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ARFID chips localization by a group of helicopters
using a principle of multilateration

Department of Control Engineering

Thesis supervisor: Ing. Vojtěch Spurný
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Abstract

This thesis deals with localization of unknown ARFID devices by a
group of unmanned aerial vehicles (UAVs) in a space using multilater-
ation methods and Bluetooth low energy (BLE) technology. Methods
described in this work are formulated in a general way, therefore they
can be used with any technology that allows distance measurements. At
the beginning of this work we are discussing how to measure distance
using BLE and then how to apply this knowledge for multilateration
algorithms. Multilateration algorithms are presented from general
perspective for arbitrary dimensional space and arbitrary number
of deployed UAVs. Furthermore these algorithms are extended by a
knowledge about uncertainty of a measurements and their functionality
is verified in simulations and by real-world deployment.

Keywords: multilateration, bluetooth low energy, unmanned aerial ve-
hicle, radio frequency identification, localization, least squared method,
received signal strength indicators

Abstrakt

V této práci je řešen problém lokalizace neznámého ARFID čipu na
bázi Bluetooth low energy technologie. K lokalizaci jsou použity metody
využ́ıvaj́ıćı principu multilaterace. V práci jsou všechny multilateračńı
algoritmy popsány obecně a jsou použitelné s libovolnou technologíı
která umožňuje měřit vzdálenosti mezi objekty. Nejdř́ıve jsou popsány
postupy měřeńı vzdálenost́ı pomoćı technologie BLE a źıskané výsledky
jsou použity v multilateračńıch metodách. Všechny popsané algoritmy
pracuj́ı v libovolném dimenzionálńım světě a nejsou limitovány počtem
bezpilotńıch helikoptér. Lokalizovaná poloha je poté zpřesněna zave-
deńım nepřesnosti měřeńı vzdálenosti.

Keywords: multilaterace, bluetooth low energy, bezpilotńı helikoptéra,
radio frequency identification, lokalizace, metoda nejmenš́ıch čtverc̊u,
received signal strength indicators
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1. INTRODUCTION

1 Introduction

With rise of mobile devices new bluetooth standard Bluetooth low energy (BLE) was
presented. This technology enables creation of low cost and low powered devices that are
able to tell proximity distance between each other. Localization techniques are sometimes
imeplemented in indoor environment where mobile device is measuring it’s distance to
static points and then tries to estimate itself inside building. The same principle could be
reversed, a group of unmanned aerial vehicles (UAVs) with known positions could measure
distance to the unknown object and based on that estimate it’s position. All mentioned
methods requires distance measurements and thus they are call multilateration methods.

This thesis is continuation of previous research conducted at the Czech Technical
University in Prague, Department of Cybernetics, where methods of active RFID chips
localization were implemented [1]. Multilateration methods have their use in large variety
of problems where measurement of distances between objects is available. One of the most
known example is GPS system where data from satellites are used to estimate location
of a user on the surface of the Earth. Another known examples are airports [2] that are
using multilateration techniques to estimate location of airplane in the air and thus they
are able to plan their path according to it. The same methods are also possible to use for
a group of UAVs equipped with devices that are able to measure distances to an unknown
object [3], [4]. Based on observations from these devices, location of this unknown object
can be estimated. Furthermore, UAVs are able to dynamically react that can be helpful
for example for checking previously marked spot in open fields or even for finding moving
objects in proximity radius [5], [6].

There are multiple formulations of multilateration problems. They could be formu-
lated as linear problem, having closed form solution (Section (7.3), or as non-linear problem,
requiring toolset of optimization techniques to estimate unknown location (Section (7.4)).
The close form solution has complexity of O(M3), where M is number of deployed UAVs.
Simulations of our proposed non-linear solution (see Section 8.0.1) shows time complexity
of O(M) which is big improvement compare to linear case.

Furthermore, uncertainty of distance measurements can be considered during process-
ing of measured signal. This issue is further referenced and solved by introducing covariance
matrix (Section (7.6)) which contains uncertainty information about error propagation in
the measurement.

1



2. TECHNOLOGY

2 Technology

Radio Frequency Identification (RFID) is a collection of devices that are using a radio
frequency signal to communicate with others. These devices are widely used as identifi-
cation tags or security cards. One of their big advantages is low-cost manufacturing and
availability on the market. They are generally operating in the free frequency bands such
as 868MHz or 2.4GHz. Bluetooth Low Energy(BLE) is one example of such technology [7].
Today they are widely used as a proximity sensor and advertising devices that can notify
other devices in a close radius. Giving us information about a distance from the devices
inspires the idea of using BLE protocol for a localization in space.

2.1 Bluetooth hardware

For an implementation of transmitter and receiver of BLE signal, we used in this work
development board Nordic nRF52DK. A transmitter is a device that will be localized.
Receiver boards are placed onboard of UAVs that implement algorithms discussed in this
thesis. Nordic supplies well documented Software Development Kit (SDK) for development
of Bluetooth enabled devices. The board contains ARM microprocessor which can be pro-
grammed and flashed over standard USB from Unix/Windows operating system. Board
also can be used in further development of an overall solution for location estimation.
The device is capable of being extended with other hardware through General-purpose
input/output (GPIO) ports.
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(b) Back of a nRF52DK

Figure 2.1: Reference layouts of bluetooth development boarda.

ahttps://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52-DK

2

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52-DK


3. BLUETOOTH LOW ENERGY (BLE) SPECIFICATION

3 Bluetooth Low Energy (BLE) specification

Standard BLE is defined in Bluetooth Core specification1. BLE uses radio frequency
the 2.4 GHz band for communication and divides this band into 40 channels with 2 MHz
spacing, starting at 2402 MHz. Complete set of 40 channels is divided into 3 advertising
channels (37, 38, 39), and 37 data channels (0-36). All these channels are visualized in
Figure 5.1a. This figure also shows channels of Wifi that can interfere with BLE signal.
These channels are then used for different part of communication:

Advertising channels
Device Discovery
Connection Establishment
Broadcast Transmissions

Data channels
Bidirectional communication between connected devices
Adaptive frequency hopping used for subsequent connection events

Onboard nRF52DK board is used for measuring Received Signal Strength Indicators
(RSSI) values from the transmitter points overall advertising channels. This value is then
processed using signal propagation model to give resultant distance measurement.

37 38 39

Figure 3.1: Comparison between WiFi and BLE frequency range. BLE spectrum spans
enough space to be able work outside and inside spectrum of WiFi signal. Advertising
channels are positioned on the edges of the spectrum. This provides better noise toleration
against Wifi signal.

1https://www.bluetooth.com/specifications/bluetooth-core-specification
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4. DISTANCE COMPUTATION

4 Distance computation

BLE protocol specifies information about transmitting TxPower and device identi-
fiers. Receiver device is measuring RSSI value for a distance estimations from a transmitter
point. For a further use, we are going to call UAV carrying receiver device as an anchor
point.

Function Ω(xrssi) characterises relation between measured RSSI value and distance.
We shall define it as strictly positive function. We do not have any physical interpretation
of a negative distance and strictly positive eliminates the case of being localized directly
inside anchor point

Ω : R→ (0,+∞) . (4.1)

4.1 Signal propagation model

There are many signal propagation models used for computing distance from RSSI
values. Model should be chosen based on requirements of a final application. The unknown
object is chosen to be in open field, hence this ensures there are minimal reflections and
multi path noise in the signal. For computation reasons, we need our model to give us
the function of a distance. If model gives function of a receiver power than it needs to
be an invertible function, otherwise we cannot use this function for a unique computation
from a distance. Given that we are in an open field simple model such as Free space
signal propagation model (FSM). This model could be derived from more general Friis
transmission equation [8]. Free space model assumes several assumptions about receiver
and transmitter sides. That are mainly these:

Isotropic transmission from the antenna

Development board Nordic nRF52DK has its antenna by default facing in one direc-
tion. Therefore we cannot expect it to be isotropically radiating signal. This can be solved
by attaching our own antenna and then use Friis equation that would take advantage of
geometric properties of that antenna.

Line of sight propagation of the signal

Receiver at any given moment of measurement should see transmitter without any
obstacle between them. BLE technology is expected to have range up to 100 meters accord-
ing to documentation. In this range, we can ensure that only obstacle between transmitter
and receiver are bodies of the UAVs itself. Methods presented here are generally working
in arbitrary distances. A different technology that would allow to measure distance even
longer than is distance to the horizon on the earth surface can be used. In that case, the
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5. RSSI CHARACTERISTICS

ability how to quantify when the signal is received in the line of sight manner with account
for a earth surface curvature needs to be presented (discussed more in Section 11.2).

Free space model relation between RSSI and distance is specified as

RSSI [ dB ] = −10n log10(d) + TxPower + ν , ν ∼ N (µ, σ) , (4.2)

therefore we can compute distance as

d [ m ] = 10

TxPower− RSSI + ν

10n , (4.3)

where n is environment constant used for calibration in non ideal environment (free space
has n = 2). TxPower [dB] is constant of the transmitter module that represents RSSI value
received in 1 meter distance from transmitter.

5 RSSI characteristics

BLE signals are in a range of 2.4GHz frequency which means signal is travelling
in straight line path and there are no bending or reflection from a stratosphere. We are
planning to run an algorithm onboard of the UAV in an outdoor field thus to minimize
reflections from the ground we should measure the characteristics in the air.

Placement of a BLE transmitter on the target is crucial for a correct RSSI readings.
UAV carries other devices that can work on the same frequency range and also further
part of the construction is shielded so that radio waves cannot penetrate the UAVs body
that easily. Due to that, we need to make an assumptions about target relative location
against UAV for partially correct transmitter placement:

• Target movement is restricted to be under the location of UAV (eq. UAVs are esti-
mating location of the target moving on the ground)

5.1 Measurements

Experiments are designed to measure signal decay over a absolute distance between
transmitter and receiver. For a further use we are going to call signal decay characteristic
as characteristic.

Characteristics are measured in two main configurations. First one is measured with
the placement of a transmitter and receiver in 90◦ rotated to each other. Transmitter
is placed on the one side of the UAV and receiver is placed flat on top of the second
UAV (see Fig. 5.1a). In Second configuration, transmitter and receiver are facing each
other (see Fig. 5.1b). Both configurations are used for measuring types of characteristics.
Figure 5.2 shows placement of Nordic devices and their orientation.
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. The first configuration has longer running times because each characteristic is mea-
sured on a new battery pack. Second configuration has measured both characteristics in
one run.

(a) Configuration 1 (b) Configuration 2

Figure 5.1: Device placement onboard of UAV. For both transmitter UAV at the bottom
has device facing upwards. Transmitter UAV (Fig. 5.1a) has Nordic device facing to the
side. Latter one has receiver device facing bottom. This has been shown to be better
configuration (Fig. 5.6) than a first one. Goal of the experiments is to gather information
about directivity of an Nordic board antenna. Second measurement (Fig. 5.4) shows that
by using onboard devices facing to each other (Configuration 2).

5.1.1 All directional characteristic

Characteristics are measured using spherical trajectory. Transmitter UAV is placed in
one point and receiver UAV is following non-collision2 trajectory around transmitter. The
UAVs first configuration is obtained in 7 minute flight and is measuring samples from top
hemisphere with radius 12 meters. Characteristic for the second configuration is measured

2UAVs have collision avoidance system that is activated whenever another UAV is inside safety cylinder[
r h

]
=
[

5 6
]

[meters].
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Figure 5.2: RSSI characteristics experiments conducted with respect to the configuration
2. Transmitter (yellow arrow) and receiver (red arrow) are facing according to the arrows.

in 3 minute 30 seconds flight measuring top hemisphere with less details. Trajectories are
generated with respect to the maximal time flight on one fully charged battery pack3

Experiment data shows that using configuration 2 (Fig. 5.4) ensures better symmetry
or received signal than first (Fig. 5.3). We do not have any prior knowledge about rotation
and relative position of transmitter in relation to the receiver thus the second configuration
is chosen for experiments presented further in the work.

(a) UAV trajectory
(b) RSSI values mapped to polar coordinates

Figure 5.3: Spherical characteristic taken with the configuration 1. Video available at
http://mrs.felk.cvut.cz/nemec2018thesis

3Fully charged battery pack has flight expectance ∼10 minutes.
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(a) UAV trajectory (b) RSSI values mapped to polar coordinates

Figure 5.4: Spherical characteristic taken with the configuration 2. Video available at
http://mrs.felk.cvut.cz/nemec2018thesis

5.1.2 One directional characteristic

Characteristics are measured using straight line trajectory. Reason for this measure-
ment is ability to measure further distances from the transmitter. First configuration is
measured in 7 minutes on the distance interval 〈5, 40〉 meters (Fig. 5.5a). Second config-
uration is measured in 3 minutes and 30 seconds in interval 〈4, 30〉 meters (Fig. 5.6a).
Experiments shown in Figure 5.7 display difference between two configurations. Free space
model does not really account for instability of BLE signal and needs to be adjusted for a
further use.

For that we first introduce saturation range of a signal. We are assuming distance from
transmitter to receiver in a range 〈 1, 42 〉 meters in all experiments. Multilateration exper-
iments are conducted in the configuration 2 (Fig. 5.1b), That way we define our distance
function to follow second measurement of a directional characteristic. Measured charac-
teristics started to overlap for distances greater than 30 meters. We chose our distance
function to overlap these to measurements and than saturate at final distance (Fig 5.7).
Final function is taken to be defined segment-wise and evaluated by linear interpolation
between specified points. Results are summarized in Table 1. Parameters estimated from
measured data. Root square mean error (RMSE) is computed for a raw and kalman filtered
values.

Table 1: Free space model data fitting

Free space model n TxPower [dB] RMSEfit,raw [dB] RMSEfit,filter [dB]

Configuration 1 1.186 -59.18 3.8015 1.9842
Configuration 2 1.149 -52.17 3.6188 2.8685

8
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(a) UAV trajectory
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(b) RSSI characteristic

Figure 5.5: One directional measurement of RSSI characteristic in the UAV configuration
1. RSSI values are filtered using kalman filter with parameter (R = 0.01). Free space model
fit (Eq. 4.2): n = 1.186, TxPower = −59.18 [dB]. Video available at
http://mrs.felk.cvut.cz/nemec2018thesis

(a) UAV trajectory
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(b) RSSI characteristic

Figure 5.6: One directional measurement of RSSI characteristic in UAV configuration 2.
RSSI values are filtered using kalman filter with parameter (R = 0.01). Free space model fit
(Eq. 4.2): n = 1.149, TxPower = −52.17 [dB]. This measurement (Fig. 5.6b) shows great
improvenent of overall stability of the signal in comparison to (Fig. 5.5b), mainly due to
the fact that transmitter and receiver weren’t blocked by UAV body. Video available at
http://mrs.felk.cvut.cz/nemec2018thesis
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Figure 5.7: Custom distance function created from both experiments. Curve is manually
created from both datasets by specifying keypoints of the characteristics and interpolated
in between using spline curve. Beginning of the curve closely follows second configuration
because following experiments were using multilateration techniques had their transmitters
and receiver installed in that manner.

5.2 Filter

RRSI values are filtered using one dimensional kalman filter. Nordic development
board has been programmed in a way that we are getting measurements in fixed time
interval. Due to fact that we do not have complex model for behaviour of RSSI values
in the environment. For that we propose to use kalman filter of one variable with static
model. Kalman filter algorithm can be simplified to as

x̄ = xn , (5.1)

c̄ = cn +R , (5.2)

K = 1 + c̄ , (5.3)

xn+1 = x̄+K(z − x̄) , (5.4)

cn+1 = c̄(1−K) , (5.5)

where z is actual measured sampled. Initial value of x0 is taken to be first sample of rssi
value and inital value c0 is set to 1. Tuning parameters R will be estimated heuristically
for having balance between response time and filtered value. Based on the experiments
measuring RSSI values in one direction (Fig. 5.5) such constant has been chosen to be
R = 0.01.
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5.3 Module implementation

Transmitter uses only Nordic hardware and works as standalone device. Device is pro-
grammed using reference Nordic program for BLE beacon taken from reference develop-
ment page4. BLE beacon is transmitting advertising data with identifiers major/minor
(10/10).

Receiver board is programmed as BLE receiver using code from manufacturer5. Device
is listening for advertising data with identifiers same as transmitter board in 100ms fixed
intervals. ROS module is filtering raw RSSI values from board readings using kalman filter.
Signal model fit (Fig. 5.7) transforms filtered RSSI values to their distance equivalents.
Distance measurements are then published using ROS system in the same intervals as for
nordic board.

Location module is implemented and tested in Gazebo system used for UAV simu-
lations. Module is able to work with free space model function (Eq. 4.3) as well as with
piece wise defined characteristic (Fig. 5.7).

4https://github.com/NordicPlayground/nrf51-ble-tutorial-advertising
5https://developer.nordicsemi.com/nRF5_SDK/
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6. LEAST SQUARE METHOD (LSM)

6 Least square method (LSM)

. Least square method is generally defined as optimization problem where we are
trying to find extremas of a scalar cost function in a form

J(~x) =
1

2
~e(~x)TH~e(~x) , (6.1)

where ~x is vector of unknown variables, ~e is a column error vector that defines relation
between expected and sampled values. We are trying to find argument in which function
has it’s lowest value

~x = arg min
~x

J(~x) . (6.2)

Square matrix H could be used for additional weights and parameters. If matrix H is
different from identity matrix method is also called Weighted least square method (WLSM)
Generally we define elements of a error vector as difference between expected and sampled
value

ei(~x) = βi − γi(~x) . (6.3)

Special type of a matrix H is positive diagonal matrix. We can rewrite expression
(Eq. 6.1) with coeficients from diagonal as

J(~x) =
1

2
~e(~x)TH~e(~x) =

1

2

∑
i

Hiie
2
i =

1

2

∑
i

(√
Hiiei

)2

, (6.4)

which is the same as setting matrix H to identity matrix and rewrite our error vector as a
new vector

e′i(~x) =
√
Hii ei(~x) , (6.5)

and our modified cost function

J(~x) =
1

2
~e′(~x)T ~e′(~x) . (6.6)

Scalar βi is sampled value and scalar function γi(~x) of unknown variables vector. Function
γi represents relation of unknown variable vector ~x with respect to sampled value βi

6.1 Derivative of cost function

Most of algorithms used for finding extrema of a function requires computing gradient
of function. Assuming that in expression (Eq. 6.1) is matrix H only positive diagonal
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matrix6 with scalar values and (Eq. 6.3) used as error vector then computation of a gradient
can be simplified to computing gradient of a unknown function γi as

∂J(~x)

∂xj
=

1

2

∂

∂xj
||~e′(~x)||2 =

∑
i

Hiiei
∂ei(~x)

∂xj
= −

∑
i

Hiiei
∂γi(~x)

∂xj
. (6.7)

Higher order optimization algorithms could also require to specify second order
derivative of (Eq. 6.1). For direct computation of second derivative we would need to
differentiate again (Eq. 6.7) that is

∂2J(~x)

∂xj∂xk
=
∑
i

Hii

(
∂γi(~x)

∂xj

∂γi(~x)

∂xk
− ei

∂2γi(~x)

∂xj∂xk

)
. (6.8)

6.2 Solutions of optimization problem

LSM formulated in previous section cam be solved analytically if function γi is linear
in parameters of unknown vector ~x. meaning γi can be written as

γi(~x) =
∑
j

cijxj ,
∂γi(~x)

∂xj
= cij ,

∂γi(~x)

∂xj∂xk
= 0 . (6.9)

Linear version of (Eq. 6.9) can also be expressed as matrix multiplication C = [cij] .

We would solve extrema of a function with error vector ~e(~x) = ~β − C~x is then

J(~x) =
1

2
||~β − C~x||2 =

1

2

[
~xTCTC~x− 2~xTCT ~β + ~βT ~β

]
. (6.10)

Solving for a ~x where ∇J(~x) = ~0 gives matrix form solution to linear LSM problem.

∇J(~x) = CTC~x− CT ~β
∇J(~x)=~0
=====⇒ CTC~x = CT ~β , (6.11)

~x = (CTC)−1CT ~β . (6.12)

Final formula (Eq. 6.12) assumes that CTC is nonsingular matrix which is require-
ment for unique solution to exists. Problems with this solution is also numerical instability
that arise in CTC when matrix is almost singular or coefficients are too big or too small.
Linear problem can slo be solved for a general weight matrix H

~x = (CTH−1C)−1CTH−1~β . (6.13)

More complex function cannot be solved analytically and techniques from numerical
analysis needs to be used.

6Differentiating cost function when weight matrix H is non-diagonal we can expand matrix multiplica-

tion as J = 1
2

∑
i

∑
j Hijeiej and consequently compute derivative ∂J

∂xk
= − 1

2

∑
i

∑
j Hij

[
ei

γj
∂xk

+ ej
γi
∂xk

]
and second order derivative ∂2J

∂xl∂xk
= 1

2

∑
i

∑
j Hij

[
∂γi
∂xl

∂γj
∂xk

+
∂γj
∂xl

∂γi
∂xk
− ei ∂2γj

∂xl∂xk
− ej ∂2γi

∂xl∂xk

]
.
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Iterative nonlinear optimizers

Nonlinear optimizers needs to be used when problem cannot solve directly by closed
form solution. In real world application they are also used in many linear optimization
problems where state space is too huge for a solution using explicit formula or number of
operations needed for a solution is higher then number of iterations in nonlinear optimizer.

Gradient descent (GD) method is used for finding local minimum of a unknown vector
function F (x). It’s iterative method which requires to specify initial point and known
gradient of a function F (x). This method has lowest memory overhead and is better suited
in environments with big data structures(for example when training neural networks)

Gauss-Newton (GN) is second order iterative method. It additionally uses second order
derivative to estimate correct iteration step. Because of that algorithm needs more function
evaluations then GD method, but has higher change of finding extrema point faster7.

Levenberg marquardt (LM) method behaves as combination of Gradient descent method
and Newton-Gauss method. When point is further from extrema it iterates in a direction
of gradient and when closer to the extrema uses approximation of a second derivative and
behaves as Newton-Gauss method with quadratic convergence. Overall expected conver-
gence is expected to be linear and slow. Method is expected to have biggest memory and
function evaluation overhead from the three mentioned here, but it provides more robust
solver that is better suited in optimizing smaller problems.

7Faster mean it will converge to the right solution in less iterations then other method.
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7 Localization methods

Many algorithms exists using different approaches[9]. We are going to show methods
that are using distances for localization estimation (lateration methods). Proposed algo-
rithms are working with M distance measurements from anchor points. Anchor point is
actual position of the UAV in local space with respect to the origin. We will define unknown
position of the target in N-dim space ~x as coordinates to standard basis of Euclidean space

~x ∈ RN , (7.1)

and our distance measurements ~ξ vector as follows

~ξ ∈ (0,+∞)M . (7.2)

Further lets define matrix L where row represents position vector of the anchor and
column represents coordinate in N-dim space. As the last we define Li with one index as
row vector of matrix L for a representation of anchor point position

L =

 ~L1
...
~LM

 , L ∈ RM×N . (7.3)

Goal of these algorithms is to find a unknown position ~x in N-dim space using information
about position of the anchor points and their distances to the target object.

7.1 Existence of a solution

Method has a unique solution in N dimensional space if rank(L) = N and M ≥ N+1,
which gives us set of N + 1 independent equations. For a rank(L) < N equations we could
run an algorithm in rank(L) dimensional space 8. When creating new base vectors in sub-
space rank(L) dimensions it’s generally recommended to make sure that our base vectors
are orthonormal. These conditions can be ensured by using Gram-Schmidt Orthogonaliza-
tion process when creating new basis.

7.2 Naive method

We could try to localize unknown object using solution given by set of equation for N-
dimensional sphere (Eq. 7.4). This would require to specify M (minimum of N+1) anchor

8example of using 3 non collinear anchor points in 3D space can be simplified to solving same problem
in 2D where space is defined by plane constructed from 3 anchor points
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7. LOCALIZATION METHODS

points with their corresponded distance measurements. For less than N+1 points set of
equations has multiple solutions.

N∑
j=1

(xj − Lij)2 = ξ2
i , i ∈ {1, . . . ,M} . (7.4)

Disadvantage of this method is that we need to know exact distance measurement
ξi without any measurement errors. Any slight offset from ideal values ξi would result in
non solvable set of equations. For example if we had perfectly calibrated set of 3 anchor
points for localization, adding another anchor point would possibly result in unsolvable set
of equations.

7.3 Hyperbolic algorithm

Naive method can be extended in a way that we are solving linear system using LSM
method. Back in (Eq. 7.4) subtracting k-th equation from others and expanding squared
elements gives set of M − 1 linear equations

N∑
j=1

(xj − Lij)2 −
N∑
j=1

(xj − Lkj)2 = ξ2
i − ξ2

k , (7.5)

N∑
j=1

x2
j − 2xjLij + L2

ij − (x2
j − 2xjLkj + L2

kj) = ξ2
i − ξ2

k , (7.6)

N∑
j=1

−2xjLij + L2
ij + 2xjLkj − L2

kj = ξ2
i − ξ2

k , (7.7)

N∑
j=1

2(Lkj − Lij)xj = ξ2
i − ξ2

k −
N∑
j=1

(
L2
ij − L2

kj

)
, (7.8)

where k ∈ {1, . . . ,M}. Other equations are constructed from remaining indexes i ∈ {1, . . . ,M} / {k}.
Linear system of equations (Eq. 7.8) can be rewritten in a matrix form A~x = ~b, where ma-

trix A and vector ~b are specified by elements

A = 2 [Lkj − Lij] , A ∈ R(M−1)×N , (7.9)

~b =

[
ξ2
i − ξ2

k −
N∑
j=1

(
L2
ij − L2

kj

)]
=

[(
ξ2
i −

N∑
j=1

L2
ij

)
−

(
ξ2
k −

N∑
j=1

L2
kj

)]
. (7.10)

Solving matrix equation with (Eq. 7.9) and (Eq. 7.10) can be done directly using
formula (Eq. 6.12). From index notation we see that selection of equation that will be
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subtracted from others doesn’t influence solution, because i is complementary index to k,
meaning choosing different values will yield in a same set of equations.

Name of the method comes from it’s use in Time of Arrival (TDOA) and Time
Difference of Arrival (TDOA)[10] systems where distance measurement ξi is a function of
time arrival on the receiver ξi ∝ τi (dimensions typically used N ∈ {2, 3}) thus (Eq. 7.5)
is set of hyperbola/hyperboloid equations.

Example of solving two dimensional location of a unknown object using 3 anchor points
will lead to solving system of 2 equation (Eq. 7.12). Parameter k can be any number from
{1, 2, 3}. Choosing k = 1 gives set of equations constructed from equations {2, 3}.

L =

[
x1 x2 x3

y1 y2 y3

]T
~ξ =

[
d1 d2

]T
(7.11)

2

[
x1 − x2 y1 − y2

x1 − x3 y1 − y3

] [
x
y

]
=

[
(d2

2 − x2
2 − y2

2)− (d2
1 − x2

1 − y2
1)

(d2
3 − x2

3 − y2
3)− (d2

1 − x2
1 − y2

1)

]
(7.12)

1 function [A, b ] = h y p e r b o l i c l i n e a r p a r a m s ( xi , L)
2 M = length ( x i ) ;
3 A = L ( 2 :M, : ) ;
4 b = zeros (M−1 ,1) ;
5 for i =1:M−1
6 A( i , : ) = 2 .∗ (L ( 1 , : ) − A( i , : ) ) ;
7 b( i ) = x i ( i +1)ˆ2 − x i (1 ) ˆ2 − sum(L( i +1 , : ) .ˆ2−L ( 1 , : ) . ˆ 2 ) ;
8 end
9 end

Script 1: Matlab implementation of linear parameters (Eq. 7.9),(Eq. 7.10) in hyperbolic
localization method (parameter k = 1). Script is able to work in arbitrary number of
receiver points in arbitrary dimensional space.

7.4 Nonlinear spherical method

In this localization method we define cost function which has its minimum in possible
point where we are trying to estimate our object. First we specify error distance column
vector ~e(~x) of every measured distance against computed distance. We can write final error
vector element wise as

ei(~x) = ξi − Λi(~x) , i ∈ {1, . . . ,M} . (7.13)
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Scalar function Λi defines computing analytical distance of target from each anchor
point. We are going to define our Λi function as distance between two points in flat Eu-
clidean space

Λi : RN → 〈0,+∞) , Λi(~x) = ||~x− ~Li|| =

√√√√ N∑
j=1

(xj − Lij)2 , i ∈ {1, . . . ,M} . (7.14)

This method is useful if we know that our distance measurement vector ~ξ has same accuracy
in every distance from receiver point. In many applications we might be in position where
accuracy of distance estimations is different with respect to the distance measurements.
This would require us to specify weight matrix H in (Eq. 6.1). We could analyze behaviour
around one anchor point (Eq. 7.15) with configuration

L =
[

0 0
]
, ~ξ =

[
1
]
. (7.15)

Figure 7.1: Visualization of a cost function
evaluated for a one anchor (Eq. 7.15), and it’s
derivative in two dimensions. Function is eval-
uated with parameter α = 1 (Eq. 7.17). Cost
function with one anchor point is symmetric
around it’s z-axis we can also use substitution
in cylindrical coordinates ρ(x, y) =

√
x2 + y2

and plot function J(~x) as function of one vari-
able J(ρ).
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First order derivative Λi

For computation of there methods we use nonlinear solver that uses Levenberg Mar-
quardt algorithm for finding local minimum of the function. Optimization method also
requires our derivative of cost function, for a faster computation. LM method is able to
numerically estimate Jacobian from function alone but that is in cost of a computation
time and doesn’t guarantee right results. Following formula

∂Λi(~x)

∂xj
=
xj − Lij

Λi(~x)
, (7.16)
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is computing derivative with respect to every anchor point. We can immediately see prob-
lem around the points ~x = ~Li where function is undefined. Solution is to redefine our error
vector ei(~x) used in cost function using power α of a ξi values and Λi(~x) function

ei(~x) = ξ′i − Λ′i(~x) , ξ′i = ξαi , Λ′i(~x) = Λα
i (~x) . (7.17)

Parameter α could be used in range R, but it makes sense to restrict it’s value on
the interval (0,+∞). If we want to make derivative defined in a point ~x = ~Li we should
choose α ≥ 2. Choosing α = 2 (see Fig. 7.2) also benefits from simplifying computation of
a square root in Λi(~x) function. Derivative of a modified Λi function is written as

∂Λ′i(~x)

∂xj
= αΛα−2

i (~x)(xj − Lij) . (7.18)
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Figure 7.2: Visualization of a cost function
evaluated for a one anchor point (Eq. 7.15),
and it’s derivative in two dimensions. Func-
tion is evaluated using (Eq. 7.17) with pa-
rameter α = 2. Cost function with one an-
chor point is symmetric around it’s z-axis we
can also use substitution in cylindrical coor-
dinates ρ(x, y) =

√
x2 + y2 and plot function

J(~x) as function of one variable J(ρ).

Second order derivative Λi

Optimization method like Newton-Gauss method requires computation of Hessian.
We could approximate second order derivative by numeric approximation, or we could take
second derivative directly by differentiating (Eq. 7.19). Implementation of second derivative
can be found in appendix (Script. 8).

∂2Λ′i(~x)

∂xj∂xk
= α(α− 2)Λα−4

i (~x)(xj − Lij)(xk − Lik) + αΛα−2
i δjk) , (7.19)

where δij is Kronecker delta

δij =

{
1 i = j
0 i 6= j

. (7.20)

If we want second derivative to be defined for every ~x ∈ RN it’s necessary to chose α ≥ 4.
Second derivative could be also used in first order optimizers for estimating upper bound
of one step.
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Differences are shown by plotting cost function (see Fig. 7.3 and Fig. 7.4) evaluated
in two dimensions with configuration

L =

[
−1 0 1.5 1.6
0 1.5 0 1.6

]T
, ~ξ =

[
1 0.8 1 0.3

]T
. (7.21)

(a) Cost function J(~x) (b) Gradient of cost function ||∇J(~x)||

Figure 7.3: Visualization of hyperbolic cost function. Function is evaluated using four
anchor points in configuration (Eq. 7.21).

(a) Cost function J(~x) (b) Gradient of cost function ||∇J(~x)||

Figure 7.4: Visualization of spherical cost function defined by (Eq. 7.13) using α = 1
without covariance matrix. Function is evaluated using four anchor points in configuration
(Eq. 7.21).
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7.5 Initial location problem

Nonlinear iterative solvers requires initial point from which algorithm estimates next
steps. Generally we could express working of iterative methods as

xn+1 = f(xn, ...) , (7.22)

where f(xn, ...) is a function of a previous step and optionally other parameters. Hence
for a first iteration we need to specify initial point x0. One method is to estimate location
by hyperbolic algorithm which doesn’t require initial location to work and use it as initial
point in nonlinear solver. Hyperbolic algorithm could be computationally expensive due to
matrix multiplications (complexity on average O(n3)). Therefore we assume that unknown
location lies in close radius to UAVs we could guess our initial point as weighted location
of all UAVs

~x0 =
1

M

M∑
i=1

~Li . (7.23)

We simulated dataset of 100 randomly distributed points for a different number of
anchor points and non of them showed advantage of using hyperbolic solution over average
location (Eq. 7.23).

7.6 Accuracy improvements using measurement uncertainty

In general case where real error distribution is not known we could try to use nor-
mal distribution as our model. Let Λi be measurement function of random variable ~x. Λi

specifies one measurement of one anchor point as taking sample from normal distribution
N (~ξ, Σ). Likelihood of location ~x with respect to the measurement ~ξ is than defined as

L(~x; ~ξ,Σ) =
1√

det |2πΣ|
exp

[
−1

2

(
~ξ − ~Λ(~x)

)T
Σ−1

(
~ξ − ~Λ(~x)

)]
, (7.24)

where Σ is covariance matrix for measurements ~ξ. Assuming that individual measurements
are not correlated to each other9, covariance matrix is taken to be diagonal matrix Σ =
[σ2
i δij]. Case of error being correlated is addressed in [11] Optimization problem can be

formulated as finding point ~x in which has likelihood function L it’s maximum. This imply
relation10

~x = arg max
~x

L = arg min
~x

[
1

2

(
~ξ − ~Λ(~x)

)T
Σ−1

(
~ξ − ~Λ(~x)

)]
. (7.25)

9Each UAV is taking measurement ξ without influence of other UAVs. Synchronization of the measure-
ments that are taken into final computation is done independently of others.

10Function extreme ∇~x L = −L∇~x
[
1
2

(
~ξ − ~Λ(~x)

)T
Σ−1

(
~ξ − ~Λ(~x)

)]
.

21



7. LOCALIZATION METHODS

Method is sometimes referred as Maximum Likelihood Estimation (MLE) method[12].
Comparing it directly with cost function definition (Eq. 6.1) we can interpret general weight
matrix H as being directly inverse of covariance matrix Σ. Based on that we can easily
extend our localization method with information about uncertainty of distance measure-
ment ~ξ. More complex method for estimating actual accuracy limitations are analysed in
a work [13].

7.7 Correction for BLE distance uncertainty

Given a free space signal propagation model. We can see that distance relation is same
as taking sample from log-normal distribution[14]. It can be shown [15] that covariance
matrix Σ is equal to

Σ = [ ξ4
i δij ] . (7.26)

Applying this covariance matrix as weight matrix in least square problem can greatly
improve overall localization accuracy[14] (for comparison see Fig. 7.5). Covariance stated
here cannot be used in hyperbolic algorithm because of different covariance configuration.
In [14] it is shown that general covariance matrix for a hyperbolic linear problem has a form
(Eq. 7.27). We could use same nonlinear method or solve problem directly using formula
(Eq. 6.13) where matrix H is covariance matrix Σ.

Σij =

{
σ2
k + σ2

i i = j
σ2
k i 6= j

, k ∈ {1, . . . ,M} , i, j ∈ {1, . . . ,M}/{k} . (7.27)

(a) Covariance matrix Σ = I (b) Covariance matrix Σ = [ξ4
i δij ]

Figure 7.5: Likelihood function evaluated for a normal and log-normal model in configura-
tion (Eq. 7.21).
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8 Implementation

Multilateration methods described in sections (7.7) and (7.4) are implemented as
ROS module onboard of UAVs. One UAV is chose to be control unit and is synchronizing
bluetooth topics over ROS. Module is integrated with system Gazebo for UAV simulations.
From collected measurements is then computed location of unknown target in local carte-
sian coordinates as xt, yt, zt and broadcasted in fixed time interval. Broadcasting is done
on separate topic on which can other module be subscribed. Because bluetooth devices
Nordic nRF52DK were limited to broadcasting RSSI measurements every 100ms we chose
sampling period of multilateration to be 1 second.

8.0.1 Performance

We compared run time of the multilateration algorithm for N drones. Every test
is run with anchor point positions generated from normal distribution. Simulation are
performed on computer with processor Intel Core i7-6660U@2.4GHz and 16GB@1866MHz
DDR3 RAM memory. For each anchor point configuration we compute running time of an
algorithm over 100 randomly generated sample points.

ξi = ||~ptarget − ~Li||+ ν , ν ∼ N (0, k) , (8.1)

where k is uncertainty parameter used for testing sensitivity of algorithm. Average times
are shown in table 2. Conducted experiments were using up to 4 UAVs. Average running
time 37µs introduces very little overhead and method can be used onboard of an UAVs in
real time.

Table 2: C++ implementation performance

Σ = I Σ = [ ξ4
i δij ]

UAVs α = 1 α = 2 α = 1 α = 2
4 37 µs 34 µs 32 µs 30 µs
5 65 µs 61 µs 55 µs 56 µs
6 67 µs 49 µs 45 µs 54 µs
7 59 µs 40 µs 39 µs 48 µs
8 57 µs 40 µs 40 µs 41 µs
9 58 µs 58 µs 48 µs 48 µs
10 60 µs 51 µs 50 µs 52 µs

Comparison of different methods form previous sections. Parameter α is an exponent de-
fined in (Eq. 7.17). Covariance matrix is evaluated as BLE correction discussed is section
(7.7)
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8. IMPLEMENTATION

Since we cannot make experiments with more than 4 UAVs (due to hardware unavailabil-
ity) we will compare influence of many UAVs on accuracy and run-time only by simulation.
Simulations shows that our implementation has linear time complexity O(M) with respect
to number of UAVs used for multilateration as shown in (Fig. 8.1). Average boundary
of run-time 1ms is crossed for ∼ 400 UAVs. Closed form solution of hyperbolic method
has disadvantage of general time complexity of O(M3). In case of many anchor points it’s
recommended to use non-linear solver for solving linear problem.
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Figure 8.1: Comparison of non-linear solvers. Left figure shows behaviour when distance
measurements are stable and reliable, meaning have variance from real value around 5%
(eg. 1.00± 0.05 m.). Second figure shows variance around 50%. Spikes represent situations
during which is matrix L near singular (discussed in section (7.1)). Therefore optimizer
needs more steps to correctly find local minimum.
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9 Experiments

We have already discussed experiments measuring RSSI values in section 5. This
section presents summary of other multilateration experiments. We have prepared four
experiments to test different localization techniques. Due to technical error during the
recording of log files we could not conclude any results from the first and the second
experiment.

Mean and variance values are estimated from measurement samples by formulas

ē =
1

M

M∑
i=1

ei , (9.1)

and

σ2 =
1

N

M∑
i=1

(ei − ē)2 . (9.2)

9.1 Static anchor points

Experiment has layout of 4 UAVs as receivers and one UAV as transmitter. Receiver
positions are static represented by matrix L

L =


0 0 0
0 10 1.5
10 0 1.7
10 10 0

 . (9.3)

Receivers formed a rectangle of side length 10 meters and transmitter was moved along
predefined path in constant height of 2 meters (Fig. 9.1).

Average localization errors during the experiment indicates instability of a signal re-
sulting in approximate location information within the area formed by UAVs (Fig. 9.2).
Table (3) represents coordinates and absolute error of compute location of unknown ob-
ject. Distance and locations error were measured at given time as differences of real and
computed value.
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Figure 9.1: Experiment overview. Receivers (red circles) are placed on static positions.
Transmitter (yellow circle) moves along blue line in constant height.
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Figure 9.2: Experiment overview. Multilateration algorithm with BLE covariance matrix
using 4 UAVs as receiver points and one UAV as transmitter.

Table 3: Unknown target location error

coordinate ē [m] σ [m]
x 3.15 2.95
y 3.66 2.87
z 1.70 0.80
r* 5.95 2.90

*r =
√
x2 + y2 + z2
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9.2 Moving anchor points

The last experiment was conducted with collaboration on UAVs formation planning
[16]. Data presented here are part of multilateration algorithm used during the experiment.
Measurements Figure 9.4 and Table 4 shows similar results as previous experiment.

Figure 9.3: Experiment overview. Receivers (red circles) are moving in formation based on
the estimated location [16] of the transmitter (yellow circle).
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Figure 9.4: Experiment overview. Multilateration algorithm with BLE covariance matrix is
used using 4 UAVs as receiver points and one UAV as transmitter. UAVs with transmitter
are moving according to trajectory planning algorithm described in [16].
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Table 4: Unknown target location error

coordinate ē [m] σ [m]
x 5.91 4.46
y 6.14 3.60
z 4.93 4.13
r* 11.158 4.7431

*r =
√
x2 + y2 + z2

Overall localization error during the experiment shows more uncertainty then static
case. This was mainly due to dynamically moving target which resulted in slower response
time of the filter because error is computed with respect to actual location in space and
computed location.
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10 Conclusion

This thesis presented implementations and overview of variety of multilateration tech-
niques. First we conducted experiments designed to measure RSSI characteristics (Sec-
tion (5)). These experiments provided ground for further use of multilateration methods.

We have presented linear (Section 7.3) and non-linear (Section (7.4)) algorithms used
in multilateration system to estimate location of an unknown object. Signal propagation
model, used for determining RSSI characteristic, was used for estimating covariance matrix
in order to estimate location more accurately then without it. Localization module was
integrated with Gazebo system and used to test each experiment by simulation.

Average localization error during the outdoor experiment was computed to be 8.4
meters. Such accuracy does not corresponds with other experiments conducted by others
[1],[17],[18] showing accuracy up to 1m. To further confirm our observations we would need
more experiments to be conducted in a way of measuring localization with BLE technology.
Despite experiment results such accuracy can be still used for proximity localization of
objects in open field where higher accuracy is not needed.
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11 Future work

This thesis provides method of calculating unknown location of a transmitter based
on the measurements of RSSI values. Improvements to this system could be made via ex-
tending proposed method with more information about the environment, such as Earth
location, geographical data or other uncertainties that are appliable in real world applica-
tions.

11.1 Uncertainty of UAV location

In section (7.6) we discussed how to improve localization algorthms using covariance
matrix of distance measurement uncertainty. During that we assumed location of UAVs
to be correct without any error of measurement. Conducted experiments used differential
GPS location with position accuracy up to 15mm and UAV position error was negligible in
comparison to measured distances which were in range 1 to 42 meters. Other applications
that are not using accurate positing would benefit from localization method capable of
using such information.

11.2 Localization on Earth

Method discussed in this work were working in orthonormal cartesian space. During
the experiments we have created such space by defining origin in one specific place and
related positions of UAVs with respect to it from GPS readings. In this section we discuss
possible creation of such coordinate system without known reference point. Since main
positioning system used in outdoor is GPS, we are going to discuss methods used for a
creating so called Local cartesian coordinates on the surface of a earth. GPS system uses
reference ellipsoid WGS84. Earth could be characterized by a 3 coordinates, latitude, lon-
gitude and height from reference ellipsoid. We can represent surface of a reference ellipsoid
by parametric equations

~re(u, v) =

 a cos(u) cos(v)
b cos(u) sin(v)

c sin(u)

 , u ∈
〈
−π

2
,
π

2

〉
, v ∈ 〈−π, π〉 , (11.1)

where re is position vector in cartesian coordinates on surface of an ellipsoid, u is latitude
and v is longitude coordinate. Constants a,b and c are defined by standard WGS84. Lo-
cation on the surface of the Standalone UAV could than approximate it’s local coordinate
system by taking normal plane tangent to the ellipsoid in it’s latitude and longitude coor-
dinates. Local cartesian coordinate system is than defined by 3 basis vectors ~ex,~ey and ~ez
created on the surface

~ex =
∂~re
∂v

||∂~re
∂v
||
, ~ey =

∂~re
∂u

||∂~re
∂u
||
, ~ez =

~ex × ~ey
||~ex × ~ey||

. (11.2)
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Location of other UAVs in such system would be determined by other localization
method. Namely we could use relative visual localization [19] or techniques that uses Light
Detection And Ranging (LIDAR) devices [20].

11.3 Horizon boundary

Computation of ellipsoid horizon boundary can be used for determining if our received
signal is bent over the surface and thus we need to use correction in our estimation to
account for a curved surface.

1 function [ curve ] = e l l i p s o i d h o r i z o n ( az i , l a t , lng , h , a , b , c )
2 syms u v
3 Kes = [1/ a 0 0 ; 0 1/b 0 ; 0 0 1/ c ] ;
4 re = @(u , v ) [ a .∗ cos (u) .∗ cos ( v ) ;
5 b .∗ cos (u) .∗ sin ( v ) ;
6 c .∗ sin (u) ] ;
7 d i f f r e = @(du , dv ) [ eval ( subs ( d i f f ( re , u ) , [ u v ] , [ du dv ] ) )
8 eval ( subs ( d i f f ( re , v ) , [ u v ] , [ du dv ] ) ) ] ;
9 d i f f r s = @(du , dv ) Kes∗ d i f f r e (du , dv ) ;

Script 2: Matlab implementation of (Eq. 11.1),(Eq. 11.3)

Computation of a horizon can be done on the surface of the sphere and then transformed
by transformation matrix from sphere surface back to ellipsoid surface. We can specify
such transformation matrix T se in a form

~rs(u, v) =

 cos(u) cos(v)
cos(u) sin(v)

sin(u)

 , T se =

 1/a 0 0
0 1/b 0
0 0 1/c

 , ~rs(u, v) = T se~re(u, v) .

(11.3)

Goal is to compute boundary of horizon that is visible from geographical location
~p =

[
up vp hp

]
, where u is latitude, v is longitude and h is orthogonal height from

geographical position on the surface. Because normal surface vector ~rn on the ellipsoid is
not generally collinear with position vector ~rs we need to recompute spherical angles of ~R

~rn(u, v) =
∂ ~re
∂v
× ∂ ~re

∂u

||∂ ~re
∂v
× ∂ ~re

∂u
||
, ~R(~p) = ~re(up, vp) + hp~rn(up, vp) . (11.4)

10 R = re ( la t , lng ) ;
11 dR = d i f f r e ( l a t , lng ) ;
12 dredu = dR ( : , 1) /norm(dR ( : , 1) ) ;
13 dredv = dR ( : , 2) /norm(dR ( : , 2) ) ;
14 enorm = cross ( dredv , dredu ) ;
15 enorm = enorm . /norm( enorm ) ;
16 Re = (R+h∗enorm ) ;
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17 Rs = Kes∗Re ;

Script 3: Matlab implementation of (Eq. 11.4)

First step is to compute absolute position ~p in reference cartesian coordinates. Because
we are specifying normal height above the ellipsoid we need to construct absolute position
vector with respect to normal vector in

[
u v

]
surface coordinates. Next step is to rescale

ellipsoid to unit sphere together with our reference location ~R. Height above unit sphere
is than used for computing horizon boundary in spherical space

h = ||T ~R|| − 1 . (11.5)

Horizon boundary can be solved as two dimensional problem (Fig. 11.1) where

l2 = h2 + 2hr , d =
l2

r + h
, o = h+ r − d , k =

√
r2 − o2 . (11.6)

r

k

o

d

h

l

Figure 11.1: Horizon boundary on the sphere.

Transforming parameters to boundary curve can be done by specifying position vector
~rc with respect to basis of a sphere where z-axis base is in direction of our target point
~R, xy-plane basis can be than computed from spherical basis at point usp, vsp. Inverse
parameters could be obtained from inverse spherical transformation

Φ(~r) =

[
u(~r)
v(~r)

]
=

[
sin−1 (z/||~r||)
tan−1 (y/x)

]
. (11.7)
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18 h s c a l e d = norm(Rs) − 1 ;
19 l 2 = h s c a l e d ˆ2 + 2∗ h s c a l e d ;
20 d s c a l e d = l 2 /(1 + h s c a l e d ) ;
21 x s c a l e d = h s c a l e d + 1 − d s c a l e d ;
22 k s c a l e d = sqrt ( l2−d s c a l e d ˆ2) ;

Script 4: Matlab implementation of (Eq. 11.5),(Eq. 11.6).

Basis vectors could be then computed as column vectors from spherical coordinates.

~ez =
T ~R

||T ~R||
, ~ex =

∂~rs
∂v

∣∣∣∣
Φ(T ~R)

, ~ey =
∂~rs
∂u

∣∣∣∣
Φ(T ~R)

. (11.8)

Horizon curve in spherical space is than transformed back to the elliptical space by inverse
transformation and change of basis B =

[
~ex ~ey ~ez

]
~rs,c(ϕ) =

 k cos(ϕ)
k sin(ϕ)

o

 , ~rc(ϕ) = (T se )−1B~rs,c(ϕ) . (11.9)

23 [ u rs , v rs , ˜ ] = cart2sph (Rs (1 ) , Rs (2 ) , Rs (3 ) ) ;
24 dRs = d i f f r s ( v rs , u r s ) ;
25 ex = dRs ( : , 1 ) ;
26 ey = dRs ( : , 2 ) ;
27 ez = Rs/norm(Rs) ;
28 bx = k s c a l e d ∗cos ( a z i ) .∗ ex ;
29 by = k s c a l e d ∗ sin ( a z i ) .∗ ey ;
30 bz = ( zeros (1 , length ( a z i ) )+x s c a l e d ) .∗ ez ;
31 curve = Kes\( bx + by + bz ) ;
32 end

Script 5: Matlab implementation of (Eq. 11.8),(Eq. 11.9).

Function ~rc(ϕ) is parametric curve in reference cartesian coordinates ~rc : ϕ ∈ 〈0, 2π)→
R3, where ϕ is azimuthal angle measured from direction of pole. Horizon boundary forms
an ellipse with major-axis a = ||k (T se )−1 ~ex|| and semi-axis b = ||k (T se )−1 ~ey||.

11.3.1 Orthogonality invariance under linear transformation

When solving horizon boundary in spherical space we assumed that vector ~x− ~rc(ϕ)
remains tangent to the surface of an ellipsoid after we transform back from spherical space.
Following proof shows that any linear transformation T wont effect orthogonality of vectors.

We have computed boundary curve on the sphere such that triple scalar product
(Eq. 11.10) is zero.(

∂~rs(u, v)

∂u
× ∂~rs(u, v)

∂v

)
· (~x(u, v)− ~x0)

∣∣∣∣
Φ(~rs,c(ϕ))

= 0 (11.10)
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Figure 11.2: Horizon boundary com-
puted on arbitrary ellipsoid. Bound-
ary curve ~rc(ϕ) evaluated on full in-
terval 〈0, 2π). Computation of com-
plementary vectors ~rn and ~re is spec-
ified by (Eq. 11.4).

Transforming every point to the ellipsoid coordinates using transformation matrix T .
This will lead for an equation (Eq. 11.11)[

∂T~rs(u, v)

∂u
× ∂T~rs(u, v)

∂v

]
· [T (~xs − ~x0)] = 0 , (11.11)[(

T
∂~rs(u, v)

∂u

)
×
(
T
∂~rs(u, v)

∂v

)]
· [T (~xs − ~x0)] = 0 . (11.12)

From geometric interpretation of triple scalar product (Eq. 11.12) as volume of Paral-
lelepiped11 we can factor out matrix multiplication as

det(T )

[(
∂~rs(u, v)

∂u
× ∂~rs(u, v)

∂v

)
· (~xs − ~x0)

]
= 0 . (11.13)

By combining (Eq. 11.10) and (Eq. 11.13) we have proved that ortogonality of vectors is
preserved under linear transformation.

11Triple scalar product identity
(
T~a× T~b

)
· (T~c ) = detT

(
~a×~b

)
· (~c)
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Appendix A List of abbreviations

In Table 5 are listed abbreviations used in this thesis.

Abbreviation Meaning
LM Levenberg Marquardt
LSM Least squared method
WLSM Weighted least squared method
BLE Bluetooth low energy
RSSI Received Signal Strength Indication
ROS Robot Operating System

Table 5: Lists of abbreviations

Appendix B CD content

In Table 6 are listed names of all root directories saved on the CD. Directories contains
README with information about its content.

Directory Description
cpp c++ source code
firmware Nordic nRF52DK firmware payloads
matlab matlab implementations and experiment processing code
photos photos from experiments
thesis Bachelor’s thesis source files
trajectory trajectories for RSSI expetiments

Table 6: Lists of root directories
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Appendix C MATLAB code

C.1 Spherical cost functions

Computation of cost function (Eq. 6.1) specified by error vector from spherical local-

ization algorithm (7.17) and it’s respective derivatives ∇ ~J and ∇2 ~J . Function is evaluated
using identity H matrix and is implementing parameter α (7.19)

1 function [ J ] = s p h e r i c a l c o s t f n (x , xi , L , alpha )
2 J = 0 ;
3 [M,N] = s ize (L) ;
4 for i =1:M
5 lambda = 0 ;
6 for j =1:N
7 lambda = lambda + ( x ( j )−L( i , j ) ) ˆ2 ;
8 end
9 e = x i ( i ) ˆ alpha − lambda ˆ( alpha /2) ;

10 J = J + e . ˆ 2 ;
11 end
12 J = J /2 ;
13 end

Script 6: Matlab implementation of spherical cost function

1 function [ dJ ] = s p h e r i c a l c o s t f n g r a d (x , xi , L , alpha )
2 [M,N] = s ize (L) ;
3 dJ = zeros (1 ,N) ;
4 for i =1:M
5 lambda = 0 ;
6 for j =1:N
7 lambda = lambda + ( x ( j )−L( i , j ) ) ˆ2 ;
8 end
9 e = x i ( i ) ˆ alpha − lambda ˆ( alpha /2) ;

10 f = −alpha ∗e∗ lambda ˆ( alpha /2−1) ;
11 for j =1:N
12 dJ ( j ) = dJ ( j ) + f . ∗ ( x ( j )−L( i , j ) ) ;
13 end
14 end
15 end

Script 7: Matlab implementation of gradient ∇J =
[
∂J
∂xi

]
, see (Eq. 6.7).
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1 function [H] = s p h e r i c a l c o s t f n h e s s i a n (x , xi , L , alpha )
2 [M,N] = s ize (L) ;
3 H = zeros (N,N) ;
4 for j =1:N
5 for k=1:N
6 for i =1:M
7 lambda = 0 ;
8 for l i =1:N
9 lambda = lambda + ( x ( l i )−L( i , l i ) ) ˆ2 ;

10 end
11 e = x i ( i ) ˆ alpha − lambda ˆ( alpha /2) ;
12 dxj = ( x ( j )−L( i , j ) ) ;
13 dxk = ( x ( k )−L( i , k ) ) ;
14 d l d x j = alpha ∗ lambda ˆ( alpha /2−1)∗dxj ;
15 dl dxk = alpha ∗ lambda ˆ( alpha /2−1)∗dxk ;
16 d2 l dx j dxk = alpha ∗( alpha−2)∗ lambda ˆ( alpha /2 − 2) ∗dxj ∗dxk ;
17 i f j == k
18 d2 l dx j dxk = d2 l dx j dxk + alpha ∗ lambda ˆ( alpha /2−1) ;
19 end
20 H( j , k ) = H( j , k ) + d l d x j ∗dl dxk − e∗ d2 l dx j dxk ;
21 end
22 end
23 end
24 end

Script 8: Hessian of spherical cost function Hjk(~x) = ∂2J(~x)
∂xj∂xk

, see (Eq. 6.8). Covariance

matrix is taken to be identity matrix. In case of diagonal matrix we can extend algorithm
applying relation (Eq. 6.5).
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