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Abstrakt / Abstract

V předmětu Architektura Počítačů
vyučovaném na Českém Vysokém Učení
Technickém v Praze, Fakultě Elek-
trotechnické se v tuto chvíli používá
starý emulátor MIPS procesory Mip-
sIt. Ten poskytuje vlastnosti důležité
pro nahlédnutí do vnitřního fungování
procesoru. I přesto, že byl emulátor dis-
tribuován se světově uznávanou učebnicí
a dané téma tak aplikace samotná je již
zastaralá. Podporuje pouze Windows a
nejsou k ní zdrojové kódy. Cílem této
práce je vytvořit vlastnostmi srovnatel-
nou náhradu založenou na aktuálních
softwarových technologiích.

An old MipsIt emulator of MIPS pro-
cessor is used as educational processor
model in Computer Architectures course
taught on Czech Technical University in
Prague, Faculty of Electrical Engineer-
ing currently. It provides features im-
portant for student insight into the in-
ner working of a processor. Even that
the emulator has been distributed with
world recognized textbook on the topic,
the application is already archaic, Win-
dows only and without source code. A
goal of this thesis is to provide features
equivalent replacement based on current
software technologies.
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Chapter 1
Introduction

Computers are dominating a lot of industry sectors, including engineering as they are
essential production tools. At least basic knowledge of the inner working of a processor
and ability to predict its influence on performance, security and safety consequences
is important for each programmer expert, computer, processor and embedded systems
designer and advanced user. That is why the Computer Architectures course is in-
cluded in electronics, informatics and robotic specializations at Faculty of Electrical
Engineering of Czech Technical University same as at all similar world recognized tech-
nical universities. MIPS1 architecture is selected as basic demonstration model because
its first implementation can be easily understood and implemented as connection of
basic blocks.

MIPS simulator MipsIt is used for practical parts of Computer Architectures course.
Unfortunately this simulator is getting old and its usage becomes problematic. Crashes
are common and some functionality such as simulation restart randomly breaks and
requires program restart. Updating currently used program is not possible because
source code is not freely available. Because of that the goal of this thesis is to implement
replacement simulator.

Simulator implemented as part of this thesis is implemented in C++ programing
language using Qt toolkit. It’s called QtMips. It is supposed to present graphical user
interface (GUI) with visualization of microprocessor interworking. Both pipelined and
single-cycle CPU are implemented implemented and visualized.

Simulator is also expected to implement cache subsystem with variable size.
Programs to simulator should be loaded in Executable and Linkable file format

(ELF). This format is considered as a standard for executables, because it is default
output from compilers such as GNU C Compiler (GCC).

The thesis starts with an analysis of MIPS processor design, instruction set, and
possible implementations. That is followed by section looking into features required
for education. Next section evaluates possibility to use existing simulators instead of
MipsIt or as a base for new implementation. It is followed by two chapters describing
simulator technical and graphical design.

1 MIPS is acronym originating from initial goal to design microprocessor without interlocked pipeline
stages.
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Chapter 2
MIPS Instruction Set Architecture

MIPS is a CPU instruction set architecture (ISA) with a long history of development
and usage. It is is one of the first processors (CPU) architecture designs focussed on in-
struction set complexity reduction (RISC ISA) to achieve higher instruction procession
throughput per cycle (IPC) at higher clock frequencies. The architecture has under-
gone many enhancements and changes from its original design which corresponds to
instruction set changes. The original instruction set is as well referenced as MIPS I to
distinguish it from later versions now. The first CPU design implementing this archi-
tecture is MIPS Computer Systems’ R2000 processor which is why original instruction
set is also referenced as MIPS R2000. A goal of this thesis is to implement a visual tool
which allows learning basic CPU concept. That is which the only subset of R2000 ISA
is implemented and described.

Only information and concepts relevant to the selected architecture subset are de-
scribed in details in the Section 2.1 and later. Everything described in this chapter is
implemented in simulator unless stated otherwise.

MIPS ISA is designed as a RISC. It contains set of instructions that are supposed
to be easy to implement and fast to execute. It is common that all instructions take
single CPU cycle to execute (at least if we ignore pipelining and memory access). In
case of MIPS ISA all instructions also have the same fixed size (32 bits).

Architecture of MIPS is divided to core instructions and four extensions. These ex-
tensions are called coprocessors. Following coprocessors are defined with their usage[1]:

. Coprocessor 0 (CP0): Virtual memory system, exceptions handling and CPU states
including switching between kernel, supervisor and user states.. Coprocessor 1 (CP1): Floating point unit. Coprocessor 2 (CP2): Free for platform specific usage (extensions added by chip
manufacturer). Coprocessor 3 (CP3): Reserved for MIPS ISA extension

These coprocessors are not analyzed in this thesis because they are out of the edu-
cation scope and because of that they are not implemented in simulator.

2.1 Data Formats
MIPS I specifies and works with three data sizes[1]:

. Byte: 8 bits. Halfword: 16 bits or two bytes. Word: 32 bits or two halfwords or four bytes

Bytes in halfword and word type can be configured in either big-endian or little-
endian order[1]. In case of big-endian first byte is the most significant one. For little-
endian is first byte the least significant one. Simulator developed as part of this thesis

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Registers

implements big-endian operation and instruction set variant. That is default mode in
which is CPU initialized and because of not implemented coprocessor 0 there is no
possibility to switch it to little-endian.

In some operations in CPU, such as comparing of values, there is a requirement to
recognize if data is signed or not. This is explicitly given by instruction specifying
given operation. It is also important to note that two’s complement signed number
representation is used[2].

Some operations such as data load from memory or data store to memory require
size type change. Change is either to make type data type smaller, which is done by
dropping more significant bytes, or to make bigger data type. In such case there are
two approaches. One is for unsigned values. Those are extended by zero bytes. The
other one is for signed values. Sign extension is required. That is operation after which
initially negative value stays negative even if additional bytes are prepended[3].

MIPS ISA also specifies data types for floating point numbers but those are not
relevant to this thesis as FPU is not implemented.

2.2 Registers
MIPS instruction format addresses thirty-two 32-bit general purpose registers where
some of them has special use.

Register 0 is hard wired to value zero. Result of any instruction writing to it is
discarded and any read is read as zero value.

Register 31 is used as destination register by jump/branch and link instructions (see
Section 2.3.4). Its usage in these instructions is explicit and not specified in instruction
it self. These instructions are not implemented yet. Therefore this register is in reality
like rest of the 29 registers.

On top of the 32 general purpose registers there are other special purpose registers.
All with 32-bit size.

The primary one is program counter register. This register is used to store address
to executing instruction. It cannot be directly modified (at least not without using
coprocessor) but it is instead incremented automatically and modified through jump
and branch instructions.

There are two other registers used during multiplication and division. Those are HI
and LO. Where HI is called as higher result and LO as lower result. These registers are
used in following described situations:

. Both HI and LO are used to store product of integer multiply in case of multiplication.
HI contains higher word and LO contains lower word.. LO stores quotient and HI stores remainder of integer divide, in case of division.

Separate instructions to move to values from and to HI and LO registers are provided
by MIPS ISA. Exact instructions using LO and HI are not discussed later in this text
as they are not strictly required for the purpose of this thesis.

2.3 Instruction Formats and Instructions Description
MIPS ISA specifies three instruction formats. They are identified as R, I and J. Their
binary format is as can be seen visualized in table 2.1.

3



2. MIPS Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Type Format (bits)

R opcode (6) rs (5) rt (5) rd (5) sa (5) function (6)
I opcode (6) rs (5) rt (5) immediate (16)
J opcode (6) address (26)

Table 2.1. MIPS instructions binary formats.

An opcode field in instruction are top most 6 bits containing operation code. This
operation code is for initial identification of instruction. Some of the R instructions
share the same operation code and in such case function bits are used to fully decode
type of instruction.

rs, rt and rd are 5 bit wide identifiers of used general purpose register. rs is a
shortcut for source register, rt is a shortcut for target register and rd is a shortcut for
destination register. rs is always, as the name suggests, a data source. It means that it
is always read. rd is always written to but only R instructions have this field. In case of
I instruction type rt is used instead instead as destination register except for memory
store operations where it specifies the second source register. In case of R instructions
rt is read.

sa is used for shift instructions. This 5 bits wide field contains number of bits to be
shifted.

function is 6 bits wide identifier that together with opcode defines instruction type.
immediate is 16 bits wide field containing constant to be used in operation specified

by given instruction.
address is 26 bits wide field with low address bits for jump instruction. J format

is used only for jump instruction and provides a way for long jumps without need of
jumping by register value.

In following subsections some of the MIPS instructions[4] are described. They are
grouped together by type.

2.3.1 Arithmetic Instructions
Arithmetic instructions implement arithmetic operations applied on values from rs and
rt registers and writing result to rd register, at least in case of R instruction type.
Some of them are I instruction type and therefore use immediate value instead of rt
as source. Not all arithmetic instructions are implemented in simulator because they
are not essential for education. Because of that only few selected ones are noted and
described here.

Instruction ADD and its variants ADDU, ADDI and ADDUI serve for adding two numbers.
Given instruction does unsigned addition in case of appended U after base ADD. Arith-
metic exception is raised when a result of the addition of two signed operands overflows
32-bit second complement representation range. Doing the same with unsigned addi-
tion doesn’t cause exception and instead it results to overflow (33-th bit is dropped).
Instruction is using format I instead of R when I is appended. Second operant used
for adding is not from general purpose register but it an immediate value stored in the
instruction itself in such case.

Instruction SUB and its kin SUBU serve for subtracting numbers. Appended U serves
same purpose as in case of ADD that means it is saying that it is unsigned subtraction.
And unsigned subtraction cannot cause exception unlike signed one.

Last instructions to be noted here are SLT and its variants SLTU, SLTI, SLTIU. Those
compare value from register rs with value from register rt and boolean result (either

4



. . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Instruction Formats and Instructions Description

value 1 or 0) is stored to rd. In case of appended I to SLT it is same as for ADD.
Meaning that second operand is replaced by value from instruction it self and rt is
used as output instead. In case of appended U instruction does unsigned comparison.
Difference between unsigned and signed comparison is in what ever values with most
significant bit set are considered as bigger than the ones with cleared one or not. In
other words if value should be considered to be unsigned or not.

2.3.2 Logical Instructions

Logical instruction implement boolean operations[5]. Except for different type of oper-
ation they are same as arithmetic instructions. They are also mostly of R instruction
type. And they too use rs and rt registers as source of values operation is applied on.
And result is too written to rd register. Exception for I instruction types applies here
as well, where the immediate field from instruction itself is used as second operant.

All logical instructions apply some boolean operation on bit by bit basis. N-th bit
from source values are combined according to operation and result is placed again to
N-th bit. That is done for all 32 bits. In case of AND instruction conjunction is used.
For OR instruction disjunction is used. There are also NOR and XOR instructions. Those
implement negated disjunction and exclusive disjunction respectively.

There are also immediate versions of some of these instructions. As noted already
those are of I type and the one of the inputs is used as value from immediate field of
instruction instead of rt register. In contrast to arithmetic instructions immediate field
value is zero extended instead of sign extended. These immediate instruction variants
are ANDI as analogue for AND, ORI as analogue for OR and XORI as analogue for XOR.

2.3.3 Shift Instructions

Shift instructions serve for logical and arithmetic shifts[6].
Half of shift instructions take value from general purpose register rt, apply shift by

sa value and writes result to rd general purpose register. Instructions SLL and SRL do
left or right logical shift respectively. Instruction SRA does arithmetic right shift.

Instructions SLL, SRL and SRA has also variants SLLV, SRLV and SRAV for shifts by
value from general purpose register rs. They don’t use sa value from instruction.

2.3.4 Branch and Jump Instructions

Branch and jump instructions manipulate program counter. Jump instructions do it
unconditionally while branch instructions compare selected register values.

There are two primary jump instructions: J and JR. J instruction is of J instruction
type and does absolute jump in current memory section. This section is specified by
upper four most-significant bits in current program counter value. JR is a R instruction
type and also is an absolute jump but compared to J it can jump anywhere in memory
(using complete 32 bit addressable space). Target address is given by value in general
purpose register rs.

There are following branch instructions: BEQ, BNE, BLTZ, BGTZ, BLEZ and BGEZ. They
all are of I instruction type. BEQ and BNE instructions compare two registers (rs and rt)
and if they are equal or not respectively then sign extended immediate value is added to
current value of program counter. Instructions BLTZ, BGTZ, BLEZ, BGEZ compare only
single general purpose register (rs) against zero. Otherwise if condition is met then
same as in case of previous branch instructions sign extended value of immediate is
added to program counter value. For BLTZ is condition if value is less then zero. In case

5



2. MIPS Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
of BGTZ is condition what ever is value greater then zero. For BLEZ and BGEZ conditions
are if value is less or greater respectively or equal to zero.

MIPS ISA also specifies jump/branch and link instructions. Those use general pur-
pose register 31 for storing original address before changing program counter.

2.3.5 Load and Store Instructions
Load and store instructions are two types of instructions for receiving and storing data
from and to memory. Those are instructions of I type. Register rs is used as a source of
address. And register rt is used either as source for value to be written in case of store
instruction or value loaded from memory is written to it in case of load instruction.
Immediate field in instruction is used as an offset to address, it is added to value from
rs register.

To receive data from memory a load instruction like LB, LH or LW exist. Second
letter in these instruction names correlates with data type to be loaded. Meaning LB
loads byte, LH loads half word and LW loads whole word. When type that is less than
word is loaded then it is sign extended to whole word (more about that can be found
in Section 2.1). There are also derivate instructions LBU and LHU where U stands for
unsigned. Those zero extend value instead of sign extend. Instead missing bites are
filled with zeroes.

To store data to memory a store instructions like SB, SH and SW exist. Second letter
in these instruction names correlates with data type same as in case of load instruction.
But there are no unsigned variants of store instructions as they are not required. When
word is stored as byte then only least-significant byte is stored.

2.3.6 Move Instructions
Move operations implement various transfer operations between various registers. There
are two types of such instruction that are implemented in the simulator. These are
instructions moving value from/to LO and HI registers to/from general purpose ones.
Second type are conditional moves.

Instructions MFHI and MFLO are moving value from HI and LO register respectively
to general purpose specified in rd. Instructions MTHI and MTLO do opposite move. They
move value from general purpose register specified in rs to HI or LO register respectively.

Then there are MOVZ and MOVN instructions. Those conditionally move value from
general purpose register rs to general purpose register rd. Condition is either if value
in register rt is zero for MOVZ or non-zero for MOVN. If condition is not met then move
is not realized.

Part of this category is potentially also instruction LUI. In MIPS manual it is placed
together with logic instructions but that is mostly because of its possible implementa-
tion. Its usage is for setting constants to register’s more-significant half word. 16 bits
of instruction immediate field are shifted left by 16 and lower 16 bits from value from
rt register are concatenated. Result is stored in general purpose register rt.

2.3.7 Pseudo Instructions
Not all instructions have to be implemented explicitly in hardware. Some of them are
defined in MIPS assembler. Compiler recognizes them but they are just special cases
of other instructions. Or they stand for combination of other instructions[7].

There is NOP instructions that have no effect on CPU state when executed. It’s also
called as no operation. It is R instruction type and is an idiom for SLL instruction with
all fields set to zero. In the other words its binary representation is all bits set to zero.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Pipeline Architecture

Another pseudo instruction is MOVE. This one is for copying value from one general
purpose register to another. It is implemented using ADD instruction by adding register
zero with source register.

Also there is a BLT pseudo instruction called branch if less then. It completes set of
compare and jump instructions. It is implemented using SLT and BNE instructions.

One additional branch pseudo instruction is B. It’s unconditional branch and it is
implemented using BEQ instruction by comparing register zero (it is same register and
because of that values are always equal).

The last pseudo instruction is LA called load address. It is intended for loading
constant address (whole word) to general purpose register. This has to be done by
two instructions and in common it is implemented with combination of LUI and ORI
instructions.

2.4 Pipeline Architecture

MIPS ISA was designed with goal to achieve pipelined execution. In general it is
possible to divide instruction execution to almost any arbitrary number of discrete
operations. In case of basic MIPS architecture implementation, division into five stages
of the pipeline is used. These stages are called[8]:

. Instruction Fetch (IF). Instruction Decode (ID). Execution (EX). Memory (MEM). Write Back (WB)

In instruction fetch stage the instruction is loaded from program memory from pro-
gram counter’s address. This automatically increments program counter by 4 unless
previous instruction was jump or successful branch.

Instruction decode stage contains instruction decoder, registers file and compare logic
used for branch instructions. In this stage the instruction is used for generating signals
for this and all following stages. That is instruction decoder’s job. Register identifiers
rs and rt are used for getting values from given registers and immediate instruction
field is sign extended to 32 bits.

Execution stage contains ALU. It operates on top of two 32bit values and outputs
another 32bit value as a result. For some operations it also updates HI and LO registers.
Values passed to ALU are values loaded from registers from instruction decode stage.
In case of I instruction type second value, that would be loaded from rt register, is
replaced with sign or zero extended value from immediate instruction field from decode
stage. What ALU operation is used is defined by signal passed from control unit from
decode stage.

Memory stage is dedicated for memory access. As an address is used ALU output
from execute stage. For write instructions, the value to be written is value from register
from rt passed through execute stage from decode stage. For more in depth information
on memory access please see section 2.5. Both output from memory and ALU output
are passed to next stage.

Last stage is write back. In this stage is either output from ALU or from memory
written to rt or rd register (depending on instruction type).

7



2. MIPS Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. Scheme with pipelined CPU as is taught in course Computer Architectures
(Source: presentation number four from this course[9]).

With instruction execution divided to stages it is possible to implement pipelined
processor. This is architecture where subsequent instructions are evaluated in parallel
in different sections of CPU. This means that single instruction needs five CPU cycles
to complete but one instruction is always completed every cycle except for special
cases. This allows faster CPU clock speed because every single stage needs less time
to process instruction than all stages combined. This division of instruction processing
logic enables to execute up to five times more instructions in the same interval as if
the whole instruction is executed in one cycle. But such speedup would require ideally
balanced pipeline design.

Pipelined architecture introduces some obstacles. Specially, for branch instructions
we can’t decide what instruction should be loaded next in instruction fetch stage alone.
Instruction itself has to be decoded and that makes fetch stage too complicated and
longer to resolve. This problem is called control hazard or branch hazard. Simple
solution is to insert NOP instructions to pipeline until we decide what next program
counter value should be. But this decrements pipelined speed gain. MIPS architecture
instead solves this problem simply by accepting that following instruction after any
jump or branch instruction will be always executed. Such instruction is in so called
delay slot.

Another obstacle in pipelined architecture are data hazards. Impact of data hazards
has to be analyzed and prevented for pipelined architecture. It is a problem where
instruction requires an input output from some previously executed instruction. Results
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from two previous instructions cannot be read from registers as they are still in pipeline.
Because registers are read in decode stage and previous problematic instructions can
be in that case in execute and memory stage. There is also another possible instruction
in write back stage. But because write back usually consist only of single multiplexer
there is enough time to propagate new value to registers before they are read[8].

The possible data hazards can be accounted and resolved in program compilation
phase for a simple pipeline. But such solution prevents future microarchitectural
changes and leads to more wasted cycles (bubbles) when pad (NOP) instructions are
inserted. It makes compilation and manual program writing much more complex as
well. Another solution is to include hazard unit in a CPU design which can resolve
hazards by stalling pipeline or forwarding results between instructions.

Table 2.2 contains all possible situation when hazards can occur in MIPS I with 5-
stages pipeline design. There are two types of instructions in sense of possible hazards.
Those of which we know their result in memory stage. Those are exclusively all load
instructions. And those of which we know their result in execution stage. Those are
all instructions modifying general purpose registers and at the same time are not load
memory instructions. For all instructions we need their inputs at the end of instruction
decode stage. In table 2.2 instruction currently being decoded (being in instruction
decode stage) requires content of register that is supposed to be changed by previous
instruction. Columns of table are possible positions of such instruction in pipeline.

EX MEM WB
Result known in execute stage Forward Forward No hazard
Result known in memory stage Stall Forward No hazard

Table 2.2. Hazard resolve map

2.5 Load/Store Architecture

MIPS ISA uses load/store architecture. Instructions to access memory are strictly
separated from rest of ISA. Such memory instructions are designed to be specialized
and not to have any side effect except of memory manipulation. There are two types
of such instructions. There are load instructions for receiving values from memory to
registers. And there are store instructions for storing values to memory.

Such architecture simplifies implementation and compiler optimization [1]. It also
limits possible additional data hazards (see Section 2.4). If the data can be loaded
and manipulated or even stored (read-modify-write) by single instruction (usual case of
CISC designs), then pipeline has to be prolonged, or instruction folded multiple times
through pipeline which makes the design much more complex. Because of load/store
architecture, where value can be either read or written but not both, its possible to
completely ignore memory as a source of hazards.

MIPS ISA specifies 32 bit address size and 32 bit native data type. That means that
words can be interchangeably used as both data and addresses. But it also in design
limits amount of memory accessible.

2.5.1 Cache

Although load/store architecture forces by its design less memory intensive operations
(data has to be held in general purpose registers and are moved to memory only if
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it is really necessary) it doesn’t mitigate the core problem, that is slow memory in
comparison with the rest of the CPU. For this purpose caches are used[10].

Cache is specialized data storage with fast access times that tries to serve as memory
copy. It has limited size so it can’t be complete copy but storing at least some of the
data that were lately used improves overall memory access times. When memory is
accessed through cache then there are two possible results. Either requested data were
lately used and are still stored in cache or they were not recently accessed and are
available only in memory it self. First case is called cache hit and second one is called
cache miss. Commonly cache hits are resolved in just a single CPU tick. When cache
miss is encountered it commonly takes considerably more time than cache hit.

Cache it self is constructed using value store paired with additional meta informa-
tions. At minimum cache has to have memory address identifier, called tag, of that
specific value stored. On top of that it has to have bits signaling if it contains valid
value and in some cases also dirty bit is required (will be addressed when write-back
policies are considered). When there is read request then cache checks if it has value
with validity bit set and tag matching address and if so then it provides given value
instead of accessing memory it self.

Having only one value store makes unefficient cache. Because of that caches are
constructed from multiple of such value stores. There are few ways those can be grouped
together to create bigger cache.

One way is to just add more separate value stores. This describes parameter called
Degree of associativity or number of ways through cache. When cache is accessed then
it goes through all of its values and looks for valid one with tag matching with address.
When there is no match then it looks for first one that is not valid and uses that one to
get value from memory and storing it there. When all values are valid then it applies
replacement policy and replaces one (changing value and corresponding tag). If there is
no expansion of this cache (as described in following paragraphs) then it is called fully
associative cache.

Another way is to just increase size of value storage. In that case we can store
multiple words in a single store. Words stored on top of directly requested one are
those that are on addresses right next to it. This divides memory to blocks of words
that are loaded to cache together. It also shortens required size of stored tag because
in that case we don’t have to look for exact address match but just for address that
exactly identifies memory block. Parameter specifying number of words to be used is
called Block size.

The last way we can expand cache is by adding so called sets. Those are additional
value stores with separate tag and other needed bits. They makes stored tag shorter
same way as having higher Block size. It also archives it by almost same method. Low
part of the address exactly specifies what set should be used and that way it is possible
to not store those bits in tag.

When all value stores are marked as valid and tag from none of them matches the
needed address (cache miss is encountered) then there is need for replacement. One
of values in cache has to be replaced with value from memory from requested address.
Unfortunately it is not directly defined which one should be replaced in case of higher
than one degree of associativity. There are multiple algorithms to choose which one
should be replaced. This thesis is concerned only with three basic ones:

. Random. Least frequently used
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. Least recently used

Cache entry to store data is chosen randomly in case of random algorithm. It is one of
the simplest possible algorithms as there is no need to store any additional information.

Another two algorithms require some additional information about cache. They are
based on collected access statistics. Difference is what kind of statistic is used. In case
of Least frequently used it is just simple counter tracking number of accesses. In case
of Least recently used it is time stamp updated every time field is accessed. For both
algorithms it is desirable to replace the store with the lowers statistic. In case of Least
frequently used it is the one accessed lowest number of times. In case of Least recently
used the one replaced is the one with oldest access time.

It is question what should be done with value that is currently stored there in case
of replacement. There are two possible approaches. One allows immediate override.
Other one requires write to memory.

First approach where we can just override current value without any additional action
is called Write through. Using this requires every cache value change to be also written
to memory. In this case there is no need for dirty bit.

Second approach is where changed value has to be written to memory before it is
overwritten. This is because all write requests just modify value in cache store but not
in memory. This lowers memory load on writes but it requires additional logic that in
case of cache replacement writes changed value back to memory.

11



Chapter 3
Features Required for Education

Goal of this thesis is to implement application for education. Because of that it is
beneficial to first look at existing tutorials as those describe minimal requirements to
replace currently used software. If those are fulfilled then migrating from previously
used simulator to a new one, that is implemented as part of this thesis, should be much
easier. Only change might just be need of screen-shots replacement in documentation
for students.

The application is intended to be used in course on Computer architecture at CTU[9].
It is an introduction course taught as part bachelor programs. Students are introduced
to problems in CPU design. Course starts with basics such as arithmetics in computers
and simple CPU design. It deepens this knowledge with memory access cache, pipelining
and I/O. All this is demonstrated on MIPS architecture. Course also goes through other
CPU architectures but for purpose of this thesis MIPS is the important one.

MIPS is used primarily because of its simple to decode and simple to understand
instruction coding. It is easier to explain concepts to newcomers when instruction are
coded in simple and stable way. It might be too confusing if used instruction coding
would not have stable coding. Meaning if same bits in different instructions would be
used regularly to code different information. But primarily it is architecture that is
already used at the moment in course and intention of this thesis is not to replace it.

Relevant tutorials are described in following sections in this chapter. Not all taught
tutorials are described here and some of them have wider reach than described. Some
of them are also taught as not as single tutorial but multiple ones. In general following
sections just contains themes and simulator usages in those tutorials that are relevant
to this thesis.

3.1 Tutorial Illustrating Basic CPU Structure
This tutorial is initial introduction to MIPS. It is taught in the third week. In initial
weeks students are only introduced to some motivational examples and to computer
arithmetics.

Students are primarily introduced to MIPS assembly language as for most of them
it is first contact with assembly what so ever. Students are presented with following
instructions:

. ADD. ADDI. SUB. BNE. BEQ. SLT. SLL. J
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. LW. SW. LUI. LA. JR. JAL

Please refer to chapter about MIPS architecture (2) for description of these instruc-
tions. These instructions are minimal set that simulator has to support (except of
course LA as that is pseudo instruction).

Students are provided with tutorial and presentation how to write simple assembly
language program and how to rewrite basic C program constructs to MIPS assembly.
Those are if-else statements and while and for loops. They are primarily presented to
introduce assembly language to students. They are expected to already know uses of
these constructs in C.

For these types of examples it is required that students can see compiled code in
simulator while it is executed. Primary feedback for these code snippets is also from
program counter and secondary general purpose registers. Students are expected to
understand link between program counter and executed instruction. And they should
be able to track and predict program flow in memory.

Also not to confuse students it is preferable not to use pipelined CPU and caching.
Explaining delay slot on top of assembler is enough.

Next task is to analyze and write code operating on data memory using the load
and store instructions together with load address pseudo instruction. Example like
incrementing values in array is used to illustrate their usage.

To correctly visualize example of memory access it is required to present content
of memory in simulator. This is not same as visualizing program loaded to memory
but it can be implemented almost the same way because both program and data are
in same memory. Only needed difference is to instead of doing reverse instruction
decoding (decoding instruction to their assembler representation) to just display values
in hexadecimal format.

For user friendliness of simulator it would be beneficial to also allow other numerical
formats. For example showing values stored in memory in decimal or binary format.
Because one of the goals of previous tutorial was to teach students conversions between
numerical systems it is not beneficial for usage in this course. Not having easy automatic
numerical conversion is a way to force students to do conversions outside of original
lecture.

3.2 Memory Access and cache Usage Tutorial
This tutorial interactively presents cache usage for memory access. Students are pre-
sented with problem of slow memory access and cache is presented as a solution. It
is interworking is explained and parameters defining size and behaviour of cache are
presented (they are described in Section 2.5.1). For purpose of standardized parameters
description following format is established: “Size/Block size/Degree of associativity”.
This format is also used in following paragraphs. It fully describes size and topology of
cache, at least in limits of required simulator abilities.

Students should have prepared code from previous lecture. In that lecture they are
presented with Bubble sort algorithm[11] and are instructed to rewrite it to MIPS as-
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sembler. This algorithm is then used in this lecture to test various cache configurations.
As a reference cache implementations are used following configurations:

. 4/1/1: This one is called directly mapped cache. 4/1/4: This one is called fully associative. 4/1/2: This one is called cache with limited level of associativity

Students are also instructed to test other combinations of parameters and to find out
optimal cache for their algorithm.

Simulator is required to have some cache content visualization and whole cache sim-
ulation has to be configurable enough to allow wide range of settings as used in this
tutorial.

3.3 Pipelines and Hazards Tutorial
This tutorial introduces pipelining and problems caused by it (those were in depth
described in Section 2.4. Students learn about five execution stages and their possi-
ble parallel execution. Then they are presented with data hazards. Hazard unit is
introduced and described.

Later in tutorial students are provided with MIPS assembler code that they should
edit so it can run on CPU with pipeline but without hazard unit. That should give
students understanding what kind of problems hazard unit exactly solves and how
overcoming them by hand in program can be inefficient.

To ensure that compiler won’t interfere with students code they are supposed to
include directive .set noreorder in their code. That ensures that compiler won’t be
adding or moving any instructions to fill in delay slot.

To support this usage with simulator it is required to have pipeline scheme and of
course also support for pipelined CPU.

Original simulator had scheme visualisation only for pipelined CPU. Because students
are using implementation without pipelining in previous tutorials, a scheme visualisa-
tion for non-pipelined version has been implemented. Having them all use CPU scheme
without pipelining and them presenting them with scheme with it should give them
deeper understanding of presented difference.

3.4 Memory Mapped I/O Tutorial
This is last tutorial in which is MIPS simulator used. It’s the one presenting memory
mapped I/O. Students are presented with concept of memory mapping and with inputs
and outputs from CPU. Meaning interacting with external electronics. To illustrate this
currently used simulator provided eight lights and eight switches. They are mapped to
single byte on address 0xBF900000. Students should blink with these lights provided
pattern. And as next step they should be able to read switches state and use it to select
pattern to light up.

To implement this, simulator should have dedicated view for lights and switches.
Those should reflect writes and reads to some specific memory address. Having that
specific address configurable same as what kind of I/O is used would be beneficial.

Requirements for this tutorial are not fulfilled as part of this thesis. It is outside of
this thesis assignment. It is noted here for completeness and as a reminder that this is
missing for complete replacement of previous simulator.
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Chapter 4
Existing MIPS simulators

There are multiple already existing simulators. This chapter lists existing relevant
applications and why their usage is not satisfactory for both education and as code
base for this thesis.

Except of already used simulator, MipsIt, all other simulators missed some required
feature. Most of them are open-source. Next section discusses which features each of
them lacks and why none of them has been used as a base for this work. In general
for most of these simulators it falls to same reasoning. To add missing features such
as for example schematic view of CPU ELF file loading or cache it would require to
heavily modify existing code to allow needed features. It means complete redesign of
base code of application in all cases. This would mean that it would be necessary not
only to come up with new base code but also on top of that to study existing. That
would almost doubled the work and gain in case of using an existing code base would
be mitigated.

4.1 MipsIt

This is currently used simulator. It contains three simulators together with integrated
development environment (IDE) [12]. Those three simulators differ in what CPU they
simulate. The simplest one simulates single-cycle CPUand it is simply called Mips.
Then there are two simulators implementing CPU with pipelining. One of them doesn’t
implement hazard unit and is called MipsPipeS and other one does and is called Mip-
sPipeXL.

MipsIt was developed for Microsoft Windows around year 2000. This makes it fairly
old program and it has problems to run on new versions of Windows. Primarily it has
to be run with Wine1 on Unix systems. Together with not running on native platform
and probably some left over bugs and no following development it now starts to be more
and more problematic. It often crashes and it has problems with simulations restarts.
Fixing these problems is not easy or even possible as MipsIt is closed source.

It serves as the baseline for this thesis because this program is currently in use and
this thesis plans to replace it. Not all features are required so this thesis doesn’t copy
it but it is heavily inspired by it.

1 https://www.winehq.org/
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Figure 4.1. MipsIt simulator’s graphical presentation of registers and memory.

Figure 4.2. MipsIt presentation of pipeline in MipsPipeXL.
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Figure 4.3. MipsIt presentation of pipeline in MipsPipeS without hazard unit.

MipsIt is only simulator described in this thesis that has cache simulation. It sim-
ulates isolated instruction (program) and data cache. Parameters such as their size,
associativity or policies can be configured. MipsIt also tracks cache usage statistics.
Hit and miss count with hit rate is displayed and updated in simulator.

MipsIt simulators expect input in SREC file format[13]. It can be obtained using
MIPS compiler and program objcopy. This means that GCC can be used to compile
code for MIPS and then it can be run in MipsIt.
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Figure 4.4. MipsIt cache visualization. Instruction cache is on the left and data cache is
on the right.

4.2 QtSpim

QtSpim1 is probably the closest candidate on using it as a code base for this thesis.
It’s implemented in C++ and base on Qt library. It’s licensed under copy-left BSD
license 2. It has complete MIPS CPU implementation including some very advanced
features for a simulator such as operation system support. It shows memory in nice
and compact way.

Between required but missing features belong cache simulation and CPU circuitry
view. It also only loads assembler code. This can be bypassed by simple tool that
would export assembler code from ELF file but previous missing features are more
problematic.

1 http://spimsimulator.sourceforge.net/
2 https://opensource.org/licenses/BSD-3-Clause
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Figure 4.5. QtSpim simulator window with memory and registers view.

Problem with this program is that it only really simulates instructions behaviour.
After short dive into code it is clear that adding circuitry view would required basically
append complete circuitry simulation in parallel to existing instructions simulation.
Although we could use input and output from QtSpim simulation the idea of getting
signals from simulation is pointless as it is based on different idea. It tries to be as
effective as possible while our approach is to simulate hardware much more closely.
This divide makes code base of QtSpim almost unusable for us and would require
redesign.

4.3 Mars

Mars1 is MIPS assembly simulator developed on Missouri State University. It’s written
in Java and is licensed under MIT license 2.

Mars implements its own MIPS assembler parser. It is designed around code editor
and implements almost complete MIPS ISA and that is including coprocessors. It was
developed and is used for education. It contains various tools for education such as
simple attachable simulated hardware such as hexadecimal display with keyboard. It is
also able to visualize instruction execution in CPU scheme (as visible on Picture 4.7).

1 http://courses.missouristate.edu/KenVollmar/MARS/
2 https://mit-license.org/
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Figure 4.6. Primary Mars simulator window notably with code editor and registers.

Figure 4.7. Mars simulator CPU scheme visualization.

In the course this thesis implements simulator for MARS is suggested to students
as an alternative to MipsIt. It almost fits as a replacement for it. Unfortunately it is
missing cache simulation. It also does not support preprocessing macros but that is
something that is not essential.
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It wasn’t used as a code base for this thesis because it is implemented with design
where most of the functionality is added on top of simple assembler simulator as ad-
ditional tools. They are connected more like observers than as an integrated parts
of simulator. Implementing cache simulation in such segregated code base would be
challenging.

The biggest problem is that Mars does not support pipelined CPU. It is not designed
with pipeline in mind and adding it would require a lot of changes not only in tools but
also in simulator core. That would require probably complete program redesign.

4.4 WeMips
WeMips1 is a web based MIPS assembler simulator. Because of that it is implemented
in HTML and JavaScript.

WeMips support of MIPS ISA is limited. It supports only few instructions, has
no pipeline and memory access is only experimental. It is noted here because of its
prominence in Internet search results. It might be suitable for extension thanks to its
minimal implementation but this minimal implementation also means that there is not
much code to reuse. Choice of programing language and libraries in this case outweighs
gain in code base.

Figure 4.8. WeMips assembly simulator.

4.5 MIPS Simulator (mipssimulator)
MipsSimulator2 is another web based simulator implemented using HTML and
JavaScript. It is licensed with GPLv3 license3.

This is new project developed at the same time as this thesis. Which is also answer
why it was not used as the code base. It is noted here because author seems to be
trying to implement minimal but yet visually descriptive MIPS assembly simulator.
1 http://rivoire.cs.sonoma.edu/cs351/wemips/
2 http://mipssimulator.com/
3 https://www.gnu.org/licenses/gpl-3.0.en.html
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Figure 4.9. Website with MIPS Simulator going trough default code and animating data
propagation in scheme.

4.6 Qemu

Qemu1 is emulator and hypervisor with wide range of supported architectures. It
is designed as an generic emulator and virtualizer. MIPS is just one of the many
supported architectures. Thanks to Qemu aim on virtualization it is quick and complete
ecosystems exists around it.

Qemu implements complete MIPS ISA and not only in version I. Other MIPS versions
are also supported including emulation of existing microprocessors such as R2000.

Qemu was not used in this thesis because its goals are different from this thesis’ ones.
This thesis cares less about efficiency and speed and more about simulations aspects.
We are more interested in simulating interworking of CPU than in emulation of CPU
behaviour. Because of that using Qemu is out of scope.

4.7 Hardware Description Based simulation
Open-source implementations of MIPS CPU in hardware description language such as
VHDL exist. Those can be used to implement CPU on field-programmable gate array
(FPGA). Advantage of this is that it is almost same like working with real micropro-
cessor. It is even possible to connect real hardware peripheries. However, that is not
what is needed for this thesis because in such case it is not possible to study data flow
in processor.

1 https://www.qemu.org/
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These hardware centric implementations of MIPS ISA can be used in software to-
gether with GHDL1. GHDL is compiler/simulator for VHDL for regular operation
systems. It allows VHDL implementation to be simulated on PC.

This approach was heavily consider early in this thesis research. Plan was to use an
existing MIPS I VHDL implementation and by inserting C code to it (which is GHDL
extension of VHDL) it would be possible to interconnect GUI and simulator.

Advantage of this is that it would result to simulation that is as close to real CPU as
possible. All signals and buses are already implemented and only output to GUI would
have to be added. It would also resulted in less work to do in this thesis. When original
VHDL code would be only minimally modified then it would be easy to pull fixes from
original upstream project.

Unfortunately we found out that there is no appropriate VHDL implementation
that would implement five stage pipeline and cache at the same time. Also having
implementation with pipeline would still require changes that it can be also run without
pipeline. Another problem is how to configure simulation parameters without need to
recompile VHDL code every time.

One of the considered VHDL implementations was Plasma2. It is licensed as com-
pletely free in public domain. This is implementation with two or three pipeline stages
and with cache. It supports GCC as program compiler. It is well documented and
contains wide range of additional features. Unfortunately missing five way pipeline is
major problem and because of that this implementation was not used.

The second considered VHDL implementation was miniMIPS3. It is licensed with
LGPL license. It has smaller code base than Plasma and it is five way pipeline imple-
mentation. Unfortunately it does not contain cache implementation and also it requires
its own assembler compiler (not using GCC).

1 http://ghdl.free.fr/
2 https://opencores.org/project/plasma
3 https://opencores.org/project/minimips
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Chapter 5
MIPS Simulator Design

Simulator itself was implemented in C++ using Qt toolkit. This was primarily decision
of submitter but nevertheless it is good choice. Object oriented programming language
is suitable for GUI abstraction and Qt toolkit is cross platform which makes it good
choice for education tool that students could potentially run on their own computers
without need of complicated first setup. Qt toolkit has other benefits but they are
primarily related to graphics and because of that they are discussed in beginning of
Chapter 6.

CPU emulation is a core part of QtMips. It was designed to be separate from graphics
visualisation and because of that was implemented as a dynamically linked library. CPU
emulation can be divided to following parts:

. Simulator configuration. Registers simulation. Memory simulation (this includes caches and memory mapped inputs/outputs). Instruction decoding to control signals. Execute instruction by applying control signals. Program loading. Reverse instruction decoding

All parts are described in depth in following sections. They don’t serve as reference
for related code. Although they specify what exact file they talk about. They rather
contain description of basic concepts used in code they reference.

The command line interface application was implemented outside of the thesis scope
and is not described here. It was developed for testing but it can also be used for
automatic simulations.

5.1 Simulator Configuration
Simulator is required to be configurable as discussed in Section 3. This is ensured by
dedicated class that creates storage for configuration variables. Object instantiated
from this class is then required for simulator initialization.

Configuration class is not just simple value storage with setters and getters. It
also has to check some configuration limitations. For example there is possibility to
disable delay slot but that is possible to do only when no pipelining is used. So when
pipelining is enabled then it is required to always report delay slot as being enabled.
There are more of these limitations. They arise from logical limitations and architecture
design. There is no benefit on digesting them here separately but it is important to
note that they are implemented there and they ensure that values later received from
configuration are verified and sanitized.

In short following configuration options exist:

. pipelined: what ever pipelining is enabled
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. delay slot: if delay slot should be simulated (effectively configurable only if pipelined
is set to false). hazard unit: how hazard unit should behave. It allows no hazard unit or hazard unit
that only stalls on top of full hazard unit (effectively configurable only if pipelined is
set to true otherwise set to no hazard unit). memory access time read: allows setting number of cycles memory read access should
take. This is used only for statistics. It’s not simulated.. memory access time write: same as memory access time read but for write access. elf: path to elf file to be loaded as a program to memory (note that this one is not
verified). cache program: object of cache configuration class for program memory cache. cache data: object of cache configuration class for data memory cache

Configuration allows setup of two caches. One for program loading and another one
for data manipulation. Also referred as program and data memory accesses. Both
such cache configurations should be separately configurable. For this abstraction they
are implemented as one additional class describing cache configuration. This class is
implemented with same design decisions as primary configuration class. Implemented
options are:

. enabled: If cache is enabled or not. sets: number of sets. blocks: blocks size. associativity: degree of associativity. replace mentpolicy: replacement policy to be used. write policy: write back policy to be used

For simplicity configuration also allows some presets. Those are implemented as
method that just simply sets needed option for given preset. Graphics visualization
later requires to know if some preset is chosen but that is not supported and is later
handled explicitly as part of GUI implementation.

It’s possible to add additional presets. It should be as easy as adding new symbol to
enum and new case to switch-case statement in relevant code. On top of that relevant
radio button has to be added in GUI.

Configuration classes can also be saved using Qt class QSettings and then loaded
back. This is used for preserving configuration of simulator between application
launches when GUI is used.

Configuration classes are implemented in source files machineconfig.h and ma-
chineconfig.cpp.

5.2 Registers Simulation
Registers are core part of the CPU. But from simulator point of view it is as easy to
implement them as defining variables to store their content in. In QtMips there is more
in depth abstraction built on top of class used as simple value storage. For general
purpose registers and LO and HI registers there are simple getter and setter methods.
But there are specialized methods for program counter. They directly correspond to
branch and jump instructions. There are three types of branches/jumps (for simplicity
referred here as a jumps because in case of registers we don’t care if they are conditional
or not). There is a relative jump. This jump expects signed value that is added to
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current program counter value. This way it is possible to jump both forward and
backward in code on near enough addresses. This jump is the one that most of the
branch instructions are implemented by.

Then there is an absolute jump. This jump simply overrides current value of program
counter register. This way it is possible to jump everywhere in program memory. This
jump type is used exclusively in jump register instruction.

And the last jump type is absolute jump but only with 28 bits. This is exclusively
used by jump instruction (instruction named jump). It allows program to do absolute
jump but because of limited space in instruction coding it can’t specify all 32 bits.
Instead it specifies maximum possible 26 bits. Those are binary left shifted by two
bits because two lowers bits are not required. Using them would lead to unaligned
jump. That gives us 28 bits. Using four upper most bits from current program counter
value gives us complete 32 bit address. It is not possible to jump with such instruction
anywhere in memory but it allows absolute jumps at least in current memory segment.

Registers abstraction is implemented as a single class in file registers.h and regis-
ters.cpp.

5.3 Memory Simulation
With memory implementation it was required to decide what is correct level of sim-
ulation. If limited memory size should be implemented or not. For simplicity, route
where all memory is accessible and usable was chosen. This is mainly because to have
meaningful limited memory size simulation we would need virtual memory and that
requires coprocessor 1 (see Chapter 2 for coprocessors).

This establishes that QtMips simulates whole 32bit addressable memory space. There
are no added limitation on used memory. This means that user can potentially use all
memory of host system up to 32bit addressable size which is approximately 4GB of
allocated space. This means that unless user needs whole 32bit address space, which
is unlikely, it should never be directly allocated. This thought leads to implementation
where memory is allocated in segments as is needed. Searching for such segment is done
using tree[14] where nodes contain multiple edges (links) to other nodes. Every node
is indexed by bits from address. What bits are used is given by depth of given node
in tree. Leafs of the tree then contain allocated memory segments (in code referred
as memory sections). In other words there are tables that are linked in sequence and
indexed by subsequent bit segments from address. Depth and width of this tree is
configurable but limitations are that number of bits used per node multiplied by tree
depth plus number of bits used for indexing memory section is combined 32 bits. This
is limitation of described algorithm.

By decision if some section that was never written is read then it is read as zero.
And newly allocated section is zeroed.

Object oriented programming is used in memory implementation for great benefits.
There is an abstraction class referred as memory access that creates common memory
access interface. This layer covers less than word size accesses for read and write
requests. Because of that it also has to handle miss match between MIPS simulator
and host system endianness. But primarily it allows implementation of additional
classes that would be inserted in front of the memory it self. There is almost no need
in using memory directly and because of that memory access class is used instead.
Implementing new child class and passing its object instead of real memory object to
simulator allows easy cache addition (see Section 5.3.1).
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Memory class allows only access, ignoring access to internal tree structures, with
data of size word. Memory access class on top of that allows access not only to words
but also to halfwords and bytes. This covers all supported data types (see Section 2.1).

Memory is implemented in memory.h and memory.cpp source files.

5.3.1 Cache Implementation

Cache can be easily added on top of memory simulation thanks to design described in
Section 5.3. It’s done by implementing child of memory access class.

In following paragraph are used configuration names as described in Section 5.1.
They are also in depth described in Section 2.5.1.

Cache implementation it self is fairly straightforward. Class implementing it is allo-
cating array of structures containing field for data, tag and dirty and valid booleans.
Depending on configuration it also allocates array for tracking access times or access
counter. Then, when there is read or write requested (thanks to memory access class it
is always of word type) it locates relevant index, verifies tag and validity and optionally
receives data from memory. On top of that there is also possibility to invalidate whole
cache content.

Cache tracks access statistics by incrementing cache miss and hit counters. Adding
these counters we can then get total number of accesses to memory. Let’s use h as
number of hits, m as number of misses and c as total number of accesses (meaning
c = m+h). Having cycles penalisation for memory access as p (meaning number of cy-
cles needed to access memory) then we can calculate memory stalled cycles (effectively
wasted cycles) by m∗ (p−1). Another interesting cache statistic is speed improvement.
This calculates speed improvement relative to speed of CPU without cache. It is calcu-
lated as (m+h)·p

h+m·p · 100%. But probably most usable implemented statistic is cache usage
effectiveness. This value informs user on how well is cache used in simulated program.
It doesn’t take in consideration effect on program execution speed but it is just plain
hit to miss rate statistic. It is calculated using this formula: h

m+h · 100%.
Cache is implemented in cache.h and cache.cpp source files.

5.4 Instruction Decoding
MIPS instructions are well designed and allow easy decoding of control signals from
opcode it self. This is handy when designing hardware but using this in software can
by less optimal. Chosen way in this thesis is lookup table. Instead of decoding signals
from opcode it self we use that opcode to look them up in table with already predefined
signals. This simplifies implementation as it is just protected array access instead of
some bits decoding. It also mitigates any need for explicit handling of some instructions
that would otherwise be needed. The chosen approach however creates a problem that
every instruction has to be hand crafted and can’t be simply let be as a result of opcode
binary decode. Because there is not huge amount of generated signals it is viable to
just hand fill them.

Following signals are decode from opcode:

. Supported: Whether is instruction with given opcode supported. Write result to register: If result of operation should be written to register. rd field used: Whether given instruction has rd field. ALU operation: This is non-boolean value that defines used ALU operation
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. ALU source: Whether should one of the inputs to ALU be from register or from sign

extended immediate instruction field. Memory read: If memory should be read. Memory write: If data should be written to memory. Memory data type: This is non-boolean value that specifies what type of data mem-
ory should output/write to (see Section 2.1 for list of available data types)

With noted exceptions they are all boolean values.
There is one group of instructions that share opcode 0. Those are all mostly arith-

metic or logic operations. For them instruction field function is directly used as an
ALU operation. There are also other instructions that have to be specially handled
and those are all jump and branch instructions. Those are handled explicitly in their
own method using switch-case statement. Reasoning behind their separation is in fol-
lowing Section 5.5.

Instruction decoding is implemented in core.cpp source file.

5.5 Instructions Execution
Instruction execution can be divided to 5 stages, as described in Chapter 2 about MIPS
architecture. These stages are in code implemented as a separate methods. They always
take as an argument a structure containing all signals (stored in variables) passed from
previous to this stage (of course with exception of fetch stage as there is no preceding
one). On top of that to correctly implement jump logic it is required to have additional
method just for it. We can’t correctly implement it as part of fetch method because
jump requires signals from decode stage.

Whole CPU is simulated by periodically calling method called step. This simulates
system clock. This method is the central point of CPU simulation implementation.

There are two major ways methods implementing stages are connected in step
method. One is where methods are called in sequence order (from fetch to write-back
stage) where next stage takes output from previous one. The last executed methods
is on top of that the one handling jump logic. This way is implements non-pipelined
CPU. Another way to implement step method is to have signals stored between CPU
steps and call stage methods in reverse order (from write-back to fetch stage). Last
method run is, same as in previous case, method handling jump logic. This way it im-
plements pipelined CPU. These two implementations are implemented separately and
inheritance is used where step method is defined as virtual.

Instruction execution is implemented in source files core.h and core.cpp.

5.5.1 Hazard Unit

Hazard unit is required only when pipelining is used as described in Section 2.4 (al-
though even then it is possible to deactivate it). Because of that it is implemented in
step method for pipelined CPU.

Hazards are detected by checking used registers in instruction. With exception of
general purpose register zero. This register can’t change value and because of that
it can’t cause hazard. Implementation checks if currently decoded instruction is not
using as either rs and/or rt register that is used by instruction being in either execute
or memory stage as output (either rt or rd depending on instruction). Two possible
resolutions are applied according to Table 2.2.
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Forward is implemented by changing stored value that is in next step call passed to
executed stage. As source is used value from execute or memory stage depending on
which stage causes hazard.

Stall is implemented by not executing method handling jumps (program counter is
not updated). Also signals passed from decode to execute stage are wiped. Effectively
setting them to state that would instruction NOP (no operation) set them. This means
that execution of fetched instruction is hold off by one cycle and to pipeline is effectively
inserted NOP instruction.

5.6 Program Loading
Program to be simulated is in ELF file format. Various libraries exists for loading this
file format. For this project libelf from project elfutils 1 was used. It was selected
because there are multiple other implementations of libelf API and that makes it more
or less standard for ELF file reading/writing. Additional reason is that elfutils it native
implementation from GNU project, platform which QtMips was developed on.

Considered alternative was usage of GCC library. But that would tie up QtMips to
GCC. GCC library also supports more then just ELF files reading and we don’t need
any of those additional features.

Program loader reads file from path that is passed to it from simulator configuration
(see Section 5.1). It opens it and passes resulting file descriptor to libelf. Then using
libelf it is verified that it is really ELF file and that it has correct endianness and
is compiled for MIPS ISA. When all these checks are done then it goes through all
sections that are present in loaded ELF file and select only those marked as to be
loaded. Then when requested it can byte by byte dump those sections to program
memory (its implementation is described in Section 5.3). Exact address where given
section will be loaded to is read from ELF file[15].

Program loader is implemented in programloader.h and programloader.cpp.

5.7 Decoding to Instruction Mnemonic
Conversion from binary representation of instruction back to assembler representation
is required Because we want to show executed instructions back to the user. We could
use debug informations contained in ELF file but that is complicated and result is not
certain as program might be compiled without them or they might be no longer valid.
Also for students it is beneficial to see real representation of pseudo instructions rather
then their original form. Because of that the same approach as for instruction decoding
(see Seciton 5.4) was used. There is a lookup table with few configuration flags and
string representation of instructions.

This conversion doesn’t have to be perfect. Where syntax like ADDI $3, 0x24 is
valid it is shown as more verbatim ADDI $3, $3, 0x24.

It’s implemented in instruction.cpp source file.

1 https://sourceware.org/elfutils/
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Chapter 6
MIPS simulator Graphics Design

Graphical simulator is implemented as an executable application that uses MIPS sim-
ulator library (discussed in Chapter 5).

As was already noted simulator is implemented in C++ using Qt toolkit. But other
options were also considered. There are two considerable cross-platform full fledge GUI
toolkits that are available on Linux: GTK+ and Qt. There are of course other toolkits
but those are not so prominent. GTK+ is C library that implements just GUI toolkit
itself. It is not tied up to some other unrelated features. In comparison Qt toolkit for
example provides even alternative interface for standard input and outputs. GTK+
would be minimalistic choice and would probably be even better in some cases such as
scheme rendering. That is because it is build on top of very versatile library Cairo. But
in the end Qt toolkit was chosen because of single integration feature: signals & slots.

Signals & slots is mechanism that allows one way communication between objects.
Objects implementing this communication are required to just define signals and slots.
Signal is source. It then can be connected to other signal (creating chain of signal
propagation) or to slot. Slot is special method in class that is called when signal is
emitted. This commonly happens immediately after signal is emitted[16].

Thanks to this design there is no need for interconnected objects to know each other.
Bounding is done externally after both objects are inicialized. Bound is also automati-
cally dissolved when one of the objects is deleted. This behavior simplifies code and is
perfect for building GUI implementation on top of changing simulator implementation.
When simulator instance is replaced then there is no need to explicitly unbound old.

In following sections we describe parts of GUI in simulator. Similarly as in previous
chapter this is not meant as code reference but rather as description of concepts used in
implementation and some of the encountered problems (such as problem with rendering
fonts).

6.1 Simulator Configuration Dialog

Simulator configuration dialog is the first input shown to user when GUI version of
simulator is started. It presents user with graphical way to set options that were
mentioned in Section 5.1. Whole window is divided to five tabs splitting configuration
to groups. First tab is named ‘Basic’. It contains preset selection and ELF executable
path.
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Figure 6.1. Configuration dialog with presets and ELF file selection.

Second tab named ‘Core’ contains primary CPU configuration. Those are more
accurately options pipelined, delay slot and hazard unit. Third tab labeled ‘Memory’
contains memory access time configurations. Fourth and fifth tabs are constructed
from same template. Fourth tab is for ‘Program cache’ and fifth one is for ‘Data cache’
configuration. They both contain field for configuration of all cache options. There is
only one exception. On fourth tab there is input for write policy (labeled as ‘Writeback
policy’) hidden. That is because program cache is never used for memory writes and
having this option present would be confusing.

Figure 6.2. Configuration dialog with cache configuration tab.

Dialog itself is implemented mostly as Qt form designed in Qt Designer. There is
additional C++ code added to tweak some appearence and to sync form values with
simulator configuration (sync it self is described more in depth in next paragraph).
Cache tabs are implemented as one additional Qt design form that is instanciated twice
for both program and data cache.

Input field from this dialog has to be applied to simulation configuration object.
This is done by implementing slots connected to signals from relevant input. Such slot
method converts input value to correct data format and calls appropriate setter from
simulator configuration object. Every such slot method also calls method updating
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status and content of all inputs. It resets content of all inputs to the one given by
relevant getter from simulator object. Depending on this configuration it also disables or
enables some of the inputs. This effectively allows implementation of configuration logic
to be solely in simulator configuration class. GUI it self is then appropriately updated.
Another indirectly gained feature from this implementation is that configuration values
that are not valid are preserved if different value is forced because of some other option.
Example of this can be if pipelined is disabled then hazard unit is forced to be disabled
too. But when pipeline is re-enabled then hazard unit jumps back to originally chosen
preference.

As noted in Section 5.1 simulator configuration supports setting of presets but it is
not able to then verify if configuration is some specific preset (this is done to simplify
code itself). But for GUI it is required to show user if preset is used or if configuration
is custom. It is easy to know which preset is configured when user changes preset. The
same way it is not hard to switch it back to custom when any other input is changed
(with exception of ELF path). It’s implemented just by connecting appropriate signals
and slots. When program is restarted then preset choice should be persistent too.
Because of that it is required to on top of just storing simulation configuration it self
also store this preset (using QSettings object). That way it is possible to restore whole
configuration including preset choice.

Dialog can be exited either by successfully initialization simulation or by canceling
it. If there is no existing simulation and dialog is exited then this causes whole program
exit. Back to simulation initialization when this fails then dialog is not closed and error
message is displayed. Common source of this is invalid ELF executable path. When
simulation is successfully initialized then dialog is hidden and main simulator window
is made accessible. This also causes current configuration to be stored for future use
(using QSettings object).

Forms for this dialog are named NewDialog.ui and NewDialogCache.ui. C++ code
paired with these forms is in source files newdialog.h and newdialog.cpp.

6.2 Main Simulator Window

Main simulator windows is primary interface for user interaction. It is implemented
as window with tool bar, menu, status bar and primarily space for CPU simulator
scheme. There are also additional dockable windows. Those can be opened either by
using menu or by double clicking on some parts of the CPU scheme. In default those
windows are opened as docked on right side of the simulator window. User can move
them to different position or undock them. Their state is preserved between program
restarts using QSettings.

Parts of simulator GUI such as various dockable windows and CPU scheme are
discussed later In following sections. Because of that this sections describes only parts
of simulator window that are not strictly part of some other section.
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Figure 6.3. Main simulator window.

Menu in main window allows control of simulator and possibility to open all possible
windows. In Qt menus are composed of actions. Those have a name, description and
also global keyboard shortcut. Thanks to this QtMips supports some quick keyboard
shortcuts making its usage more pleasant. Shortcuts can be seen in window menu on
right side of action button but to mention few important ones:

. Ctrl+O: This is standard shortcut for opening new file. In QtMips it reopens simu-
lator configuration window.. Ctrl+Shift+R: Pressing this shortcut causes simulation reload. It wipes current CPU
status and reloads program from original ELF file.. Ctrl+S: Using this shortcut when simulation is paused does one CPU step. It’s handy
for stepping the simulated program.

Status bar is currently mostly unused. It only signals change in simulation state.
There are four known possible states at the moment. Either simulation is Ready which
means that it’s not running that it’s paused. Or it can be Running. Another state
is failure one reported as Trapped. And last one is Exited for state where simulator
reached end of program.

Main window is implemented in source files mainwindow.h and mainwindow.cpp and
its implementation class is the one instanciated in GUI program main function.

6.3 CPU Scheme View
CPU scheme is graphical representation of internal interconnection of implemented
CPU. This can considerably vary depending on simulator configuration. That requires
some level of flexibility. This was achieved by dividing scheme to blocks and connections
between them. Used blocks, their positions and connections between them depends on
current simulator configuration.
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Primary change to scheme is if pipelined is set or not. Meaning if we should visualize

scheme with pipelining or not. This was archived by creating one base class and then
two children. One for non-pipelined and another one for pipelined scheme. Additional
changes triggered by other configuration options are then implemented as conditional
branches in code.

Scheme visualization is implemented using Qt Graphics View Framework. This
framework provides widget QGraphicsView that is used as graphics container. Graphics
it self is then build in QGraphicsScene from objects of QGraphicsItem type[17]. This
creates abstraction where items are placed to scene and scene itself is then transformed
to view. CPU scheme uses this to render smallest picture that is scaled up to fit view.
Additional code was implemented that tries to automatically maximize used space by
scheme. It also ensures that scheme stays readable even with small resolution by allow-
ing scroll over limited are of scene. Additional features of Qt Graphics View such as
manual zoom were suppressed because those are not needed for scheme navigation.

Figure 6.4. Single-cycle CPU scheme with program and data cache.
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Figure 6.5. Pipelined CPU scheme with hazard unit and without cache.

Scheme visualization is not presented with all connections, for example connections
to hazard unit were skipped. That is because scheme is already cluttered and adding
connections that are suppose to be there for complete functionality of all instructions
would result in too complex scheme. In future this can be solved by allowing user to
switch between complicated and simplified scheme. At the moment, only simplified
scheme is available because of simplicity and readability.

During implementation of scheme view the major limitation of Qt Graphics View
Framework was discovered. It is using double precision floating data format for storing
position of graphics items. But this data format has variable precision[18]. There are
ranges of numbers that can’t be represented. When such number is encountered then
it is represented by closest possible representation. Doing multiplication between rela-
tively small number and big number increases effect of this rounding error. When this
is applied on group of relatively close by numbers then it translates them to something
that could be described as clusters. This is caused by varying initial rounding error.
This is problem because scene implemented for CPU view is relatively small. It has
resolution just 720 times 540 pixels. But then it is possibly scaled to five times bigger
resolution. Although scheme it self almost never positions anything on less than pixel
width Qt class QGraphicsSimpleTextItem does exactly that and is used for adding
labels all over scheme. Result of this is glitches in font alignment as illustrated in
Picture 6.6. This is design problem in Qt Graphics View Framework that could be
overcome by scaling items size and position translation instead of using view transfor-
mations. But that defeats purpose of this framework usage.
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Figure 6.6. Graphical glitch with invalid font alignment caused by floating point precision
error multiplication.

Scheme itself is implemented in source files coreview.h and coreview.cpp. But on top
of that there is also whole directory containing additional classes. It is called coreview.
And classes implemented there are described in following subsections.

6.3.1 Scheme Blocks

Scheme itself is build from separate blocks added to scene (thanks to being
QGraphicsItem child). Blocks itself are in multiple cases used in scheme multi-
ple times. That simplifies scheme creation. Having more general blocks also shortens
code. Blocks implemented for the scheme are these:

. Adder: Used to visualize two values addition. Alu: Visualizes ALU in scheme. And: Logic AND gate visualized in distinctive shape style [19]. Constant: Label defining constant in scheme. Latch: Implements latch isolating pipeline stages.. LogicBlock: General block for some complicated logic function. It is rendered as
rectangle with rounded corners. Label is placed to it to describe function it imple-
ments.. Multiplexer: Logic block that serve as a selector between multiple buses.. ProgramCounter: Block displaying current value of program counter register. Registers: Block illustrating general purpose registers

There is no in depth description for every block shape and its usage. It is not
fundamental for this thesis. They are clearly visible in complete scheme.

One of the additional blocks present in scheme that was not mentioned yet is in-
struction view. This is rectangle with gray background presenting executed instruction.
Text shown is generated by decoding instruction to instruction mnemonic as described
in Section 5.7. It is used to show what instruction is being processed in what pipeline
stage or in whole CPU when pipelining is not configured.

For completeness there was also need for junctions between connections that are not
part of any visible block. Because of that there is class exactly for that. It has no
graphical visualization. It’s just technical block used for connections interconnection.

6.3.2 Signals and Buses

Where scheme contains considerable amount of blocks it contains much more connec-
tions between them. Wiring such connection line by line would require larger amount of
time and would not be versatile enough when change has to be done to scheme. Instead
of that algorithmic path was chosen. Connections are routed automatically between dy-
namic points called connectors. Those are moved relative to scheme blocks. That causes
automatic route recalculation. That way most of the routes have to be only initialized
with initial and terminating connector and everything else is done automatically.

Chosen routing algorithm is very simple. This thesis is not implementing any interac-
tive routing tool and because of that some manual work to get path right is acceptable.
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Whole algorithm is based on rectangular intersection. Every connector has orientation.
This can be stretched to strait line with given orientation. When initial and terminal
connectors are given then algorithm looks for intersection of such two lines and given
point is used as additional point through connection is routed by. When there is no
such point then no additional point is inserted and line is drawn directly between initial
and terminal connector.

This algorithm of course only routes wires in L shape. But by adding additional
axes to two initial ones it’s possible to construct much more complicated paths. Same
algorithm is applied but not directly between initial two start lines but between them
and additional axes.

In the scheme there are two basic types of connections between various blocks. There
are buses and signals. Primary difference is in source but also in width. All signals
are generated from some of the logical blocks and are mostly just single boolean (with
notable exception such as ALU operation). Buses carry data such as instruction or
values through CPU and are mainly 32 bits with.

There are also buses that are not 32 bit in width. They are created by splitting bits
from 32 bit bus. These narrower buses are visualized using narrower lines than whole
32 bits width bus is.

All signals are visualized by same line width and instead of black color used for buses
it uses blue.

Buses and signals are implemented as a children on top of common parent imple-
menting routing algorithm.

6.4 Registers View

Registers view is implemented as dockable window as described in Section 6.2. Its intent
is to give user overview over all registers present in CPU. The simplest way to do so is
table. Such table has two rows where left one contains name of register and right one
its value. Lines alternate background color for better orientation. This form is optimal
for higher then wider window sizes but is inefficient for wider then higher ones. Because
of that when window is resized to be wider then higher then its content is recomposed
to rows where multiple columns are presented just to better fill in horizontal space.

New Qt layout and widget was implemented for this specific view to fulfill all de-
scribed behaviour. In code it is called StaticTable.
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Figure 6.7. Window with registers view that is wider than higher.

6.5 Program and Data Memory View

Program and data memory views are two separate dockable windows that are in reality
mostly implemented the same way. Primary content is scrollable view of memory. It
cannot be as simple as static table in scroll view because whole 32 bits addressable space
is simulated and allocating widget for every word in memory would be too memory
demanding. Instead dynamic loading is used. Widget containing data is always higher
than needed and clipped using scroll widget. When one of the ends is too close to border
of scroll area (too close to visible area) then new data are loaded, original widget is
moved to center position and whole content is shifted. This way an sensation of infinite
scrollable memory view is achieved.

But scrolling is just too slow and too tedious task if jump to far away address is
needed. Because of that additional control element was introduced. Under scroll area
is input field allowing user to enter exact address. Memory view is then centered on
such address.

Format used for presenting data it self is same as in case of registers view (Section 6.4).
The StaticTable is used.

Although in implementation program and data memory views are almost same they
differ in what data they present. Where data memory view shows words in hexadecimal
format program memory view uses decoding to instruction mnemonic to show instruc-
tions in their MIPS assembler representation. It is needless to say that they both show
same data (same memory).

Program memory view is implemented in source files programdock.h and program-
dock.cpp. Data memory view is implemented in source files memorydock.h and memory-
dock.cpp. They both share common ancestor implemented in source files memoryview.h
and memoryview.cpp.
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Figure 6.8. Window with program memory view.

6.6 Program and Data Cache View

Program and data cache views are two separate dockable windows. But they are in-
stances of the same class. There are two primary parts of this window. Part where
cache statistics are displayed and part where cache content is visualized.

Cache statics are simple labels with values updated in them by signals from simulator.
What exactly they mean is described more in depth in Section 5.3.1.
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Figure 6.9. Program cache view configured with default cache.

Cache content visualization is based on same approach as CPU scheme. It uses Qt
Graphics View Framework. It uses same code for scene view which behaviour was
described in Section 6.3.

Graphics scene it self consist of repeating block and some additional graphical ele-
ments. Every block visualizes separate cache block and number of them is given by
cache associativity. They are aligned in sequence under each other. Thanks to that
it is easy to add signal wires without complicated algorithm. Every block draws all
wires that has to be displayed and thanks to their alignment they connect each other
automatically.

Content of cache itself is filled from slots. When scene is initialized it requires simula-
tor’s cache class instance and during initialization it also connects those slots to signals
from cache.

Program and data cache views are implemented in source files cacheview.h and
cacheview.cpp.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Program and Data Cache View

Figure 6.10. Data cache view configured with directly mapped cache and before any usage.
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Chapter 7
Conclusion

Graphical MIPS CPU simulator was developed as part of this thesis. It was developed
with consideration of current simulator usage and designed to be intuitive. It is able
to simulate considerable portion of MIPS ISA including both single-cycle and pipelined
CPU. Simulator in current state can fulfill all roles which are provided by MipsIt with
exception of memory mapped I/O (but that wasn’t goal of this thesis).

Simulator was implemented with testing framework. All supported instructions are
automatically tested using unit tests. GUI and complete simulation was tested by hand
with MIPS assembly programs from Computer Architectures tutorials.

Development of simulator is not yet complete. There are possible improvements
outside of this thesis such as to add memory mapped I/O or implementation of excluded
instructions. It would be also beneficial to extend feedback in GUI such as to add
highlighting of changed values. Moreover, it will be important to gather feedback from
the students using the simulator during the APO course and subsequently address
their concerns and suggestions as well as reports of previously undiscovered problems
in future updates of the simulator.
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Appendix A
Glossary

ALU . Arithmetic Logic Unit
API . Application Programming Interface
C . C Programing Language
C++ . C++ Programing Language
CISC . Complex Instruction Set Computer
CPU . Central Processing Unit
CTU . Czech Technical University
ELF . Executable and Linkable Format
FPGA . Field-Programmable Gate Array
FPU . Floating Point Unit
GCC . GNU Compiler Collection
GNU . GNU’s Not Unix operation system
GUI . Graphical User Interface
HTML . Hypertext Markup Language
IDE . Integrated Development Environment
IPC . Instruction Per Cycle
ISA . Instruction Set Architecture
MIPS . Microprocessor without Interlocked Pipeline Stages
NOP . No Operation computer instruction
PC . Personal Computer
Qt . Cross-platform application framework and widget toolkit
RISC . Reduced Instruction Set Computer
SVG . Scalable Vector Graphics
VHDL . VHSIC (Very Hight Speed Integrated Circuit) Hardware Description

Language
Wine . Wine is not an emulator (Windows compatibility layer)
XML . Extensible Markup Language
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Appendix B
Content of attached CD

CD attached with this thesis contains directory QtMips with source codes of developed
simulator. Another directory Thesis contains sources for this thesis text and thesis
itself in PDF format.

Current version of QtMips is provided online: https://github.com/Cynerd/QtMips
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