Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Meta-heuristics for routing problems

Jan Mikula

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Field of study: Cybernetics and Robotics

Subfield: Systems and Control
May 2018

ii

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

4)
Student's name: Mikula Jan Personal ID number: 457197
Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering
Study program: Cybernetics and Robotics
Branch of study: Systems and Control

\ J

Il. Bachelor’s thesis details

4 ™
Bachelor’s thesis title in English:

Meta-heuristics for routing problems
Bachelor’s thesis title in Czech:
Meta-heuristiky pro smérovaci problémy
Guidelines:
1. Get acquainted with the Traveling Deliveryman Problem and the Graph Search Problem.
2. Get acquainted with meta-heuristics for routing problems (tabu search, Variable Neighborhood Search, Greedy
randomized adaptive search procedure, etc.).
3. Design a meta-heuristic for the Traveling Deliveryman Problem and the Graph Search Problem and implement it.
4. Evaluate experimentally properties of the implemented algorithm. Describe and discuss obtained results.
Bibliography / sources:
[1] Kulich, M.- Miranda-Bront, J. - Pfeucil, L.: A meta-heuristic based goal-selection strategy for mobile robot search in an
unknown environment. Computers & Operations Research. vol 84, August 2017, pp. 178-187.
[2] N. Mladenovi¢, D. UrosSevic¢, and S. Hanafi, Variable neighborhood search for the travelling deliveryman problem,
40R, pp. 1-17, 2012.
[3] M. M. Silva, A. Subramanian, T. Vidal, and L. S. Ochi, A simple and effective metaheuristic for the Minimum Latency
Problem, European Journal of Operational Research, vol. 221, pp. 513-520, Sept. 2012.
Name and workplace of bachelor’s thesis supervisor:
RNDr. Miroslav Kulich, Ph.D., Intelligent and Mobile Robotics, CIIRC
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 16.01.2018 Deadline for bachelor thesis submission: 25.05.2018
Assignment valid until: 30.09.2019
RNDr. Miroslav Kulich, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Ing. Pavel Ripka, CSc.
Supervisor’s signature Head of department’s signature Dean’s signature

\ J

lll. Assignment receipt

(The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others, A

with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

S Date of assignment receipt Student’s signature)

CVUT-CZ-ZBP-2015.1

© CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to express my gratitude to my
supervisor RNDr. Miroslav Kulich, Ph.D.
for his invaluable guidance, patience, and
advice. I also wish to thank my family
for their endless support during my stud-
ies.

Declaration

I hereby declare that I have completed
this thesis independently and that all the
used sources are included in the list of ref-
erences, in accordance with the Method-
ological Instructions on Ethical Princi-
ples in the Preparation of University The-
ses.

In Prague, May 25th, 2018

Prohlasuji, Ze jsem predlozenou pra-
ci vypracoval samostatné a ze jsem
uvedl veskeré pouzité informacni zdroje
v souladu s Metodickym pokynem o do-
drzovani etickych principu pii pripravé
vysokoskolskych zavérecnych praci.

V Praze dne 25. 5. 2018

Abstract

The Graph Search Problem (GSP) to-
gether with the Traveling Deliveryman
Problem (TDP) can be seen as an exten-
sion of the famous Traveling Salesman
Problem (TSP), i.e., a problem of find-
ing the shortest possible route that visits
every city of a given set and returns to
the one where it started. These, some-
times called the routing problems, belong
to a category of difficult combinatorial
optimization problems. In this thesis, we
address the GSP with the intention to de-
ploy it in robotic planning, which entails
high demands on feasible computing time.
We develop a meta-heuristics for the GSP
based on Variable Neighborhood Search
(VNS) and evaluate its properties experi-
mentally. Our proposed method meets the
requirements of being significantly faster
than the reference, and at the same time,
it delivers solutions with higher average
quality. We demonstrate the usage of our
method in the mobile robot search, which
turns out to be a stand-alone problem to
solve. The second half of this thesis is
devoted to the Single Robot Search for a
Stationary Object in a Known Environ-
ment (SRSSK). At the end, we execute
several simulations in a robotic simula-
tor.

Keywords:

Routing problems

Graph Search Problem
Variable Neighborhood Search
Mobile robotics

Robotic search

ROS

Supervisor:

RNDr. Miroslav Kulich, Ph.D.
Intelligent and Mobile Robotics,
CIIRC

Jugoslavskych partyzéna 1580/3
160 00 Praha 6

vi

Abstrakt

Problém hledéni v grafu (anglicky Graph
Search Problem - GSP) spole¢né s problé-
mem obchodniho dorucovatele lze povazo-
vat za rozsifeni dobre znadmého problému
obchodniho cestovatele, ktery hleda nej-
kratsi moznou cestu, jez mu umozni na-
vstivit vSsechna meésta z dané mnoziny a
skoncit zase tam, kde zacal. Tyto, nékdy
nazyvané smérovaci problémy, patii do
kategorie obtiznych kombinatorickych op-
timalizaCnich problému. V této praci se
budeme zabyvat GSP, s imyslem ho na-
sledné vyuzit v robotickém hledani, které
nastavuje velké pozadavky na schiudny vy-
pocetni cas. Vyvineme metaheuristiku pro
GSP zalozenou na metodé hledani v pro-
ménlivém sousedstvi (anglicky Variable
Neighborhood Search - VNS) a experimen-
talné vyhodnotime jeji vlastnosti. Navrho-
vana metoda bude vyrazné rychlejsi nez
refernéni metody a zaroven bude davat
feseni s vyssi praumérnou kvalitou. Pou-
ziti navrhované metody budeme demon-
strovat v problému robotického planovani.
Druha polovina této prace bude tedy véno-
vana hledani robotu ve znamém prostredi
s cilem nalézt nehybny objekt zdjmu (an-
glicky Single Robot Search for a Statio-
nary Object in a Known Environment -
SRSSK). Nakonec provedeme nékolik si-
mulaci v robotickém simulédtoru.

Klicova slova:

Smérovaci problémy

Graph Search Problem
Variable Neighborhood Search
Mobilni robotika

Robotické hledani

ROS

Pteklad nazvu:
Meta-heuristiky pro smérovaci
problémy

Contents

1 Preliminaries

1.1 Introduction, goals, structure. . ..
1.2 Subject background
1.3 Literature review
1.4 Robotic planning

Part |
Graph Search Problem

2 Problem definition
2.1 Graph Search Problem

formulation
2.2 Solution requirements

3 Solution approach

3.1 Reference methods
3.2 Variable Neighborhood Search . .
3.3 The algortithm
3.4 Local Search improvement
3.5 New operators................
3.6 Proposed meta-heuristics

4 Computational results

4.1 Implementation
4.2 Reference methods
4.3 Proposed methods

Part 11

Single Robot Search for a Stationary

Object in a Known Environment

5 Problem definition

6 Solution approach

6.1 General Framework
6.2 Offsetting the environment
6.3 Triangulation
6.4 Vertices Reduction
6.5 Path Planning...............
6.6 Weights Calculation..........
6.7 Proposed variants............

7 Computational results

7.1 Implementation, simulation, tools

7.2 Off-line planning.............
7.3 ROS simulation

vii

Final Remarks

8 Conclusions
81lPart I
82Part I

9 Future research

Appendices
A List of abbreviations
B Bibliography
C CD Content

S @ %

Figures
3.1 Operators 2-opt and swap

3.2 New operators insert and twist .
5.1 Difference between W, W and W

6.1 Map complex2................
6.2 Different joint types...........
6.3 Triangulation
6.4 Vertices reduction 141
6.5 Weights calculation

7.1 Maps for experiments
7.2 Off-line planning trajectories . . .
7.3 TurtleBot inside simulation 50l
7.4 Searched space during time
7.5 TurtleBot’s trajectory

9.1 Reachable area issue 621

viii

Tables

4.1 GRASP-F - comp. results
4.2 GRASP-Int - comp. results
4.3 bVNS-v1 - comp. results.......
4.4 bVNS-v2 - comp. results.......

7.1 Off-line planning results
7.2 ROS simulation results

8.1 GSP methods summary

Chapter 1

Preliminaries

B 1.1 Introduction, goals, structure

The Graph Search Problem (GSP) together with the Traveling Deliveryman
Problem (TDP) can be seen as an extension of the famous Traveling Salesman
Problem (TSP) - a problem of finding the shortest possible route that visits
every city of a given set and returns to the one where it started. These
are NP-hard belonging to a category of difficult combinatorial optimization
problems challenging researchers of different fields for more than 50 past years.
Finding a solution to those problems by force (i.e., constructing every possible
route and picking the shortest one amongst them) is theoretically possible
but somewhat impractical. When the number of given cities is large (i.e.,
several dozens) the computational time needed to construct the whole space
of possible solutions becomes unbearable. The key is, therefore, developing
a time-efficient algorithm for searching the possible solution space for near-
optimal solutions. The requirements on solution quality and computational
time often depend on an application. The TSP and similar problems find
their use in many different fields. An interested reader can find some of them
in Cook’s In Pursuit of the Traveling Salesman: Mathematics at the Limits
of Computation [7] as well as in some articles cited in this thesis. Let us
mention: transport and delivery of goods, computer wiring, vehicle routing
or planning in almost any domain.

We address the GSP with the intention to deploy it in robotic planning which
is usually a real-time application, so the methods used there need to be really
fast. Our approach to the problem will be mostly based on recent paper
Kulich, Bront & Preudil [16] titled: A meta-heuristic based goal-selection
strategy for a mobile robot search in an unknown environment, where they
introduce several GSP solving methods as well as an entire framework suited
for the robotic application.

The primary objective of ours is designing a meta-heuristics for the GSP,
implementing it and evaluating its properties experimentally. We will use two

1

1. Preliminaries

of the proposed methods in [16] as a reference. We put the following demand
on our proposed method: to be significantly faster than the reference while
keeping an average solution quality on a similar level.

Our secondary objective is to demonstrate the usage of our method in a
robotic application such as the mobile robot search. We do not demand the
usage to be strictly real-time but rather to aim in that direction and offer
possibilities for extensions in the future. The framework will be inspired by
[16] but simplified, and we call it the Single Robot Search for a Stationary
Object in a Known Environment (SRSSK). Although the act of planning will
be performed off-line (i.e., with the robot standing in place, not during the
process of searching), we will try to highlight the benefits of faster methods
nevertheless. We will have a taste of different approaches on the way and
compare and discuss them at the end. We will propose possible extensions
such as the on-line planning and improvement of the used procedures. Finally,
we will execute a set of simulations with the help of Robot Operation System
(ROS) and other software tools.

This thesis is divided into two main parts: Part |I| devoted to the GSP and
Part [II] addressing the SRSSK. Both have their own problem definitions (in
Chapters 2 and 5| respectively), solution approach descriptions (in Chapters 3
and |6 respectively) and computational results appearance and discussion (in
Chapters 4 and 7| respectively). Chapter |1/ is introductory and it is common
for both parts as well as conclusions in Chapter |8. In Chapter |9 we summarize
some ideas of improvement and potential future research.

B 1.2 Subject background

Traveling Salesman Problem. The TSP is a well-known combinatorial
optimization problem with its origins in practical business trips planning. Its
complete historical development can be found in Cook [7] as well as why it
is so crucial in operational research. As stated in Cook, TSP commanded
much attention from mathematicians and theoretical computer scientists in
past 50 or more years. It has a variety of modifications and extensions that
in contrast with the original problem only small subset of researchers was
dealing with. The TDP and its weighted variant the GSP are those amongst
them. TSP can be in the mathematical field of graph theory modeled as an
undirected weighted graph, where cities are the graph’s vertices, paths are
the graph’s edges, and a path’s distance is the edge’s weight. A Hamiltonian
path is such a path that visits each vertex exactly ones. A Hamiltonian cycle

is a Hamiltonian path that is a cycle'. We paraphrase the definition from
Cook.

Definition 1.1. The TSP can be defined as follows. Given a complete undi-
rected weighted graph find a Hamiltonian cycle with the least weight.

!Source: http://mathworld.wolfram.com/HamiltonianPath.html]

http://mathworld.wolfram.com/HamiltonianPath.html

1.2. Subject background

Traveling Deliveryman Problem. The TDP is a modification of the TSP
with the only difference in motivation of the traveler. While the salesman
only wants to save money on his journey (by taking the shortest path), the
deliveryman is there primarily for the benefit of customers. His ambition
is to serve them all while minimizing the total time of them waiting to be
served. Also, the last part of his journey when he needs to travel back to his
starting point is often not accounted (regarding graph theory we are talking
about finding the shortest Hamiltonian path, not a cycle). Let us notice
that unlike GSP TDP is a problem, that most of the operational research
community is familiar with. It can be found under various names in the
literature, e.g., Traveling Repairman Problem in [33], Cumulative Traveling
Salesman Problem in [4], School Bus Driver Problem in [5] or Minimum
Latency Problem in [32].

Graph Search Problem. The GSP can be seen as a Weighted TDP. Every
customer has assigned weight which corresponds to his lucrativeness from
the deliveryman’s point of view. In other words, the deliveryman wants to
serve the customers with higher weight first and after them those with lower.
He, therefore, aims to minimize the sum of the time each customer waits
times his weight. GSP was introduced in Koutsoupias et al. [I5], and its first
applications were built around the area of web searching. In every one of the
mentioned problems appear some travel agents. This connection between TSP,
DSP and GSP (in case of the GSP they call the agents spiders) is discussed
in Ausiello et al. [3], together with some approximation schemes for the
problems. No more progress on the GSP can be found in the related literature
with the only exception of Kulich, Bront & Preucil [16]. We paraphrase their
definitions.

Definition 1.2. The GSP is described by a complete undirected graph G =
(V,E), where V is the set of vertices and FE is the set of edges between the
vertices. G has a distance function d(i,j), d : V x V — R for every (i,5) € E,
1 # j and a probability p; that some required information is at vertex ¢ € V.
The objective of the GSP is to find a Hamiltonian path that minimizes the
expected time to find the required information.

Definition 1.3. The TDP is the GSP for which applies p; = p; for every
1,7 €V.

Heuristics. Heuristics is any technique designed to solve a problem more
quickly than existing exact methods or to find a solution what so ever in case
classical methods fail to find any. It is usually achieved by reducing demands
on the quality of the solution.

Meta-heuristics. Meta-heuristics have a more specific definition. We will
quote Hansen, Mladenovi¢ et al. [12]: “Meta-heuristics, in their original
definition, are solution methods that orchestrate an interaction between local
improvement procedures and higher level strategies to create a process capable

3

1. Preliminaries

of escaping from local optima and performing a robust search of a solution
space. Quer time, these methods have also come to include any procedures that
employ strategies for overcoming the trap of local optimality in complex solution
spaces, especially those procedures that utilize one or more neighborhood
structures as a means of defining admissible moves to transition from one
solution to another, or to build or destroy solutions in constructive and
destructive processes.”.

The world of meta-heuristics can be divided into two categories: single-solution
meta-heuristics focusing on modifying and improving a single candidate solu-
tion and population-based meta-heuristics where multiple solutions evolve
concurrently. Representatives of the first group are, e.g., Greedy Randomized
Adaptive Search Procedure (GRASP), Tabu Search (TS), Variable Neigh-
borhood Search (VNS), etc. GRASP is a multi-start process of creating and
improving solutions returning the best amongst all of the restarts at the end.
TB is a deterministic local search strategy storing recently visited solutions
into memory (i.e., tabu list) capable of avoiding short-term cycling. VNS
is based on the idea of systematically changing a neighborhood structure
within a local search. From the population-based group, we only name a
few examples: Evolutionary Algorithms, Genetic Algorithm or Ant Colony
Optimization. Source of these pieces of information is a paper by Gendreau
and Potvin [I1], nice overview of meta-heuristics and their application to
combinatorial optimization problems, which we surely recommend to a more
interested reader.

. 1.3 Literature review

This section is about the state of the art of solving TDP and GSP. Current
trends in the TDP research are well-described in the introductions of recent
papers Silva et al. [32] and Kulich, Bront & Preucil [I6]. According to
these, it seems there are two main streams in solving TDP in operational
research community - the Integer Linear Programming (ILP) approach and
the heuristic (or meta-heuristic) approach.

Integer Linear Programming approach. ILP approach aims to find the one
and only one optimal solution. State of the art algorithms are Branch&Cut
(BC) and Branch&Cut&Price (BCP) developed originally for the Time-
Dependent Traveling Salesman Problem, a generalization of the classical TSP
which also generalizes the TDP. Exact algorithms such as BC or BCP are
however limited to small problem sizes. The best one so far was introduced
in Abeledo et al. [I]. Their BCP was capable of solving instances with up to
107 vertices in several hours of computing time.

(Meta)heuristic approach. In contrast to ILP, (meta)heuristic techniques
are about developing non-exact algorithms. It means that their main objective

4

1.4. Robotic planning

is not to find the optimal solution but rather one that is just close to optimum
(or let’s say good enough) in reasonable computing time even for large
instances. The (meta)heuristic approach is more friendly to any possible
application than the ILP. To get a comprehensive overview of these methods,
we recommend a book Handbook of Meta-heuristics by Hansen, Mladenovié¢
et al. [I12]. In TDP-solving dominates GRASP introduced by Feo and
Mauricio [9], VNS proposed by Hansen and Mladenovié¢ [20] and some of their
modifications and combinations with other meta-heuristics (e.q. TS).

Successful deployment of GRASP in solving TDP was made by Salehipour et
al. [26]. Their method was combining GRASP with VNS and its deterministic
variant Variable Neighborhood Decent (VND). This method was overcome
firstly by Mladenovi¢ et al. [19] and their General VNS and than by Silva
et al. [32] and their simple multi-start heuristics combined with an Iterated
Local Search Procedure (basically some form of GRASP). The last method is
to the best of our knowledge the most successful in solving TDP.

More distinct approach to the issue had Kulich, Bront & Pteudil [16]. They
proposed several GRASP-based methods for the GSP (and therefore also for
the TDP) for which they had direct specific application in robotics. More
strict requirements for the feasible computing time emerge from this fact than
any of the previously mentioned researchers were putting on themselves. In
the paper they show, that their method called GRASP-F deployed on the
TDP is nicely comparable in quality to the best one by Silva et al. Their
another method GRASP-Int gives slightly worse results in the matter of
quality, it meets the strict computing time requirements on the other hand,
and is therefore considered the best for their use. They also ran their methods
on the GSP and created the first results of this kind. We will use their
GRASP-F and GRASP-Int as reference methods in this work.

B 1.4 Robotic planning

We have already mentioned some of the applications of combinatorial op-
timization problems such as TSP, TDP, and GSP. Our point of interest is
planning in robotics, more specifically the SRSSK, which is a process of
autonomous navigation of a mobile robot in a known environment following
the objective of finding some stationary object of interest. A different variant
of this problem is when the environment is unknown, which at first sight may
be similar to an exploration - another well-known problem in the robotic
community. Kulich, Pfeucil & Bront [I8] show that the objectives of search
and exploration are dissimilar. The exploration task aims to find the shortest
path that completely covers the environment. In the search task on the
other hand by following the optimal route, the robot should gain as much
new information about the environment in the shortest time as possible. A
trajectory that is optimal in exploration does not necessarily minimize the
time to find an object of interest along it. In their previously mentioned

5

1. Preliminaries

later paper [16], they confront the search problem and show, how it can be
partially formulated as the GSP.

A similar approach will be ours for the SRSSK, which was to the best of
our knowledge originally formulated by Sarmiento et al. [27], where they
also extend the problem from Single to Multi-Robot search. The solution
approach in Part [II of this thesis will be mostly inspired by papers [27], [18],
[16] and the latest Kulich & Pteucil [17].

Last note on the background of SRSSK: possible applications of robot search
of any kind have a wide range, from finding a specific piece of art in a museum
to search and rescue of injured people inside a building or on a battlefield
[27].

lllIllllIllIlIlIllllIllllIlIllllIl1.4.RObOtiCp/anning

Part |

Graph Search Problem

10

Chapter 2

Problem definition

B 21 Graph Search Problem formulation

Let us formulate a variant of the GSP, that we will attempt to solve by the
meta-heuristic approach. This formulation is again based on [16]. Assume a
special case of a complete graph G = (V, E) describing an instance of the GSP
according to Def with V' =1{0,1,...,n — 1}, where vertex 0 represents
the starting point and n = |V| is the total number of vertices. The required
information is the position of some object of interest and the probability
p; for every i € V is represented by a non-negative weight w;, which is an
approximation of the probability that the object of interest will be found
when visiting vertex 7. The time to reach vertex i from vertex j (where
i # 7) is proportional to the distance d(i, j). Let X = (zo,%1,...,Zn—1) be a
Hamiltonian path in G, where zg = 0. Time to reach vertex k by following
path X is defined as

k
5k(X) = Zd(wi_l,xi). (2.1)
i=1
Cost of the route is then defined as
n—1
Cost(X) = Z w0k (X), (2.2)
k=1

and the objective of the GSP is to find the optimal path that minimizes the
cost,

X* = arg min Cost(X). (2.3)
X

B 2.2 Solution requirements

Choice of the formulation beneath and not just the one stated in Def
is not arbitrary. It is built upon our further intention to solve GSP as a

11

2. Problem definition

part of SRSSK to which Part [II| of this thesis is dedicated to. It is meant
to be an effective demonstration of GSP usage in robotic planning and
also the reasoning behind our ambitions to improve (or overcome by some
alternative) the available reference GSP-solving methods in the matter of
speed especially. Although speed is crucial, for the search to be effective some
demands on solution quality also need to be maintained. We will set this as
our secondary goal in the solution approach having speed improvement as
the primal one.

12

Chapter 3

Solution approach

. 3.1 Reference methods

The purpose of our work is to improve the current state of GSP-solving while
following the motivation described in Sec. 2.2l We will use GRASP-F and
GRASP-Int proposed in Kulich, Bront & Pteucil [16] as reference methods
and therefore we are providing their quick overview. The following is therefore
based mostly on [16] and some general thoughts come from Gendreau and
Potvin [IT].

GRASP is a single-solution multi-start process. Randomized greedy construc-
tion heuristics is applied at each restart to create a new solution, which is
then improved through a local descent. This is repeated for a fixed number
of iterations, and the best overall solution is returned at the end. GRASP-F
and GRASP-Int differ only in the improvement of a current solution, and the
process of creating the initial route is the same for both. This is how they
work:

1. Greedy heuristics creates an initial path P starting from vertex 0. It
assigns the best candidate, according to some specific heuristic function,
to the end of P until there are no unassigned vertices left. Two heuris-
tics Gyt and Gratio Were introduced employing two different heuristic
functions that are used to evaluate the quality of every candidate:

L Gdist : fdist(vyu) - dv,ua

dv,u

8 Giatio © fratio(v,u) = ma
u

where v is the lastly added vertex to P and u is some unassigned vertex.
The notation d, , = d(v,u) will be used for the rest of this text.

Gaist and Grqp0 are used alternately iteration by iteration, and they

. . . . d d
both are implemented as their randomized variants GJ/5* and GJ.o7%,

where not always the best-unassigned vertex is added, but rather just

13

3. Solution approach

one randomly picked from a list of restricted candidates.

2. After the initial feasible solution is obtained, it is improved by VND.
Operations used are 2-opt: “take two non-adjacent edges and replace
them by to new edges” as shown in Fig. 3.1a, and swap: “select two
vertices in the tour and interchange them” shown in Fig. 3.1bl

Equally called improvement methods are derived from these operations.
Those methods search the whole neighborhood of the current solution
for the best-improving operation which is then is applied. By the neigh-
borhood, we generally mean the set of all possible solutions that might
be obtained after some specific pre-defined operation is applied to the
current route.

Improvement methods used are:
8 2-opt,
B swap,
® LK-op,

where 2-opt and swap are just mentioned natural derivations of their
corresponding operations and LK-op is a more complex recursive op-
erator with great power to improve but it is also very time-consuming.
For the exact definition we will just refer to the original paper [16].

3. The principles described beneath are combined in the GRASP scheme,

where the initial solution is created using Gggs’gd or Gﬁg% and then

Ti-1 x; Zj) Ti-1 x; Zj

Tj+1 Tit1 Tj+1 Tit1
(a) : 2-opt: edges (z;,xi+1) and (x4, x;+1) removed and replaced by new edges (z,z;)

and (i1, Tj41)-
Xi— . Ti— .
i—1 T i—1 Z;

Litl eeeees .\.\x1+1

Tj+1 Z;

(b) : swap: partitions of the route (x;—1, i, zi+1) and (z;4+1,T;,Tj1+1) removed and
replaced by new partitions (zi—1, z;, zit+1) and (zj-1, %, Tj41)-

Figure 3.1: Operators 2-opt and swap.

14

3.2. Variable Neighborhood Search

improved in each iteration. The best overall solution obtained after a
fixed number of iterations is returned as a result. The improvement phase
is done as follows: apply 2-opt and swap until no further improvements
are found and then apply LK-op

B every time in case of GRASP-F,

® only to those routes whose cost is within the 10% of the best solution
found so far in case of GRASP-Int.

B 3.2 Variable Neighborhood Search

Variable Neighborhood Search is based on the idea of improving a single
solution exclusively (even by some non-improving steps) rather than creating
more solutions and picking the best amongst them. This is achieved by a sys-
tematic change of neighborhoods within the search. According to Mladenovié
and Hansen [20] the VNS is built upon the following perceptions.

1. A local minimum with respect to one neighborhood structure is not
necessarily so with another.

2. A global minimum is a local minimum with respect to all possible
neighborhood structures.

3. For many problems, local minima with respect to one or several neigh-
borhoods are relatively close to each other.

Let’s just for now assume that we have available two neighborhoods derived
from the application of operations 2-opt and swap. Neighborhoods can
be chosen purposely (2-opt and swap were) so that Perception |1 applies.
Perception 2| must apply, and that can be warranted by a simple thought.
If we had an optimal route whose cost is in the global minimum and at the
same time there was a neighborhood for which the solution is not a local
minimum, then there would be an improving operation that we could apply.
But in case we do so, we get a route with a lower cost, and this implies
that the original route could not be optimal. This is a contradiction, and
therefore the Perception |2 must apply. Last Perception |3|is purely empirical,
but it implies that a local optimum might provide some information about
the global one.

From the above we could say, that the VNS might be a good try in solving GSP
or TDP, especially if the lastly discussed observation 3| was true. Also, practice
confirms this idea. VNS is in reality often used in solving combinatorial
optimization problems and for a while, it even held primacy in solving
TDP!l Those are all the reasons we decided to employ VNS in the proposed
algorithm.

Tt was the General VNS by Mladenovié et al. [T9).

15

3. Solution approach
B 33 The algortithm

Let H be a set of all possible Hamiltonian paths in a complete graph G =
(V, E). Now assume a single path X € H and some general operator op which
in some pre-defined way changes X to get a new path X’ € H. op receives
a fixed number p of parameters affecting the character of the change. The
parameters have a form of a vector from some set U C VP (U must be defined
as part of definition of op). op can be non-commutative so in general the order
of received parameters matters. Set of all possible parameters op can receive,
therefore, must be the set of all possible variations w = (u1, ..., up) such that
u € U. We define neighborhood No); of path X as the set of paths obtained
by the application of op on X with every possible variation of parameters
op is capable of receiving. We define Local Search Method (LSM) op, a
procedure following the scheme shown in Algorithm [3.1. op systematically
searches the ./\f(f; in order to find it’s minimum. We can say, that op is the
LSM derived from the application of op.

In Algorithm 3.2| we show the basic VNS (bVNS) scheme based on Mladenovi¢
and Hansen [20]. It starts with creating the initial feasible solution (line
1). Then, for each iteration, two phases follow for at least K times, where
K is the number of different operators available. Firstly the best solution
so far is changed to get some current working solution. This is done with
no demands on improvement, and we call it the Shaking (line 5). Then the
working solution is improved by local descent until a local optimum is found.
This is called the Local Search (LS) (line 6). Finally, if the cost of the working
solution is lower than the cost of the best solution found so far, the working
solution becomes the currently best one and the parameter & is set back to
1 (lines 7-9). If not, k is raised by one and the process repeats. If k = K
and no better solution is found, the iteration ends. The Shaking is done
systematically, where k determines which operator will be applied to get the
working solution. The LS is also systematic and is shown in Algorithm (3.3|

Algorithm 3.1: LSM.

Input:
X - feasible solution
op - an operator

Output:
Ximp - either improved or identical solution to X

Ximp — X
foreach X’ ¢ /\/(ff, do

if Cost(X’) < Cost(Xj;,,) then
L | Ximp < X

VR R

(S}

return Xj,,,

16

3.4. Local Search improvement

Algorithm 3.2: bVNS.

Input:

N = (op;,...,opg) - an ordered set of operators
M = (opy,...,0op;) - an ordered set of LSMs
iters - a number of iterations

Output:
X* - the best improved solution

1 Create initial solution Xj,;;.

2 X* < Xt

3 fori=1,...,iters do

fork=1,...,K do

Generate path X at random from neighborhood N; g‘;k
Ximp < SearchLocal(M, &)

if Cost (Xjy,p) < Cost(X™) then

L X X

© W N o ok

k<+1

10 return X’*

Algorithm 3.3: LS.

1 Function SearchLocal (M, X) is

2 l+1

3 Loop

4 Get op;, the I-th LSM from M.
5 Apply op; on X to get a new path X’ € ./\/'(j‘;,l.
6 if Cost(X’) < Cost(X) then
7 X+ X

8 [+ 1

9 else
10 if [= L then
11 End the search.
12 L return X
13 l<—1+1

B 3.4 Local Search improvement

There is a trouble in the Algorithm 3.1. The cost of every X’ € ./\/OXP must be
calculated. Route’s cost is defined in Eq. 2.2/ and it is not an easy calculation.

17

3. Solution approach

It has time complexity O(n?), and it must be done for |N}| number of times,
which slows down the algorithm significantly.

Fortunately, there is a trick that allows us to reduce the time complexity of
the cost calculation from O(n?) to O(1) and as a consequence also the time
complexity of exploring the entire neighborhood Ngg from O(nP+2) to O(nP).
The trick was introduced by Mladenovi¢ and Hansen [19]. Let’s transfer the
Algorithm (3.1] into the Algorithm [3.4, where the function TestOp is

Test0Op(X, X’) = Cost(X’) — Cost(X). (3.1)

The advantage of this approach is that we don’t need to calculate the expres-
sion Cost(X’) — Cost(X) directly by computing the costs, but rather express
it’s value with the help of op’s parameters u = (uy,...,up).

Before we show the trick, it’s important to note, that it was already imple-
mented in our reference methods GRASP-F and GRASP-Int from [16] on
operators 2-opt and swap. Necessary mathematical derivations are shown
in the latest paper Kulich & Preudil [I7]. We will use both operators 2-opt
and swap (and some others) also in our VNS, and as the essential part of the
proposed meta-heuristics, we can’t exclude them from this thesis.

First we will show the trick with 2-opt.

Definition 3.1. Assume the route X = (zo,21,...,%;,...,&j,...,Tp_1) is
given. 2-opt receives p = 2 parameters (z;,z;) € V? such that i < j.
Application of 2-opt on the route X results in the route

X' = 2-opt(X, (x, zj))

= <.’E0,.’E1, sy L1, Ly Ly Lj—1 « v+ s L1y Lj41y - - - ,.Tn_1>.

(3.2)

Algorithm 3.4: LSM Improved.

Input:
X - feasible solution
op - an operator

Output:
Ximp - either improved or identical solution to X

Ximp +— X

IMProvpest <— 0

foreach X’ ¢ /\/g"; do
improv = TestOp(X, X”)
if improv < improvy.s; then
L IMPrOVpest <— TMProv

N OO A W

Ximp < X’

8 return &j,,,

18

3.4. Local Search improvement

Proposition 3.2. The improvement obtained by the application of 2-opt on
the route X' (i.e. Cost(X’) — Cost(X)) can be computed in the following
fashion:
Agopt(X, i, j) = Cost(X') — Cost(X)

= 2Fi 4 (0 + 05 + i) (7 — i)

(3.3)
+ (dij + dit1,5+1 — dijiv1 — djj+1) (Yn—1 — 75)
+2L511 - 2F, 1,
where
7 n—1
Fi= brwe, Li= Opwp (3.4)
k=1 k=i

are contributions to the cost of first and last ¢ vertices respectively. Note,
that Cost(X) = F,—1 = L1.

Vi= Y wi (3.5)
k=1

is the sum of all weights of the first ¢ vertices.
Proof. For proof, we refer to [17], where the derivation of Eq. 3.3/is shown. [

Assuming that all of F’s, L’s, 7’s and also ¢’s (defined in Eq. [2.1) are
precomputed for a given X, the computation of Ay ,,(X,4,7) can be done
in a constant time. Therefore the entire neighborhood N; gfopt can be explored
in O(n?). In case some better solution is found during the local search
procedure, the values previously assumed precomputed are updated at line
7 of Algorithm 3.4. This update can be done iteratively in just O(n), and
therefore the computational complexity of searching the entire neighborhood
stays O(n?).

Similarly, we can apply the trick on swap.
Definition 3.3. Assume the route X = (xg,z1,...,%;,...,2j,...,Tp_1) IS
given. swap receives p = 2 parameters (z;,z;) € V? such that i < j.
Application of swap on the route X results in the route
X = Swap(Xa (xia $]))

(3.6)
= <$0a$17 sy L1, Lgy i ls o v+ s Lj—15 Liy Lj4-1, - - - 7:L‘n71>-

Proposition 3.4. The improvement obtained by the application of swap on
the route X (i.e. Cost(X’) — Cost(X)) can be computed in the following
fashion:
Aguap(X i, j) = Cost(X') — Cost(X)
= wjAr + (yj-1 — %) A2 + wilds + (V-1 — 75) A4 (3.7)
+ (05 — 0¢) (wi — wj),

19

3. Solution approach

where

A =di1j—di—1,

Ay =N +dji1 — djita,
Az =Ao+dj1; —dj1,
Ay = A3+ dijjy1 — djja.

(3.8)

Proof. For proof we refer to [17], where the derivation of Eq. [3.7/is shown. [

The same conclusions as for 2-opt can be applied for swap. The entire N ;}/mp
neighborhood can be explored in O(n?).

B 35 New operators

At this moment, we could surely create a meta-heuristics based on the bVNS
scheme and operators 2-opt and swap exclusively. Interim results of such
method have shown, however, that despite it is much faster than the reference
methods, in the matter of quality solution it is dropping behind. The easiest
way to remedy its deficiencies would be to raise the number of iterations.
Such modification would inevitably increase the computational time, but we
want to avoid that. Another way to go would be to drop the bVNS and try
some of its extensions or even entirely different meta-heuristics. We decided
to stay with bVNS and rather make it more powerful. We will try to achieve
that by providing it more neighborhoods for the Shaking and in the LS. The
Shaking is crucial as it allows the method to escape local optima and more
neighborhoods to choose from raises the chance that this goal is achieved.
Better LS can speed up the descent towards those local optima that are close
to the global one.

Let us define two new operators displayed in Fig. |3.2:

1. insert: “Take i-th vertex of the route X and put it in front of the j-th
vertex.”,

2. twist: “All at the same time put h-th vertex on the position of i-th, i-th
on the position of j-th and j-th on the position of h-th in the route X

We intend to employ both in the Shaking, but the LS is only reserved for
the operation insert. twist doesn’t seem to be a good choice as it takes
three vertices as parameters. The act of exploring the entire neighborhood
N;Y ., would have time complexity O(n?) even after application of the trick
introduced in Sec. 3.4. Interim results have shown that the improvement in
quality would be insignificant compared to the vastly increased computing
time. For insert we need to derive its improvement.

Definition 3.5. Assume the route X = (zg,z1,...,x,_1) is given. insert is
non-commutative. For ¢ = j the operation makes no sense. For i = j — 1
the vertices already are in the configuration of i-th vertex preceding the

20

3.5. New operators

Ti-1 Ti-1

Tjv1 T j Tjt+1 T, I

(a) : insert: partitions of the route (z;_1,2;,Ti4+1) and (z;4+1, 7, Tj4+1) removed and
replaced by new edge (z;—1,zi+1) and new partition (z;—1, i, T, T 41).
Tp—1 x; Th—1 T

Tj-1 T; Tj+1 Tj1 T; Tj+1

(b) : twist: partitions of the route (zh—1, Th, Tht1), (Tiz1, T, Tiy1) and (zj41, 5, Tj41)
removed and replaced by new partitions (zn—1,2;,Zht1), (Ti—1,Zn,Ti+1) and

(@j—1, i, Tj41).

Figure 3.2: New operators insert and twist.

j-th before the operator is applied. We exclude those two options from U.
insert, therefore, receives p = 2 parameters (z;,x;) € V2 such that i # j and
1 # j — 1. Application of swap on the route X results in the route

X' = insert(X, (z;, z;))

<x0,x1, sy L1 L1y e o oy Lj—1, Ly Ly Ljgly e - - ,xn_1>,

ifi<j—1 (3.9)
(w0, 21, . .. yLj—1yLis Ljy L4155 Li—1, Tit1y - -+ s Tn1),

ife>j

Proposition 3.6. The improvement obtained by the application of insert on
the route X (i.e. Cost(X’) — Cost(X)) can be computed in the following
fashion:

Ainsert(X,i,j) = Cost(X) — Cost(X)
A1 (vj—1 — i) + Aowi + A3(Yn—1 — vj-1)
+ (5]‘ — 0w, ifi<j—1 (3.10)
(A — Ay w; + (A3 — A1) (yie1 — 7j—1) ’
+ A3(Yn—1 —) + (5j — 0w, ifi > j
where
A =di—1i41 —di—1; — diit1,
Ay = A1 + dj—l,i — dj—Lj? (3.11)
A3 = Ay + d@j.

21

3. Solution approach

Proof. First we will assume ¢ < j — 1. Summing contribution of particular
nodes in the order they appear in X”, its cost can be written as:

Cost(X') = S1wy + Sowg + -+ + §_1w;_1
+ (Gi+1 — di—1,i — dii1 + dic1,i41) Wi
o+ (61 = dim1i — diip1 + dim1i1) W)
+ (0 — dim1,i — dijit1 + dim1,i41 — dj—15 + dj—1)w;
+ (6 — di—1i — dijit1 +di—1i41 — dj—1,5 + dj—1i + dij)w;
o (01 —dic1 — diip1 + dim1i41 — djo1j +dj—1 + dij)wn—1.

Using expressions from Eq. [3.11] and also from Eq. [3.4) the cost can be
rewritten as:

Cost(X') = Fi4
+ (0i+1 + Anwip
+ 4 (01 + A)wj—q
+ (65 + A2)w;
+ (0 + Az)w;
+ oo 4 (On—1 + Az)wp—1.

Improvement obtained by the application of the operation is computed directly
as a difference of the costs:

Ainsert(X,i,7) = Cost(X') — Cost(X)

=Fi-1— Fi1
— Ojw;
+ (0541 + A wig1 — Sip1wip
+ ot (01 + Awjr — Gjwj
+ (05 + A2)w;
+ (65 + Az)w; — 0jw;
+ o 4 (01 + A3)wp—1 — Op—1wp—_1

= Mwip1 + -+ Awj—1 + Agw; + -+ + Azwp—q
+ Aqw; + (05 — 0;)w;

= M(wip1 + - +wj1) + Aow; + Az(wj + - +wy—1)
+ (05 — 0;)w;.

Using equality from Eq. 3.5 we can alter the result into it’s final form:

Ainsert(X,1,7) = A (vj—1 — i) + Adsw; + As(Vn—1 — vj—1)

+ ((5] - (51)11)1 (3'12)

Now let us assume 7 > j. Using the same process as above we can get

Ainsert(X,1,7) = Ajw; + A5(vie1 — vj-1) + A5 (yn—1 — i) + (6 — &)wi,

22

3.6. Proposed meta-heuristics

where

Ay =—djrj+djri = Ay — Ay,

Ay = My +dij = Az — Ay,

Ay = Ay —di1;—dij1 +di111 = As.
From the above:

Ainsert(xaivj) = (AQ - Al)wz + (A?) — /11)(’71'71 - ryjfl) (3 13)
+ A3(Yn—1 —7) + (05 — 6)w;. .

For i = j and i = j — 1 insert is undefined. Q.E.D. O

B 36 Proposed meta-heuristics

The framework we have built allows us to specify a variant of bVNS by
selecting

1. the method that generates the initial solution,

2. the number of iterations iters,

3. the ordered set of operators N used for Shaking, and
4. the ordered set of LSMs M.

The first item of the list above will be inspired by the GRASP-based meta-
heuristics proposed by Kulich, Bront & Pfeuéil [16]. The deterministic variant
of the two heuristics G g;s; and Gqti0 Will be used in general greedy scheme in
Algorithm (3.5, where function f is fg;s for Ggise and fratio for Gratio defined
in Sec. 13.1. Both heuristics create feasible solution and the one with lower
cost will be selected as the initial one.

Algorithm 3.5: General greedy scheme.

Input: Set of vertices V, |V| = n.

Output: Initial solution - route X.

1 X <« (0)

2 fork=1,...,(n—1) do

3 Leth(O,xl,...,xk>.

4 T < argming,cy e x f(Tk, 0).
5 Append z to the end of X.
6 return X

23

3. Solution approach

We propose two following variants of bVNS:
1. bVNS-v1 specified by

iters = 300,
N = {2-opt, swap}, (3.14)
M = {2-o0pt, swap}, and

2. bVNS-v2 specified by

tters = 55,
N = {2-opt, swap, insert, twist}, (3.15)
M = {2-opt, insert}.

24

Chapter 4

Computational results

B a1 Implementation

All algorithms have been implemented in C++ and compiled by gcc49. All
experiments of this Part were performed within the same computational
environment: a standard PC with an Intel®Xeon®X5560 CPU at 2.80
GHz.

. 4.2 Reference methods

Computational results for GRASP-based methods are shown in Tabs and
4.2l The proposed methods and for comparison also the reference GRASP-F
and GRASP-Int were tested on 21 instances from the Traveling Salesman
Problem Library (TSPLIB) [25] with sizes between 51 and 1084 vertices. The
weights were generated randomly using the same way as in [16].
Each vertex was assigned with one of 10000 normally distributed numbers
between 1 and 10 in respecting orderﬂ Because none of the tested methods is
fully deterministic, to obtain reflective results we performed 200 independent
runs with different seeds for each experimental setup consisting of an instance
and a method.

Before we start any discussion on the results, we will explain the format of
the tables as we use the same for all methods. The first two columns show
the names of TSPLIB instances as well as their size n explicitly. The third
column states the values of Best Known Solution (BKS), which is a cost of
the best solution found within this thesis. In other words, if we assume 200
runs on every problem per method (there are four tested methods), it is the
best solution found out of the total 800 runs. Some values in this column are
shown in bold which indicates that the method to which the particular table

!That means, e.g., i-th vertex of a TSPLIB instance has assigned i-th random number.
The string “2016-09-11" was used as a seed.

25

random.org

4. Computational results

refers (further just “the table method”) found the best solution in one of
its 200 runs’. Those values stay numerically the same for every table. Also,
we report the percentage gap (%bG) of the best solution found by the table
method. The percentage average gap (%aG) follows. The gaps are computed

as
Sol — BKS

%G = 100 - BKS (4.1)
where for %bG Sol is the cost of the best solution found by the table method
on a particular instance, and for %aG Sol is the average of costs of all solutions
found by the table method on the instance. The last three columns give
the information about the average computational times. The first value
as absolute in seconds (abs [s]). The second value (rel2GF) is relative to
GRASP-F, and the last (rel2GI) is relative to GRASP-Int. By the relative,

we mean that the value is given by the formula

absx

rel2X = (4.2)

absge)’

where absy is the absolute average time of the corresponding X?°| method and
absg] is the absolute average time of the table method. In case of the reference

2The Best Known Solution can be found by more methods independently, so in some
cases the same value is bold for more than one method.
3X = "GF" for GRASP-F and X = "GI" for GRASP-Int.

Solution Time
Instance " BKS %bG %aG abs [s] rel2GF rel2GI
eil51 51 56795 0.00 0.38 1.60 1.00 0.57
berlin52 52 762003 0.00 0.52 1.01 1.00 0.28
st70 70 102473 0.02 1.35 2.75 1.00 0.21
€il76 76 88890 0.03 0.80 5.78 1.00 0.23
eil101 101 134931 0.66 2.13 13.68 1.00 0.23
bier127 127 23341282 0.67 2.88 19.48 1.00 0.23
ch130 130 1791171 0.53 2.00 19.33 1.00 0.28
d198 198 6702513 0.89 1.89 71.61 1.00 0.46
gil262 262 1488172 1.15 3.37 226.16 1.00 0.19
pr299 299 34512686 1.80 3.67 329.61 1.00 0.20
lin318 318 30964844 2.69 5.52 307.06 1.00 0.27
rd400 400 14904253 2.26 4.57 1209.36 1.00 0.16
pcb442 442 54944343 1.56 3.44 2957.46 1.00 0.09
d493 493 36471199 1.90 3.37 2157.26 1.00 0.18
ub74 574 51472970 3.36 4.98 4098.93 1.00 0.15
ratb75 575 9755861 2.58 3.78 6825.28 1.00 0.08
d6s7 657 77687295 2.55 3.84 5580.71 1.00 0.18
u724 724 74984352 1.01 2.83 8879.87 1.00 0.11
rat783 783 17392771 1.97 3.16 25526.71 1.00 0.07

pr1002 1002 633491443 236 4.17 40387.28 1.00 0.13
vm1084 1084 522891106 5.00 6.85 44671.12 1.00 0.09

avg - - 157 312 - 1.00 021
wavg - - 235 4.02 - 1.00 0.15

Table 4.1: Computational results for GRASP-F.

26

4.2. Reference methods

methods, those two last columns are not necessary, but we present them to
maintain uniformity. For the proposed methods it will be the best sign of
eventual speed improvement. The last two rows show the average (avg) and
the average weighted over the corresponding n (wavg) of the values beneath
in case the resulting information can be somehow interpretable (otherwise

|I_|l)'

Now let us take a look at the results for GRASP-F. This particular method
found the BKS twice - in case of €il51 and berlin52. %bG is 1.57, and %aG
is 3.12 on average amongst all 21 solved problems. GRASP-F is 0.21 times
faster (therefore slower) than GRASP-Int. If we emphasize instances with a
large number of vertices, we get the weighted average values. The weighted
average %bG is 2.35, and %aG is 4.02. GRASP-F is 0.15 times faster than
GRASP-Int if we assume the weighted value. From this, we can say that the
method’s performance gets slightly worse as n gets large. If we focus on the
absolute computing times in case of some large instance, e.g., vin1084, we
can see it gets long reaching impractical values. In this case, it takes over 12
hours to get a single near-optimal route.

GRASP-Int is doing much better in case of the speed. It is on average 6.42 -
8.37 times faster than GRASP-F. For example, the average computing time
in case of vm1084 was reduced from 12 hours to a little bit over 1 hour.

Solution Time
Instance " BKS %bG %aG abs[s] rel2GF rel2GI
eil51 51 56795 0.04 0.42 0.91 1.76 1.00
berlin52 52 762003 0.00 0.51 0.28 3.58 1.00
st70 70 102473 0.06 1.75 0.57 4.85 1.00
€il76 76 88890 0.00 1.02 1.33 4.33 1.00
eil101 101 134931 0.37 2.46 3.08 4.44 1.00
bier127 127 23341282 0.82 3.42 4.39 4.44 1.00
ch130 130 1791171 0.17 245 5.37 3.60 1.00
d198 198 6702513 0.86 1.93 32.86 2.18 1.00
gil262 262 1488172 1.94 4.15 42.27 5.35 1.00
pr299 299 34512686 1.84 4.09 66.66 4.95 1.00
lin318 318 30964844 3.47 6.04 84.10 3.65 1.00
rd400 400 14904253 2.55 5.17 188.21 6.43 1.00
pcb442 442 54944343 0.98 4.05 257.52 11.48 1.00
d493 493 36471199 218 394 387.05 5.57 1.00
ub74 574 51472970 3.78 5.65 602.39 6.80 1.00
ratb75 575 9755861 292 4.57 521.98 13.08 1.00
d6s7 657 77687295 217 4.46 996.02 5.60 1.00
u724 724 74984352 220 3.73 954.45 9.30 1.00
rat783 783 17392771 2.16 3.93 1794.12 14.23 1.00

prl1002 1002 633491443 1.56 4.65 5184.89 7.79 1.00
vm1084 1084 522891106 4.73 8.11 3921.13 11.39 1.00

avg - - 1.66 3.64 - 6.42 1.00
wavg - - 241 471 - 8.37 1.00

Table 4.2: Computational results for GRASP-Int.

27

4. Computational results

The speed gain is balanced by just slightly worse results in the matter of
quality. GRASP-Int found the BKS only once in case of berlin52. We can say
GRASP-Int gives almost as good results as GRASP-F but is much faster. This
observation agrees with conclusions in Kulich, Bront & Pfeucil [16].

B a3 Proposed methods

Computational results for bVNS-v1 are shown in Tab. 4.3 It is worse
compared to GRASP-based methods in the matter of solution quality. For
example, the average value of the %bG is 2.55 for bVNS-v1 while for GRASP-
F it is just 1.57 and the average value of the %aG is 5.00 for bVNS-v1 while
for GRASP-F it is 3.12. bVNS-v1, on the other hand, appears to be much
faster. It is about 127-times faster than GRASP-F and 17-times faster than
GRASP-Int on average. For larger instances, the improvement in speed is
even more significant as we can see from the weighted average values. E.g.,
on pr1002 bVNS-v1 is 305-times faster than GRASP-F and 39-times faster
than GRASP-Int.

The more powerful version of our original method called bVNS-v2 has its
computational results shown in table 4.4, We can notice two significant things

Solution Time
Instance " BKS %bG %aG abs [s] rel2GF rel2GI
eil51 51 56795 0.00 1.67 0.08 20.46 11.64
berlin52 52 762003 0.00 0.23 0.06 16.61 4.64
st70 70 102473 0.00 2.86 0.13 20.45 4.22
€il76 76 88890 0.50 1.07 0.19 29.77 6.87
eil101 101 134931 0.65 4.82 0.37 37.39 8.43
bier127 127 23341282 1.72 4.98 0.66 29.65 6.68
ch130 130 1791171 043 3.35 0.62 31.22 8.67
d198 198 6702513 0.38 1.48 1.61 44.60 20.46
gil262 262 1488172 3.30 6.15 3.53 64.11 11.98
pr299 299 34512686 2.61 5.37 4.17 79.08 15.99
lin318 318 30964844 296 7.59 5.52 55.64 15.24
rd400 400 14904253 4.09 6.15 9.50 127.37 19.82
pcb442 442 54944343 4.08 5.46 12.17 242.92 21.15
d493 493 36471199 421 6.71 22.57 95.59 17.15
ub74 574 51472970 3.32 6.50 23.57 173.89 25.56
ratb75 575 9755861 4.02 5.80 30.61 222.99 17.05
d657 657 77687295 3.13 6.21 33.95 164.36 29.33
u724 724 74984352 448 7.35 43.68 203.28 21.85
rat783 783 17392771 3.14 561 58.51 436.31 30.67

pr1002 1002 633491443 544 7.19 13257 304.66 39.11
vm1084 1084 522891106 5.15 836 162.22 275.37 24.17

avg - - 2.55 5.00 - 12741 17.18
wavg - - 3.75 6.32 - 204.11 23.28

Table 4.3: Computational results for bVNS-v1.

28

4.3. Proposed methods

about that table. Firstly - this method is the fastest of all four tested. It
solves every problem with (1) n < 130 within half a second, (2) n < 400 within
10 seconds and (3) n &~ 1000 in about 2 minutes. The same for GRASP-Int
is (1) about 5 seconds, (2) about 2 minutes and (3) about 1 hour. And for
GRASP-F (1) within 20 seconds, (2) about 20 minutes, (3) about 12 hours.
Secondly - this method found the BKS for every single problem available, and
therefore it has the average %bG equal to 0.00 precisely. GRASP-F had this
value from 1 to 5 for all problems with n > 200. Both the avg and wavg
values of %aG are for bVNS-v2 about half of what they are for GRASP-F.

Solution Time
Instance n BKS gbc %aG abs[s] rel2GF rel2GI
eil51 51 56795 0.00 0.56 0.03 46.82 26.63
berlin52 52 762003 0.00 0.05 0.04 28.61 8.00
st70 70 102473 0.00 1.36 0.07 36.97 7.63
eil76 76 88890 0.00 0.49 0.09 65.42 15.11
eil101 101 134931 0.00 2.41 0.25 55.44 12.49
bier127 127 23341282 0.00 3.10 0.41 47.92 10.80
ch130 130 1791171 0.00 1.82 0.48 40.29 11.18
d19s8 198 6702513 0.00 0.34 1.13 63.20 29.00
gil262 262 1488172 0.00 2.61 3.03 74.66 13.95
pr299 299 34512686 0.00 1.57 4.02 81.91 16.56
lin318 318 30964844 0.00 3.12 4.29 71.53 19.59
rd400 400 14904253 0.00 2.97 9.74 124.12 19.32
pcb442 442 54944343 0.00 1.94 12.21 242.25 21.09
d493 493 36471199 0.00 1.71 16.24 132.82 23.83
ub74 574 51472970 0.00 2.60 21.44 191.23 28.10
ratb75 575 9755861 0.00 1.22 24.16 282.52 21.61
d657 657 77687295 0.00 2.34 33.14 168.40 30.06
u724 724 74984352 0.00 1.98 45.84 193.71 20.82
rat783 783 17392771 0.00 1.77 62.91 405.78 28.52

pr1002 1002 633491443 0.00 2.09 117.04 345.08 44.30
vm1084 1084 522891106 0.00 2.75 149.34 299.12 26.26

avg - - 000 1.85 - 14275 20.71
wavg - - 0.00 211 - 218.66 25.60

Table 4.4: Computational results for bVNS-v2.

29

30

Part ||

Single Robot Search for a
Stationary Object in a Known
Environment

31

32

Chapter 5

Problem definition

The definition of SRSSK is inspired by [16] and [27], but some of the ideas
are also ours. Assume an autonomous mobile robot equipped with a ranging
sensor with a fixed, limited range R > 0 and 360° field of view operating in
a completely known environment. Both the robot and the environment are
modeled in 2D. The robot is circular-shaped with radius r > 0 and with the
sensor placed in its center point. We define robot’s position as the coordinates
of its center point. The environment W is modeled as a polygon that may
contain polygonal holes (obstacles). The obstacles and outer border of W
generate both motion and visibility constraints for the robot (the robot can
neither go nor see outside of W).

In order to plan a path for a robot with a circular shape, we need to introduce
the following formalism. Because r # 0 (the robot is not modeled as a single
point) the robot can only get as close to a border or an obstacle as to the
maximal distance of r. We define the deflated environment W, a set of
subsets of W, given by the result of offsetting [6] environment W by value
—r. We assume that the initial position of robot s is given inside one member
of WW. We define the reachable area W € W for which applies, that s € W.
The difference between W, W and W we show in Fig. 5.1l

The search problem is defined as the process of navigation of the robot
through the reachable area W of the environment W (W C W), in order to
find the stationary object of interest placed in the environment randomly on
a location [€ W. By finding the object, we understand the situation when
it is firstly detected by robot’s sensor. Furthermore, we assume that the
probability of the object of interest being in any specific point is uniformly
distributed throughout the ¥/’s interior and equal to 0 in W\ W (and outside
of W, of course). Therefore, the probability of the object being in any subset
A C W is proportional to the area of A.

Assuming the robot follows the trajectory R the expected (mean) time T the
object is found is given by

E(T|R) = /O S ip()dt, (5.1)

33

5. Problem definition

(a) : The environment (b) : Deflated envi- (c) : Reachable area
W shown in blue. ronment W shown in W shown in blue.
blue.

Figure 5.1: Difference between W, W and W shown on environment with a narrow
corridor of width w < 2r. The yellow circle in the pictures is a footprint of the robot
standing at its initial position s.

where p(t) is the probability of detecting the object at time ¢. Sensing as well
as planning is in robotics performed in discrete times, therefore Eq. can
be rewritten as

E(T|R) = th (5.2)

where p(t) = A—ALl is the ratio of the area A newly sensed at time ¢ when
the robot follows the trajectory R and Ay which is the area of W. The
objective of the SRSSK is to find the trajectory R* minimizing Eq. [5.2;

e¢]
R* = argminE(T|R) = arg minZtAZz. (5.3)
R R 5

34

Chapter 6

Solution approach

6.1 General Framework

The most natural way of describing robot’s search is shown in the Algorithm
6.1. First, the set of locations to visit is determined, and an order of their visits
is planned (lines 1-2). The robot then navigates itself along the trajectory
R and in each moment it loads information from sensor and checks whether
the object of interest was detected. If so, the search ends, if not, it continues

!By the trajectory we mean the continuous curve by which the robot actually goes along

and by the path we mean just an ordered set of locations.

Algorithm 6.1: The process of robot’s search.

[J I M

o N o o s

Input:

W - a map of the reachable area
s - robot’s initial position

R - range of robot’s sensor

Output:
T - total time from the start of the simulation to the moment when the
object was found

Determine a set of locations L C W so that each point in W can be
seen from at least one location in L.
Plan the path & through every location in L starting at s.
Start the navigation of the robot along the trajectory R to every
location in L in the order given by X, T" < 0.
repeat
Get the newly sensed area from sensor readings.
T+ T+ At
until Object is found.
return T

35

6. Solution approach

Algorithm 6.2: Off-line planning and simulation.

Input:

W - a map of the environment
r - robot’s radius

s - robot’s initial position

R - range of robot’s sensor

Output:
T - expected mean time the object is found

Determine reachable area W of environment W.
Determine a set of locations L C W so that each point in W can be
seen from at least one location in L.
Plan the path X through every location in L U s starting at s.
t <+ 0, Tf ~ 0
foreach g out of X do
Start the navigation of the robot from its current position to g
along the trajectory R.
repeat
t—t+ At
Get the newly sensed area AX from sensor readings.
A’R
10 Ty < Tr + tg—
11 until g is reached.

N =

[B N

o

12 return Tf

to follow R on next cycle (lines 3-7). At line 6 we indicate, that the total
time of simulation T is being recorded - At is the difference between a current
time and the time of the previous cycle.

In our work, we will rather use an extended search process shown in the
Algorithm 6.2 It takes the environment W and robot’s radius r as the
input and deals with determining the reachable area Y. Also, the search is
performed on the entire VW, without the object of interest placed anywhere
for real. The output is expected mean time 7'y the object is found, which is
more convenient as it is also a quantity to minimize in SRSSK as stated in
Chap. [5. In the scheme at lines 1-3 a process called the off-line planning is
performed and at lines 4-11 it is the simulation itself.

The rest of this Chapter will inform about our approach to the off-line
planning. We will explain and show principles of off-line planning used later
in the simulation. We will demonstrate everything on the same instance of the
problem. In Fig. 6.1 we show the environment we use for the demonstrations.

36

6.2. Offsetting the environment

LI

&

Figure 6.1: Map complez2. Left: plane environment W shown in black and white.
Right: reachable area W shown in blue. The yellow circle is robot’s footprint.

B 6.2 Offsetting the environment

For offsetting the environment by the value —r in order to determine the
reachable area VW (as well as for some other operations later) we use Clipper
[13] - a C++ library which performs line and polygon clipping (intersection,
union, difference and exclusive-or) and line and polygon offsetting. The
library is based on Vatti’s clipping algorithm [34] and it is freeware for both
open source and commercial applications. Clipper offers more variants of
offsetting polygons. They differ in the way they deal with edges of a "blown"
polygon. The behavior is given by the joint type used. Two joint types
come in our consideration - round and square - their use we demonstrate on

complex? map in Fig.

Figure 6.2: W generated with both round and square joint type. The first one is
drawn in lighter shade of blue overlapped by the second one in richer color. Left: the
whole picture. Right: detail.

37

6. Solution approach

The difference between the two is noticeable in the detailed picture. For joint
type round the inner edges of W seem to be perfect curves while for joint
type square they are squared. The first option is the optimal one because it
represents exactly what VW is supposed to be - the set of all possible robot’s
positions in the environment. The second option, on the other hand, is just
an approximation of that set with such a welcoming property, that it doesn’t
make W too complex compared to W. The decision over which one is better
for our use we shall make in next section.

B 63 Triangulation

Line 2 of the Algorithm requires to determine a set of locations L C W so
that each point can be seen from at least one location in L. In this task we
must consider all visibility constraints put on the robot - both outer and inner
("blown" obstacles) borders of W and the range of robot’s sensor R. There
are several criteria for determining the quality of L. For example, we might
try to minimize the number of locations |L|. This task is in the literature
called the Art Gallery Problem (AGP) [22]. Another way to go would be to
determine locations along the shortest path that covers the whole W - The
Shortest Watchman Path Problem [29]. For simplicity, we will not put any
similar requirements on set L and rather settle with just the indispensable.
We will perform a constrained conforming Delaunay triangulation [23] on
reachable area W which creates a triangular mesh of desired properties. Set
L will be filled with centroids of all the generated triangles. Triangle [31] -
a two-dimensional quality mesh generator and Delaunay triangulator [30] -
is a C tool and library capable of doing just that. We run the triangulation
with switch options pa{R}, where p is used to perform the triangulation and

Figure 6.3: Triangulation. Left: performed on W which was generated using joint
type round. The number of triangles is 2519. Right: performed on W which was
generated using joint type square. The number of triangles is 127.

38

6.4. Vertices Reduction

a imposes a maximum triangle area constraint. {R} stands for its numeric
value - range of robot’s sensor R is used.

In Fig. 6.3 we show the triangulation performed on the reachable area W
of compler?2 generated with joint type round in the first case and square in
the second. There are some seemingly filled areas in the left picture. Those
are, in fact, just large numbers of triangles stacked one on another. This is a
good illustration of how much the result of the triangulation is dependent on
the complexity of WW. Natural condition is to have a small size of L, and the
tiny narrow triangles clearly do not add any value to the result. Therefore
usage of joint type round in offsetting the environment (discussed in the
previous section) is impractical and square will be preferred. By this choice,
we reduced the size of L from 2519 to 127 in case of complex?.

. 6.4 Vertices Reduction

Despite the fact, that minimal size of L is not a strict requirement, it is
obvious, that determining L by triangulation results in much bigger |L| than
it is necessary for our purpose. Large |L| means greater computational burden
and possibly also worse result of the experiment. Therefore we introduce
vertices reduction method that removes unnecessary points from L while
its desired properties remain. Pseudo-code of that method we show in the
Algorithm 6.3 and some parts of the reduction process for complex2 are
displayed in Fig. |6.4.

At lines 1-4 of the Algorithm an initialization is performed. L, is first assigned
with L U s and a group of triangles 7T, is defined for every ¢; € L,. Then the
reduction starts. For each ¢; € L, (line 5) that was not yet removed (line 6)
a circle C' of radius R with center in ¢; is created (line 7). Let us call ¢; the
reducing point.

Let set L, be {po,p1,...,pm} and then for every p; € L, ask the following
question (lines 8-10). Is it true, that ¢; # p; and all triangles that belongs to
p; (elements of 7,.) are both fully inside C' and fully visible from ¢; inside
of W? If the answer is yes, p; is removed from L, (line 11) and all triangles
originally belonging to p; becomes the belongings of ¢; (line 12). If the answer
is no, p; can not be removed from L,., as its visit provides some information
that the visit of ¢; does not. After going through every p; € L, and either
removing it or not, ¢;+1 (if not yet removed) becomes the next reducing point
and so on. With this procedure we can reduce the original 128 points of L Us
to just 36 of L, U s on complex?.

For the act of determining, whether some points are visible from another
point inside environment W or not, we calculate a visibility graph using
VisiLibityl [21], a free open source C++ library for 2D floating-point visibility
algorithms, path planning, and supporting data types.

39

6. Solution approach

Algorithm 6.3: Vertices reduction procedure.

Input:

L={e1,...,c,} - original set of locations

To=A{T1,...,Tn} - set of triangles genereted by the triangulation,
where ¢; is a centroid of 7; for every i € {1,...,n}

W - reachable area
s - robot’s inital position
R - range of robot’s sensor

Output:
L, - reduced set of locations

1 L, +{co=s,c1,...,¢n}

2 Tep < 9

g fori=1,...,ndo

a | Te, « {Ti}

5 for i =0,...,ndo

6 if ¢; € L, then

7 Create circle C' of radius R with center in ¢;.

8 Let L, = {po,p1,---,Pm}-

9 for j=0,...,mdo
10 if ¢; # p; and all memebers of Ty, are both fully inside C

and fully visible from c¢; inside of VW then

11 L, < L, \ pj
12 L Te; < Te; UTp,

13 return L,

To make the Algorithm [6.2] still valid with the process of reduction included,
we assume that it is a part of line 2 and that L is assigned with L, after the
reduction has finished.

B 65 Path Planning

We are now getting to line 3 of the Algorithm [6.2l Having the set of locations
L our objective is to plan a path through every point in L starting at s. This
task may be transformed into the GSP defined in Sec. 2.1 An instance of
the GSP is described by a complete graph G = (V, E), where V is a set of
vertices and E is a set of edges between the vertices. Let us assume |V| = ||
and each point in L corresponds to only just one vertex in V. A distance
function d(, j) we define as the shortest distance the robot can travel to get
from ¢-th to j-th point in L while respecting motion constraints of WW. In our
implementation, the distance function is in fact represented by a distance
matrix D. For calculating D, we use Johnson’s algorithm [8] from The Boost

40

6.6. Weights Calculation

: //\/\#7' = /NN ><< R AVAYA

(a) : LU s before any (b) : 1st reduction. (c) : 13th reduction.
reduction.

- . >SN T

J ><,,\\/‘|

(d) : 18th reduction. (e) : 18th reduction - (f) : L. Us after all
detail. reductions.

Figure 6.4: Reduction of set L U s from the original size 128 to 36. Reachable area
W with triangular mesh is shown in red. Points not yet reduced are blue. Reducing
point ¢; is green with a black ring and circle C' is gray. Groups of triangles entirely
inside C' are filled with yellow. From the corners of those that are also fully visible go
black beams to ¢; which symbolizes visibility. Points to-be-removed are orange.

C++ Libraries [28], which is able to find the shortest distance between every
pair of vertices in graph Gpoost- We fill Gpoost with both the locations from
L and the points representing corners of the reachable area VW, and we add
an edge between every pair a, b of this set for which applies that a is visible
from b (and vice versa). We again use VisiLibityl library for determining
visibility between the two points.

Let us just for now assume, that we also have a corresponding weight of each
location in L. The GSP instance is fully defined, and we can solve it using
approaches of Part [I. As a result, we get the path X and the off-line planning
is finished. Robot’s search described in the Algorithm continues with the
simulation itself and its results we show in next Chapter [7. Next section of
this Chapter goes deep into the weights calculation.

B 6.6 Weights Calculation

According to GSP formulation in Sec the weight of each vertex p; should
be an approximation of the probability that the object will be found when

41

6. Solution approach

visiting that vertex. In other words, it is the approximation of the amount of
information gained (or area newly searched) when visiting p;.

Assuming there is no reduction on set L after the triangulation, the first idea
might be to take the area A7, of a triangle generated by triangulation that
has centroid ¢;. The weight of a vertex p; is then

AT,

w(pl) = At tzl' (61)

In fact this kind of calculation is far from good approximation of desired
probability. Different approach is to create circle C; of radius R with the
center in p;. Using Clipper we get polygon (with holes) W, as the result of
intersection of the reachable area VW and the circle C;. Using VisiLibityl we
calculate the visibility polygon Py, on We,. Weight of vertex i is then

A
w(p;) = 2%, (6.2)
Atotal

where chi is the area of PWcZ-' This approach works even on reduced L U s.
Visualization of this type of weighting vertices is shown in Fig.

a) : L U s before 1 1st weighting. C) : 2nd weighting.
f b
weighting.
(d) : 14th weighting. (e) : 25th weighting. (f) : LU s after weighting.

Figure 6.5: Weights calculation on the reduced set L U s. Borders of W are shown
in red. Not yet weighted points are blue. Point p; is pink with blue ring and polygon
Py, is violet. Already weighted points are light blue with blue ring, except s
havilllg a green center and blue ring. Size of weighted points is given by equation
size(p;) = K1 + K2 - w(p;), where K7 and K, are some constants. Union of polygons
PWC]_ where j < i is pink, and it is in the pictures to show, that by visiting all points
from L the robot will truly search 100% of W.

42

6.7. Proposed variants

B 67 Proposed variants

We propose the following variants of off-line planning to be tested experimen-
tally in Chapter |7: P0Ovns, P00gi, P10vns, P10gi%, P11vns, P11gi. Their
name is a code with the following meaning: "P|weights|reduction|method",
where wetghts is "0" or "1" if the weights are computed according to Eq. [6.1
or Eq. respectively, reduction is "1" or "0" if the vertices are reduced or
not respectively, method is "vns" or "gi" if the method for solving the GSP is
bVNS-v2 or GRASP-Int respectively.

2A natural question might be, why variants such as POlvns and P0lgi are not present.
Those variants are combinations of vertices reduction and weighting according to Eq.
Before we defined the Eq. we assumed there is no reduction on set L after the
triangulation. If we assumed otherwise, there would be many triangles whose area would
not be considered. A workaround to this situation might be to consider in w(p;) the sum
of areas of all the triangles assigned to p; in the process of reduction. As this option is not
straightforward, we decided to leave it out.

43

44

Chapter 7

Computational results

. A Implementation, simulation, tools

All algorithms have been implemented in C++, and the entire project has a
form of ROS packages. ROS (Robot Operating System) [24] is a collection of
software frameworks for robot software development. It provides hardware
abstraction, device drivers, libraries, visualizers, message-passing, package
management, and more. We use Kinetic Kame distribution of ROS. For
managing and building the project we use Catkin Command Line Tt ools[| -a
software tool developed by the ROS community designed to efficiently build
numerous inter-dependent, but separately developed, CMake projects.

In our code we also use several external libraries (some of them were already
mentioned in previous chapter): Clipper, Triangle, VisiLibityl, The Boost
C++ Libraries and for graphics and drawing 2D graphics library written in C:

Caird?.

The robot used in the simulation is the TurtleBot [35] - a low-cost, personal
robot kit with open-source software which is based on ROS. Part of the
free software coming with TurtleBot are several ROS launch files with useful
functionality, e.g., teleoperation, navigation and map building. TurtleBot
kit also allows running a 3D simulation of the robot in a customizable
environment without the need to own it physically. The simulation runs in
Gazebd®| simulator which can be delivered as a part of ROS.

All experiments of this Part were performed within the same computational
environment: a standard notebook with Intel®Core™i5-7300HQ at 2.50
GHz.

! Avaliable at |https://catkin-tools.readthedocs. io/en/latest/l
2 Avaliable at https://cairographics. org/l
3 Avaliable at http://gazebosim. org/l

45

https://catkin-tools.readthedocs.io/en/latest/
https://cairographics.org/
http://gazebosim.org/

7. Computational results

B 7.2 Offline planning

The first set of experiments relate to off-line planning and are based exclusively
on our code. We do not deploy ROS simulation in those yet, but we instead
use our own robot simulator assuming an ideal behavior of the robot (i.e., it
is capable of following the planned trajectory precisely with constant speed,
and it can instantly rotate by any angle at the spot).

We use 3 environments different from complex?2, which served only for a
demonstration of principles introduced in previous chapter. The maps called
potholes, warehouse and jari-huge®| are shown in Fig|7.1. In our experiments
we assume the following properties of the robot:

r = 0.3m,
R =3m, (7.1)
v=0.25m/s,

where r is its radius, R is the range of its sensor and v is its average speed
following any given trajectory R.

We assume an ideal case when the robot always goes by the shortest trajectory
Ridea; from its position to the next goal. We tracked the robot as it went
along trajectory R;4eq; with constant speed v and then we calculated expected
mean time of finding the object of interest defined in Eq. [5.2l Results we
present in Tab. |7.1. For each map and planning variant, we performed
20 independent runs to provide statistically significant results - numerical
values in the table are their means. The first two columns of the tab inform
about the experimental setup - map and planning variant. The next four
columns have the following meaning: n is the size of L U s, [is a total length
of resulting trajectory Rigear, 1y and Ty are the expected mean times of
finding an object with the presumption, that robot starts its journey at time

4All used maps are avaliable at http://agents.fel.cvut.cz/~faigl/planning/maps}
xml|

- =115 —
'® :. II_.| — —] ::'—
o “o | [amT=pl H M =
) e .—_1|_ —

(a) : potholes: 20x20 m (b) : warehouse: 20x20 m () : jari-huge: 25x28 m

Figure 7.1: The maps used for experiments.

46

http://agents.fel.cvut.cz/~faigl/planning/maps.xml
http://agents.fel.cvut.cz/~faigl/planning/maps.xml

7.2. Off-line planning

Ty Ty Off-line planning times [s]

Map Variant no lm] [s] total red. vis. gsp dis.

P00vns 376 1048 205 247 42.0 0.0 15.6 9.7 15.6
P00gi 376 765 210 478 268.4 0.0 15.8 236.4 15.5
P10vns 376 332 248 296 48.0 0.0 15.6 15.9 155

potholes — pjggi 376 346 278 622 3445 0.0 166 3104 164
Pllvns 68 162 205 227 21.5 13.7 5.3 0.3 1.9

Pllgi 68 166 202 230 28.2 149 5.7 5.2 2.0

P0OOvns 272 1731 213 230 16.9 0.0 6.8 7.1 2.6

PO00gi 272 715 210 416 205.8 0.0 6.8 196.1 2.6

warehouse P10vns 272 309 244 263 18.1 0.0 6.8 8.2 2.6
P10gi 272 332 246 363 117.2 0.0 6.8 107.3 2.6

Pllvns 78 228 201 220 189 14.1 3.5 0.5 0.6

Pllgi 78 219 206 227 21.6 14.0 3.5 3.2 0.6

P0OOvns 492 777 571 617 46.4 0.0 195 8.2 18.2

PO00gi 492 1139 585 805 219.4 0.0 19.5 181.1 18.1

richuae P10vns 492 587 487 561 74.0 0.0 195 35.0 18.1
J g P10gi 492 613 508 1224 716.2 0.0 19.6 677.1 18.1
Pllvns 116 360 367 406 39.9 28.8 7.3 1.2 2.1

Pllgi 116 378 381 435 54.5 28.8 7.3 15.9 2.1

Table 7.1: Off-line planning computational results.
to = 0 and ty = "total time of off-line planning" respectively. Best average

results in these lastly mentioned columns are bold & underlined and the
second best are just bold. The last five columns represent different sections
of the planning process and how long they took in seconds - respectively:
total time, reduction of vertices, construction of visibility graph, GSP solving
and calculation of shortest distances.

The table provides lots of interesting information, and there are many different
ways of looking at it. To support the discussion, we show in Fig. |7.2| one
resulting trajectory for each planning variant on potholes map.

As we can see the overall characteristics of the trajectory depends more on
the type of weighting vertices and whether they were reduced or not than
on the GSP solving method. Both variants starting with "P00" (further just
the P00*) result in trajectories that are hard to follow, and they visually
resemble a tangle of wires. Variants starting with "P10" (further just the
P10*) on the other hand seem to give much more ordered and logical final
trajectories, yet they are sort of unnecessarily wavy. It is worth noting that
such a change is caused only by different way of weighting vertices. Finally,
we add the reduction of vertices into the process as in case of variants starting
with P11 (further just the P11*), and we get very reasonable and the shortest
trajectory, which has in fact also the lowest Ty on average. If we compare
Ty for P10* and P11* we can with certainty say, that the vertices reduction
improved the result.

On the other hand, it is not so easy to make a similar statement about
weighting vertices. Resulting expected time for PO0* is in case of potholes

47

7. Computational results

(d) : Plogi: Ty =277.7. (e) : Pllvns: Ty =206.8. (f) : Pllgi: Ty = 201.3.

Figure 7.2: Six different resulting trajectories Ri;geq; for six proposed variants on
potholes map. For each, the value of T} is close to the average from Tab. [7.1l The
trajectory starts at s, and as we go along, it changes color from green to blue and
finally to red.

and warehouse better than for P10*, in case of jari-huge it is the opposite.
The question is why. Lets first take PO0* which weights vertices according to
Eq. 6.1 (triangle areas). The advantage of this approach is that the portion
of space T; determining a weight of vertex p; does not overlap with 7; which
applies for every p;,p; € L. So there is no redundant information in the
weight of vertices. The disadvantage of this approach is that the triangulation
itself has just a little to do with robot’s view. Despite this fact and also
regardless of how the resulting trajectory looks (and how long it is) in our
search task it sometimes works surprisingly well. For instance on potholes
map the resulting T's are very close to the best ones produced by P11*.

Determining vertices according to Eq. 6.2] (visibility polygon) is definitely
a good idea as P11* shows, but it also has a drawback as we can see on
P10*. As we may notice in series of pictures from the process of this kind of
weighting (Fig. |6.5)), visibility polygons PWci and PWC]_ may overlap for some
vertices p;,p; € L' Us. This is a serious problem causing possibly redundant
information to be accounted into the party. Performance of P10* is so poor
because this happens a lot, as the distribution of vertices in W is very dense.
In case of P11*, this effect is not that strong as the vertices were reduced and
visibility polygons overlap just occasionally (but they still do).

Before we start discussing the influence of GSP solving method used in
different off-line planning variants, it is important to note, that resulting

48

7.3. ROS simulation

expected time T (as revealed in previous discussions) depends not only on
the GSP method but also on the correctness of vertices weighting, the size
of L, etc. Expected time T is not the cost of the path defined in Eq. 2.2
and optimized by GSP, even though in ideal case these two values would be
directly proportional. But this is not our case, so it is possible to happen
that, e.g., P11vns gives worse results of Ty than P11gi despite the fact that
in solving the same instance of GSP was bVNS-b2 more successful than
GRASP-Int (or otherwise). But now let us compare these two methods
anyway by looking at each pair (e.g., 1st and 2nd, 3rd and 4th and so on)
of rows individually. In a majority of cases, off-line planning variants using
bVNS-v2 performed slightly better with the exceptions of P11* on potholes
and P00* on warehouse.

Benefits of bVNS-v2 over GRASP-Int are more clearly seen on the values of
Ty,. This type of result assumes that for the entire time the robot is planning
its journey it is standing at the place not searching. The value of this time
is then accounted into the expected time the object of interest is found. By
taking a look at those numbers, it is clear, that bVNS-v2 dominates.

Here are some other insights that can be read from the table. The process
of reduction vertices is by itself quite computationally demanding (it takes
about 14 seconds on potholes and warehouse and about 29 seconds on jari-
huge), but it usually takes down the total time of off-line planning by a big
amount (especially in case of GRASP-Int based methods). It shrinks the size
of GSP instance by 70-80%, and then every other process takes much less
time. Another thing to notice is that GSP instances created by P10* variant
take much more time to solve for both bVNS-v2 and GRASP-Int than those
produced by P0O0*. It might be surprising that just the type of weighting
vertices alone has such an impact on the difficulty of GSP instance.

. 7.3 ROS simulation

The last set of experiments that we performed consisted of simulations of the
TurtleBot in Gazebo. The TurtleBot has very similar parameters to those
we assumed in previous section (Eq. |7.1). To run the simulation, we used
unchanged default launch files included with the TurtleBot. Each in a different
terminal we have run the following commands:

1. roslaunch turtlebot_gazebo turtlebot_world.launch
world_file:=<full path to map.world>,

2. roslaunch turtlebot_gazebo amcl_demo.launch
map_file:=<full path to map.yaml>,

3. roslaunch turtlebot_rviz_launchers view_navigation.launch.
The first command starts the simulation in Gazebo. The second command

enables the robot to navigate inside of the simulated world so that it is

49

7. Computational results

capable of receiving navigation goals and planning the route to reach them
while avoiding obstacles. Some part of the navigation is also a probabilistic
localization system implementing the adaptive Monte Carlo localization
approach [10], which uses a particle filter to track the pose of the robot
against the known map. Localization is a necessary part of navigation securing
robustness. The last command is used to visualize robot’s navigation.

The first two commands of the list beneath receive some map file as a
parameter. In the first case it is map.world which is the map of the desired
environment (e.q. potholes, warehouse, etc.) in a SDF format. SDF’| is an
XML format that describes objects and environments for robot simulators,
visualization, and control. It is capable of describing all aspects of robots,
static and dynamic objects, lighting, terrain, and even physics. In the second
case it is map.yaml, which is the known map representation the TurtleBot
uses for navigation. YAML format includes image of the environment, which
can be a standard PNG file, and then it specifies resolution of the map (meters
/ pixel), origin (2-D pose of the lower-left pixel in the map) and 2 lightness
thresholds defining the state (occupied / unknown / free) of each pixel of the
PNG image. In order to perform the simulation we had to write a program
parsing our representation of the environment (simple TXT file specifying scale,
robot’s starting position and borders with obstacles as sets of points) into
formats used by Gazebo and the TurtleBot: SDF, YAML and PNG.

The TurtleBot inside the simulation together with navigation visualization
we show in Fig. [7.3|

With everything settled up and running as described beneath our program
simulates the search task in the following way. The simulation starts and
firstly the off-line planning is performed the same way as in the previous set
of experiments. Once the resulting path X is received, the TurtleBot starts
executing the search. Coordinates of each point in L are sent to the TurtleBot
in the order given by X. The program always waits until the robot reaches
its current goal and then it sends the next one. The route between every two

®More information on |http://sdformat.org/|

P=

Figure 7.3: TurtleBot performing the search inside Gazebo simulation on the left.
Visualization of robot’s navigation in Ruviz, a 3D visualization tool for ROS, on the
right.

50

http://sdformat.org/

7.3. ROS simulation

Map Variant SimSIm'Sl[fJ Ref. [s]
™ Tt Ty Ty
ol Pllvns 224 249 205 227
POthotes pyygi 214 244 202 230
. Pllvns 217 237 201 220
Warenouse — py 1 218 241 206 227
. Pllvns 398 441 367 406
jari-huge

Pllgi 418 477 381 435

Table 7.2: ROS simulation results.

goals is planned by the TurtleBot itself. The simulation ends at the moment
the last goal is reached. From the point of starting the search to the end of
simulation TurtleBot’s overall trajectory R is recorded (robot’s coordinates
are saved 3-times in a second). The expected times of finding the object of
interest T]?im and Tfim are calculated after the simulation has finished.

Each experimental setup consisted of the environment (potholes /| warehouse /
jari-huge) and the off-line planning variant (P11vns / P11gi) and we performed
10 runs for every combination. Results we show in Tab. [7.2. The last two
columns contain reference values obtained in the previous set of experiments
and extracted from Tab. [7.1. Lower value out of each pair is displayed in
bold.

P11vns performed the best (compared to P11gi) on the jari-huge map. In
Fig. [7.4] we show the search progress during time for both P11vns and P11gi
inside this environment. In Fig. |7.5| we show typical TurtleBot’s trajectory
R inside the jari-huge map.

100
L
100
I

80
|
80
I

60
|
60
I

40
I

Map searched Yo
40

Map searched |%)

20
I

T T T T T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000
time step time step

Figure 7.4: The relative amount of searched space during time for the jari-huge map.
The value is 0 before the search starts (i.e., for the time of off-line planning). Left:
progress of all 10 runs of the P11gi (red) and all 10 runs of P11vns (blue). Right: the
average values over all 10 runs.

o1

7. Computational results

Figure 7.5: Typical TurtleBot’s trajectory R inside jari-huge map together with
pre-calculated trajectory Rideqai- Both trajectories start at s located down on the map
in the middle. Rigea: is the underlying one and as we go along it changes color from
green to blue and finally to red. R is the yellow on top.

We can say, that the simulation results are mostly in conformity with the
reference. On potholes map P11gi is better than P11vns while on jari-huge the
roles has switched. On warehouse P11vns is slightly better, but the difference
is so insignificant we can say the two methods performed equally. In Part I
of this thesis we have shown, that bVNS-v2 gives on average certainly better
results in solving the GSP than GRASP-Int. In our simulation results, this
relation is not obvious at all, but this is most likely caused by the other
factors affecting the result - the placement of points in L, size of L and the
way vertices are weighted. According to expectation, TJ?T values show that
bVNS-v2 must be faster then GRASP-Int as it improves a ratio of the two
methods results in behalf of P11vns.

52

" B B B BB EEEEEESESEESEESESEESEESEE S S NS ESEEEGR 7.3.ROSsimu/ation

53

o4

Final Remarks

55

56

Chapter 8

Conclusions

. 8.1 Part |

We got acquainted with the GSP and similar combinatorial optimization
problems and with different approaches to their solution. We have addressed
the GSP with the intention to deploy it in robotic planning. From this evolved
strict requirements on our approach in the matter of feasible computational
time especially. At the same time, we wanted to maintain the solution quality
at the level of our reference methods from Kulich, Bront & Preucil [16].

We have designed two meta-heuristics for the GSP (and also for the TDP as
GSP is its generalization) and implemented them. Both methods were based
on the Basic VNS scheme by Mladenovi¢ and Hansen [20] systematically
changing neighborhoods (which is called the Shaking) within the LS. We
have used the same approach to the LS as in [I6]. In our first proposed
method called bVNS-v1, we incorporated operators 2-opt and swap used in
the reference into both the Shaking and the LS. This method was good enough
to fulfill our computational time requirements, but in the matter of quality,
there was still a room for improvement. We introduced two operators insert
and twist and embedded them into our second proposed method bVNS-v2.
This more powerful meta-heuristics used all four mentioned operators in the
Shaking while in the LS it employed just 2-opt and insert. For the deployment
of insert in the LS we had to derive its improvement similarly as it was done
in [I7] for 2-opt and swap.

Proposed methods together with the reference were tested on 21 instances
from the TSPLIB [25] with sizes between 51 and 1084 vertices. The weights
were generated randomly. In Tab. [8.1 we show a summary of the obtained
results. All values are extracted from the individual tables in Chap. [2 with the
only exception of the second column, which is new. %pggs is the percentage
of problems for which the method found the BKS out of all 21 available
problems.

Regarding the reference methods, we can say, that GRASP-F is the one

o7

8. Conclusions

Solution Time

Method Y%BKS %bG %aG rel2GF rel2GI
avg wavg avg wavg avg wavg avg wavg

GRASP-F 9.5 1.57 2.35 3.12 4.02 1.00 1.00 0.21 0.15
GRASP-Int 4.8 1.66 241 3.64 4.71 6.42 8.37 1.00 1.00
bVNS-v1 14.3 2.55 3.75 5.00 6.32 127.41 204.11 17.18 23.28
bVNS-v2 100.0 0.00 0.00 1.85 2.11 142.75 218.66 20.71 25.60

Table 8.1: All tested methods performance summary.

that sets a standard for the quality of a solution while GRASP-Int for the
computational time. Our proposed method bVNS-v2 overcomes both of these
standards as its average %bG, and %aG is for about 1.6 - 2.3 and 1.3 - 1.9
lower than those of GRASP-F respectively and it is an average about 20.7
- 25.6 times faster than GRASP-Int. bVNS-v2 also found BKS for all the
tested problems. bVNS-v1 is without surprise not doing so well, but we show
its results as a demonstration of how two methods following the same basic
scheme can perform differently based on their adjustable settings (i.e., set of
operators used in Shaking and LS and number of iterations).

On our way in designing the proposed meta-heuristics, we had to make the
following assumption about the GSP: local minima with respect to one or
several neighborhoods are relatively close to each other. This was one of the
three perceptions on which is build upon successful usage of VNS according
to Mladenovi¢ and Hansen [20]. Good results of our VNS-based methods
show that this assumption may be true for a lot of cases (if not for all) and
so we have also learned something about the GSP itself.

B 82 pratll

We employed the proposed method in a robot’s search. First, we had to
deal with a robot of non-zero radius operating in an arbitrary environment
modeled as a polygon with polygonal holes. Offsetting the environment by
the negative value of robot’s radius made it possible to model the robot by a
single point in part of the environment we call the reachable area WW. Next,
we had to determine a set of locations L such that each point in W was
visible from at least one of these locations. For this, we have used constrained
conforming Delaunay triangulation on W with constraints on a maximal
triangle area and we created a triangular mesh. Centroids of the generated
triangles were then assigned as the basis for L. We introduced an optional
method capable of reducing L to 70-80% of its original size while maintaining
its desired properties. We adopted two ways of weighting vertices: one based
on the triangle areas and one on the area of visibility polygons. The first one
was applicable on the original L only, the second one on both original and
reduced L.

o8

8.2. Part Il

We proposed six variants of off-line planning each based on one of the possible
combinations of weighting vertices, their optional reduction and GSP-solving
method employed (bVNS-v2 / GRASP-Int). We evaluated the variants
experimentally in our simple robot simulator. The best variants were those
employing vertices reduction and weighting based on the visibility polygons.
Solutions generated by bVNS-v2 was on average slightly better, yet the
difference between the two GSP methods was not significant. This might
be caused by other factors having a greater effect on the result such as
the placement of points in L, size of L and the way vertices are weighted.
Advantages of bVNS-v2 were mostly in its speed, which made it possible for
the robot to finish the off-line planning early and set off sooner than in case
of GRASP-Int. With the best couple of variants we performed a simulation
on the TurtleBot in ROS and results of that simulation were in conformity
with previous experiments.

99

60

Chapter 9

Future research

Based on our observations we can say, that the VNS can get more powerful
by providing it more (and better) operators for the Shaking and the LS. For
future research, therefore, we suggest developing several new operators and
incorporate them into the VNS, then fine-tune the basic scheme. Interesting
might be to extend the VNS by one of its variations from [20], e.g., to Variable
Neighborhood Decomposition Search (VNDS) which is a two-level VNS based
upon decomposition of a problem, or the Skewed VNS (SVNS), addressing
the problem of exploring valleys far from the incumbent solution. Another
appealing option is to incorporate VNS into the GRASP-scheme and use
advantages of both approaches. Lastly, we mention the possibility to employ
TS inside the VNS fully in the LS phase or/and just use its principles (short-
memory) to prevent possible cycling or avoid non-promising neighbors in the
Shaking or/and in the LS.

Regarding the search problem, in order to obtain better or more useful results
we suggest the following list of possible focus areas of our future work:

1. a distinction between robot’s reachable area and the area it is truly
capable of seeing,

better generation of points in L,
advanced weighting,

introduction of on-line planning,

S I B S

generalization of the GSP by implementing more aspects of the planning
in it.

The first item of the list addresses the following issue. We defined the
reachable area W as the set of all points robot’s coordinates can attain inside
an environment W. This allowed us to model the robot as a single point and
we shrank the task of searching inside the entire W to searching just inside
W. In fact, for doing that we had no other justification than a simplification
of the problem. In Fig. [9.1] we show the reachable area W together with
the area the robot is truly capable of seeing - let us call it WT. In some

61

9. Future research

Figure 9.1: Left: reachable area W in blue. Right: the area the robot is capable of
seeing W in blue. The yellow circle is robot’s footprint.

environments this area is still not the entire W, yet it can be significantly
larger than W. If we assume the object of interest being somewhere inside
W, the robot certainly can detect it, so there is no reason to constrain the
search just to W rather than to W™. Our goal is to consider this fact in our
future approaches.

The way we determine the set L has a lot of inconveniences too. One of
them is that the number of triangles generated by triangulation is strongly
dependent not only on the size of the environment but also on its complexity
(e.g., if some curve is present). We have shown that on the reachable area
W generated with the usage of joint type round (Sec. . The number of
generated points by triangulation is unnecessary large even if the environment
is not that complex and its proper reduction (by the introduced method) is
too computationally demanding. The best way to tackle this problem would
be to solve it as a separate optimization task similar to the AGP. Kazazakis
& Argyros [14] address this problem. Their method is based on dividing the
non-convex polynomial environment into a set of convex polygons. Amit et
al. [2] also have similar approach. We are looking to get inspired by these
authors in the future.

We have revealed a drawback of our way of weighting vertices by visibility
polygons. In case some of them overlap redundant information is accounted
into the weights. This happens even more often if the vertices are densely
distributed. An improved version may be based on the following. We take
every doublet of vertices and determine their visibility polygons the same
way as we already do. We check whether they overlap and in case they do we
find out by what amount. We take that amount, divide it by two, and we let
the result to be reflected in the weights of both points equally. For even more
advanced approximation, we take every triplet, quadruplet and so on.

The idea of on-line planning is established on re-planning during the search.
The area that was already seen is at some moment cut off from the rest
of the environment, and on the remaining unsearched part, the planning is
performed again. The on-line planning may include a new generation of the
points in L, their weighting and solving GSP or just the re-weighting and
solving GSP on the unvisited subset of the original set L. This approach
is particularly interesting, as it makes the usage of slow methods almost

62

9. Future research

impossible over the fast ones. The true potential of meta-heuristics proposed
in this thesis might get revealed.

The last point in our improvement suggestions is to generalize the GSP by
implementing more aspects of the planning in it. The fact is that the exact
amount of new information gained by visiting each vertex is dependent on
the order of vertices in the planned path X. From this, we can conclude that
even the most accurate way of weighting vertices is just an approximation
of the desired amount of new information as long as it does not account the
order of visits. We propose a generalization of the GSP, where the weights of
vertices are not pre-defined, but rather calculated for each individual path
(e.q., by some external function). To take account of the angles by which the
robot must turn in the vertices might also be a useful generalization. The
natural condition would be to minimize the total amount of time the robot
spends on turning around by some angle while in place. Paths that do not
contain lots of sharp angles would then be preferred over those that do.

Surely we could continue with ideas as the world of possibilities is indeed
broad, but at some point, we have to stop. In more distant future, we consider
extending our range of the problem into the multi-robot case or searching in
an environment that is not known apriori. We look forward to whatever the
future might bring.

63

64

Appendices

65

66

Appendix A

List of abbreviations

Abbreviation Meaning

TSP
TDP
GSP
SRSSK

GRASP
TS

VNS
ILP

BC
BCP
VND
LSM
bVNS
LS
TSPLIB
BKS
AGP
ROS

Traveling Salesman Problem

Traveling Deliveryman Problem

Graph Search Problem

Single Robot Search for a Stationary Object in a Known
Environment

Greedy Randomized Adaptive Search Procedure
Tabu Search

Variable Neighborhood Search

Integer Linear Programming

Branch&Cut

Branch&Cuté&Price

Variable Neighborhood Descent

Local Search Method

basic Variable Neighborhood Search

Local Search

Traveling Salesman Library

Best Known Solution

Art Gallery Problem

Robot Operating System

67

68

Appendix B

Bibliography

Herndn Abeledo, Ricardo Fukasawa, Artur Pessoa, and Eduardo Uchoa.
The time dependent traveling salesman problem: polyhedra and al-

gorithm. Mathematical Programming Computation, 5(1):27-55, Mar
2013.

Yoav Amit, Joseph S. B. Mitchell, and Eli Packer. Locating guards
for visibility coverage of polygons. In Proceedings of the Meeting on
Algorithm Engineering € Expermiments, pages 120-134, Philadelphia,
PA, USA, 2007. Society for Industrial and Applied Mathematics.

Giorgio Ausiello, Stefano Leonardi, and Alberto Marchetti-Spaccamela.
On salesmen, repairmen, spiders, and other traveling agents. In Giancarlo
Bongiovanni, Rossella Petreschi, and Giorgio Gambosi, editors, Algo-
rithms and Complexity, pages 1-16, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

Lucio Bianco, Aristide Mingozzi, and Salvatore Ricciardelli. The traveling
salesman problem with cumulative costs. Networks, 23(2):81-91, 1993.

K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and
minimum latency tours. In 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003. Proceedings., pages 36—45, Oct 2003.

Xiaorui Chen and Sara McMains. Polygon offsetting by computing
winding numbers. 01 2005.

William J. Cook. In Pursuit of the Traveling Salesman: Mathematics at
the Limits of Computation. Princeton University Press, 2011.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Johnson’s algorithm for sparse graphs. In Introduction to
Algorithms, pages 636—640. McGraw-Hill Higher Education, 2001.

Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive
search procedures. Journal of Global Optimization, 6(2):109-133, Mar
1995.

69

B. Bibliography

[10]

[11]

[12]

Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun.
Monte carlo localization: Efficient position estimation for mobile robots.
In Proceedings of the Sixteenth National Conference on Artificial In-
telligence and the Eleventh Innovative Applications of Artificial Intelli-
gence Conference Innovative Applications of Artificial Intelligence, AAAI
'99/TAAI ’99, pages 343—-349, Menlo Park, CA, USA, 1999. American
Association for Artificial Intelligence.

Michel Gendreau and Jean-Yves Potvin. Metaheuristics in combinatorial
optimization. Annals of Operations Research, 140(1):189-213, Nov 2005.

Pierre Hansen, Nenad Mladenovié¢, Jack Brimberg, and José A. Moreno
Pérez. Handbook of Metaheuristics. Springer US, Boston, MA, 2010.

Angus Johnson. Clipper - an open source freeware library for clipping
and offsetting lines and polygons. http://www.angusj.com/delphi/
clipper.php| 2014.

G. D. Kazazakis and A. A. Argyros. Fast positioning of limited-visibility
guards for the inspection of 2d workspaces. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 3, pages 28432848
vol.3, 2002.

Elias Koutsoupias, Christos Papadimitriou, and Mihalis Yannakakis.
Searching a fixed graph. In Friedhelm Meyer and Burkhard Monien,
editors, Automata, Languages and Programming, pages 280-289, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

Miroslav Kulich, Juan José Miranda Bront, and Libor Preucil. A meta-
heuristic based goal-selection strategy for mobile robot search in an
unknown environment. Computers & Operations Research, 84:178-187,
2017.

Miroslav Kulich and Libor Preucil. Multi-robot search for a stationary
object placed in known environment. In review.

Miroslav Kulich, Libor Pteucil, and Juan José Miranda Bront. Single
robot search for a stationary object in an unknown environment. In 201/
IEEE International Conference on Robotics and Automation (ICRA),
pages 5830-5835, May 2014.

Nenad Mladenovié¢, Dragan Urosevi¢, and Said Hanafi. Variable neighbor-
hood search for the travelling deliveryman problem. 4OR, 11(1):57-73,
Mar 2013.

Nenad Mladenovi¢ and Pierre Hansen. Variable neighborhood search.
Computers € Operations Research, 24(11):1097 — 1100, 1997.

K. J. Obermeyer and Contributors. VisiLibity: A c++ library for
visibility computations in planar polygonal environments. http://www|
VisiLibity.org, 2008. R-1.

70

http://www.angusj.com/delphi/clipper.php
http://www.angusj.com/delphi/clipper.php
http://www.VisiLibity.org
http://www.VisiLibity.org

[22]

[23]

[24]

[33]

[34]

[35]

B. Bibliography

Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford Uni-
versity Press, Inc., New York, NY, USA, 1987.

L. Paul Chew. Constrained delaunay triangulations. Algorithmica,
4(1):97-108, Jun 1989.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source
robot operating system. In ICRA Workshop on Open Source Software,
2009.

Gerhard Reinelt. Tsplib - a traveling salesman problem library. ORSA
Journal on Computing, 3(4):376-384, 1991.

Amir Salehipour, Kenneth Sérensen, Peter Goos, and Olli Braysy. Effi-
cient grasp+vnd and grasp+vns metaheuristics for the traveling repair-
man problem. 4/OR, 9(2):189-209, Jun 2011.

Alejandro Sarmiento, Rafael Murrieta-Cid, and Seth Hutchinson. A
multi-robot strategy for rapidly searching a polygonal environment. In
Christian Lemaitre, Carlos A. Reyes, and Jests A. Gonzilez, editors,
Advances in Artificial Intelligence — IBERAMIA 2004, pages 484—493,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

Boris Schling. The Boost C++ Libraries. XML Press, 2011.

T. C. Shermer. Recent results in art galleries [geometry]. Proceedings of
the IEEE, 80(9):1384-1399, Sep 1992.

Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Ming C. Lin and Dinesh
Manocha, editors, Applied Computational Geometry: Towards Geometric
Engineering, volume 1148 of Lecture Notes in Computer Science, pages
203-222. Springer-Verlag, May 1996. From the First ACM Workshop on
Applied Computational Geometry.

Jonathan Richard Shewchuk. Triangle: A two-dimensional quality
mesh generator and delaunay triangulator. https://www.cs.cmu.edu/
~quake/triangle.html], 2005.

Marcos Melo Silva, Anand Subramanian, Thibaut Vidal, and Luiz Satoru
Ochi. A simple and effective metaheuristic for the minimum latency
problem. FEuropean Journal of Operational Research, 221(3):513-520,
2012.

John N. Tsitsiklis. Special cases of traveling salesman and repairman
problems with time windows. Networks, 22(3):263-282, 1992.

Bala R. Vatti. A generic solution to polygon clipping. Commun. ACM,
35(7):56-63, July 1992.

Melonee Wise and Tully Foote. Turltebot: a low-cost, personal robot
kit with open-source software. https://www.turtlebot.com/}, 2010.

71

https://www.cs.cmu.edu/~quake/triangle.html
https://www.cs.cmu.edu/~quake/triangle.html
https://www.turtlebot.com/

72

Appendix C

CD Content

File

Description

F3-BP-2018-Jan-Mikula.pdf
thesis.zip

results.zip

gsp.zip

srssk.zip

The PDF file containing this thesis.

The ZIP archive containing the IATEX
source files of this thesis.

The ZIP archive containing the results
presented in this thesis together with the
scripts for processing them and creating
the KTEX tables.

The ZIP archive containing the source
files of Part [Tl of this thesis. Instructions
on building the project and running the
experiments are included in README. txt.
The same as previous but for Part .

73

	Preliminaries
	Introduction, goals, structure
	Subject background
	Literature review
	Robotic planning

	Graph Search Problem
	Problem definition
	Graph Search Problem formulation
	Solution requirements

	Solution approach
	Reference methods
	Variable Neighborhood Search
	The algortithm
	Local Search improvement
	New operators
	Proposed meta-heuristics

	Computational results
	Implementation
	Reference methods
	Proposed methods

	Single Robot Search for a Stationary Object in a Known Environment
	Problem definition
	Solution approach
	General Framework
	Offsetting the environment
	Triangulation
	Vertices Reduction
	Path Planning
	Weights Calculation
	Proposed variants

	Computational results
	Implementation, simulation, tools
	Off-line planning
	ROS simulation

	Final Remarks
	Conclusions
	Part I
	Part II

	Future research

	Appendices
	List of abbreviations
	Bibliography
	CD Content

