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Abstract

In this thesis I explore existing approaches to the learning to rank problem
and collaborative filtering methods, and apply them to Yandex’s dataset pro-
vided in the Personalized Web Search Challenge competition on Kaggle.com.
I build on the existing submissions by replicating the top competitor’s fea-
ture extraction from the dataset. Then I implement and apply ES-Rank and
matrix factorization on these features and test if matrix factorization based
collaborative filtering significantly increases the overall performance of the al-
gorithm. Then I compare the performance of the implemented algorithms to
other submissions on Kaggle. Lastly I analyze the time complexity of my
solution.

Keywords information retrieval, learning to rank, collaborative filtering,
matrix factorization, evolutional strategy
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Abstrakt

V této práci se zabývám existujícími algoritmy pro úlohu přeřazení URL po-
dle relevance na základě uživatelského dotazu do vyhledávače a metodami
kolaborativního filtrování, které uvádím v rešerši. Vybrané algoritmy, což
jsou ES-Rank a maticová faktorizace, pak implementuji a použiji na dataset
poskytnutý společností Yandex v rámci soutěže Personalized Web Search Chal-
lenge na Kaggle.com. Poté porovnávám přesnost řazení s ostatními řešeními
na Kaggle.com. Následně testuji, jestli kolaborativní filtrování metodou mati-
cové faktorizace významně zvyšuje přesnost řazení. Nakonec analyzuji časovou
složitost svého řešení.

Klíčová slova získávání informací, učení se řadit, kolaborativní filtrování,
maticová faktorizace, evoluční strategie
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Introduction

In recent years, a lot of research has been done on algorithms solving the
learning to rank problem because companies collect and want to utilize mas-
sive amounts of data about their clients or users. Correctly reranking URLs
or products, which are presented to users, increases sales and user satisfac-
tion. Therefore, the need for high quality information retrieval and ranking
algorithms arises.

In the year 2014 the Russian company called Yandex, that runs it’s own
search engine, held a competition on Kaggle.com. The goal of the competi-
tion was to personalize web search for users by reranking search engine results
based on relevance and the users’ personal preferences. The winners of this
competition used Simon Funk’s matrix factorization as a collaborative filter-
ing feature in their solution, but reported a marginal increase in their model’s
overall performance. They also used LambdaMART, a learning to rank algo-
rithm, which training is not parallelizable.

In the following chapters I analyze existing learning to rank algorithms
and collaborative filtering algorithms. I also analyze the competition winner’s
solution and heavily use their ideas in my own solution. I then implement
a baseline model without collaborative filtering for later comparison with my
final solution that uses collaborative filtering to see if this technique can sig-
nificantly increase performance.
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Chapter 1
Learning to Rank

1.1 Problem description

Let Q = {q1, q2, . . . , qn} be the set of n given queries, di = {di
1, di

2, . . . , di
m(qi)}

is the set of m(qi) documents retrieved upon query qi, yi = {yi
1, yi

2, . . . , yi
m(qi)}

is the set of relevance labels, where label yi
j is the relevance label of j-th

document di
j with respect to query qi. The type of labels is chosen manually

by experts. Usually a label takes on the value of either 0 or 1 indicating if
the document is relevant or not, or an integer ranging from 0 up to a small
integer l is used as a relevance grade, i.e. yi

j ∈ R = {0, 1, 2, . . . , l}, the higher
the grade the more relevant the document is. The training dataset becomes

Strain = {(qi, di, yi)}ni=1. (1.1)

A feature vector x⃗i
j ∈ Rd is specified for each query-document pair (qi, di

j).
An example of a feature might be how many times a search term from query
qi occurs in document di

j .

Typically a scoring function f : Rd → R is used as the ranking model. The
documents are then sorted by f(x⃗i

j) in descending order creating a permuta-
tion πi(di, f) which maps documents to a position (rank). Instead of ordinal
regression a classifier can be used, i.e. a classifying function f : Rd →R which
maps a document to a relevance grade. The documents are then sorted by
their grade in descending order.

The objective is to find a ranking function f that maximizes a performance
measure (see section 1.2) directly or one that minimizes a loss function.

The notation above was taken from [2].
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1. Learning to Rank

1.2 Performance measures

1.2.1 Assumptions about user behavior

To even measure the performance of a ranking function, a few assumptions
about the user interaction with documents is made as described in the follow-
ing frequently used models.

Position model Users tend to look at and click the first few documents. To
cope with this bias, the position model assumes that users examine the
documents in a linear fashion, from top position to bottom position,
and only click on documents that are a) examined and b) relevant to
the user. The lower a document is ranked, the lower is its probability to
be examined and thus it has a low probability to be clicked. Measures
Normalized Discounted Cumulative Gain and Mean Average Precision
work under this model.

Cascade model The cascade model is an extension of the position model in
that it assumes that documents are examined from top to bottom and
the user stops when he/she is satisfied, but it also takes into account
relevances of higher ranked documents. If for example a highly relevant
document is ranked at position 3 and documents at positions 1 and 2
are also highly relevant, then it has a lower probability to be clicked
than in the case where documents at positions 1 and 2 are not relevant.
Expected Reciprocal Rank is an example measure that uses this model.

1.2.2 Notation used in following subsections

• Q = {q1, q2, . . . , qn} is the set of queries with each qi associated with
documents di and labels yi

• f is the ranking function that scores each document based on its rele-
vance effectively assigning it a position

• di = {di
1, di

2, . . . , di
m(qi)} is the set of m(qi) documents retrieved upon

query qi

• yi = {yi
1, yi

2, . . . , yi
m(qi)} is the set of relevance labels, where each label

yi
j is associated with document di

j

4



1.2. Performance measures

1.2.3 Winner Takes All

Winner Takes All (WTA) measure works only with binary relevance grades,
that is yi

j ∈ {0, 1}. WTA is defined like this

WTA(f, di, yi) =

1, the document at top position is relevant
0, the document at top position is not relevant

(1.2)

The WTA measure is simple, it returns 1 if the document at position 1
has a relevance of 1 (relevant), otherwise it returns 0.

1.2.4 Precision

Precision (P) is the ratio between relevant documents and all retrieved docu-
ments.

1.2.5 Mean Average Precision

Average Precision (AP) is defined as

AP (f, di, yi) = 1
ni

rel

∑
p: yi

p=1

∑p
j=1 yi

j

p
, (1.3)

where yi
j is the binary relevance label of document di

j , p is the position of
document di

p, and ni
rel is the number of relevant documents retrieved upon

query qi. In other words take a relevant document with its position p, divide
the number of relevant documents with position j ≤ p, and sum these fractions
over all relevant documents, and divide by nrel.

Unlike previously mentioned measures AP takes into account the position
of relevant documents and rewards correctly sorted documents. If all docu-
ments di are sorted perfectly according to their relevance, then AP (f, di, yi) =
1.

Mean Average Precision (MAP) is then the AP averaged over all n queries
Q, i.e.

MAP (f, di, yi) = 1
n

∑
i: qi∈Q

AP (f, di, yi) (1.4)

1.2.6 Normalized Discounted Cumulative Gain

Discounted Cumulative Gain (DCG) is a measure that takes into account po-
sitions of documents like MAP, but it can also handle multigraded relevances,
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1. Learning to Rank

that is yi
j ∈ {0, 1, 2, . . . , l}. It is usually defined as

DCG(f, di, yi) =
m(qi)∑
j=1

2yi
j − 1

log(j + 1)
, (1.5)

where yi
j is the relevance label of the document ranked at position j and m(qi)

is the number of documents retrieved upon query qi. The position discount
function log(j + 1) penalizes the gain function 2yi

j −1 with increasing position
j, so to maximize this measure it is advantageous to have highly relevant
documents at top positions so that they’re the least discounted.

Normalized Discounted Cumulative Gain (NDCG) returns a real number
between 0 and 1. NDCG is calculated as

NDCG(f, di, yi) = DCG(f, di, yi)
IDCG(f, di, yi)

, (1.6)

where IDCG(f, di, yi) is the ideal DCG, that is the DCG of documents that
are perfectly sorted according to their relevance grade in descending order, i.e.
(∀j, k)(j < k =⇒ yi

j ≥ yi
k).

1.2.7 Expected Reciprocal Rank

Proposed in [3], the Expected Reciprocal Rank (ERR) follows the cascade
model.

Let R be a function of relevance grades, yi
j be the relevance grade of

document at j-th position, and ymax be the highest possible grade. Rj is the
probability that the document at position j is relevant and is defined as

Rj = 2yi
j − 1

2ymax
(1.7)

ERR is then defined as

ERR(f, di, yi) =
m(qi)∑
r=1

1
r

Rr

r−1∏
j=1

(1−Rj) (1.8)

Similarly to NDCG, it has a gain function and a discount function. In this case
the gain function is Rr and the discount function is 1

r

∏r−1
j=1 (1−Rj). Notice

that the discount function is the probability that the user is not satisfied with
top r − 1 documents and is satisfied with the r-th document. The discount
function takes into account the positions of documents as well as relevance of
higher ranked documents.
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1.3. Categories of LTR algorithms

1.2.8 Loss function
A loss function can be used instead of the measures described above. A loss
function that is differentiable might be desirable. An example of such loss
function is mean squared error is Meas Squared Error

MSE(f, di, yi) = 1
n

n∑
i=1

m(qi)∑
j=1

(yi
j − f(x⃗i

j))2. (1.9)

1.3 Categories of LTR algorithms
There are three main approaches to learning to rank. They differ in the way
each of them handles data samples and how they measure performance.

Point-wise The point-wise approach treats each query-document pair as a
single data sample and uses regression or classification to predict its
relevance. It does not look at relationships between documents, instead
it just takes a document as a single sample and predicts it’s relevance
e.g. by assigning it a relevance grade. It also measures the performance
document by document.

Pair-wise The pair-wise approach treats a pair of documents as a data sam-
ple and tries to classify it as correct if the first document is more relevant
than the second or incorrect (inversion) otherwise. Unlike the point-wise
approach, pair-wise captures the relationship between two documents.

List-wise The list-wise approach takes the whole document list di as a sam-
ple and finds a permutation that optimizes a performance measure or
loss function. This method fully captures the relationships between doc-
uments in the list.

1.4 Learning to Rank algorithms
1.4.1 Random Forest
Random Forest [4] is an ensemble of decision trees. An ensemble is a group of
models that combines the predictions of these models into a single prediction,
thereby having a better performance than an individual model. Typically re-
gression trees are used for ranking. Bootstrap aggregating (bagging) is used
to create the ensemble, where the dataset is randomly sampled with replace-
ment creating a subsample of same size. The dataset in the case of ranking is
a set of query-document pairs each associated with a feature vector x⃗i

j . Re-
gression trees or classification trees are then fitted onto subsamples and the
forest’s prediction is a weighted or unweighted average or majority vote of
individual trees. However a tree doesn’t use all available features, instead a

7



1. Learning to Rank

random subset of features is selected for each tree during training. This is
called random subspace method or feature bagging [5]. It is used to reduce
correlation between trees because the same highly explanatory features are
often selected for best split in many trees. The problem where many trees use
the same features and therefore are correlated is avoided.

This algorithm is not only quick in prediction but also quick in training
because trees can be trained in parallel.

1.4.2 MART
MART or Multiple Additive Regression Trees [6] is an ensemble of gradient
boosted regression trees. Boosting refers to the technique that is used to build
ensembles. In boosting each partial model is added to the ensemble iteratively
to correct the ensembles “flaws”. By flaw I mean the incorrectly classified or
predicted data points from the training set.

MART training is described in the following steps

1. Fit a fixed size regression tree on the dataset according to ground truth
labels (yi

j)0 creating an ensemble of one tree F0(x⃗i
j) = α0f0(x⃗i

j), where
α0 is a real valued weight and f0 is the prediction of the tree

2. For each data point calculate the residual (difference) (yi
j)m − Fm(x⃗i

j)
and use this residual as new label (yi

j)m+1 in the next iteration (m + 1)

3. Create a new ensemble Fm+1(x⃗i
j) = Fm(x⃗i

j) + αm+1fm+1(x⃗i
j) by fitting

a new regression tree fm+1 on the dataset according residuals (yi
j)m+1

calculated in step 2

4. Terminate if enough trees are created, otherwise set m to m + 1 and go
to step 2

Notice that in the case of MART the “flaws” are residuals (yi
j)m−Fm(x⃗i

j)
of the ensemble. At each step a loss function is minimized. The loss function
is the squared error

((yi
j)m − Fm(x⃗i

j))2

2
. (1.10)

The derivative of this error with respect to Fm(x⃗i
j) is exactly

d
((yi

j)m−Fm(x⃗i
j))2

2
dFm(x⃗i

j)
= −((yi

j)m − Fm(x⃗i
j)) (1.11)

By training a new tree on these residuals the error is minimized by essentially
subtracting this derivative from the ensemble prediction with learning step α.

By the nature of boosting that requires iterative improvements, this algo-
rithm cannot be parallelized.
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1.4. Learning to Rank algorithms

1.4.3 RankNet
RankNet [7] is a pairwise method, that is it’s trained on pairs of documents and
minimizes the number of inversions. However it’s output is a mapping function
f that maps documents to real values because ranking by comparing all pairs
of documents is time consuming. Then the ranking is ordinal regressions, i.e.
f maps to a real value and the documents are sorted according to those values.
The underlying model of this algorithm is a neural network that is trained to
minimize the cost function C described bellow.

The training of this algorithm works as follows. Each query-document pair
(qi, di

j) has a feature vector x⃗i
j and f maps this vector to a real value f(x⃗i

j).
Let A and B be documents (q1, d1

1) and (q1, d1
2) for shorthand. Let A > B

denote that A should be rank higher than B. P (A > B) is the probability
that A should be ranked higher than B and is defined as

P (A > B) = 1
1 + e−σ(f(x⃗A)−f(x⃗B)) , (1.12)

where σ is a parameter of the neural network.
The cost function C is defined as

C = −P̄ (A > B)log(P (A > B))− (1− P̄ (A > B))log(1−P (A > B)), (1.13)

where P̄ (A > B) is the known probability that A ranks higher than B. P̄ (A >
B) is set to 0 if A ranks lower than B, 0.5 if A and B have the same relevance,
and 1 if A ranks higher than B. Since C is differentiable, it is minimized with
backpropagation.

1.4.4 AdaRank
AdaRank [8] is a boosting algorithm that iteratively trains T weak rankers
and then linearly combines them. A weak ranker is a ranking algorithm that
doesn’t rank well on its own but adds performance if used in an ensemble.
AdaRank is a listwise algorithm so it treats queries as a single data sample.

The training of AdaRank works as follows: for t = 1, ..., T

1. Create a weak ranker ht with weighted distribution Pt

2. Choose αt = 1
2 ln

∑n

i=1 Pt(i)(1+E(ht,di,yi))∑n

i=1 Pt(i)(1+E(ht,di,yi))

3. Create ft =
∑t

k=1 αkhk(x⃗)

4. Update Pt+1(i) = e−E(ft,di,yi)∑n

j=1 e
−E(ft,dj,yj)

9



1. Learning to Rank

Pt(i) is the coefficient of query qi that measures how difficult qi is to rank at
iteration t. E(ht, di, yi)) is the performance measure (NDCG, MAP, WTA)
of ht on query qi. Notice that Pt changes at every addition of a new weak
ranker as difficult queries get correctly ranked over time. Also notice that as
the performance E for query qi increases, Pt+1(i) decreases. The importance
of an individual weak ranker is captured with its coefficient αt. αt increases
based on performance of ht weighted with Pt(i), in other words αt increases
as ht’s ranking performanc increases on difficult queries.

In [8] the authors use a single feature as the weak ranker so the final
ensemble is a linear combination of αs and features. The weak ranker ht is
chosen such that ∑n

i=1 Pt(i)E(ht, di, yi) is maximized.

1.4.5 ES-Rank
Since I implement this algorithm I describe it in more detail.

ES-Rank or Evolutional Strategy Ranking was proposed in [9]. It uses the
optimization technique called Evolutional Strategy (ES).

The objective is to optimize the scoring function

f(x⃗i
j) = w⃗, x⃗i

j =
d∑

k=1
wkxi

jk (1.14)

by finding the best weight vector w⃗ ∈ Rd such that f scores document a
with a higher number than document b if document a is more relevant than
document b.

ES-Rank uses the simplest form of Evolutional Strategy (1 + 1)-ES to find
w⃗. As seen in algorithm 1, ES-Rank stores two weight vectors (genotypes)
parent_gen and offspring_gen. These two vectors are initially set to zero
or otherwise initialized (see chapter 3). Then these weights are optimized
over a number of generations by mutating the offspring. If the mutation of
the offspring genotype yields an increase in its fitness compared to the parent’s
fitness, then the same mutation on the same weights is applied in the next
generation and the offspring replaces its parent, otherwise the offspring stays
the same as the parent and a new mutating scheme is created in the next
generation. A new mutation scheme is created by randomly choosing a number
r of genes to be mutated and then r times randomly choosing a weight from
the offspring and adding mutation_stepm to it. mutation_stepm is defined
as

mutation_stepm = Gaussian(0, 1) ∗ eF (x;0,1), (1.15)

where Gaussian(0, 1) is a random number from normal distribution with mean
0 and standard deviation 1, x is a random number between 0 and 1 uniformly
distributed, e is Euler’s number, and F (x; 0, 1) is the cumulative distribution

10



1.4. Learning to Rank algorithms

function of Cauchy distribution with 0 location and 1 scale applied on x, that
is F (x; 0, 1) = 1

π arctan(x) + 1
2 .

Algorithm 1 ES-Rank
Input: Query qi, documents di, labels yi, feature vectors x⃗i

j of each document
di

j

Output: A linear ranking function f(x⃗i
j) that maps a real valued score to

document di
j

1: successful_mutation← false
2: for parent_geni ∈ parent_gen do
3: parent_geni ← 0.0
4: offspring_gen← parent_gen
5: for g ← 1 to max_generations do
6: if successful_mutation = true then
7: mutate offspring_gen using mutation_step from generation g−1
8: else
9: r ← random number from 1 to length(offspring_gen)

10: for m = 1 to r do
11: i← random number from 1 to length(offspring_gen)
12: offspring_geni ← offspring_geni + mutation_stepm

13: mutation_step← sequence of mutations mutation_stepm

14: if Fitness(offspring_gen) > Fitness(parent_gen) then
15: successful_mutation← true
16: parent_gen← offspring_gen
17: else
18: successful_mutation← false
19: offspring_gen← parent_gen

11





Chapter 2
Collaborative filtering

Collaborative filtering (CF) is a collective term for algorithms from recom-
mendation systems in which items are recommended to users based on their
similarity in preferences with other users. The prediction of a user’s interest or
the recommendation of items to him/her is based on behavior of other similar
users.

2.1 Usage in Learning to Rank

The notion of similar users can be used in LTR as well. When ranking docu-
ments for user A based on his/her preferences and search history, there can be
a document D that A has never seen. If a user B that has similar preferences
to A has an opinion on document D (he/she clicked on the document or not),
then the same kind of opinion on D can be expected from A and therefore
accordingly ranked. For example if B wasn’t interested in document D (didn’t
click it), then D would be ranked lower for A because B has similar tastes to
A.

2.2 Data representation

The data is usually represented in a matrix of ratings called utility matrix
of users and items. Each user-item pair is a rating that represents the users
degree of preference of that item. Ratings are from an ordered set of values
typically integers ranging from 1 to 5. An example of such ratings could be
how many stars a user gives to a movie as illustrated in table 2.1.

In table 2.1 an observation can be made that since both users A and B
rated movie HP1 highly, they share similar interests and a recommendation
of movie HP2 to user A can be made because user B also rated HP2 highly.

13



2. Collaborative filtering

Table 2.1: Utility matrix of users and movies from [1]

HP1 HP2 HP3 TW SW1 SW2 SW3
A 4 5 1
B 5 5 4
C 2 4 5
D 3 3

Notice that some ratings can be blank and in practice blank ratings are
even greater in number. The utility matrix is usually very sparse. Out of
millions of movies an average user might have rated fifty of them.

2.3 Similarity measurement
Suppose that a user’s interest is represented by his/her row vector in the utility
matrix. In [1] cosine similarity is recommended as similarity measure. Cosine
similarity of vectors a⃗ and b⃗ is defined as a ratio between their dot product
and the product of their magnitudes

simcos(⃗a, b⃗) =
∑n

i=1 aibi√∑n
i=1 a2

i

√∑n
i=1 b2

i

(2.1)

To calculate this distance, blanks in the utility matrix have to be filled first.
A straightforward way would be to fill them with zeroes but that would mean
that the user rated the movie very poorly. A better way would be to subtract
the user’s average rating from his/her ratings and then filling in the blanks
with zeroes. By subtracting the average, ratings will be centered around zero.
A positive rating would mean that the user liked the movie more than average
and a negative rating would mean the user liked the movie less than average
[10]. This also solves the problem of high raters and low raters, i.e. users who
tend to give high ratings or users who tend to give low ratings. A similarity
measure that does this is called Pearson’s correlation and is defined as

simpearson(⃗a, b⃗) =
∑n

i=1 (ai − ā)(bi − b̄)√∑n
i=1 (ai − ā)2

√∑n
i=1 (bi − b̄)2

. (2.2)

2.4 Predicting ratings
Let N be the the set of k users that are the most similar to user u and have
rated item i, and r⃗u be the ratings vector of user u. The prediction for user u
and item i could simply be the average of ratings of item i by users N

rui = 1
k

∑
y∈N

ryi (2.3)
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2.5. Matrix factorization

or the average can be weighted with similarities of users N with user u

rui =
∑

y∈N simcos(r⃗y, r⃗u)ryi∑
y∈N

∣∣simcos(r⃗y, r⃗u)
∣∣ . (2.4)

2.5 Matrix factorization
Another method for CF, described in [11], is the factorization (or decomposi-
tion) of the utility matrix into two long and thin matrices.

Let M be the utility matrix of users and items with m rows and n columns.
The matrix factorization of matrix M are matrices U with m rows and k
columns and V with k rows and n columns. Matrix M can then be recon-
structed by multiplying matrices U and V , that is Mij = UiVj =

∑k
l=1 UilVlj .

Each value in matrix U and V represents a so-called latent variable of users
or items respectively. Suppose that M is a utility matrix of ratings for movies
and Ui is the row vector of matrix U representing latent variables of user i.
The concrete meaning of these latent variables is not known. For example,
Ui1 might mean how much user i likes action in movies and V1j might mean
how much action is in movie j but it is not known for certain. A rating
prediction for user i and movie j is made by calculating the dot product of
row Ui: and column V:j . If individual elements (latent variables) of vector Ui:
highly correlate with corresponding elements of vector V:j , then a high rating
is put out.

Matrix factorization is not true singular value decomposition (SVD) which
can be used but has some problems associated with it. In SVD, missing values
(blanks) have to be filled with a value. Secondly, storing such a utility matrix
in memory with a large dataset is not feasible. Typically, ratings of millions
of users and millions of items are kept. The utility matrix is very sparse so
an incremental decomposition algorithm has been developed [12] (see section
2.6).

2.6 Incremental computation of matrix
factorization

The incremental method, proposed by Simon Funk in [12], only stores known
ratings (non-blank elements of the utility matrix), so it is memory efficient.
Elements of matrices U and V can be initialized to anything but [12] shows
that a head start can be achieved by initializing them to the average of all
ratings. Then latent variables are trained one by one iteratively, that is at
iteration f the values Uif and Vfj are changed for every known rating Mij .
This is done by minimizng the mean squared error (MSE) between known
ratings and predictions.
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2. Collaborative filtering

As described in [11], the error function that is to be minimized is

E = 1
2

(Mij − Ui:V:j)2. (2.5)

Gradient descent is used to minimize this error function and according to [12]
it has no problems with local minima. The gradient of this function is

∂E

∂Ui:
= −(Mij − Ui:V:j)V:j (2.6)

∂E

∂V:j
= −(Mij − Ui:V:j)Ui: (2.7)

Because the error is being minimized, this gradient is subtracted from the
values of matrices U and V during each iteration of this algorithm. The update
step is performed like this

utemp = Uif (2.8)
vtemp = Vfj (2.9)

Uif = Uif + α(Mij − utemp · vtemp)vtemp (2.10)
Vfj = Vfj + α(Mij − utemp · vtemp)utemp, (2.11)

f is the latent variable being updated, α is the learning rate, and Mij is the
known rating of user i and item j.

Figure 2.1: Matrix factorization matrices

=

M U V

m

n

m
n

k

k
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Chapter 3
Implementation

3.1 Yandex’s dataset
The dataset, provided by Yandex in the Personalized Web Search Challenge
competition, is 30 days worth of search sessions, each associated with a user.
There are one or more queries in each session and search terms are specified
for each query. Additionally, 10 URL-domain pairs are given with each query
and click information is also given, that is the URLs which the user clicked on
are known. Each query and click are marked with a timestamp that indicates
when the action occurred from the beginning of the search session. These 30
days of sessions are split into 27 days of training sessions and 3 days of test
sessions as illustrated in figure 3.1. In the Sessions selection phase seen in
figure 3.1, a session randomly chosen for each user occurring in the 3 days of
sessions. Each of the selected sessions must have a query that has a URL with
relevance label of at least 1 (described below), this query is then considered as
a test query and its session is considered as a test session. Information about
clicks is removed from the test queries and is not disclosed by Yandex. Then
the goal of the competition is to rerank the URLs of the test queries.

Every bit of the data is replaced with a meaningless IDs, all of the data
is heavily anonymized this way, even the unit of timestamps is not given, so
complex language analysis is not possible.

Yandex uses NDCG to measure performance in this competition. The
relevance labels are dependent on dwell time (the duration between the user
clicking on a URL and performing the next action or ending the search ses-
sion). The relevance grade for a URL is defined as

• 0 (irrelevant), if the user doesn’t click the URL or the dwell time was
less than 50 units of time

• 1 (relevant), if the user clicked the URL and the dwell time was between
50 and 399 inclusively

17



3. Implementation

• 2 (highly relevant), if the user clicked the URL and the dwell time was
greater or equal to 400 or the user ended the session after the click

Figure 3.1: Yandex’s data splitting process

Yandex's 30 days of logs

27 days of logs 3 days of logs

Training sessions

Test sessions

Sessions selection

Here are some noteworthy characteristics of this dataset:

• Unique queries: 21,073,569

• Unique URLs: 70,348,426

• Unique users: 5,736,333

• Training sessions: 34,573,630

• Test sessions: 797,867

• Clicks in the training data: 64,693,054

• Total records in the log: 167,413,039

See these links (logs format, data description) for a more detailed descrip-
tion of the dataset.
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3.2. Workflow

3.2 Workflow
I split the 27 days of training data, that were provided by Yandex, into 24
days of historical sessions and 3 days of learning sessions similarly to team
Dataiku Data Science Studio (Dataiku). Like Yandex, I selected learning
queries (equivalent to Yandex’s test queries) from the learning sessions that
have at least one click with relevance label 1. Then I calculated a feature
set for each of the URLs within the learning queries (see section 3.3). This
resulted in query-URL pairs (qi, di

j) each associated with a vector of features
x⃗i

j . The labels yi
j for these query-URL pairs were relevance labels based on

clicks which are described in section 3.1. Finally I applied algorithms described
in the following sections on these features. To visualize the workflow, see figure
3.2.

Figure 3.2: Data splitting diagram
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3.3 Features
For feature calculation, I followed the process team Dataiku described in [13]
and I will briefly describe it in this section.

Before calculating features, Dataiku further divided the relevance label 0
into three more categories and in the end worked with 5 categories:

• skip, if the user examined the URL but didn’t click it, i.e. every URL
that was positioned above a clicked URL

• miss, if the user didn’t examine the URL, i.e. every URL that was
positioned after the last clicked URL

• click0, if the user clicked the URL and the dwell time was below 50
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• click1, if the user clicked the URL and the dwell time was between 50
and 399 inclusively

• click2, if the user clicked the URL and the dwell time was greater or
equal to 400

In the following features, two queries are considered the same if they have
all terms (words) in common and their terms have the same order.

3.3.1 Non-personalized rank
This is the position of the URL as it was displayed to the user before reranking.
It is the most important feature according to [13] because of the bias of users’
tendency to click URLs at top positions.

3.3.2 Aggregate features
Aggregate features are defined as conditional probabilities

agg(l,P) = P (outcome = l|P) = count(l,P) + pl

count(P) + 1
, (3.1)

where l ∈ {miss, skip, click0, click1, click2}, P is a predicate which can be a
conjunction of the following predicates

• URL = url0

• Domain = domain0

• User = user0

• Query = query0

The conjunction must contain predicate URL = url0 or Domain = domain0.
The zero subscript url0 denotes that it is a concrete URL, count(l,P) is the
number of occurrences of outcome l given P, count(P) is the number of oc-
currences satisfying predicate P, pl is 1 if l = miss and 0 otherwise. This is
equivalent to the assumption that every URL has been missed at least once.

3.3.3 Mean Reciprocal Rank
The Mean Reciprocal Rank (MRR) is defined as

MRR(l,P) =
∑

r∈Rl,P

1
r + 0.283

count(l,P) + 1
, (3.2)

where Rl,P is the list of ranks (positions) of all occurrences matching outcome
l and predicate P.
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3.4. Baseline algorithm

3.3.4 User click habits
User click entropy is−∑10

r=1 Pclick(r) · log2(Pclick(r)), where Pclick(r) is the
probability of user user0 clicking a URL displayed at position r.

User click counters are counters click12, click345, click678910 that count
the number of times user user0 clicked on URLs with positions {1,2},
{3,4,5}, {6,7,8,9,10} respectively.

User number of queries is the number of queries issued by user user0 in
the whole dataset.

User query length average is the average length (number of words) of
queries issued by user user0.

User session number of terms average is the number of words used by
used by user user0 in a session averaged over all of his/her sessions.

3.3.5 Query specific features
Query click entropy is −∑10

r=1 Pclick(r) · log2(Pclick(r)), where Pclick(r) is
the probability of query query0’s URL positioned at r being clicked.

Query average position is the position of query query0 within a session
averaged over all sessions with query0.

Query length is the number of terms in query0.

Query MRR is the mean reciprocal rank of clicks of query0, for example
there was a click on a URL with rank (position) r upon query0, the
reciprocal rank of that click is 1

r . The MRR is is the average of these
reciprocal ranks.

Since there are a lot of predicate combinations, a lot of features can be
calculated. I have only used those that Dataiku selected to be the most
explanatory and they are listed in [13].

3.4 Baseline algorithm
For the baseline model, I chose to implement ES-Rank (see section 1.4.5)
because it is relatively straight forward to implement and has promising results
according to [9].

The most ambiguous part of algorithm 1 is perhaps the fitness evaluation of
weight vectors. It is also the part where most computation occurs. The fitness
can be calculated with any measure described in section 1.2. Since Yandex
uses NDCG, I will be using it as well. To calculate the NDCG for a weight
vector, simply iterate over all queries and for each query, score it’s URLs by
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calculating the dot product of the URLs’ feature vectors and the weight vector,
then sort the URLs by these scores in descending order. Finally calculate the
NDCG for the sorted URLs of each query and average the NDCG over all
queries.

There are two implementation details that are noteworthy. One of them is
that each query has exactly 10 URLs so a sorting network can be used to speed
up the sorting process in the fitness evaluation. The second is that the fitness
evaluation can be trivially parallelized by computing the NDCG of a fraction
of the queries on seperate threads, then averaging the results over the number
of threads. No thread synchronization is required. The full implementation is
provided in the file esrank.cpp in apendix B.

Figure 3.3: An example of how ES-Rank ranks

URL1
URL2
URL3
URL4
URL5

0
1
2
0
0

URL1
URL2
URL3
URL4
URL5

0.300
0.701
0.978
0.329
0.393

sort by 

URL3
URL2
URL5
URL4
URL1

0.978
0.701
0.393
0.329
0.300

2
1
0
0
0

feature
vector

relevance
labelURL ID

As seen in figure 3.3, ES-Rank first scores each URL with a real number.
The scores are calculated as a dot product of the feature vector x⃗ and the
weight vector w⃗. The URLs are then sorted according to these scores. ES-
Rank mutates w⃗ until the stop criterion is met which could be a certain number
of generations or an NDCG threshold.
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3.5 Advanced algorithm
For the advanced algorithm, I improved the baseline ES-Rank and I also used
collaborative filtering to improve the NDCG score.

3.5.1 Performance variance improvement
During the search in weight space, the algorithm tends to get stuck in local
minima which is absolutely normal, but it remains in a different local minimum
every run due to the random mutations. The problem is that the fitness varies
a lot across the minima.

To correct this problem, I have introduced an initialization phase in ES-
Rank, where the initial weight vector w⃗ is chosen, during the first few gener-
ations of the algorithm, such that the loss

1
N

N∑
j=1

∣∣yj − w⃗ · x⃗j

∣∣, (3.3)

is minimized. N is the number of query-URL pairs, yj is the relevance label of
the j-th pair, and x⃗j is the feature vector of the j-th pair. This was proposed
in [9] but the author used linear regression for this initialization. In this
implementation, the weights are chosen with the same mutation process as
in algorithm 1. This not only reduces the NDCG variance but it also raises
overall training performance of the algorithm.

3.5.2 Unsuccessful mutation improvement
In the original ES-Rank, any number of weights can be mutated. I have
restricted the number of weights that can be mutated to 3 at most, that is
1, 2, or 3 weights can be mutated every generation. The idea behind this
is that with an increasing number of mutated weights, there is a decrease in
the probability that all of those mutations change the weights such that the
overall performance increases.

I have tested this change empirically and it led to faster convergence to
better solutions, i.e. the increase in training performance was larger per gen-
eration.

3.5.3 Collaborative filtering feature
Team Dataiku applied Funk’s Matrix factorization on a utility matrix of users
and domains but reported a marginal increase in performance. I tried to
apply the same algorithm on three utility matrices (described bellow) to see
if it makes any difference in performance.

The three added features were predictions from matrix factorization of
three utility matrices:
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• Users× URLs

• Queries× URLs

• Terms× URLs

I have used matrix factorization in a non-traditional way. Instead of Users
and URLs the utility matrix was for Queries and URLs. The idea is that there
are also certain relationships between queries which could be captured with
latent variables. This doesn’t have much to do with collaborative filtering,
but it improved the performance.

The values (ratings) in the utility matrices mentioned above were scores:

• 0 if the URL was skipped

• 1 if the relevance grade of the URL was 0

• 2 if the relevance grade of the URL was 1

• 3 if the relevance grade of the URL was 2

There is no point in considering the missed URLs because the user didn’t
examine them and therefore had no opinion about them.

3.5.3.1 How is the CF feature important and how does it help
ES-Rank?

Here is the full weight vector of 107 weights averaged over a few runs of ES-
Rank:

-0.29, -1.20, -9.85, -8.35, -0.30, 1.60, 0.30, -3.59, -2.50, 0.00, -0.40, 0.00,
7.63, 4.42, 6.28, -2.98, 0.25, -0.74, 2.42, 0.00, -0.05, -1.13, -7.49, -3.07, -2.36,
0.32, -1.82, -3.09, 1.03, 0.01, -0.27, 0.44, -2.32, -0.89, 5.87, 7.19, -4.49, 0.09,
-1.29, -0.71, 0.00, 0.05, 2.05, -0.06, 0.00, 0.00, -0.03, -1.34, 0.00, 2.17, 1.89,
3.55, -2.46, -0.42, 0.73, -1.43, 0.00, 0.00, 0.01, 0.00, 0.27, 0.40, 0.55, -1.61,
0.74, 4.62, -0.71, 2.44, 7.21, -2.95, 0.00, 4.76, 5.18, -32.32, 6.06, -3.82, -4.42,
-4.64, -8.72, -1.06, 0.04, 0.01, -0.22, 0.09, -0.70, 0.06, 4.48, 8.51, 48.03, 1.31,
3.23, 2.92, 0.84, 0.00, -4.52, 15.07, 893.56, 3.40, -0.07, 0.26, -5.67, 0.12,
-0.05, -0.50, -0.02, -0.45, -0.50

The features were normalized before the weights were trained by ES-Rank
so the weights directly reflect how each feature is important in linear ranking.
The weights 15.07, 893.56, 3.40 belong to features which are predictions of
utility matrices Users × URLs, Queries × URLs, and Terms × URLs re-
spectively. From the magnitude of these weights, an observation can be made
that the prediction of matrix Terms× URLs didn’t do much, the prediction
of matrix Queries × URLs is the most explanatory, and the prediction of
matrix Users× URLs is more explanatory than most of the other features.
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3.5.4 Hyperparameter tuning
ES-Rank During the tuning of ES-Rank parameters, I have found that the

NDCG hardly increases by a substantial amount after the 7000-th gen-
eration, so I set the number of generations to 7000. I set the number
of generations that were dedicated to weight initialization (described in
subsection 3.5.1) to 1500 since the error convergence stopped around
that point. The optimal number of mutated weights per generation is 3
by empirical tests.

Matrix factorization I have chosen the number of latent variables that gave
the smallest MSE. I set the number of latent variables to 40 which re-
duced the MSE from initial 0.89 to 0.68. Any setting of the learning
rate above 0.02 led to gradient explosion (the MSE went to infinity).

3.6 Performance evaluation and comparison
I didn’t use cross validation to measure the performance of the implemented
models, because I could submit my solution to the competition page on Kag-
gle.com and measure the performance directly on Yandex’s test sessions.

I also used Random Forest Classifier from the python library scikit-learn
for a better comparison of scores.

Table 3.1: Performances of individual algorithms on Dataiku’s feature set with
and without collaborative filtering evaluated on Kaggle

no CF with CF
ES-Rank baseline 0.80141 -
ES-Rank improved 0.80149 0.80302
Random Forest 0.80263 0.80426

Table 3.2: Kaggle leaderboard (higher NDCG is better)

Place eam name NDCG score
1 pampampampam (ooc) 0.80724
2 Dataiku Data Science Studio 0.80714
3 LR 0.80636
4 learner 0.80475
5 DenXX 0.80425
6 YS-L 0.80390
7 lucky guy 0.80322
8 Gábor S 0.80320
9 Vermillion Team 3 0.80289
10 Ruslan Mavlyutov (ooc) 0.80191
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As seen in tables 3.1 and 3.2, the performance of ES-Rank is not great
compared to other submissions on the leaderboard though ES-Rank came
9th. There could be a few possible reasons for the low score of ES-Rank

1. The training performance of ES-Rank improved with CF was 0.80668
which is considerably higher than the test performance 0.80302 and in-
dicates overfitting.

2. I inaccurately replicated the features described by Dataiku in [13] and
therefore had bad quality data going into the models.

3. ES-Rank is a linear model so it is a weak learner and cannot capture
non-linear relationships in the data.

Number 1 is unlikely to be true because a linear model hardly overfits data
especially on large data with 1.2 · 106 queries. I have also tried to reduce the
number of generations in ES-Rank to not overfit the data but that led to an
even lower score on Kaggle.

Number 2 is very likely because Dataiku have also tried Random Forests
and reached a score of 0.80458 but only with 30 trees. I reached 0.80426 but
had to use 128 trees so the base features without CF are of low quality.

Number 3 is also likely because Random Forest which is a more complex
predictor than ES-Rank and easily reached a higher NDCG score.

3.6.1 Collaborative filtering performance increase
significance test

Here are the NDCG values of ES-Rank with and without CF measured over
10 runs each and evaluated on Kaggle.

nocf <- c(0.80123, 0.80137, 0.80152, 0.80132, 0.80130,
.80138, 0.80157, 0.80129, 0.80142, 0.80143)
withcf <- c(0.80249, 0.80250, 0.80266, 0.80274, 0.80238,
0.80251, 0.80302, 0.80290, 0.80260, 0.80100)
var.test(nocf, withcf)
t.test(nocf, withcf, paired=F, alternative="less",
var.equal=F, conf.level=0.999)

Listing 1: Measured NDCGs in R

I conducted a simple two sample t-test. The hypothesis H0 is that the
mean performance with and without CF is the same and the alternative HA is
that ES-Rank with CF significantly increases performance. As seen in listings
1 and 2, the test in R gives a p-value that is lower than 0.001 which indicates
that CF increased the NDCG with 99.9% confidence.
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F test to compare two variances

data: nocf and withcf
F = 0.036064, num df = 9, denom df = 9, p-value = 3.279e-05
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.008957842 0.145194337

sample estimates:
ratio of variances

0.03606422

Welch Two Sample t-test

data: nocf and withcf
t = -6.1275, df = 9.6483, p-value = 6.486e-05
alternative hypothesis: true difference in means is less than 0
99.9 percent confidence interval:

-Inf -0.0003463374
sample estimates:
mean of x mean of y
0.801383 0.802480

Listing 2: Two sample t-test output

3.7 Computational complexity and scalability

3.7.1 ES-Rank

The time complexity of ES-Rank is O(G ·Q ·(F ·U +Ulog(U))), where G is the
number of generations, F is the number of features of query-URL pairs, Q is
the number of queries to be ranked, and U is the maximum number of URLs
in a query. The mutation of the weight vector takes O(F ) time, the NDCG
calculation takes O(Q · (F ·U +Ulog(U))) because a dot product is performed
for each URL in a query which takes O(F · U) time and then the URLs are
sorted in O(Ulog(U)) time, this is done for all queries over G generations
hence O(G ·Q · (F · U + Ulog(U))).

For this particular dataset, it is given that each query has 10 URLs and
the number of features doesn’t change during ES-Rank ranking. Then the
time required to rank scales linearly to the number of queries to be ranked.
This is confirmed by empirical measurements plotted in figure 3.4. These
measurements were made on a 8-core machine. The fitness evaluation can be
computed in parallel. The number of operations per core would be O(G · Q

t ·
(F · U + Ulog(U))), where t is the number of threads (or cores).

27



3. Implementation

Figure 3.4: Training time of ES-Rank in relation to number of queries
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Note that 1.2 · 106 is the number of queries in the full test dataset (3 days
of logs).

3.7.2 Matrix factorization collaborative filtering
The time complexity of matrix factorization is O(k · e · R), where k is the
number of latent variables per user or per URL, e is the number of epochs
per latent variable, and R is the number of URL ratings. k and e are chosen
empirically to minimize the MSE and don’t change during training. Given
that k and e are constants, the algorithm scales linearly with the number of
URL ratings R as shown in figure 3.5.
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Figure 3.5: Training time of matrix factorization in relation to the number of
ratings
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Conclusion

I have examined learning to rank and collaborative filtering algorithms and
chose to implement ES-Rank and incremental matrix factorization. For per-
formance evaluation, I have applied those algorithms on Yandex’s dataset
provided in the Personalized Web Search Challenge competition held on Kag-
gle.com. To calculate features from the dataset, I replicated team Dataiku’s
feature aggregation which was challenging because their methods were de-
scribed perhaps too succinctly. Hyperparameter tuning was a challenging
task as well because the runtime of the algorithms mentioned above was long
on this large dataset. I have improved the baseline ES-Rank algorithm with
an initialization step, a better mutation procedure, and matrix factorization
features which led to an increase of NDCG score from 0.80149 to 0.80302 (the
higher the better). I have also analyzed the computational complexity and
scalability of the implemented algorithms and compared their performance to
other submissions on Kaggle.com. The implemented algorithms placed 9th in
the competition which is decent considering that they are linear models. By
doing these tasks I have completed the assignment.

For future improvements, bagging could be used to further reduce the
variance of ES-Rank and to improve its performance.
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Appendix A
Acronyms

AP Average Precision

CF Collaborative Filtering

ES Evolutional Strategy

ERR Expected Reciprocal Rank

LTR Learning to Rank

MAP Mean Average Precision

MRR Mean Reciprocal Rating

NDCG Normalized Discounted Cumulative Gain

WTA Winner Takes All
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Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src.........................................the directory of source codes

implementation ....... the directory of implementation sources codes
thesis...............the directory of LATEX source codes of the thesis

text............................................ the thesis text directory
thesis.pdf............................the thesis text in PDF format
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