discussed, all the introduced algorithms
are implemented and tested over the real-
life datasets.

Keywords: XML, XPath, tree, finite
automaton, index, unknown nodes

Supervisor: Ing. Eliška Šestáková

Abstrakt
Tato práce je součástí projektu “Indexo-
vání XML dokumentů pomocí automatů”.
Popisuje existující metody pro indexo-
vání XML dokumentů, které jsou založeny
na teorii automatů, a jejich rozšíření, za
účelem umožnění efektivního zpracování
XPath dotazů skládajících se z libovolné
kombinace child (/), descendant-or-self
(//) os a asterisk (*) a nodename node
testů, sloužících k navigaci v XML doku-
mentu.

Ke konstrukci indexu pro daný XML
dokument D s n elementy je využít odpo-
vídající XML stromový model T . Zpraco-
vání dotazu Q o velikosti m proběhne v
čase O(m) nezávislém na n.

Tato práce obsahuje též diskuzi ohledně
časové a paměťové složitosti pro každou
z navržených metod. Všechny nově po-
psané algoritmy jsou implementovány a
otestovány na reálních datech.

Klíčová slova: XML, XPath, strom,
konečný automat, index, neznámé uzly

Překlad názvu: Indexování XML
dokumentů pomocí automatů: výběr
neznámých uzlů

iv

Contents
1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Goals of the Thesis 1
1.3 Thesis Structure 2
2 Theoretical Background 3
2.1 Notations . 3
2.2 Basic Definitions 4
2.2.1 Alphabet, String 4
2.2.2 Graph . 4
2.2.3 Tree . 5
2.2.4 Language, Grammar 5
2.2.5 Finite Automaton 6

2.3 XML . 7
2.4 XML Data Model 8
2.5 XPath . 9
2.5.1 XPath Syntax 9
2.5.2 Examples 10

3 Automata-based XML data
indexing methods 13
3.1 String Paths 13
3.2 Tree String Paths Automaton . . 14
3.2.1 Construction of Tree String
Paths Automaton 14

3.2.2 Time and Space Complexities 15
3.3 Tree String Path Subsequences
Automaton . 15
3.3.1 Construction of Tree String
Path Subsequences Automaton . . 16

3.3.2 Time and Space Complexities 17
3.4 Tree Paths Automaton 17
3.4.1 Construction of Tree String
Paths Automaton 18

3.4.2 Time and Space Complexities 19
4 Automata for Selecting Unknown
Nodes 21
4.1 Tree String Paths Automaton for
Selecting Unknown Nodes 21
4.1.1 Discussion of Time and Space
Complexities 23

4.2 Tree String Path Subsequences
Automaton for Selecting Unknown
Nodes . 28
4.2.1 Discussion of Time and Space
Complexities 31

4.3 Tree Paths Automaton for
Selecting Unknown Nodes 34
4.3.1 Discussion of Time and Space
Complexities 38

5 Implementation 41
5.1 System Architecture 41
5.2 Document Parser 41
5.3 Index Builder 41
5.4 XML Data Index 43
6 Testing and Experimental
Evaluation 45
6.1 Experimental Setup 45
6.2 Performance of TPA*
Construction 46

6.3 Performance of Query Processing 47
7 Conclusion 49
7.1 Goals Fulfillment 49
7.2 Contribution of the Thesis 49
7.3 Future Work 50
Bibliography 51
A Acronyms 53
B Tree String Path Subsequences
Automaton for Selecting Unknown
Nodes 55
C Tree Paths Automaton for
Selecting Unknown Nodes 57

v

Figures
2.1 XML tree model T (D) from
Example 2.1 . 9

2.2 Occurrences of XPath queries Q1
and Q2 from Example 2.3 11

2.3 Occurrences of XPath queries Q3
and Q4 from Example 2.4 11

2.4 Occurrences of the XPath query
Q5 = //US/* from Example 2.5 . . . 11

3.1 TSPA for the XML document D 15
3.2 TSPSA for the XML document D 16
3.3 TPA for the XML document D . 18

4.1 TSPA* automata for individual
string paths of the XML tree
model T from Figure 2.1 22

4.2 TSPA* for the XML tree model T
from Figure 2.1 24

4.3 Occurrences of XPath queries from
Example 4.3 25

4.4 Occurrences of XPath queries from
Example 4.3 26

4.5 Occurrences of XPath query Q4 =
/SERIES/*/* from Example 4.3 . . . 26

4.6 “Backbone” of the TSPSA*
automaton for the string path P
from Example 4.4 30

4.7 Not-completed TSPSA* automaton
for the string path P from Example
4.4 after inserting “additional”
transitions . 30

4.8 Completed TSPSA* automaton for
the string path P from Example 4.4
after inserting “wildcard” states and
transitions . 30

4.9 Occurrences of XPath queries Q1
and Q4 from Example 4.5 33

4.10 Occurrences of XPath queries Q5
and Q8 from Example 4.5 33

4.11 Occurrences of the XPath query
Q5 = //*//*//* from Example 4.5 33

4.12 TSPA* for the string path P from
Example 4.6 35

4.13 TSPSA* for the string path P
from Example 4.6 35

4.14 “Not-finished” TPA* for the
string path P from Example 4.6 . . 37

4.15 TPA* for the string path P from
Example 4.6 38

5.1 System Architecture of the
tpaUNlib . 42

5.2 DocumentParser class 42
5.3 AutomatonFactory and

ParallelRunner classes 43
5.4 Automaton class 43
5.5 State, Transition and XMLTag
classes . 44

6.1 Performance comparison of TPA*
and Saxon . 47

vi

Tables
6.1 Characteristics of the datasets . . 45
6.2 Set of queries for XMark datasets 46
6.3 Numbers of elements satisfying the
queries in the datasets 46

6.4 Experimental results on the index
size and construction time 46

B.1 Transition table of TSPSA* for
the XML document D from
Example 2.1 55

C.1 Transition table of TPA* for the
XML document D from Example 2.1 58

vii

Chapter 1
Introduction

1.1 Motivation and Objectives

XML, which stands for eXtensible Markup Language, was designed to store
and transport data and it still remains one of the main methods of information
exchange over the Internet [1]. That is why, efficient querying of XML
data belongs to key tasks that are extensively studied. XPath (XML Path
Language) and other similar instruments allow us to retrieve data from XML
documents [15]. However, we can achieve faster searching by preprocessing
the data and building an index.

This thesis is a part of the “Automata Approach to XML Data Indexing”
project [6, 10, 11, 12] that is focused on studying and creating new algorithms
for building indexes of XML data by means of (as it can be seen from the
project name) automata.

The whole project is about creating a new concept of solving the XML index
problem using the automata theory. Nowadays, the XML index problem is
still actively researched, but nevertheless the existing solutions are not usually
based on a systematic approach of the standard theory of formal languages
and automata. Therefore, this project is supposed to create, describe and
implement new algorithms for creating XML indexes based on the automata
theory, which are able to answer some subsets of the XPath queries, e.g.,
XPath queries using any combinations of the child and descendant-or-self
axes, in time that does not depend on the size of the original XML document.

1.2 Goals of the Thesis

The main goals of this thesis are to:

. study automata-based XML data indexing methods such as Tree String
Paths Automaton (TSPA) and Tree String Path Subsequences Automa-
ton (TSPSA),.modify these methods so they would also support XPath wildcards
(asterisk) to select unknown XML nodes,

1

1. Introduction
. discuss theoretical time and space complexities of the proposed methods,. implement the proposed algorithms in the Java programming language,. perform appropriate testing and experimental evaluation of the imple-

mentation.

1.3 Thesis Structure

The rest of the thesis is organized as follows:

Chapter 2 covers theoretical backgrounds such as notation, definitions and
basic information about XML and XPath.

Chapter 3 is focused on existing automata-based XML data indexing meth-
ods.

Chapter 4 is the main part of this thesis, as it describes modification of the
existing methods so they support selecting of unknown nodes. This chapter
also includes discussions of time and space complexities of the proposed
methods.

Chapter 5 is about implementation details and code structure.

Chapter 6 is focused on testing and experimental evaluation.

Conclusion is the closing chapter of this work.

2

Chapter 2
Theoretical Background

In this chapter all the concepts that are used in the next chapters of the thesis
are presented and defined. Moreover, here one can find a short introduction
to the XML format and to the XPath queries.

2.1 Notations

This section contains all the notations that are indispensable for understanding
the following thesis text.. A for an alphabet,. a for an alphabet symbol,. L for a language,.N for a set of nonterminal symbols,. S for a start symbol of a grammar,. q, p for states of an automaton,. q0 for an initial state of an automaton,.Q for a set of states of an automaton,. F for a set of final states of an automaton,. δ for automaton transition function,.M for a finite automaton,.G for a directed graph and for a grammar,. V for a set of vertices (nodes) in a directed graph,. R for a set of lists of edges in a directed graph,. v, u for a graph vertex (node),.D for an XML document,. T for a tree and for an XML tree model,. n for a node of a tree and for a node of an XML tree model,

3

2. Theoretical Background
. r for a root node of an XML tree model,. e for an XML element,.Q for an XML query,. h for a height of an XML tree model,. k for a number of leaves of an XML tree model,. l for a label of a tree node or an XML element,. Pi for a string path,. P for a string paths set and for a set of production rules,. OP (e) for a set of occurrences of an element e in a string path P.

2.2 Basic Definitions

In this section definitions useful for the rest of the thesis are presented. The
definitions except the common ones are mostly taken from the “Introduc-
tion to Automata Theory, Languages and Computability” book [3] and the
“Handbook of Graph Theory” [2].

2.2.1 Alphabet, String

Definition 2.1 (Alphabet). An Alphabet is a finite, nonempty set of symbols.
Definition 2.2 (String (or Word)). A String (or Word) over a given alphabet A
is a finite sequence of symbols of A.
Definition 2.3 (Length of a string). A Length of a string x is the number of
its symbols and is denoted by |x|.
Definition 2.4 (Prefix). A Prefix of a string x = x1x2 . . . xn is a string
y = x1x2 . . . xm, where m ≤ n.
Definition 2.5 (Suffix). A Suffix of a string x = x1x2 . . . xn is a string y =
xixi+1 . . . xn, where i ≥ 1.
Definition 2.6 (Subsequence). A Subsequence of a string x = x1x2 . . . xn is a
string y obtained by deleting zero or more symbols from x.

2.2.2 Graph

Definition 2.7 (Directed graph). A Directed graph G is a pair (V,R), where
V is a set of nodes and R is a set of lists of edges such that each element of R
is of the form ((v, u1), (v, u2), . . . , (v, un)), where v, u1, u2, . . . , un ∈ V, n ≥ 0.
This element indicates that, for node v, there are n edges leaving v, entering
node u1, node u2, and so forth.
Definition 2.8 (Path). A sequence of nodes (v0, v1, . . . vn), n ≥ 1 is a Path of
length n from node v0 to node vn if there exists an edge which leaves node
vi−1 and enters node vi for all i, where 1 ≤ i ≤ n.

4

................................... 2.2. Basic Definitions

Definition 2.9 (Cycle). A Cycle is a path v0, v1, . . . vn, where v0 = vn.
Definition 2.10 (Directed acyclic graph). A Directed acyclic graph is a Di-
rected graph that has no Cycle.
Definition 2.11 (Labeling). A Labeling of a Graph G = (V,R) is a mapping V
into a set of labels.
Definition 2.12 (Out-degree, In-degree). Given a node v, its Out-degree is
the number of distinct pairs (v, u) ∈ R, where u, v ∈ V . By analogy, the
In-degree of node v is the number of distinct pairs (u, v) ∈ R where u, v ∈ V .

2.2.3 Tree

Definition 2.13 (Tree). A Tree is an acyclic connected graph. Any node of a
tree can be selected as a Root of the tree. A tree with a root is called Rooted
tree.
Definition 2.14 (Rooted directed tree). A Rooted directed tree T is a Directed
acyclic graph T = (V,R) with a special node r ∈ V , called the root, such that. in-degree of r is 0,. in-degree of all other nodes of T is 1,. there is just one path from the root r to every node n ∈ V , where n 6= r.

Definition 2.15 (Leaf). A node n ∈ V is a leaf of a Rooted directed tree
T = (V,R) if it has out-degree 0.
Definition 2.16 (Labeled tree). A Labeled tree is a tree T = (V,R) that
has the following property: each node n ∈ V is labeled by a symbol a ∈ A,
where A is an alphabet.
Definition 2.17 (Subtree). Let T = (V,R) be a Rooted directed tree. A
Subtree T ′ = (V ′, R′) of T is a rooted directed tree, where V ′ ⊆ V ∧R′ ⊆ R.
Also, if n is a leaf in T ′, then n is a leaf in T .

2.2.4 Language, Grammar

Definition 2.18 (Language). A Language L over an alphabet A is set of words
over that alphabet.
Definition 2.19 (Grammar). A Grammar is a quadruple G = (N,A, P, S),
where.N is a finite set of nonterminal symbols,. A is an input alphabet,. P is a set of production rules, i.e., finite subset of (N ∪A)∗N(N ∪A)∗×

(N ∪A)∗,. S ∈ N is the start symbol of the grammar.

5

2. Theoretical Background
Definition 2.20 (Regular grammar). A grammar G = (N,A, P, S) is called
Regular, if every rule is of the form A → aB or A → a, where A,B ∈ N ,
a ∈ A. The single exception is the rule S → ε in case that S is not present in
the right-hand side of any rule.
Definition 2.21 (Context-free grammar). A grammar G = (N,A, P, S) is
called Context-free, if every rule is of the form A → α, where A ∈ N ,
α ∈ (N ∪A)∗.

2.2.5 Finite Automaton

Definition 2.22 (Deterministic finite automaton). A Deterministic finite au-
tomaton (DFA) is a quintuple M = (Q,A, δ, q0, F), where.Q is a finite set of states,. A is a finite input alphabet,. δ is a mapping from Q×A to Q,. q0 is the initial state,. F ⊆ Q is a set of final states.

Definition 2.23 (Nondeterministic finite automaton). A Nondeterministic finite
automaton (NFA) is a quintuple M = (Q,A, δ, q0, F), where.Q is a finite set of states,. A is a finite input alphabet,. δ is a mapping from Q×A into a set of subsets Q (denoted by 2Q),. q0 is the initial state,. F ⊆ Q is a set of final states.

Definition 2.24 (d-subset). Let M1 = (Q1, A, δ1, q01, F1) be a nondeterminis-
tic finite automaton. Let M2 = (Q2, A, δ2, q02, F1) be the deterministic finite
automaton equivalent to automaton M1. Automaton M2 is constructed using
the standard determinization algorithm based on subset construction [5].
Every state q ∈ Q2 corresponds to some subset d of Q1. This subset will be
called a d-subset (deterministic subset). The d-subset is a totally ordered
set, the ordering is equal to ordering of states of M1 considered as natural
numbers.
Definition 2.25 (Product construction (union) of finite automata). Let M1
and M2 be two finite automata with the same input alphabet A that accept
languages L1 and L2, respectively. Product construction (union) of finite
automata is an algorithm for creation a new finite automaton M that ac-
cepts language L = L1 ∪ L2. This is achieved by running both automata “in
parallel”, by remembering the states of both automata while reading the input.

Considering M1 = (Q1, A, δ1, q01, F1) and M2 = (Q2, A, δ2, q02, F2), we define
a finite automaton M as follows: M = (Q,A, δ, q0, F), where

6

.. 2.3. XML

.Q = Q1 ×Q2,. δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)),. q0 = (q01, q02),. (q1, q2) ∈ F iff q1 ∈ F1 or q2 ∈ F2.

Each state in Q is a pair consisting of a state from Q1 and a state from Q2. In
state (q1, q2) on input a, the automaton M proceed by executing M1 from q1,
and in parallel, executing M2 from q2.

2.3 XML

XML [1], which stands for Extensible Markup Language, was originally
created in order to store and transfer data in a usable, both human- and
machine-readable, format. Nowadays, it is still playing a huge role in the
exchange of information all over the Internet.

The most important components of an XML document are:.Tags – the markup constructs that start with < and end with >. They
are divided into three different types:. start-tag – <tag>,. end-tag – </tag>,. empty-element tag – <empty-tag/>,. Elements – everything from the start-tag to the end-tag (including both
these tags),.Attributes – parts of elements, that contain additional information
about a related element.

XML (in contrast with HTML) is an extensible language, which means that
there are no predefined tags. Tags are created by the author of a document
to fit his own needs.
Definition 2.26 (Well-formed XML document). An XML document with cor-
rect syntax is called “Well-formed” [14]. The syntax rules are:. all XML documents must have a root element,. all XML elements must have a closing tag,. all XML tags are case sensitive,. all XML elements must be properly nested,. all XML attribute values must be quoted.

Example 2.1. A simple well-formed XML document that represents some
information about famous TV series.

7

2. Theoretical Background
<SERIES>

<US name="House M.D.">
<ACTORS>

<FEMALE>Lisa Edelstein</FEMALE>
<MALE>Hugh Laurie</MALE>

</ACTORS>
<GENRES>Drama</GENRES>

</US>
<UK name="The IT Crowd">

<ACTORS>
<MALE>Chris O’Dowd</MALE>
<MALE>Richard Ayoade</MALE>

</ACTORS>
<GENRES>Comedy</GENRES>

</UK>
</SERIES>

The very first line of the Example 2.1 contains the start-tag <SERIES> and
the last one represents the paired end-tag </SERIES>. So we can say that all
the data between these two tags (including the tags themselves) is forming
the SERIES element.

Since elements can be nested inside other elements, we can build almost any
structure of the XML document. These nested elements give us information
about its parent element. For example, such element as MALE and optionally
FEMALE are sub-elements of the element ACTORS.

Attributes are another way of representing data related to the element. For
instance, <US name="House M.D."> shows us that the name of the element
US is "House M.D.".

2.4 XML Data Model

In order to make our algorithms describing process more clear, we define an
XML Data Model that includes:. an XML alphabet, which helps us to represent elements of an XML

document in more intuitive way,. a tree model of an XML document.

We can represent a well-formed XML document as an ordered labeled tree
where nodes correspond to XML elements, and edges represent element
inclusion relationships. For simplicity, we do not search elements by attributes
or texts in the leaf nodes, so for now we can consider only the XML document
structure and ignore this additional information. We assume that only well-
formed documents are presented as inputs for our indexing methods.

A node in an XML tree model is represented by a pair (label, id), where
id and label represents its identifier and tag name, respectively. Preorder

8

....................................... 2.5. XPath

numbering scheme will be used to uniquely assign an identifier to each of the
tree nodes.
Definition 2.27 (XML alphabet). Let D be an XML document. An XML
alphabet A of D, represented by A(D), is an alphabet where each symbol
represents a tag name (label) of an XML element in D.
Example 2.2. Let D be the XML document from Example 2.1. The corre-
sponding XML alphabet A is

A(D) = {SERIES,US,UK,ACTORS,GENRE,FEMALE,MALE}.

Figure 2.1 shows XML tree model T (D) for the XML document D.

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRE,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRE,11

Figure 2.1: XML tree model T (D) from Example 2.1

We should note that in this thesis we use a modified version of the product
construction algorithm. The biggest difference from mentioned in Defini-
tion 2.25 is that the numbers in d-subsets of automata contain ids of the
XML document nodes, so we do not want the states of the product to contain
each id more than once. Instead of this, in the implementation, we create a
set of states consistsOf for each of the newly created state q of the product
automaton and we use this set of states to run all their transitions “in paral-
lel” and to construct the next states that can be reached from the state q.
Moreover, the unreachable states are not included in the resulting product of
automata.

2.5 XPath

XPath [15], which stands for XML Path Language, is a powerful instrument
that can be used to navigate through elements and attributes in an XML
document. In this section we describe only a small subset of the XPath
language expressions, which will be useful for the rest of the thesis.

2.5.1 XPath Syntax

XPath uses path expressions (also called queries) to select nodes or node-sets
in an XML document. XML documents are treated as trees (as it is described

9

2. Theoretical Background
in the previous Subsection 2.4). Nodes of a tree are selected in a certain
context – current node in the XML tree a processor is looking at. In this
thesis we work only with selecting XML document elements (we are not
selecting such kinds of nodes as attributes, texts etc. of the XML document).
That is why we need only a small subset of the XPath expressions to work
with.

To select a subset of XML document elements we use the following types
of XPath expressions:.Axis – defines a node-set relative to the current node. child (/) – selects all children of the current node,. descendant-or-self (//) – selects all descendants (children, grand-

children, etc.) of the current node,.Node test. nodename – matches all nodes with the name “nodename”,. * – matches any element node.

For simplicity, we denote a subset of XPath queries that uses both child
and descendant-or-self axes and both nodename and asterisk (∗) node tests
as XP {/,//,nodename,∗}. Analogically we can describe any subset of XPath
expressions, e.g., XP {/,nodename} – for XPath queries using only the child
axis and nodename node test or XP {//,∗} – for XPath queries using only the
descendant-or-self axis and asterisk (∗) node test.

2.5.2 Examples

Let us show how the XPath queries (expressions) select nodes by means of
examples.
Example 2.3. Consider XML tree model T (D) from Figure 2.1. In Figure 2.2
nodes selected by queries Q1 = /SERIES/US and Q2 = /SERIES/* are repre-
sented in red color. Nodes that are on the path to the selected nodes, which
is shown by red edges, are blue.
Example 2.4. Consider XML tree model T (D) from Figure 2.1. In Figure 2.3
nodes selected by queries Q3 = //ACTORS and Q4 = //US//* are represented
in red color. Nodes that are on the path to the selected nodes, which is shown
by red edges, are blue. Note that, for example, in Figure 2.3a there are some
“skipped nodes” on the path. This happens because the query Q4 is looking
for any nodes that have label ACTORS, that is why nodes (1), (2), (7) are not
selected as parts of the path.
Example 2.5. Consider XML tree model T (D) from Figure 2.1. In Figure 2.4
nodes selected by query Q5 = //US/* are represented in red color. Nodes
that are on the path to the selected nodes, which is shown by red edges, are
blue.

10

....................................... 2.5. XPath

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

(a) : Occurrences of the XPath query
Q1 = /SERIES/US

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

(b) : Occurrences of the XPath query
Q2 = /SERIES/*

Figure 2.2: Occurrences of XPath queries Q1 and Q2 from Example 2.3

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

(a) : Occurrences of the XPath query
Q3 = //ACTORS

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

(b) : Occurrences of the XPath query
Q4 = //US//*

Figure 2.3: Occurrences of XPath queries Q3 and Q4 from Example 2.4

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

Figure 2.4: Occurrences of the XPath query Q5 = //US/* from Example 2.5

11

12

Chapter 3
Automata-based XML data indexing
methods

In this chapter “Automata Approach to XML Data Indexing” project achieve-
ments [10, 11, 12] are briefly described.

The main outcome of the previous work are three methods of constructing
automata-based indexes. The first index is Tree String Paths Automaton
that allows us to efficiently evaluate all XP {/,nodename} queries, i.e., XPath
expressions using only child axis (/), over an XML document. The second one
is Tree String Path Subsequences Automaton, which is able to evaluate all
XP {//,nodename} expressions, i.e., XPath expressions using only descendant-or-
self axis (//). And the third, so far the most powerful index automaton – Tree
Paths Automaton is capable of efficient evaluation of all XP {/,//,nodename}

queries, i.e, queries using both child (/) and descendant-or-self (//) axes, over
an XML document.

3.1 String Paths

The indexes are built as compositions of finite automata accepting parts of
paths queries. That is why, we need now to describe the XML tree model
from the point of view of its linear fragments – string paths.
Definition 3.1 (String path). Let T be an XML tree model of height h. A
string path P = n1n2 . . . nt (t ≤ h) of T is a linear path leading from the root
r = n1 to the leaf nt.
Definition 3.2 (String path alphabet). Let P be a string path of some XML
tree model. A string path alphabet A of P , represented by A(P), is an
alphabet where each symbol represents a node label in P .
Definition 3.3 (String paths set). Let T be an XML tree model with k leaves.
A set of all string paths over T is called a string paths set, denoted by
P (T) = {P1, P2, . . . , Pk}.
Example 3.1. Consider the XML tree model T illustrated in Figure 2.1. The
string paths set P (T) for the XML tree model T is shown in this example.
Each node of T is represented by its label and identifier, which is shown in
parenthesis.

13

3. Automata-based XML data indexing methods.......................
. P1 = SERIES(1) US(2) ACTORS(3) FEMALE(4),. P2 = SERIES(1) US(2) ACTORS(3) MALE(5),. P3 = SERIES(1) US(2) GENRE(6),. P4 = SERIES(1) UK(7) ACTORS(8) MALE(9),. P5 = SERIES(1) UK(7) ACTORS(8) MALE(10),. P6 = SERIES(1) UK(7) GENRE(11).

The corresponding string path alphabets are as follows:. A(P1) = {SERIES,US,ACTORS,FEMALE},. A(P2) = {SERIES,US,ACTORS,MALE},. A(P3) = {SERIES,US,GENRE},. A(P4) = A(P5) = {SERIES,UK,ACTORS,MALE},. A(P6) = {SERIES,UK,GENRE}.

3.2 Tree String Paths Automaton

The Tree String Paths Automaton (TSPA) is a finite state automaton that
efficiently evaluates linear XPath queries XP {/,nodename} using the child-
axis (/) only.

Formally, we can represent such a fragment of XPath queries over an XML
document D by the following context-free grammar:

G = ({S}, A(D), {S → SS | /a, such as a ∈ A(D)}, S)

Definition 3.4 (Tree String Paths Automaton). Let D be an XML document.
The Tree String Paths Automaton accepts all XP {/,nodename} queries of D,
and for each query Q, it gives a list of elements satisfying Q.
Let us describe the structure of TSPA by means of an example.
Example 3.2. Consider the XML document D from Example 2.1, the corre-
sponding TSPA is shown in Figure 3.1. As we can see in the picture of the cre-
ated TSPA, for the input XPath query Q1 = /SERIES/UK/ACTORS/MALE it re-
turns an answer (9, 10) and for the input XPath queryQ2 = /SERIES/US/ACTORS
it returns an answer (3).

3.2.1 Construction of Tree String Paths Automaton

To build TSPA for an XML document D we first of all need to obtain its tree
model T (D) and a corresponding string paths set P (T).

Then we construct prefix automata for each of the string paths from the
string paths set P (T). We use the prefix automata, because XPath queries
containing only child axes are basically prefixes of the individual string paths.

To build TSPA we run all the prefix automata “in parallel” by remembering
the states of all automata while reading the input. This is achieved by the
product construction (union), see Definition 2.25.

14

....................... 3.3. Tree String Path Subsequences Automaton

0start 1 2

7

3

6

8

11

4

5

9, 10

/SERIES /US

/UK

/ACTORS

/GENRE

/ACTORS

/GENRE

/FEMALE

/MALE

/MALE

Figure 3.1: TSPA for the XML document D

3.2.2 Time and Space Complexities

The time in which TSPA for an XML document D evaluates an XPath
query Q of length m depends only on the query length m.

Moreover, the number of states of TSPA is linear in size n of an XML
document D and is less than or equal to n.

The number of transitions of TSPA clearly becomes O(n− 1), since TSPA
is an acyclic tree-like finite automaton. For details and proofs, see [9].

3.3 Tree String Path Subsequences Automaton

The Tree String Path Subsequences Automaton (TSPSA) is a finite state
automaton that supports evaluation of linear XPath queries XP {//,nodename}

using the descendant-or-self axis (//) only.
We can represent such a fragment of XPath queries over an XML docu-

ment D by the following context-free grammar:

G = ({S}, A(D), {S → SS | //a, such as a ∈ A(D)}, S)

Definition 3.5 (Tree String Path Subsequences Automaton). Let D be an
XML document. The Tree String Path Subsequences Automaton accepts all
XP {//,nodename} queries of D, and for each query Q, it gives a list of elements
satisfying Q.
We can use an example for better understanding of TSPSA structure.
Example 3.3. Consider the XML document D from Example 2.1, the cor-
responding TSPSA is shown in Figure 3.2. Please notice that in Figure 3.2
we are using first letters of the label names (e.g., //SERIES is represented as

15

3. Automata-based XML data indexing methods.......................
//S) to make the automaton representation more clear. The only exceptions
are labels whose names consist of two letters.

As we can see in the picture of the created TSPSA, for the input XPath
query Q1 = //UK//MALE it returns an answer (9, 10) – this answer contains
all the elements with label MALE that are descendants of element with label UK.
For the input XPath query Q2 = //MALE it returns an answer (5, 9, 10) – this
answer contains all the elements with label MALE in the XML document D.

0start 1 2

7

3

6

8

11

6, 11

3, 8

4

5, 9, 10

5

9, 10

//S

//US

//UK

//G

//A

//F

//M

//US

//UK

//G

//A

//F

//M

//A

//G

//F

//M

//A

//G

//M

//M

//F

//F

//M

//M

Figure 3.2: TSPSA for the XML document D

3.3.1 Construction of Tree String Path Subsequences
Automaton

Construction of the TSPSA is very similar to construction of the TSPA. The
main difference is that here we are interested in subsequences of a string
path rather than in its prefixes, as we are working with XPath queries using
descendant-or-self axes only.

To build TSPSA for an XML document D we again should preprocess the
XML document D to obtain its tree model T (D) and a corresponding string
paths set P (T).

Then we construct subsequence automata for each of the string paths from
the string paths set P (T).

16

................................ 3.4. Tree Paths Automaton

To build TSPSA we run all the subsequence automata “in parallel” using
the product construction (union), see Definition 2.25.

3.3.2 Time and Space Complexities

Time in which TSPSA for an XML document D evaluates an XPath query Q
of length m depends only on the query length m.

Consider a tree model T (D) of an XML document D of height h and
having k leaves. Since length of a string path is less than or equal to h and
we have exactly k string paths, we can be sure that the number of states in
each of the subsequence automata is less than or equal to h+ 1 (it clearly
flows from the Algorithm for building the subsequence automata for a single
string path [10]) and the number of such automata is clearly k. Therefore,
the number of TSPSA states can be bounded by O(hk), i.e., the size of a
product of k automata with O(h) states. And the number of transitions of
TSPSA can be easily bounded by O(|A(D)| ·hk), as the maximum out-degree
of each state is equal to the size of the input alphabet.

However, due to the branching tree structure we can expect the number of
TSPSA nodes and transitions to be lower. The common prefixes can appear
in the set of strings. For example, the number of states of TSPSA for the
XML document D and its tree model T (D) that satisfies the l-property (see
Definition 3.6) is O(h · 2k). The number of transitions of TSPSA can be
estimated as O(|A(D)| · h · 2k). For more details and proofs see [10].
Definition 3.6. [Level property] Let T = (V,E) be a labeled directed rooted
tree. Level property (l-property):

∀n1, n2 ∈ V ∧ n1 6= n2 : label(n1) = label(n2) =⇒ depth(n1) = depth(n2)

3.4 Tree Paths Automaton

The Tree Paths Automaton (TPA) is a finite state automaton that efficiently
supports evaluation of linear XPath queries XP {/,//,nodename} using both
child-axis (/) and descendant-or-self axis (//).

We can represent such a fragment of XPath queries over an XML docu-
ment D by the following context-free grammar:

G = ({S}, A(D), {S → SS | /a | //a, such as a ∈ A(D)}, S)

Definition 3.7 (Tree Paths Automaton). Let D be an XML document. The
Tree Paths Automaton accepts all XP {/,//,nodename} queries of D, and for
each query Q, it gives a list of elements satisfying Q.
Let us describe the structure of TPA by means of an example.
Example 3.4. Consider the XML document D from Example 2.1, the corre-
sponding TPA is shown in Figure 3.3. Please notice that in Figure 3.3 we are
again using first letters of the label names (e.g., //SERIES is represented as

17

3. Automata-based XML data indexing methods.......................
//S) to make the automaton representation more clear. The only exceptions
are labels whose names consist of two letters.

Moreover, transition rules δ(p,/[/]LABEL) = q represent two transitions
leading from the state p to the state q: δ(p,/LABEL) = q and δ(p,//LABEL) = q.

As we can see in the picture of the created TPA, for the input XPath query
Q1 = /SERIES/UK//MALE it returns an answer (9, 10) – this answer contains
all the elements with label MALE that are descendants of element with label UK
which is a descendant of the root element SERIES. For the input XPath query
Q2 = /SERIES//MALE it returns an answer (5, 9, 10) – this answer contains
all the elements under the root element SERIES which have label MALE.

0start 1 2

7

3

6

8

11

6, 11

3, 8

4

5, 9, 10

5

9, 10

/[/]S

//US

//UK

//G

//A

//F

//M

/[/]US

/[/]UK

//G

//A

//F

//M

/[/]A

/[/]G

//F

//M

/[/]A

/[/]G

//M

/[/]M

/[/]F

/[/]F

/[/]M

/[/]M

Figure 3.3: TPA for the XML document D

3.4.1 Construction of Tree String Paths Automaton

TPA combines principles of both TSPA and TSPSA described above, as both
XP {/,nodename} and XP {//,nodename} queries are subsets of XP {/,//,nodename}

queries, which are supported by TPA. That is why, to build TPA we first
build prefix and subsequence automata for all the string paths of the tree
model T (D). And then, we combine each pair of these automata to create
TPA for a single string path (for the algorithm see [10]).

The last step of building TPA is again product construction of the con-
structed automata for individual string paths (see Definition 2.25).

18

................................ 3.4. Tree Paths Automaton

3.4.2 Time and Space Complexities

Time in which TPA for an XML document D evaluates an XPath query Q of
length m depends only on the query length m.

The number of states of TPA for the XML document D and its tree
model T (D) that satisfies the l-property is O(h · 2k), where h is height of
the tree model T (D) of the XML document D and k is number of leaf nodes
in T (D).

The number of transitions of TPA can be estimated as O(|A(D)| · h · 2k),
since the number of outgoing transitions for each state of TPA is less than or
equal to the size of the alphabet A(D) of the XML document D multiplied
by two (we can use both /LABEL and //LABEL transitions). For more details
and proofs see [10].

19

20

Chapter 4
Automata for Selecting Unknown Nodes

In this chapter the automata described in the previous part are extended
to accept all possible paths queries using combinations of child-axis (/),
descendant-or-self axis (//) and wildcard (*) and nodename node tests.

The first automaton that is introduced in this chapter is Tree String
Paths Automaton for Selecting Unknown Nodes representing an index for
XP {/,∗,nodename} queries, i.e., paths queries using child-axis (/), wildcard (*)
and nodename node tests. The second one is Tree String Path Subse-
quences Automaton for Selecting Unknown Nodes indexing XP {//,∗,nodename}

queries, i.e., paths queries using descendant-or-self axis (//), wildcard (*) and
nodename node tests. The last automaton that is described here is called
Tree Paths Automaton for Selecting Unknown Nodes and accepts all the
XP {/,//,∗,nodename} queries.

The search phase of all elements satisfying the query of size m is performed
in time linear in m, not depending on the XML document size n. The
main issue is the size of the deterministic automata, which, in theory, can
be exponential in n. However, the actual sizes of automata are less than
exponential in the XML document size n (it is proved in this chapter for each
of the automata).

4.1 Tree String Paths Automaton for Selecting
Unknown Nodes

Definition 4.1 (Tree String Paths Automaton for Selecting Unknown Nodes).
Let D be an XML document. The Tree String Paths Automaton for Selecting
Unknown Nodes (TSPA*) accepts all XP {/,∗,nodename} queries of D, and for
each query Q, it gives a list of elements satisfying Q.

TSPA* speeds up the evaluation of linear XPath queries using child-axis (/)
and wildcard (*) and nodename node tests (i.e., XP {/,∗,nodename}). We can
represent such a fragment of XPath queries over an XML document D by
the context-free grammar as follows:

G = ({S}, A(D), {S → SS | /a, such as a ∈ (A(P) ∪ {∗})}, S)

21

4. Automata for Selecting Unknown Nodes
To construct TSPA*, we start with building deterministic finite automata
that accept all non-empty prefixes of individual string paths. Construction of
a TSPA* automata for a single string path is described by Algorithm 4.1.
Algorithm 4.1. Construction of a deterministic TSPA* automaton for a single
string path.
Data: A string path P = n1n2 . . . n|P |.
Result: DFA M = (Q,A, δ, 0, F) accepting all XP {/,∗,nodename} queries of
P ..Q← {0, id(n1), id(n2), . . . , id(n|P |)},. A← {/a : a ∈ (A(P) ∪ {∗})},. δ(0, /label(n1))← id(n1) and

∀i ∈ {1, 2, . . . , |P | − 1} : δ(id(ni), /label(ni+1))← id(ni+1),. δ(0, /∗)← id(n1) and
∀i ∈ {1, 2, . . . , |P | − 1} : δ(id(ni), /∗)← id(ni+1),. F ← Q \ {0}.

Example 4.1. Consider the tree model T (D) of an XML document D de-
scribed in Figure 2.1 and the corresponding string tree paths P (T) from
Example 3.1. Transition diagrams of the TSPA* automata for P (T), which
are constructed by Algorithm 4.1, are shown in Figure 4.1.

0start 1 2 3 4
/SERIES,/* /US,/* /ACTORS,/* /FEMALE,/*

0start 1 2 3 5
/SERIES,/* /US,/* /ACTORS,/* /MALE,/*

0start 1 2 6
/SERIES,/* /US,/* /GENRE,/*

0start 1 7 8 9
/SERIES,/* /UK,/* /ACTORS,/* /MALE,/*

0start 1 7 8 10
/SERIES,/* /UK,/* /ACTORS,/* /MALE,/*

0start 1 7 11
/SERIES,/* /UK,/* /GENRE,/*

Figure 4.1: TSPA* automata for individual string paths of the XML tree
model T from Figure 2.1

To build TSPA*, we can run all the TSPA* automata (constructed by
Algorithm 4.1 for all string paths Pi in P (T)) “in parallel”, by remembering
the states of all automata while reading the input. This is achieved by the
product construction (see Definition 2.25).

22

................ 4.1. Tree String Paths Automaton for Selecting Unknown Nodes

Algorithm 4.2. Construction of the TSPA* for an XML document D.
Data: String paths set P (T) = {P1, P2, . . . , Pk} of XML tree model T (D)
with k leaves.
Result: DFA M = (Q,A, δ, 0, F) accepting all XP {/,∗,nodename} queries of
the XML document D...1. For all Pi ∈ P (T), construct a deterministic TSPA* automaton Mi =

(Qi, {/a : a ∈ (A(Pi) ∪ {∗})}, δi, 0, Fi) accepting all XP {/,∗,nodename}

queries of Pi using Algorithm 4.1...2. Construct the TSPA* M = (Q, {/a : a ∈ (A(D) ∪ {∗})}, δ, 0, Q \ {0})
accepting all XP {/,∗,nodename} queries of the XML document D using
the product construction (union) – see Definition 2.25.

Example 4.2. Consider an XML document D from Example 2.1. The corre-
sponding TSPA* accepting all XP {/,∗,nodename} queries, constructed by Algo-
rithm 4.1, are shown in Figure 4.2. Note that, in transition rules δ(p, /L) = q,
L stands for a label from the XML document (from Example 2.1) that begins
with this letter(-s) L, except /∗.
As we can see in the Figure 4.2, TSPA* contains all states that belong to
TSPA shown in Figure 3.1 and some extra states. These extra states are
formed by different node combinations on each level due to using asterisk
node test (*), it can be a combination of all the nodes on a level (e.g.,
state (4, 5, 9, 10) on the 3rd level) or some combinations of nodes on one level
that have the same labels but their ancestors on one of the previous level
have different labels (e.g., state (5, 9, 10) – node (5) has an ancestor US (2)
and nodes (9), (10) have an ancestor UK (7) on the 2nd level, that is why this
state (5, 9, 10) cannot be formed in TSPA – it is not possible to select both
(2) and (7) nodes in TSPA at a time).

4.1.1 Discussion of Time and Space Complexities

TSPA* efficiently supports the evaluation of all XP {/,∗,nodename} queries of an
XML document D. The evaluation of a query of length m is obviously O(m)
and does not depend on the XML document D size.

To be more precise, the evaluation process always consists of two phases:..1. searching phase – finding the state of TSPA* containing the answer in
its d-subset,..2. answering phase – returning the relevant nodes of the XML document
to the user.

Therefore, the input query Q is evaluated in time O(m + k), where k is a
number of nodes of the XML document satisfying the query Q. In practice
the number of such nodes is expected to be much smaller than the XML
document size.

23

4. Automata for Selecting Unknown Nodes
0start 1 7 8

11

8, 11

3

6

3, 6

3, 8

6, 11

3,6,
8,11

2

2, 7

9, 10

5

4, 5

4

5,9,
10

4,5,
9,10

/S,/* /UK

/US

/*

/A

/G

/*

/A

/G

/*

/A

/G

/*

/M,/*

/M,/*

/M /*
/F

/M

/*

/F

/F

/M
/*

/F/M

/*

Figure 4.2: TSPA* for the XML tree model T from Figure 2.1

The main question here is the size of TSPA*. To answer this question we
need to look on how the states of the index are created. All the states of
TSPA* are combinations of nodes of one of the XML document tree T (D)
levels (it is illustrated in the Example 4.3). Moreover, in this example the
principle of states creation is described.
Definition 4.2 (Children types in TSPA*). Let T (D) be an XML tree model
of an XML document D with XML alphabet A(D), qi be a state (a node
combination containing one or more nodes) formed on the ith level of the T (D).
All the nodes or node combinations which are selected from qi by a query
Q1 = /* are called “wildcard children” of the state qi. Analogically, all the
nodes or node combinations which are selected from qi by a query Q2 =
/LABEL, where LABEL ∈ A(D), are called “LABEL children” of the qi.

24

................ 4.1. Tree String Paths Automaton for Selecting Unknown Nodes

Example 4.3. As it is shown in Figures 4.3, 4.4 and 4.5 different node
combinations can be chosen on one level. Note, that except nodes whose
selection is described in details below we can also choose every single node of
the 3rd level of the shown tree, as all of them have unique paths leading to each
node, for example, node (3) can be chosen using queries /SERIES/US/ACTORS
or /*/US/ACTORS.

Let us now describe different node combinations that can be chosen on the
3rd level of the tree (we should keep in mind that states formed on the 2nd
level of the shown tree are: (2), (5), (2, 5)):. nodes (3, 6) can be chosen as “ACTORS children” of the state (2, 5) using

queries /SERIES/*/ACTORS or /*/*/ACTORS – see Figure 4.3a,. similarly we can choose nodes (4, 7) as they are “GENRES children” of the
state (2, 5), to choose them we use following queries: /SERIES/*/GENRES
or /*/*/GENRES (Figure 4.3b),. we can select such combination of nodes as (3, 4) (“wildcard children” of
the state (2)) with the help of queries /SERIES/US/* or /*/US/*, it is
shown in Figure 4.4a,. in the same way nodes (6, 7) can be selected using queries /SERIES/UK/*
or /*/UK/*, as they are “wildcard children” of the state (5), see Figure
4.4b,. finally, as it is shown in Figure 4.5 we can choose a node combination
(3, 4, 6, 7) – so called “wildcard children” of the state (2, 5).

SERIES,1

US,2

ACTORS,3 GENRES,4

UK,5

ACTORS,6 GENRES,7

(a) : Occurrences of the XPath query
Q1 = /SERIES/*/ACTORS

SERIES,1

US,2

ACTORS,3 GENRES,4

UK,5

ACTORS,6 GENRES,7

(b) : Occurrences of the XPath query
Q2 = /SERIES/*/GENRES

Figure 4.3: Occurrences of XPath queries from Example 4.3

Definition 4.3 (Levels set). Let T (D) be an XML tree model with n nodes
and height h. We define li, i ≤ h to be a number of nodes on the i-th level of
the XML tree model T (D). A set of all li, i ≤ h (li ≥ 1) is called a levels set,
denoted by L(T) = {l1, l2, ..., lh}. Obviously

∑h
j=1 lj = n.

So we can assume that all possible combinations of nodes on each level of the
XML tree model can form a state in TSPA*.

25

4. Automata for Selecting Unknown Nodes
SERIES,1

US,2

ACTORS,3 GENRES,4

UK,5

ACTORS,6 GENRES,7

(a) : Occurrences of the XPath query
Q3 = /SERIES/US/*

SERIES,1

US,2

ACTORS,3 GENRES,4

UK,5

ACTORS,6 GENRES,7

(b) : Occurrences of the XPath query
Q4 = /SERIES/UK/*

Figure 4.4: Occurrences of XPath queries from Example 4.3

SERIES,1

US,2

ACTORS,3 GENRES,4

UK,5

ACTORS,6 GENRES,7

Figure 4.5: Occurrences of XPath query Q4 = /SERIES/*/* from Example 4.3

(
l1
1

)
+
(
l1
2

)
+ . . .+

(
l1
l1

)
+ . . .+

(
lh
1

)
+
(
lh
2

)
+ . . .+

(
lh
lh

)
=

h∑
j=1

lj∑
i=1

(
lj
i

)
=

=
h∑

j=1
(2lj − 1) = 2l1 + 2l2 + . . .+ 2lh − h ≤ 2l1+l2+...+lh − h = 2n − h

This assumption, however, leads to the fact that the number of states of
TSPA* is exponential in the size of the XML document n.

From another point of view, we can bound the number of states of TSPA*
by size of the product of all the prefix automata for individual string paths
(which is created in Algorithm 4.2). For k prefix automata each containing
less than or equal to h+ 1 states, the number of TSPA* states can be trivially
bounded by O(hk), where k is the number of leaves in a tree model T (D) of
an XML document D and h is its height. Hence, we can easily estimate the
number of TSPA* transitions as O(|A(D)| ·hk), since the number of outgoing
transitions for each state of TSPA* is less than or equal to |A(D)|+ 1, where
|A(D)| is the size of the alphabet A(D) of the XML document D and plus 1
is for the wildcard transition (/*).

Let us, however, present one more estimation of TSPA* states and transition
number.

26

................ 4.1. Tree String Paths Automaton for Selecting Unknown Nodes

Theorem 4.1. Let D be an XML document and T (D) be its XML tree model
with height h and n nodes. The number of states of deterministic TSPA*
constructed for the XML document D by Algorithm 4.2 is O(nh).
Proof. On the i-th level, i ≥ 2, of the tree model T (D) we can choose all the
node combinations that are “LABEL children” or “wildcard children” of each
of the states formed on the (i− 1)-th level, where LABEL is any of the li labels
of the i-th level.

Let s be the number of states of TSPA* formed by the XML document D
and si, 1 ≤ i ≤ h be the number of states formed by node combinations of the
i-th level. Clearly, s1 = 1 and ∀si ≥ 2 : si ≤ si−1 · (li + 1), since from each
of the states formed on the previous level we can choose its “LABEL children”
and its “wildcard children”, so the number of transitions leading from each
state is less than or equal to li + 1.

To get the estimated states number that can be formed on the i-th
level we need to deal with the recursion. Obviously, s1 = 1, s2 ≤ l2 + 1,
s3 ≤ (l2 + 1) · (l3 + 1), etc. As we can see now, ∀si ≥ 2 : si ≤

∏i−1
k=2 (lk + 1).

So the number of all states of TSPA* formed for the XML document D is

s = 1 +
h∑

k=2

k∏
i=2

(li + 1) =

= 1 +
2∏

i=2
(li + 1) +

3∏
i=2

(li + 1) + . . .+
h∏

i=2
(li + 1)

It is obvious that ∀ j, where 2 ≤ j < h :
∏j

i=2 (li + 1) ≤
∏h

i=2 (li + 1), so
the number of TSPA* states is

s ≤ 1 + h ·
h∏

i=2
(li + 1) ≤ 1 + h ·

h∏
i=2

n = 1 + h · nh−1

So the number of states of TSPA* can be bounded by O(nh).

Theorem 4.2. Let D be an XML document and T (D) be its XML tree model
with height h and n nodes. The number of transitions of deterministic TSPA*
constructed for the XML document D with alphabet A(D) by Algorithm 4.2
is O(nh · |A(D)|).
Proof. Maximum possible out-degree of each of the TSPA* state is |A(D)|+1,
i.e., each state can have outgoing transitions on all possible labels from A(D)
and on the wildcard symbol (*). That is why the number of transitions of
TSPA* can be estimated as O(nh · |A(D)|).

Summarizing, we can bound the number of TSPA* states by O(nh) and
by O(hk). These estimations can differ accordingly to the structure of the
indexed XML document D, i.e., for a tree model T (D) of maximum height
h = 10 having n = 100 nodes and k = 60 leaves, better estimation for the
states number of TSPA* is O(nh) – (nh = 10010 = 1020) ≤ (hk = 1060). On
the contrary, for the T (D) with only k = 10 leaves the O(hk) estimation is
better – (hk = 1010) ≤ (nh = 10010 = 1020).

27

4. Automata for Selecting Unknown Nodes
4.2 Tree String Path Subsequences Automaton
for Selecting Unknown Nodes

Definition 4.4 (Tree String Path Subsequences Automaton for Selecting Un-
known Nodes). Let D be an XML document. The Tree String Path Sub-
sequences Automaton for Selecting Unknown Nodes (TSPSA*) accepts all
XP {//,∗,nodename} queries of D, and for each query Q, it gives a list of elements
satisfying Q.
TSPSA* speeds up the evaluation of linear XPath queries using descendant-or-
self axis (//), wildcard (*) and nodename node tests (i.e., XP {//,∗,nodename}).
We can represent such a fragment of XPath queries over an XML document D
by the context-free grammar as follows:

G = ({S}, A(D), {S → SS | //a, such as a ∈ (A(P) ∪ {∗})}, S)

To construct TSPSA*, we start with building deterministic finite automata
that accept all non-empty subsequences and wildcard nodes combinations of
individual string paths. Construction of a TSPSA* automaton for a single
string path is described by Algorithm 4.3. First we need to present some
useful definitions for the following algorithms notations.
Definition 4.5 (Set of occurrences of an element label in a string path). Let
P = n1n2 . . . n|P | be a string path and e be an element label occurring
at several positions in P (i.e., label(ni) = e for some i). A set of occur-
rences of the element label e in P is a totally ordered set OP (e) = {o | o =
id(ni) ∧ label(ni) = e, i = 1, 2, . . . , |P |}. The ordering is equal to ordering
of element prefix identifiers as natural numbers.

Definition 4.6 (ButFirst). Let P and OP (e) = {o1, o2, . . . , o|OP (e)|} be a string
path and a set of occurrences of an element label e in the string path P , re-
spectively. Then, we define a function ButF irst(OP (e)) = {o2, . . . , o|OP (e)|}.

Algorithm 4.3. Construction of a deterministic TSPSA* automaton for a
single string path.
Data: A string path P = n1n2 . . . n|P |.
Result: DFA M = (Q,A, δ, 0, F) accepting all XP {//,∗,nodename} queries of
P ...1. ∀e ∈ A(P) compute OP (e)...2. Build the “backbone” of the finite state automaton M = (Q,A, δ, q0, F):..a. Q← {q0, q1, . . . , q|P |},

A← {//a : a ∈ (A(P) ∪ {∗})},
F ← Q \ {q0},
q0 ← 0.

28

.......... 4.2. Tree String Path Subsequences Automaton for Selecting Unknown Nodes..b. ∀i, where i← 1, 2, . . . , |P |:
(i) set state qi ← OP (label(ni)),
(ii) add δ(qi−1, //label(ni))← qi,
(iii) OP (label(ni))← ButF irst(OP (label(ni)))...3. Insert “additional” transitions into the automaton M :

∀i ∈ {0, 1, . . . , |P | − 1}, ∀a ∈ A(P):
(i) add δ(qi, //a)← qs, if there exists such s > i where

δ(qs−1, //a) = qs ∧ ¬∃r < s : δ(qr−1, //a) = qr,
(ii) δ(qi, //a)← ∅ otherwise...4. Insert “wildcard” states and transitions into the automaton M :..a. create a set of the element ids of the path P: e(P)← {id(n1), id(n2), . . . , id(n|P |)}
and create a state variable prevState...b. ∀i, where i← 1, 2, . . . , |P |:
(i) if (∃ q ∈ Q: d-subset of q = e(P)): q|P |+i ← q,

else: create state q|P |+i ← e(P),
(ii) add δ(qi−1, //∗)← q|P |+i,
(iii) if i > 1: copy all the transitions from state qi−1 to state

prevState,
(iv) e(P)← ButF irst(e(P)),
(v) prevState← q|P |+i.

Example 4.4. Consider an XML document D from Example 2.1 and its tree
model T (D) shown in Figure 2.1. Given P = SERIES(1) US(2) ACTORS(3)
FEMALE(4) as the input string path, Algorithm 4.3 goes through following
steps:..1. construction of a “backbone” of the TSPSA* automaton M for P , which

is shown in Figure 4.6,..2. insertion of the “additional” transitions construction into the automa-
ton M , resulting state of the automaton M after this step is shown in
Figure 4.7,..3. insertion of the “wildcard” states and transitions into the automaton
M , the complete TSPSA* automaton for the string path P is shown in
Figure 4.8.

To build TSPSA*, we can run all the TSPSA* automata (constructed by
Algorithm 4.3 for all string paths Pi in P (T)) “in parallel”, by remembering
the states of all automata while reading the input. This is achieved by the
product construction.

29

4. Automata for Selecting Unknown Nodes
0start 1 2 3 4

//S //US //A //F

Figure 4.6: “Backbone” of the TSPSA* automaton for the string path P from
Example 4.4

0start 1 2 3 4
//S

//US

//A

//F

//US

//A

//F

//A

//F

//F

Figure 4.7: Not-completed TSPSA* automaton for the string path P from
Example 4.4 after inserting “additional” transitions

0start 1 2 3 4

1,2,
3,4

2,
3,4 3, 4

//S

//US

//A

//F

//*

//US

//A

//F

//*

//A

//F

//*

//F,//*

//US

//A

//F

//*

//A

//F//*

//F,//*

Figure 4.8: Completed TSPSA* automaton for the string path P from Example
4.4 after inserting “wildcard” states and transitions

Algorithm 4.4. Construction of the TSPSA* for an XML document D.
Data: String paths set P (T) = {P1, P2, . . . , Pk} of XML tree model T (D)
with k leaves.
Result: DFA M = (Q,A, δ, 0, F) accepting all XP {//,∗,nodename} queries of
the XML document D...1. For all Pi ∈ P (T), construct a deterministic TSPSA* automaton Mi =

30

.......... 4.2. Tree String Path Subsequences Automaton for Selecting Unknown Nodes

(Qi, {//a : a ∈ (A(P) ∪ {∗})}, δi, 0, Fi) accepting all XP {//,∗,nodename}

queries of Pi using Algorithm 4.3...2. Construct the TSPSA* M = (Q, {//a : a ∈ (A(D) ∪ {∗})}, δ, 0, Q \ {0})
accepting all XP {//,∗,nodename} queries of the XML document D using
the product construction (union) – see Definition 2.25.

TSPSA* for the XML document D from Example 2.1 is quite complex, so
the state transition table of TSPSA* can be found in Appendix B.

4.2.1 Discussion of Time and Space Complexities

TSPSA* efficiently supports the evaluation of all XP {//,∗,nodename} queries
over an XML document D. The evaluation of a query of length m is O(m)
and does not depend on the XML document D size. Considering also the
answering phase, the input query Q is evaluated in time O(m+k), where k is
a number of nodes of the XML document satisfying the query Q. In practice
the number of such nodes is expected to be much smaller than the XML
document size.

The main question is again the size of deterministic TSPSA*. We can bound
the number of states of TSPSA* by size of the product of all the TSPSA*
automata for individual string paths (which is created in Algorithm 4.4). Each
of the TSPSA* automata for individual string paths contains maximum (2h+1)
states. This becomes clear from the Algorithm 4.3, where in the 2nd step we
are adding |P |+ 1 states to the automaton and in the 4th step the maximum
possible number of state additions is equal to |P |, and |P | – the length of
the string path – is obviously less than or equal to the height h of a tree
model T (D) of an XML document D. For k TSPSA* automata for individual
string paths each containing less than or equal to (2h+ 1) = O(h) states, the
number of TSPSA* states can be trivially bounded by O(hk), where k is the
number of leaves in the tree model T (D). We can estimate the number of
TSPSA* transitions as O(|A(D)|·hk), since the number of outgoing transitions
for each state of TSPSA* is less than or equal to |A(D)|+ 1, where |A(D)| is
the size of the alphabet A(D) of the XML document D and plus 1 is for the
wildcard transition (//*).

Moreover, we can also estimate the size of TSPSA* created for an XML
document D that satisfies l-property, i.e., an XML document in which all the
nodes with the same labels are placed on one level of the tree model T (D)
of this XML document. Let us now show how the states of TSPSA* for the
XML document D satisfying l-property can be created.

All the node combinations that form states in TSPSA* are, in fact, subtrees
of the tree model T (D) of the XML document D. These subtrees can even
consist of one node, i.e., such subtrees have only the root node. Due to the
fact that we are now talking about XML documents that satisfy l-property,
all these subtrees, which can be selected, have root nodes on one level of
the T (D). This is illustrated in Example 4.5.

31

4. Automata for Selecting Unknown Nodes
Definition 4.7 (Descendant types in TSPSA*). Let T (D) be an XML tree
model of an XML document D with XML alphabet A(D), qi be a state (a
set of subtrees) formed on the ith level (i.e., all the subtrees of the state qi

have root nodes on the ith level) of the T (D). A state containing all the
subtrees that can be selected from qi using query Q1 = //* is called “wildcard
descendant” of the state qi. Analogically, a state that contains all the subtrees
that can be selected from qi using query Q2 = //LABEL, where LABEL ∈ A(D),
is called “LABEL descendant” of the state qi.

In the following example we use a special notation for the TSPSA* states,
e.g., ((3− 5), (6)) is a state containing two subtrees – one having the root
node (3) and nodes (4) and (5) and the second containing only the root
node (6).
Example 4.5. As it is shown in Figures 4.9, 4.10 and 4.11 different subtrees
having roots on one level of the tree can be chosen. Note, that except subtrees
whose selection is described in details below we can also choose every single
node (a subtree having only root node) of the 3rd level of the shown tree, as
all of them have unique paths leading to each one, for example, a state ((3))
can be chosen using queries //SERIES//US//ACTORS or //*//US//ACTORS.
Let us now describe how different subtrees having roots on the 3rd level
of the tree can be selected. These subtrees sets form states in TSPSA*.
Note, that states formed on the 2nd level of the tree are: ((2)), ((7)) and
((2− 6), (7− 11)).. a state ((3), (8)) can be chosen as “ACTORS descendant” of the state

((2− 6), (7− 11)) using queries Q1 =//SERIES//*//ACTORS or Q2 =//*
//*//ACTORS – see Figure 4.9a, where occurrences of the query Q1 are
represented,. similarly we can choose a state ((6), (11)) as it is “GENRES descendant”
of the state ((2− 6), (7− 11)), to choose them we use following queries:
Q3 =//SERIES//* //GENRES or Q4 =//*//*//GENRES (Figure 4.3b
shows occurrences of the query Q4),. we can select such state as ((3 − 5), (6)) (“wildcard descendant” of
the state ((2))) with the help of queries Q5 =//SERIES//US //* or
Q6 =//*//US//*, it is shown in Figure 4.10a – occurrences of the
query Q5,. in the same way state ((8 − 10), (11)) can be selected using queries
Q7 =//SERIES //UK//* or Q8 =//*//UK//*, as it is “wildcard descen-
dant” of the state ((7)), see Figure 4.10b – occurrences of the query
Q8,. finally, as it is shown in Figure 4.11 we can choose a state ((3−5), (6), (8−
10), (11)) using query Q9 = //*//*//* – this state is so called “wildcard
descendant” of the state ((2− 6), (7− 11)).

32

.......... 4.2. Tree String Path Subsequences Automaton for Selecting Unknown Nodes

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

(a) : Occurrences of the XPath query
Q1 = //SERIES//*//ACTORS

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

(b) : Occurrences of the XPath query
Q4 = //*//*//GENRES

Figure 4.9: Occurrences of XPath queries Q1 and Q4 from Example 4.5

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

(a) : Occurrences of the XPath query
Q5 = //SERIES//US//*

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

(b) : Occurrences of the XPath query
Q8 = //*//UK//*

Figure 4.10: Occurrences of XPath queries Q5 and Q8 from Example 4.5

SERIES,1

US,2

ACTORS,3

FEMALE,4 MALE,5

GENRES,6

UK,7

ACTORS,8

MALE,9 MALE,10

GENRES,11

Figure 4.11: Occurrences of the XPath query Q5 = //*//*//* from Example 4.5

We definitely need to note one more thing before we get to the TSPSA*
size estimation. Each state formed on the ith level of a tree model can be a

33

4. Automata for Selecting Unknown Nodes
“LABEL descendant” not only of some state from the (i−1)-th level of the tree,
but also of some states on the previous tree levels (e.g., state ((3), (8)) from
Example 4.5 is also an “ACTORS descendant” of states ((1)) and ((1 − 11))
formed on the 1st level of the shown tree). However, no new states can be
added to TSPSA* being descendants of some of the previous level states and
not being descendants of the closest previous level state(-s).

Consider an XML document D of size n and its tree model T (D) of
height h. As we can now see, analogically to TSPA* case, the number of
states of TSPSA* (satisfying l-property) that are formed on the ith level of a
tree model T (D) of an XML document D is ∀i ∈ 2, 3, · · · , h : si = si−1 ·(li+1),
where li + 1 is the number of unique labels on the ith level of the T (D) plus
the wildcard symbol. So we can estimate the TSPSA* size as O(nh), it can
be proved analogically to the Theorem 4.2 proof. And the number of the
TSPSA* transitions is bounded by O(|A(D)| · nh), where |A(D)| is the size
of the XML document D alphabet.

Analogically to the TSPA* case, we can bound the number of TSPSA*
states by O(nh) and by O(hk). These estimations can differ accordingly to
the structure of the indexed XML document D, i.e., for a tree model T (D)
of maximum height h = 10 having n = 100 nodes and k = 60 leaves, better
estimation for the states number of TSPA* is O(nh) – (nh = 10010 = 1020) ≤
(hk = 1060). On the contrary, for the T (D) with only k = 10 leaves the O(hk)
estimation is better – (hk = 1010) ≤ (nh = 10010 = 1020).

4.3 Tree Paths Automaton for Selecting Unknown
Nodes

The following part of the thesis is not mentioned in the assignment, but
nevertheless, we describe the construction of the automaton that accepts
all XP {/,//,∗,nodename} queries as it is a good way to show how the previous
automata (TSPA* and TSPSA*) can be used for construction of a much
more complex index automaton.
Definition 4.8 (Tree Paths Automaton for Selecting Unknown Nodes). Let D be
an XML document. The Tree Paths Automaton for Selecting Unknown Nodes
(TPA*) accepts all XP {/,//,∗,nodename} queries of D, and for each query Q, it
gives a list of elements satisfying Q.
TPA* speeds up the evaluation of linear XPath queries using child-axis (/),
descendant-or-self axis (//) and wildcard symbol (*) (i.e., XP {/,//,∗,nodename}).
We can represent such a fragment of XPath queries over an XML document D
by the context-free grammar as follows:

G = ({S}, A(D), {S → SS | /a | //a, such as a ∈ (A(P) ∪ {∗})}, S)

To build an automaton supporting all the XP {/,//,∗,nodename} we combine
principles of both introduced earlier automata, i.e., TSPA* and TSPSA*.
Since both XP {/,∗,nodename} and XP {//,∗,nodename} queries are subsets of
XP {/,//,∗,nodename} queries, they are supported by TPA*.

34

................... 4.3. Tree Paths Automaton for Selecting Unknown Nodes

To provide an algorithm for building TPA*, we first propose a building
algorithm that combines TSPA* and TSPSA* automata for a single string
path P to support all XP {/,//,∗,nodename} queries of P . See Algorithm 4.5
and Example 4.6.

0start 1 2 3 4
/SERIES,/* /US,/* /ACTORS,/* /FEMALE,/*

Figure 4.12: TSPA* for the string path P from Example 4.6

0start 1 2 3 4

1,2,
3,4

2,
3,4 3, 4

//S

//US

//A

//F

//*

//US

//A

//F

//*

//A

//F

//*

//F,//*

//US
//A

//F

//*

//A

//F//*

//F,//*

Figure 4.13: TSPSA* for the string path P from Example 4.6

Algorithm 4.5. Construction of the TPA* for a single string path.
Data: A string path P = n1n2 . . . n|P |.
Result: DFA M = (Q,A, δ, 0, F) accepting all XP {/,//,∗,nodename} queries
of P ...1. Construct TSPA*M1 = (Q1, A1, δ1, 0, F1) accepting all XP {/,∗,nodename}

queries of P using Algorithm 4.2...2. Construct TSPSA*M2 = (Q2, A2, δ2, 0, F2) accepting allXP {//,∗,nodename}

queries of P using Algorithm 4.4...3. Construct a deterministic finite automaton M = (Q,A1 ∪ A2, δ, 0, F)
accepting all XP {/,//,∗,nodename} queries of P using the product construc-
tion (union)...4. Add missing transitions to the automaton M = (Q,A, δ, 0, F) as follows:

35

4. Automata for Selecting Unknown Nodes
create a new queue S and initialize S = Q;
while S is not empty do

state q ← S.pop;
d ← q.d-subset;
if q is the initial state of M then

continue;
end

. add // transitions
if d.Counts = 1 then

find first state p ∈ Q : p.d-subset.Counts > 1
∧ p.d-subset.F irst = d.F irst;
copy all the // transitions from state p to state q;

end
. add / transitions

else
create new set of states consistsOf ;
consistsOf ← ∀p ∈ Q : p.d-subset.Counts = 1 ∧ p.d-subset⊂ d;
create new d-subset dnew;
foreach a ∈ A do

foreach c ∈ consistsOf do
if d-subset of s ⊂ d then

if δ(q, a) = ∅ and δ(s, a) 6= ∅ then
dnew.Add(δ(s, a));

end
end

end
if dnew is not empty then

δ(q, a)← dnew;
find s ∈ Q : s.d-subset= dnew;
S.push(s);

end
end

end
end

Example 4.6. Consider an XML document D from Example 2.1 and its tree
model T (D) shown in Figure 2.1. Given P = SERIES(1) US(2) ACTORS(3)
FEMALE(4) as the input string path, Algorithm 4.5 goes through following
steps:..1. construction of a deterministic TSPA* for P , which is shown in Fig-

ure 4.12,..2. construction of a deterministic TSPSA* for P , which is shown in Fig-
ure 4.13,..3. construction of a “not-finished” TPA* for the string path P using the
product construction (union), see Figure 4.14. It is the “not-finished”

36

................... 4.3. Tree Paths Automaton for Selecting Unknown Nodes

TPA*, since some states of the TSPSA* do not still have transitions of
type /LABEL and /* and vice versa...4. addition of the missing transitions, the resulting TPA* for P is shown in
Figure 4.15.

0start 1 2 3 4

1,2,
3,4

2,
3,4 3, 4

/[/]S,/*

//US

//A

//F

//*

/[/]US,/*

//A

//F

//*

/[/]A,/*

//F

//*

/[/]F,/[/]*

//US

//A

//F

//*

//A

//F//*

//F,//*

Figure 4.14: “Not-finished” TPA* for the string path P from Example 4.6

To build TPA* for the XML document D, we can again use the product
construction of the automata constructed by Algorithm 4.5 for individual
string paths.

Algorithm 4.6. Construction of the TPA* for an XML document D.
Data: String paths set P (T) = {P1, P2, . . . , Pk} of XML tree model T (D)
with k leaves.
Result: DFA M = (Q,A, δ, 0, F) accepting all XP {/,//,∗,nodename} queries of
the XML document D...1. For all Pi ∈ P (T), construct a finite automaton Mi = (Qi, {/a, //a : a ∈

(A(P) ∪ {∗})}, δi, 0, Fi) accepting all XP {/,//,∗,nodename} queries of Pi

using Algorithm 4.6...2. Construct the deterministic TPA* M = (Q, {/a, //a : a ∈ (A(P) ∪
{∗})}, δ, 0, Q \ {0}) accepting all XP {/,//,∗,nodename} queries of the XML
document D using the product construction (union).

37

4. Automata for Selecting Unknown Nodes

0start 1 2 3 4

1,2,
3,4

2,
3,4 3, 4

/[/]S,/*

//US

//A

//F

//*

/[/]US,/*

//A

//F

//*

/[/]A,/*

//F

//*

/[/]F,/[/]*

/[/]US

/[/]A

/[/]F

/[/]*

/[/]A

/[/]F/[/]*

/[/]F,/[/]*

Figure 4.15: TPA* for the string path P from Example 4.6

Since the diagram of TPA* for the XML document D from Example 2.1
is too complex to place in this thesis, the transition table can be found in
Appendix C.

4.3.1 Discussion of Time and Space Complexities

Consider an XML document D containing n nodes and its tree model T (D)
of height h. According to Algorithm 4.5, each of the formed by this algorithm
TPA* for individual string paths contains O(h2) states.
Theorem 4.3. The resulting automaton of the Algorithm 4.5 contains O(h2)
states.
Proof. The only step of the considered algorithm, where new states are added
to the resulting TPA* for a single string path, is the 3rd step. In the 3rd step
of the algorithm two automata constructed in the previous two steps are run
in parallel.

The prefix automaton constructed in the first step by Algorithm 4.1 consists
of i ≤ h states. The subsequences automaton constructed in the second step
by Algorithm 4.3 consists of j ≤ 2 · h states. Therefore, the product of these
two automata contains maximum 2 · h2 states, so the number of states of the
TPA* for a single string path can be bounded by O(h2).

The complete TPA* for the XML document D number of states can be
bounded by size of the product of all the TPA* for single string paths. The
number of such automata for single string paths is obviously equal to the

38

................... 4.3. Tree Paths Automaton for Selecting Unknown Nodes

number of leaves k of the tree model T (D). So we can bound the number of
states of TPA* by O(h2·k).

In the proof of Theorem 4.3 we assume that the mentioned algorithms are
correct and though we do not prove their correctness in this thesis, these
algorithms are implemented and tested.
Theorem 4.4. TPA* for the XML document D contains O(h2·k · |A(D)|)
transitions, where |A(D)| is power of the XML alphabet of the XML document
D.
Proof. Each state of TPA* can have maximum |A(D)| out-going transitions
of /LABEL type, maximum |A(D)| out-going transitions of //LABEL type and
both /* and //* transitions. That is why, we can estimate the number of
transitions of TPA* as O(h2·k · 2 · (|A(D)|+ 1) = O(h2·k · |A(D)|).

39

40

Chapter 5
Implementation

In this chapter the main aspects of the implementation introduced in previous
chapter methods for indexing XML documents are described. All three
methods for building indexes of XML documents are implemented and will
hopefully be a part of some big library including different algorithms for
indexing XML data later. Since Tree Paths Automaton for Selecting Unknown
Nodes (TPA*) is designed to be able to resolve the biggest subset of XPath
queries and its building process involves the main steps of the TSPA* and
TSPSA* construction (such as building TSPA* and TSPSA* automata for
individual string paths), in this and the following chapter we describe, test
and conduct experiments on TPA* only.

5.1 System Architecture

The XML data index software is developed in Java SE, JDK 8u171 in the
IntelliJ IDEA IDE [4], it is designed as Java Class Library called tpaUNlib.
The system architecture is shown in Figure 5.1. The library consists of three
virtual parts: Document Parser, Index Builder and XML Data Index.

5.2 Document Parser

This virtual part of the library is used for loading an XML file and parsing
it using the Simple API for XML (SAX) [13]. The DocumentParser class
(Figure 5.2) contains method getStringPathsSet that takes a path to an
XML file D as an input and returns a set of string paths of a tree model of D.
These string paths are then used in the following steps of the program. This
part of code was written by Lukáš Renc as a part of the future library of the
whole “Automata Approach to XML Data Indexing” project in his bachelor’s
thesis [6].

5.3 Index Builder

The second part of the implementation is Index Builder, it is clearly used
for building index automata. It disposes of AutomatonFactory class (see

41

5. Implementation....................................

Figure 5.1: System Architecture of the tpaUNlib

Figure 5.2: DocumentParser class

Figure 5.3) that presents construction methods for all the introduced in
this thesis index automata using the string paths set, built in previous step.
These methods are: buildTSPAUnknownNodes, buildTSPSAUnknownNodes
and buildTPAUnknownNodes. All these methods construct the XML Data
Index of a certain type and returns it as an instance of Automaton class to a
user.

The construction process is totally the same as it is described in the Chap-
ter 4 for each automaton index type. The product construction of automata
is implemented using multithreading to increase speed of the construction
process. Threads are implemented as objects of a ParallelRunner class
whose structure is shown in Figure 5.3.

Moreover, the AutomatonFactory allows us to serialize the built index
automaton for further usages and deserialize it later instead of building the
index again. This helps us to save time when we are working with huge XML
documents.

42

................................... 5.4. XML Data Index

Figure 5.3: AutomatonFactory and ParallelRunner classes

5.4 XML Data Index

The third part of the system architecture is the XML Data Index. Here we
already have an index automaton built (or desrialized) by the Index Builder.
This index automaton is an instance of Automaton class (Figure 5.4).

Figure 5.4: Automaton class

The Automaton class contains all information about the built index and
the main part of this information are the automaton states. Each state is
an instance of the State class, which keeps information about its XMLTags
and the outgoing transitions. Instances of the XMLTag class are basically
nodes of the document D, each having its unique ID and some label. Finally,
Transition class keeps information about “from” state, “to” state and the
transition phrase. Class diagrams of the State, Transition and XMLTag
classes are shown in Figure 5.5.

Moreover, having TPA* built, a user can process a query. For this aim
he uses the Automaton class method resolveQuery that gets a query in a
string format as an input and returns a list of instances of nodes (XMLTag
classes instances). The input query is split onto single transition phrases.
The evaluation is, in fact, running the deterministic TPA* and getting the
required result.

43

5. Implementation....................................

Figure 5.5: State, Transition and XMLTag classes

44

Chapter 6
Testing and Experimental Evaluation

In this chapter the testing process is described. Moreover, the experimen-
tal evaluation of the implementation discussed in the previous chapter is
introduced.

6.1 Experimental Setup

The experiments over the implementation are conducted under the environ-
ment of Intel Core i7 CPU @ 4.20 GHz, 16 GB RAM and 240 GB SSD disk
with the Window 10 operating system running.

For our experimental evaluation, we selected the XMark datasets [8] that
were generated by xmlgen [16] using scaling factors 0, 0.001, 0.005, 0.01, 0.1, 0.5.
Information about these datasets is shown in Table 6.1. XMark is a synthetic
on-line auction dataset, it has large and complicated tree structure [10].

Key File name Size (MB) # of Elements # of Leaves Max-depth Avg-depth
D1 XMark-f0.xml 0.03 382 247 10 4.64
D2 XMark-f0.001.xml 0.10 1,729 1,204 11 4.69
D3 XMark-f0.005.xml 0.50 8,518 6,211 11 4.50
D4 XMark-f0.01.xml 1.16 17,132 12,504 11 4.51
D5 XMark-f0.1.xml 11.60 167,865 122,026 11 4.55

Table 6.1: Characteristics of the datasets

We use a set of queries for our testing and experimental aims. All the
queries are shown in Table 6.2. Note, that the queries Q1, Q2, Q3 use only
child axes (/), queries Q4, Q5, Q6 – only descendant-or-self axes (//) and
the three last queries Q7, Q8, Q9 use both child and descendant-or-self axis.
All the queries contain wildcard node-tests, as we are testing primarily the
wildcard queries evaluation.

The reference numbers of elements satisfying are generated using SAXON
API [13] and are represented in Table 6.3. The results generated by our
implementation are exactly the same as these reference numbers are.

45

6. Testing and Experimental Evaluation
Key XPath Query
Q1 /site/*
Q2 /site/people/*/name
Q3 /site/regions/*/item/description/parlist/*/text/emph
Q4 //person//*
Q5 //regions//*//date
Q6 //site//regions//*//description//*//text//emph
Q7 /*//open_auction
Q8 //*/person//*
Q9 //regions/europe//item//*/listitem//text/*

Table 6.2: Set of queries for XMark datasets

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

D1 6 1 5 7 5 7 1 6 4
D2 6 25 10 296 20 14 12 128 6
D3 6 127 29 1,591 124 57 60 642 28
D4 6 255 85 3,088 205 185 120 1,270 107
D5 6 2,550 922 30,116 2,139 1,691 1,200 12,686 1,069

Table 6.3: Numbers of elements satisfying the queries in the datasets

6.2 Performance of TPA* Construction

The Table 6.4 shows the experimental results on the TPA* index size and its
construction time for the datasets D1−D6. The size of the index is measured
by the size of the serialized Automata object.

The Index/XML Size (ratio) column in the Table 6.4 shows that the index
size is about 80 times bigger than the original XML file, this fact is leading to
a suggestion that the index size stays linear. However, this suggestion should
be explored more on other datasets.

Key Index Size (MB) Index/XML Size (ratio) # of States # of Transitions Construction Time
D1 2.40 80.00 599 4,715 0.4 sec
D2 9.53 95.30 1,205 8,218 1.2 sec
D3 43.79 87.58 1,957 11,213 4.1 sec
D4 88.26 76.10 2,259 12,344 10.5 sec
D5 862.72 74.37 2,778 13,815 3 min

Table 6.4: Experimental results on the index size and construction time

Moreover, the Table 6.4 shows the number of states and transitions of the
constructed indexes. These values are obviously mostly influenced by the
structure of the XML document and by its size.

46

............................6.3. Performance of Query Processing

6.3 Performance of Query Processing

We analyze the performance of query evaluation in comparison with a reference
implementation called Saxon [7]. The measurements reflect query processing
time only.

Figure 6.1 shows the experimental results of TPA* and Saxon on the
datasets D1 −D5 from the Table 6.1.

Figure 6.1: Performance comparison of TPA* and Saxon

We should note, that the implementation of the query resolving of the
TPA* index returns only ids of the XML document elements, while Saxon
returns the actual XML elements satisfying the input query. That is why
in Figure 6.1 we compare searching phase of TPA* query resolving with
searching and answering phase of Saxon query resolving. The answering
phase will be implemented and tested during future work on the project.

However, Figure 6.1 shows that the searching phase of TPA* query re-
solving does not depend on the growing datasets size, this fact confirms our
assumption that the searching phase of TPA* depends only on the processed
query size.

47

48

Chapter 7
Conclusion

In this chapter we evaluate the fulfillment of the thesis goals and present the
main directions of the future work.

7.1 Goals Fulfillment

One of the goals of the thesis was to study the existing indexing methods
based on automata theory, such as Tree String Paths Automaton (TSPA)
ans Tree String Path Subsequences Automaton (TSPSA). This is covered by
Chapter 3. Moreover, in this chapter the main achievement of the previous
work – Tree Paths Automaton (TPA) – is also studied and described.

The main aim of this thesis was to extend the existing methods so they would
also support XPath wildcards (*) to select unknown XML nodes. This aim is
fulfilled in Chapter 4. We have also discussed time and space complexities of
all of the newly presented methods.

Finally, the created methods are implemented and tested, the appropriate
experimental evaluation is performed. Details can be found in Chapter 5 and
Chapter 6.

7.2 Contribution of the Thesis

The main contribution of this thesis is creation of new XML data indexing
methods that are based on automata theory. These methods extend the
subset of XPath queries that can be accepted by automata created within the
“Automata Approach to XML Data Indexing” project. We have also shown
that these index automata are able to efficiently process XPath queries in
time that does not depend on the indexed document size, but only on the
processed query size.

49

7. Conclusion......................................
7.3 Future Work

There is still a lot of work to do, as this thesis and previous works on these
theme are not covering all the existing problems related to the automata-based
XML indexing methods. The main tasks for future are to:. proof the correctness of the described algorithms for creating index

automata. This can also help to determine the tight upper bound on
number of states and transitions for Tree Paths Automaton [9].. create a global library that will support all the existing methods for XML
data indexing based on automata theory and will be easily extensible
with the new ones.. improve the implementation to make it more memory efficient, as the
indexes are growing with every new extension of the algorithms.. extend the existing methods to support more complex queries, e.g.,
including attributes, branching etc.

50

Bibliography

[1] Bray T. Paoli J. Sperberg-McQueen C. et al. Extensible Markup Lan-
guage (XML) 1.0. online. url: http://www.w3.org/XML (visited on
05/04/2018).

[2] Jonathan L. Gross, Jay Yellen, and Ping Zhang. Handbook of Graph The-
ory, Second Edition. 2nd. Chapman & Hall/CRC, 2013. isbn: 1439880182,
9781439880180.

[3] John E. Hopcroft et al. Introduction to Automata Theory, Languages
and Computability. 2nd. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2000. isbn: 0201441241.

[4] JetBrains. IntelliJ IDEA. online. url: https://www.jetbrains.com/
idea/ (visited on 05/04/2018).

[5] Michael O Rabin and Dana Scott. “Finite Automata and Their Decision
Problems”. In: IBM Journal of Research and Development 3 (Apr. 1959),
pp. 114–125.

[6] Lukáš Renc. “Automata Approach to XML Data Indexing: Implementa-
tion and Experimental Evaluation”. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2018.

[7] SAXONICA. SAXON – The XSLT and XQuery Processor. online. url:
http://saxon.sourceforge.net/ (visited on 05/06/2018).

[8] Schimdt, et al. XMark – An XML Benchmark Project. online. url:
http://www.xml-benchmark.org/ (visited on 05/04/2018).

[9] Eliška Šestáková. “Indexing XML Documents”. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology,
2015.

[10] Eliška Šestáková and Jan Janoušek. “Automata Approach to XML Data
Indexing”. In: Information 9.1 (2018). issn: 2078-2489. doi: 10.3390/
info9010012.

51

http://www.w3.org/XML
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
http://saxon.sourceforge.net/
http://www.xml-benchmark.org/
http://dx.doi.org/10.3390/info9010012
http://dx.doi.org/10.3390/info9010012

Bibliography
[11] Eliška Šestáková and Jan Janoušek. “Indexing XML Documents Using

Tree Paths Automaton”. In: 6th Symposium on Languages, Applications
and Technologies (SLATE 2017). Ed. by Ricardo Queirós et al. Vol. 56.
OpenAccess Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 10:1–10:14. isbn: 978-
3-95977-056-9. doi: 10.4230/OASIcs.SLATE.2017.10. url: http:
//drops.dagstuhl.de/opus/volltexte/2017/7945.

[12] Eliška Šestáková and Jan Janoušek. “Tree String Path Subsequences
Automaton and Its Use for Indexing XML Documents”. In: Languages,
Applications and Technologies. Ed. by José-Luis Sierra-Rodríguez, José-
Paulo Leal, and Alberto Simões. Cham: Springer International Publish-
ing, 2015, pp. 171–181. isbn: 978-3-319-27653-3.

[13] Simple API for XML. online. url: http://www.saxproject.org/
(visited on 05/04/2018).

[14] W3Schools. XML Validator. online. url: https://www.w3schools.
com/xml/xml_validator.asp (visited on 04/30/2018).

[15] W3Schools. XPath Tutorial. online. url: https://www.w3schools.
com/xml/xpath_intro.asp (visited on 04/27/2018).

[16] Florian Waas. xmlgen – faq. online. url: http://www.xml-benchmark.
org/faq.txt (visited on 05/04/2018).

52

http://dx.doi.org/10.4230/OASIcs.SLATE.2017.10
http://drops.dagstuhl.de/opus/volltexte/2017/7945
http://drops.dagstuhl.de/opus/volltexte/2017/7945
http://www.saxproject.org/
https://www.w3schools.com/xml/xml_validator.asp
https://www.w3schools.com/xml/xml_validator.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp
http://www.xml-benchmark.org/faq.txt
http://www.xml-benchmark.org/faq.txt

Appendix A
Acronyms

.DFA Deterministic finite automaton.NFA Nondeterministic finite automaton.TPA Tree Paths Automaton.TSPA Tree String Paths Automaton.TSPSA Tree String Path Subsequences Automaton.TPA* Tree Paths Automaton for Selecting Unknown Nodes.TSPA* Tree String Paths Automaton for Selecting Unknown Nodes.TSPSA* Tree String Path Subsequences Automaton for Selecting Un-
known Nodes.XML eXtensible markup language.XPath XML Path Language. SAX Simple API for XML

53

54

Appendix B
Tree String Path Subsequences
Automaton for Selecting Unknown Nodes

//S //US //UK //A //G //F //M //*
→ (0) (1) (2) (7) (3, 8) (6, 11) (4) (5, 9, 10) (1− 11)
← (1) (2) (7) (3, 8) (6, 11) (4) (5, 9, 10) (2− 11)
← (2) (3) (6) (4) (5) (3− 6)
← (7) (8) (11) (9, 10) (8− 11)
← (3, 8) (4) (5, 9, 10) (4, 5, 9, 10)
← (6, 11)
← (4)
← (5, 9, 10)
← (1− 11) (2) (7) (3, 8) (6, 11) (4) (5, 9, 10) (2− 11)
← (2− 11) (3) (6) (4) (5) (3− 6, 8− 11)
← (3) (4) (5) (4, 5)
← (6)
← (5)
← (3− 6) (4) (5) (4, 5)
← (8) (9, 10) (9, 10)
← (11)
← (9, 10)
← (8− 11) (9, 10) (9, 10)
← (4, 5, 9, 10)
← (3− 6, 8− 11) (4) (5, 9, 10) (4, 5, 9, 10)
← (4, 5)

Table B.1: Transition table of TSPSA* for the XML document D from Exam-
ple 2.1

55

56

Appendix C
Tree Paths Automaton for Selecting
Unknown Nodes

57

C. Tree Paths Automaton for Selecting Unknown Nodes

/S
//

S
/U

S
//

US
/U

K
//

UK
/A

//
A

/G
//

G
/F

//
F

/M
//

M
/*

//
*

→
(0

)
(1

)
(1

)
(2

)
(7

)
(3
,8

)
(6
,1

1)
(4

)
(5
,9
,1

0)
(1

)
(1
−

11
)

←
(1

)
(2

)
(2

)
(7

)
(7

)
(3
,8

)
(6
,1

1)
(4

)
(5
,9
,1

0)
(2
,7

)
(2
−

11
)

←
(2

)
(3

)
(3

)
(6

)
(6

)
(4

)
(5

)
(3
,6

)
(3
−

6)
←

(7
)

(8
)

(8
)

(1
1)

(1
1)

(9
,1

0)
(8
,1

1)
(8
−

11
)

←
(3
,8

)
(4

)
(4

)
(5
,9
,1

0)
(5
,9
,1

0)
(4
,5
,9
,1

0)
(4
,5
,9
,1

0)
←

(6
,1

1)
←

(4
)

←
(5
,9
,1

0)
←

(1
−

11
)

(2
)

(2
)

(7
)

(7
)

(3
,8

)
(3
,8

)
(6
,1

1)
(6
,1

1)
(4

)
(4

)
(5
,9
,1

0)
(5
,9
,1

0)
(2
−

11
)

(2
−

11
)

←
(2
,7

)
(3
,8

)
(3
,8

)
(6
,1

1)
(6
,1

1)
(4

)
(5
,9
,1

0)
(3
,6
,8
,1

1)
(3
−

6,
8
−

11
)

←
(2
−

11
)

(3
,8

)
(3
,8

)
(6
,1

1)
(6
,1

1)
(4

)
(4

)
(5
,9
,1

0)
(5
,9
,1

0)
(3
−

6,
8
−

11
)

(3
−

6,
8
−

11
)

←
(3

)
(4

)
(4

)
(5

)
(5

)
(4
,5

)
(4
,5

)
←

(6
)

←
(5

)
←

(3
,6

)
(4

)
(4

)
(5

)
(5

)
(4
,5

)
(4
,5

)
←

(3
−

6)
(4

)
(4

)
(5

)
(5

)
(4
,5

)
(4
,5

)
←

(8
)

(9
,1

0)
(9
,1

0)
(9
,1

0)
(9
,1

0)
←

(1
1)

←
(9
,1

0)
←

(8
,1

1)
(9
,1

0)
(9
,1

0)
(9
,1

0)
(9
,1

0)
←

(8
−

11
)

(9
,1

0)
(9
,1

0)
(9
,1

0)
(9
,1

0)
←

(4
,5
,9
,1

0)
←

(3
,6
,8
,1

1)
(4

)
(4

)
(5
,9
,1

0)
(5
,9
,1

0)
(4
,5
,9
,1

0)
(4
,5
,9
,1

0)
←

(3
−

6,
8
−

11
)

(4
)

(4
)

(5
,9
,1

0)
(5
,9
,1

0)
(4
,5
,9
,1

0)
(4
,5
,9
,1

0)
←

(4
,5

)

Ta
bl
e
C
.1
:
Tr

an
sit

io
n
ta
bl
e
of

T
PA

*
fo
r
th
e
X
M
L
do

cu
m
en
t
D

fr
om

Ex
am

pl
e
2.
1

58

	Introduction
	Motivation and Objectives
	Goals of the Thesis
	Thesis Structure

	Theoretical Background
	Notations
	Basic Definitions
	Alphabet, String
	Graph
	Tree
	Language, Grammar
	Finite Automaton

	XML
	XML Data Model
	XPath
	XPath Syntax
	Examples

	Automata-based XML data indexing methods
	String Paths
	Tree String Paths Automaton
	Construction of Tree String Paths Automaton
	Time and Space Complexities

	Tree String Path Subsequences Automaton
	Construction of Tree String Path Subsequences Automaton
	Time and Space Complexities

	Tree Paths Automaton
	Construction of Tree String Paths Automaton
	Time and Space Complexities

	Automata for Selecting Unknown Nodes
	Tree String Paths Automaton for Selecting Unknown Nodes
	Discussion of Time and Space Complexities

	Tree String Path Subsequences Automaton for Selecting Unknown Nodes
	Discussion of Time and Space Complexities

	Tree Paths Automaton for Selecting Unknown Nodes
	Discussion of Time and Space Complexities

	Implementation
	System Architecture
	Document Parser
	Index Builder
	XML Data Index

	Testing and Experimental Evaluation
	Experimental Setup
	Performance of TPA* Construction
	Performance of Query Processing

	Conclusion
	Goals Fulfillment
	Contribution of the Thesis
	Future Work

	Bibliography
	Acronyms
	Tree String Path Subsequences Automaton for Selecting Unknown Nodes
	Tree Paths Automaton for Selecting Unknown Nodes

