
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of telecommunication engineering

Bachelor thesis

Mobile network optimization exploiting
Multi-Access Edge Computing

Jakub Nový

Supervisor: Ing. Jan Plachý

May 2018

v

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.

I have no objection to usage of this work in compliance with the act §60 Zákon č.
121/2000Sb. (copyright law), and with the rights connected with the copyright act
including the changes in the act.

Prague, 20.5.2018 …………………………………….

Acknowledgement
I would like to thank my supervisor, Ing. Jan Plachý, for all the advice and help he provided
me during the work on this thesis. I am very grateful for his positive, supportive attitude
he showed every time we met.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

456919Personal ID number:Nový JakubStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Telecommunications Engineering

Communications, Multimedia, ElectronicsStudy program:

Network and Information TechnologyBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Mobile Network Optimization Exploiting Multi-Access Edge Computing

Bachelor’s thesis title in Czech:

Optimalizace mobilní sítě pomocí Multi-Access Edge Computing

Guidelines:
Study the Multi-Access Edge Computing (MEC) concept, OpenAirInterface (OAI) platform and Self optimization of mobile
networks. Analyze challenges and existing solutions of the MEC implementation into the OAI platform for control of mobile
devices communication. Based on existing solutions implement a suitable solution. Exploit the MEC for processing of
information collected from mobile devices to optimize the mobile network. Implement required functionalities in the OAI
and demonstrate its functionality.

Bibliography / sources:
[1] P. Mach, Z. Becvar, "Mobile Edge Computing: A Survey on Architecture and Computation Offloading," IEEE
Communications Surveys & Tutorials 2017.
[2] C.CWang, et al, "Mobile Edge Computing-enabled Channel-aware Video Streaming for 4G LTE," 2017 13th International
Wireless Communications and Mobile Computing Conference (IWCMC), 2017.
[3] N. Nikaein, et al., "OpenAirInterface: A Flexible Platform for 5G Research," SIGCOMM Comput. Commun. Rev. 44, 5
(October 2014), 33-38.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Plachý, Department of Telecommunications En, FEL

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: __________Date of bachelor’s thesis assignment: 11.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signatureIng. Jan Plachý

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

ix

Anotace

Každým rokem roste počet zařízení připojených do mobilních sítí. Zároveň se zvyšují
požadavky na jejich výkon a funkcionalitu, které se v současnosti blíží k technickým
limitům zařízení. Jedním z možných řešení je využít Multi-Access Edge Computing, který
uživatelům poskytuje výpočetní prostředky na hraně mobilní sítě, například v základnové
stanici. Dále poskytuje mobilním operátorům možnost optimalizovat mobilní síť na hraně
sítě.

Tato práce se kromě seznámení s konceptem Multi-Access Edge Computing soustředí na
jeho začlenění do emulační platformy mobilních sítí OpenAirInterface a představuje
experimentální řešení implementace, včetně demonstrace funkcionality implementace.

Summary

The number of devices connected to the mobile networks increases every year. At the same
time, the performance and functionality requirements of the devices grow and reach the
technical limits. One of the possible solutions is to employ Multi-Access Edge Computing,
which provides the mobile users Computing resources at the edge of the mobile network,
for example at base stations. Furthermore, it provides the mobile operators with a
possibility to do mobile network optimisation at the edge of the mobile network.

This thesis focuses on understanding the Multi-Access Edge Computing and its integration
in the mobile networks emulation platform OpenAirInterface. The experimental
implementation and demonstration of implementation functionality are presented as well.

Key words: 4G/5G mobile networks, LTE, Mobile-Edge Computing, Multi-Access Edge
computing, OpenAirInterface

xi

Contents

1 Introduction ... 1

2 Multi-Access Edge Computing in mobile networks ... 4

2.1 Multi-Access Edge Computing use cases and service scenarios 5

2.1.1 User-oriented services ... 6

2.1.2 Network quality services .. 6

2.1.3 Operator and third-party services ... 8

2.2 Evolution and concepts of Multi-Access Edge Computing 8

2.3 Multi-Access Edge Computing framework ... 9

2.4 Multi-Access edge services ... 11

3 OpenAirInterface ... 12

3.1 Software and system structure .. 12

3.2 OpenAirInterface platform .. 14

3.3 OpenAirInterface structure ... 15

3.4 Internal messaging in OpenAirInterface ... 15

3.4.1 Tasks and threads .. 16

3.4.2 Messaging ... 16

4 Proposed Multi-Access Edge computing implementation design 18

4.1 Challenge 1: prerequisites for Multi-Access Edge Computing implementation .. 19

4.1.1 Code location and integration ... 19

4.1.2 Thread allocation ... 19

4.2 Challenge 2: connection between Multi-Access Edge Host and eNodeB 20

4.2.1 Connection options... 20

4.2.2 Protocol choice ... 22

4.2.3 Employment of ITTI .. 23

4.3 Challenge 3: eNodeB data harvesting and Multi-Access Edge Computing control
 .. 24

4.3.1 Data harvesting .. 24

4.3.2 eNodeB control ... 25

4.4 Challenge 4: Multi-Access Edge Computing source code 26

4.4.1 Common characteristics ... 26

xii

4.4.2 Multi-Access Edge Host – server part ... 27

4.4.3 OpenAirInterface – client part .. 31

5 Further and open research challenges .. 34

5.1 Data routes .. 34

5.2 Data transfer between the client and the server .. 34

5.3 OpenAirInterface client extension... 35

5.4 Multi-Access Edge Host extension .. 35

6 Multi-Access Edge Computing implementation demonstration 36

6.1 Environment setting .. 36

6.2 Data harvesting ... 36

6.3 eNodeB control via Mobile Edge Host ... 38

7 Conclusion ... 41

8 References .. 42

INTRODUCTION

1

1 Introduction
Mobile telecommunications provide connectivity to millions of people all around the world.
Many everyday tasks are almost unimaginable without telecommunication technics – it is
not only calling and sending short messages (SMS), but also many other services which
were introduced to mobile devices as an additional functions. Devices, communicating with
the mobile networks are generally called User Equipments (UEs), as they cover a wide area
of apparatuses, such as, smartphones, tablets, other specialised devices or devices from the
category of the Internet of Things (IoT), etc. Nowadays the UEs can run variety of users’
applications, from a simple application for alarm clock or calculator to the complex
applications which used to run only on a desktop computer just a few years ago.

The evolution in the field of mobile telecommunications is ever ongoing, wich is shown in
the provided division of mobile network generations. The first generation (1G) consisted
only of analogue mobile radio systems in the 1980s capable of transferring voice signals,
second generation (2G) brought digital mobile systems, and the third generation (3G) was
able to handle broadband data. Present fourth generation (4G), often called Long-Term
Evolution Advanced (LTE-A) and LTE-A Pro, was firstly introduced in 3rd Generation
Partnership Project (3GPP) Release 10 (containing its specifications) [1]. Both LTE-A and
LTE-A Pro are entirely packet-switched and offer a high-speed connection for the UEs.
Nowadays, the main focus is on fifth generation (5G) of mobile networks, which should
provide higher capacity, as well as providing connectivity to a large number of mobile
devices, including so-called Machine Type Communication [2], [3], while providing lower
latency than 4G.

The mobile communication is a worldwide field of research and standardisation
management. To create a stable environment for cooperation between industry and
research, several standardisation organisations were established. Important standardisation
body in this area is 3GPP, which defined a standard for 3G and now continues with
standardisation of succeeding generations of mobile networks. The second standardisation
institution named International Telecommunication Union (ITU) is a specialised agency of
United Nations (UN) and targets standardisation in the field of telecommunication in
general. Especially for Europe, the European Telecommunications Standards Institute
(ETSI) is important. Institute of Electrical and Electronics Engineers (IEEE) should be
mentioned too because this institute plays an important role in telecommunication field
research.

Alongside the development of mobile networks continues the development of the UEs,
which connect mobile users to the Internet via mobile networks. Even in this area, the
development is rapid, but the physical limitations and different speed of research in the
development of the UEs (communication parts, processors, batteries) may not match the
mobile users’ requirements. The mobile users’ requirements are increasing due to the
development of novel applications with increasing processing complexity. Furthermore,
energy consumption of the UEs is not matched by the development of batteries.

INTRODUCTION

2

To prolong the battery lifetime of the UEs, computation demanding applications can be
run in the cloud on remote computational resources, e.g., Mobile Cloud Computing (MCC)
[4]. However, exploitation of remote computational resources is limited by the
communication latency.

To reduce the communication latency, a concept formerly known as Mobile Edge
Computing (MEC) was introduced. The MEC, nowadays known as Multi-Access Edge
Computing, enables to offload computation processing of the UE’s applications to the
servers at the edge of a network called Multi-Access Edge Host (MEH) [5], located at the
base stations, small cells and other network elements, to prolong the battery lifetime of the
UE. Due to MEC proximity to the UEs, the communication latency is reduced.
Furthermore, offloading computation of UEs’ applications to the MEH not only leads to
energy savings, but enables the users to enjoy faster computation, and increase in the
overall Quality of Experience (QoE). The exploitation of the MEC also supports the
development of new applications which were previously unimaginable., e.g. applications
exploiting the data collected directly from the mobile network and providing the UEs with
a brand-new type of content. It is not only the users who profit from the MEC but also
the mobile operators and third parties, who can come up with new applications based on
the abilities of the MEC.

Ongoing development of the MEC requires a suitable environment which enables fast and
cost-efficient development. Several test-beds have been already introduced to demonstrate
the possibilities of the MEC, but the implementation in the mobile operators’ networks
will take some time. At the present day, it is necessary to test newly proposed solutions in
the environment closest to the real mobile network.

The process of verifying new solutions can be performed in different ways. One way of
verifications is to do simulations – preparing the computer behaviour model of the studied
object and then running the simulation program in the laboratory environment. The
simulation does not reflect all the real-life issues due to a high level of abstraction. Because
of this reason, the simulations cannot model the studied situation in the whole complexity.

The second way how to confirm expected outputs is via a testbed consisting of real
hardware. It is usually a very expensive matter, but the results are the closest to the real
system results. The time needed to prepare the test is much longer than in the case of
simulation and reproducibility of the experiment is problematic.

The last option, combining benefits from both previously mentioned ways is an emulation.
The emulator provides a virtualised base for real application and thus delivers a better
view of the whole tested system. The results obtained with emulation can be considered
close to results acquired while measured in the real system. On the other hand, the
difficulty and the price are (slightly) higher than the simulation.

The most up to date mobile network emulator, which follows 3GPP standards is the
OpenAirInterface (OAI) platform [6], [7]. This open-source project, jointly developed by

INTRODUCTION

3

many companies, universities and individuals, is highly sophisticated and allows to simulate
and emulate mobile network even with the connected real hardware devices. The OAI
enables emulation of both Radio Access Network (RAN) and the Core Network (CN). The
UE can be simulated, emulated, or real device can be used.

The goal of this thesis is to analyse possible implementation scenarios how to integrate
the MEC into the OAI platform and demonstrate the implementation.

The rest of the thesis is organised as follows. Introduction of the MEC and its use cases
are provided in Chapter 2. The OAI platform is introduced in Chapter 3. Chapter 4
provides an overall description of the proposed MEC implementation, while several key
implementation challenges are closely examined in its sections. In chapter 5 the future
challenges for the complete MEC integration are summarised. The following Chapter 6
presents the demonstration of current MEC implementation and measurement results. The
last chapter concludes the thesis and outlines future work.

MULTI-ACCESS EDGE COMPUTING IN MOBILE NETWORKS

4

2 Multi-Access Edge Computing in mobile networks
Although the idea of the MEC is simple – to provide low-latency services, such as cloud
storage or computing, to the UEs and exploit data collected from the radio network to
control the network – the whole concept is much more complicated and still evolving.

The MEC concept brings well-known MCC services to the RAN and extends it with the
access to radio information to offer context-related services. The fundamental element in
the whole MEC structure is a computational and storage device called Multi-Access Edge
Host (MEH) at the edge of the network. To enable lower latency, the host servers (MEHs)
are located as close as possible to the UEs [8], [9]. By placing the MEH at the base stations
(eNBs), small cells, remote radio heads, etc. the latency significantly decreases and, also,
backhaul network load decreases [10].

On the contrary to the MCC, the MEC architecture is very flexible due to the deployment
of MEHs at the base stations. The approach of distributed MEHs is highly effective because
it brings the possibility to strengthen the computational power in the whole network while
enabling load balancing by offloading computation load of the overloaded MEHs to less
loaded MEHs. However, the decentralised nature of the MEC has a drawback in the slightly
more complicated allocation of computational resources, as well as handling of the UEs’
mobility, compared to the centralised MCC. Nevertheless, the benefits of much lower
latency and a significant decrease in mobile operators backhaul network overcome this
drawback. The concept of decentralised hosts also means that the computational power
and storage in each MEH is limited, although the overall capacity can be comparable to
MCC (via joining multiple MEHs into computing cluster). Comparison of the MCC and
the MEC is shown in Table 2.1, partially based on [11].

Table 2.1 MCC and MEC comparison.

Aspect MCC MEC

Arrangement schema Centralised Distributed
Arrangement design Simpler More difficult
Arrangement flexibility Lower Higher
Latency Higher Lower
Distance from UE Higher Lower
Storage capacity Higher Lower
Computational Power Higher Lower

In the following Section 2.1, the description of possible use cases and service scenarios of
the MEC are discussed. Evolution of the MEC concept is given in Section 2.2, followed by
a description of the MEC system architecture and implementation in Section 2.3. The last
Section 2.4 points out new services brought by the MEC.

MULTI-ACCESS EDGE COMPUTING IN MOBILE NETWORKS

5

2.1 Multi-Access Edge Computing use cases and service scenarios

The MEC ecosystem is full of opportunities for end-users, mobile operators, content
providers, and many other parties. All of them should cooperate to achieve innovative
services and applications. The main three use case categories, as stated in [11], are focused
on users, mobile networks, and operators or third-party providers. A division of the use
cases and the service scenarios based on this paper are shown in Figure 2.1. Use cases are
also discussed in ETSI specification GR MEC 018 [12] chapter 4 - Mobility requirements
and use cases. In the mentioned specification, the use cases are analysed mainly from the
perspective of timing and relocation of computation resources when the UE is moving.
However, this thesis focuses on data gathering and its processing at MEH, thus the MEH
is considered static.

A closer description of each category with examples of service scenarios to illustrate the
possibilities for each category, based on the [11], is provided in the next subsections.

Figure 2.1 Division of the MEC use cases.

MULTI-ACCESS EDGE COMPUTING IN MOBILE NETWORKS

6

2.1.1 User-oriented services

The MEC is highly beneficial for users by providing the UEs with additional computational
resources and storage capacity at the edge of the mobile networks. The additional
computational resources can be exploited for example for application offloading [13]. To
provide the UEs’ with the best Quality of Service (QoS), several aspects must be
considered.

In the offloading of UEs’ applications, as introduced in [14], the UEs’ application is
presented as a set of tasks. The tasks are divided into two main groups: offloadable tasks,
such as face recognition process or video editing, and non-offloadable tasks, which usually
need hardware in the user device (e.g., sensors, user input, result output). The application
itself usually comprises of a number of different tasks, where some of them are offloadable
tasks whereas some are non-offloadable tasks. Naturally, only offloadable tasks can be
offloaded to the MEC. Considering this fact, it is possible to offload just a part (one or
more tasks) of the whole application, usually the one which is the most energy consuming.

The tasks can be related to each other, by requiring the output of one task as an input for
the next task. When a group of tasks do not depend on each other, they can be processed
in parallel at the same time. This fact can affect the resulting latency of the offloading and
overall complexity. The execution can be done at the UE or at the assigned MEH. An
example of parallel processing can be an analysis of the UE owner’s face in several different
ways. Note that the picture must be taken first through the phone camera. This simple
example demonstrates task division – non-offloadable task (camera input) and offloadable
task (face recognition) – as well as the dependencies between the tasks.

The question whether to offload or not has several aspects as shown in [15]. The offloading
is only favourable when the communication conditions are appropriate. Thus, the accurate
knowledge of current radio quality is crucial. Due to the UE’s movement and varying
environment (trees, vehicles, pedestrians, etc.), the quality of the connection between the
UE and the base station changes in time. Without accurate information about the mobile
network, more time can be spent by transmission of the offloaded task to the MEH and
reception of the processed data than by the local (on-device) execution, leading to increased
latency and energy consumption of the application [13].

It is clear that the offloading decision is a complex problem which requires multiple inputs
for consideration. Algorithms, such as described in [15] and [16] have to decide whether to
offload or not, based on the UE’s current movement, amount of processed data, current
MEC computational status compared to the UE’s computational status, and the
communication state.

2.1.2 Network quality services

The mobile network can significantly profit from the presence of the MEC. In this case,
the MEC takes care of the network optimisation to improve the QoS. Due to the proximity

MULTI-ACCESS EDGE COMPUTING IN MOBILE NETWORKS

7

of the MEH and the RAN, it is easy to collect data from the connected devices, process
them and optimise the network almost immediately. In the optimisation of the mobile
network, several parameters related to the quality and resource allocation of the radio links
can be adjusted. These parameters include a number of allocated resource blocks (RB) for
uplink and downlink for each UE or Signal to Interference plus Noise Ratio (SINR) via a
change of UE or base station transmission power. The mentioned parameters are part of
Medium Access Control (MAC) layer and are obtained from the protocol stack [17].
Optimization via the MEC is not limited to the radio link parameters, as it is possible to
change parameters of upper layers or other protocols such as Transmission Control Protocol
(TCP), e.g. TCP windows scale option to increase the maximum value of bytes transferred
in one TCP window [18]. Another way to improve QoS is to reroute the traffic via Software
Defined Networking (SDN) [19]. The distributed nature of the MEC helps with the self-
optimisation of the mobile network, which becomes necessary as the number of connected
devices increases, making it impossible to optimise the whole mobile network manually. It
is a matter of the software installed at the MEH which defines how significant is the
influence on the UEs; theoretically, the possibilities are unlimited [20].

The MEC is beneficial together with new approaches in the field of mobile communications.
A significant increase in the number of connected UEs and overall data transfers pushes
the mobile operators to upgrade their infrastructure. To save expenditure, new approaches
to the traditional mobile network structures are necessary to utilise all available resources
efficiently. It can be the Cloud-RAN (C-RAN) architecture, where different base station
resources are centralised to a single resource pool and then managed jointly [21]. The SDN
architecture allows easy repolicing or reconfiguration via decoupling of the data and the
control plane [22]. The MEC can be useful also in combination with Network Function
Virtualization framework (NFV), which changes the architecture of core network (CN) to
be more cost-efficient and enable dynamic changes depending on needs of the UEs [23].

The MEC can serve as local content storage for frequently accessed content in the MEC
served area; this function of the MEC is denoted as content caching [24]. The amount of
traffic flowing through the core network is then decreased by distributing the cached
content at the MEH, instead of accessing the content beyond the CN.

It has to be noted that the MEC concept has still many open challenges to be solved, as,
for example, shown in [11], [25]; the standardisation process is ongoing [26]. Nevertheless,
ETSI defined several areas for a proof-of-concept, which are being completed to show the
benefits of the MEC. As suggested by ETSI [20], and later presented in [27], the MEC can
be used for channel-aware video streaming. The authors of [27] present the benefit of
adaptive video transmission mechanism where the channel quality information is used to
change the transmission bitrate to fit the estimated bandwidth dynamically. The
demonstration was done via the emulated mobile network on the OpenAirInterface
platform.

MULTI-ACCESS EDGE COMPUTING IN MOBILE NETWORKS

8

2.1.3 Operator and third-party services

Even in these days, the mobile operators collect a massive amount of data, known (due to
their size) as Big Data about the network and connected devices. The Big Data is usually
analysed at the operator’s datacentre. However, it is very efficient to pre-process the data
locally instead of transporting raw data to the core network. Thus, the MEC provides an
option to pre-process the data to avoid transport of raw network data.

The MEC also plays a significant role in a boom of the IoT. These devices usually do not
have enough memory, since they are usually single-purpose devices. In this case, the MEC
can be used not only as a storage for the collected data, but also as a communication node
for a group of neighbouring devices and serve as an IoT Gateway [20]. This type of
processing is also known under name Fog computing [28]. Due to the high similarity
between the Fog and MEC, the computational power of the MEC can be exploited for pre-
processing and analysis of collected data. Then, only the pre-processed data are transferred
to the core network or centralised cloud for further processing and analysis. This concept
serves well for example for security purposes when a large number of video streams from
the CCTVs are collected, but only times when there is an activity in the stream are
transferred to the client [20]. As the MEH stores the whole stream, no data are lost and
can be retrieved on demand.

Another service scenario presented by ETSI is a video stream analysis. MEC can analyse
streams from the video cameras searching for a specific information, e.g. licence plates of
vehicles entering an area and checking if these cars are allowed to enter the surveyed area.

Since the MEH is implemented directly at the base station or the at the edge of the CN,
it is an operator’s decision whether the infrastructure will be open for the third-parties,
considering the potential economic profit. The third-parties and their systems and solutions
can also have access to data from the mobile network (current load, QoS of devices) to
enhance the performance of the provided service. The privacy of users has to be preserved,
thus the given data must be anonymised or filtered before passing to the third party.

The MEC can provide infrastructure for connected car cloud, gathering various information
from the vehicles and roadside sensors and then change the traffic structure.

The MEC gives ample possibilities for disruptive applications both providing users with
new capabilities and supporting market growth. It is a new field full of challenges for many
organisations and individuals, such as applications developers, mobile subscribers, content
providers or software vendors [29].

2.2 Evolution and concepts of Multi-Access Edge Computing

Before the MEC has been standardised by ETSI, several concepts of edge computing were
proposed. The idea of MEC origins from the MCC, which is still commonly used. During

MULTI-ACCESS EDGE COMPUTING IN MOBILE NETWORKS

9

the evolution, some parameters, such as MEC server location, changed. Short description
of concepts is provided in following paragraphs.

The first idea to add computation and storage capabilities was introduced in 2012 [30].
The system named Small Cell Cloud (SCC) focused on enhanced small cells (SCeNBs).
The SCeNBS are enhanced by additional storage and computational resources which can
be exploited by the UEs for edge computing. The introduction of the SCeNBs requires a
new entity called Small Cell Manager (SCM), which manages resource allocation. The SCC
also considers an option to cluster multiple SCeNBs to provide more processing power for
tasks which can be parallelised. The MEC resources are virtualised at the SCeNBs.

Another approach was introduced in Mobile micro clouds (MMC) [31]. No control entity
is needed since the control is fully distributed.

Fast moving personal cloud (MobiScud) [32] architecture uses a software-defined
network (SDN). The cloud resources are located at operator’s cloud within RAN and not
directly at the eNB. Control entity is called MobiScud control (MC).

The idea of Follow me cloud (FMC) [33] leaves the computational or storage power in
CN network, more precisely to the distributed data (DC) centres which follow the UE
when moving through the mobile network. Two additional entities are introduced: FMC
controller and DC/GW mapping entity.

A concept named CONCERT [34] uses the SDN and Network function virtualisation
(NFV). The resources are placed hierarchically within the network. In addition to local
servers which are located at the base station (in case of LTE network eNB), the regional
or central servers can be exploited as well. The control entity is called conductor.

Nowadays, the main focus is given to the MEC concept standardised by ETSI, which is
supported by an increased number of researchers focusing on the MEC. The two following
sections summarise the MEC as standardized by ETSI.

2.3 Multi-Access Edge Computing framework

The described MEC framework is based on the MEC standardisation by ETSI. Several
standardisation aspects have been already examined, and other aspects are still being
analysed. The primary focus of the standardisation process is on the Application
Programming Interfaces (APIs) such as UE Identity API, Bandwidth Management API or
General principles for Multi-Access Edge Service APIs, platform management and
requirements.

Framework and reference architecture of the MEC is specified in ETSI GS MEC 003 [35].
The general entities are divided into three levels: network, host level, and system level, as
illustrated in Figure 2.2.

MULTI-ACCESS EDGE COMPUTING IN MOBILE NETWORKS

10

The whole MEC system has two main parts covering several Multi-Access Edge (ME)
elements – ME hosts (MEHs) and ME management. Short description of functional
elements follows.

The essential device in the MEC ecosystem is ME host (MEH). This entity serves as an
initial physical platform for all ME applications. The MEH offers storage, computational
and network resources and performs virtualisation of computational resources for the ME
applications. The virtualisation infrastructure of the MEH includes traffic routing between
applications and other systems and services (DNS servers, networks, proxies).

The ME platform serves several purposes. It offers the environment for the ME
application, instructs the data plane based on the traffic rules provided by the ME platform
manager, configures a DNS server or proxy based on the inputs from the ME platform
manager and hosts ME services.

The ME platform interacts with the ME applications. These applications running inside
Virtual machines (VMs) benefit from the variety of additional inputs about network state
compared to the applications running in the MCC. They advertise, consume and offer
services. Each application is described by a number of requirements and rules such as
maximal tolerable latency or required computational resources. The fulfilment of
requirements is supervised by ME system level management.

ME system level management covers several functionalities to maintain the whole ME
system. It consists of ME orchestrator (which controls core functions such as available
resources, topology, integrity and authenticity for packages, selection of appropriate MEH,
triggering application actions), Operations Support System and User application lifecycle
management proxy.

The second part of ME management is the ME host level management which includes
ME platform manager and the virtualisation infrastructure manager. ME host level
management handes specific functionalities of given MEH.

On top of that, the whole MEC system contains user equipment application which has
the capability to communicate with the ME system and customer-facing service portal
for third-party customers.

MULTI-ACCESS EDGE COMPUTING IN MOBILE NETWORKS

11

Figure 2.2 MEC framework with its parts.

2.4 Multi-Access edge services

It has been already mentioned several times that the MEC brings broader possibilities
owing to the access to the additional data about the network and the UEs. This data can
be divided into several groups called ME services [35].

The information related to the radio network is maintained by the Radio Network
information service. It informs the application of actual radio network conditions,
statistics and measurements related to the user plane, information about served UEs in the
cell and change this information.

The Location service offers location-related data, such as the location of one, all or group
of specified UEs served by the cell, list of UEs in a specific location and information about
the location of radio nodes which are associated with the MEH. The format of location can
vary: it can be Cell ID, geolocation, etc.

The Bandwidth Manager service can yield bandwidth to certain traffic and thus
prioritise transfer of specific data from MEH.

OPENAIRINTERFACE

12

3 OpenAirInterface
In 2004, Eurecom, French graduate school and research centre in communication
technology, established OpenAirInterface™ (OAI) Software Alliance (OSA) [36]. The OSA
consists of universities (including CTU in Prague) and research institutions as well as
companies such as Orange, Alcatel-Lucent or Samsung. In this project, the academia meets
the industry; the main purpose of this non-profit organisation is to provide a complex
ecosystem for development of cellular systems which would speed up development and
implementation of new functionalities and technologies.

The primary tool developed by OSA is OpenAirInterface platform – an open-source system
consisting of Core Network (CN), in the 4G network called evolved packet core (EPC) and
Radio Access Network (RAN), in 4G networks named evolved universal terrestrial Radio
Access Network (E-UTRAN). The software implementation respects the division into two
parts, openairCN for the CN functions and openair5G covering the RAN part of the whole
cellular system. Both parts are in line with 3GPP, following architecture and protocols
defined in 3GPP specifications.

The OAI is run on a generic PCs with Linux based operating system (preferably Ubuntu).
It implements 3GPP standards for LTE (Release 8) and a subset of function from the
Release 10 necessary for LTE-Advanced. Some other functionalities from further releases
are continuously added.

In addition to the OAI, OSA develops special hardware devices for running of the RAN
part via Software Defined Radio (SDR). Based on the software and hardware, the testbeds
are being created for performance evaluation, demos and other research activities requiring
close to the real network evaluation.

3.1 Software and system structure

The OAI project consists of two main parts – openairCN and openair5G, which are
distributed separately due to use of some functionalities under different licences. Each part
has specific system requirements on Operating System (OS) kernel version and type.

The OAI requires being run on a computer with OS Linux. The main part of both
openair5G and openairCN is written in C-language. Other programming tools are used for
special functions, such as ciphering.

The openair5G includes UE and base station E-UTRAN Node B (eNB). The openairCN
covers the whole core network. It consists of the traditional nodes in LTE [37]:

 Home Subscriber Server (HSS) – a database with user’s information,
 Mobility Management Entity (MME) – a control plane node which manages the

bearers for the UEs and handover support,
 Packet Data Network Gateway (P-GW) – node which connects the CN to the

internet, assigns the IP addresses to the UEs and controls QoS,

OPENAIRINTERFACE

13

 Serving Gateway (S-GW) – user plane node between RAN and CN that works as
a mobility anchor and collects data for charging.

The general relations between all nodes in LTE and LTE-Advanced networks are presented
in Figure 3.1.

Figure 3.1 OAI structure with mobile network elements and their interconnection.

The UE and RAN are in the openair5G run as a single process. A wide spectrum of OAI
compilations is available to the user, enabling him to choose the environment which suits
his needs and interest the most. Once the chosen executable file is run from terminal,
preliminary tasks take place to prepare the set-up. A new virtual network interface between
the UE and eNB is created in the system, which can be checked or logged by several tools.
One of these tools is a specialised ITTI analyser to analyse the internal communication
between layers (RRC and S1AP, RRC and PDCP, PDCP and S1).

On the contrary, each CN component uses its own process and can be managed separately.
Due to this structure, the communication channels are established and can be examined
via many tools ranging from third party-software like Wireshark, Linux built-in utilities to
special OAI tools (e.g. OAI timing analyser, OAI performance profiler). The main
communication events are also displayed directly at the terminal with the process. To
handle the amount of displayed information, log verbosity can be selected to omit
unnecessary messages.

The RAN may be used in two modes, depending on the presence of the CN. The RAN can
be run without the CN, denoted as an emulation without the S1 interface, or with CN,
denoted as an emulation with the S1 interface. The S1 interface consists of the virtual
interface over a physical one, providing connectivity between RAN and CN, as well as inter
CN connection. When using emulation with the S1 interface, the base station interacts
with CN.

OPENAIRINTERFACE

14

3.2 OpenAirInterface platform

The OAI is an open-source code platform for mobile network simulations and emulations
with a broad base of active developers. The source codes are freely available at the project
website [38]. For the development and version control, git is used to ease the management
enabling parallel development of multiple functionalities.

The OAI platform offers a wide spectrum of usage. The OAI can be exploited to emulate
devices in a real-time (testing) or in non-real time (debugging). Communication between
the eNB and the CN is achieved via IP, which encapsulates either message-oriented
protocol with reliable transport Stream Control Transmission Protocol (SCTP) for control
plane or message-oriented User Datagram Protocol (UDP), which does not guarantee the
correct transfer of messages, for user data, as illustrated on Figure 3.2. If two or more
nodes are emulated at one computer, direct memory transfer (via localhost connection) is
used instead of Ethernet.

The OAI platform enables exploitation of both time division duplex (TDD) and frequency
division duplex (FDD) communication for the division of uplink (UL) and downlink (DL)
communication, as well as Hybrid automatic repeat request (HARQ) support and other
functionalities described in Releases 8, 10 and partially 14. During the OAI emulation, the
whole 3GPP protocol stack can be executed. Owing to this, the variety of indoor or outdoor
experimentation can be carried out with the result as precise as possible.

The platform enables abstraction of Physical Layer (PHY) to speed up the simulation. The
PHY abstraction works by exploitation of empirical models of the PHY layer. Without
PHY abstraction, all functionalities of PHY layer are emulated, which make a more precise
model of the real communication. However, the inaccuracy in PHY abstraction is very low
as shown in [39].

PHY

MAC

RLC

PDCP

RRC

Ethernet

IP

UDP

Ethernet

S1-C

IP

SCTP UDP

GTP-US1-UX2AP

eNB

SCTP

S1-C

NAS

S6a

HSS S11 S1-U

SGi

MME S-GW & P-GW

3GPP layers Linux stack Data Plane Control Plane

openair5G openairCN

Figure 3.2 OAI protocol stack of openair5g and openairCN.

The OAI platform can be deployed in the combinations, based on [40], as follows:

 Commercial UE <-> OAI eNB + Commercial CN
 Commercial UE <-> OAI eNB + OAI CN

OPENAIRINTERFACE

15

 Commercial UE <-> Commercial eNB + OAI CN
 OAI UE <-> Commercial eNB + OAI CN (experimental)
 OAI UE <-> Commercial eNB + Commercial CN (experimental)
 OAI UE <-> OAI eNB + Commercial CN (experimental)
 OAI UE <-> OAI eNB + OAI CN
 OAI UE <-> OAI eNB

It is obvious that OAI can work just in emulation mode as well as a part of a bigger set-
up including commercial devices or devices developed directly by OSA for OAI.

3.3 OpenAirInterface structure

The RAN part of OAI platform is divided into several directories, each containing a specific
part of the system. The core network (openair-cn) is also divided, but for purposes of the
MEC implementation only RAN structure is needed. The simplified description of the RAN
directory structure is given below:

 Openair1 contains source files for physical layer together with the scheduling
procedures for this layer.

 Openair2 covers several layers and protocols, namely Radio link control (RLC)
layer, Medium Access Control (MAC) layer, Packet Data Convergence Protocol
(PDCP), The Radio Resource Control (RRC) and X2 Application Protocol
(X2AP). It could be said that in this directory the main part of eNB app is located,
as it contains the important schedulers. Also, source files for FlexRAN
implementation, a software-defined network concept, are here.

 Openair3 provides files for S1 Application Protocol (S1AP), Non-Access Stratum
(NAS) and GPRS Tunnelling Protocol (GTPV1-U). Beside mentioned, the files
ensuring the communication over the Stream Control Transmission Protocol
(SCTP) and User Datagram Protocol (UDP) are stored here.

 The common directory offers OAI utilities and tools used over the whole platform.
 cmake_targets directory deals with Linux compilation requirements, such as

build files and proper dependencies and included paths.

3.4 Internal messaging in OpenAirInterface

A Key utility for inter process/task/interface communication is a tool for internal
messaging called ITTI. ITTI source files are located in common/utils/itti which indicate
that it is a sub-system used in all levels of OAI.

ITTI plays two roles. When the whole system starts, it creates the threads for tasks. During
the platform run, it ensures the communication between tasks and interfaces. Configuration
files and files specifying the tasks are located in individual directories.

OPENAIRINTERFACE

16

ITTI sub-system is enabled for most of the OAI use-cases, only during special occasions
(such as cooperation with some commercial hardware devices), ITTI is disabled. The
decision to disable ITTI must be marked when preparing the compilation of the platform
by a parameter or rewriting the template of CMakeLists file.

3.4.1 Tasks and threads

The list of tasks is specified in targets\COMMON\create_tasks.c and depending on
compilation configuration covers the following:

 task for L2L1,
 task for eNB APP,
 task for SCTP,
 task for S1AP,
 task for UDP,
 task for GTPV1U,
 task for NAS UE,
 task for RRC eNB,
 task for RAL eNB,
 task for RRC UE,
 task for RAL UE.

The list of tasks above is not complete and shows only some of the most important tasks.
It should also be noted that tasks in the EPC are different than in the RAN. ITTI offers
a possibility to create sub-tasks as well.

As said earlier, each task has its own thread created. A loop usually runs in the main
function to check the incoming messages. In the main loop, specific functions are called
based on the internal state, which decides which part of the code should be run next. Before
the start of the loop, each task must be marked by ITTI as ready in order to launch the
platform parts in the right order.

3.4.2 Messaging

When all tasks are set and marked as ready, ITTI’s focus heads toward ensuring the inter-
task communication, even though it still tracks the running threads. To maintain the
overall communication in OAI, a set of function is defined including work with tasks, events
and messages.

Each task has the use of a list of messages. This list of messages is defined for each task in
two header files, and the structure is easy to understand since the file name starts with the
task name and continues with a key string messages_def and messages_types, e.g.
udp_messages_def.h and udp_messages_types.h. The first mentioned file defines the

OPENAIRINTERFACE

17

messages itself (name, priority, structure), while the second file contains the definition of
the structure of each message using a C language struct.

Commonly used ITTI function is itti_alloc_new_message which is called at the
beginning of procedure or function and contains the origin (currently running) task and
type of message (e.g. message_p=itti_alloc_new_message(TASK_MME_APP,

NAS_IMPLICIT_DETACH_UE_IND)) followed by the main function/procedure code which
inserts the data to the message. Assigned data depends on the type of message and its
structure defined in the header file. When all required information is saved in the message,
the whole ITTI message can be sent with procedure itti_send_msg_to_task, where the
target, instance and message are specified (e.g. itti_send_msg_to_task(TASK_NAS_MME,
INSTANCE_DEFAULT, message_p)).

For the connection with nodes outside the local machine, communication over the Ethernet
is exploited. The function itti_subscribe_event_fd watches sockets and thus allows the
communication using SCTP or UDP. When a new packet is received, it is assigned to the
task based on the file descriptor and the received data is transferred to the final task via
ITTI internal messaging.

A number of ITTI functions and procedures is wider. For the sake of simplicity, other
functions and procedures are not described here in detail as it is not a crucial part of the
suggested proposal.

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

18

4 Proposed Multi-Access Edge computing
implementation design

The main goal of this work is to explore possible ways for implementation of MEC in the
OAI platform and implement the best alternative. The implementation including the
challenges is described in this chapter. The general idea is illustrated in Figure 4.1, where
the MEH is connected directly to the eNB to achieve the lowest possible latency.

Important prerequisites and tool for successful MEC implementation into the OAI platform
are presented in Section 4.1.

The proposed architecture should generally aim to create a new connection between the
eNB and the external MEH. This proposed connection will provide MEC with information
from the eNB in real-time. Proposed implementation together with the description of
possible protocols is shown in Section 4.2.

To make the MEC useful, it needs inputs from OAI. The parameters to be used by the
MEH must be defined. Also, the locations, where to process the commands and requests
from MEH needs to be in line with the current OAI code. The options in this area are
introduced in Section 4.3.

To verify the ability and functionalities of enhanced OAI platform, MEH is necessary. Also,
the current OAI code has to be changed to be capable of receiving, sending, and processing
the data to the newly created MEH. The capability of the MEC depends on the code
executed at the MEH - this simplified MEH application and code added to the OAI
platform are introduced in section 4.4. The requirements on MEH in the sense of algorithm
complexity and functionality were already discussed in the Subsection 2.1.1; the
development of this algorithm is a difficult matter, as several teams work on this topic [8].

Figure 4.1 OAI with MEC structure.

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

19

In the proposed system design the MEH acts only as an aggregation point with basic
decision-making ability to demonstrate the possibilities of suggested design. Algorithms
proposed by other work-groups can be then easily implemented later, as the communication
between MEH and eNB remains the same.

4.1 Challenge 1: prerequisites for Multi-Access Edge Computing
implementation

In the scope of ITTI, the exact location for the MEC source files is not crucial, as long as
the code is capable of accessing all necessary functions (which means the required header
files are included) and cooperates with ITTI.

4.1.1 Code location and integration

As the most suitable place for the implementation of the MEC code without extending the
current file structure turned up the C file named s1ap_eNB.c located in \openair3\S1AP.
The cause for selecting this exact file is simple: the functions located here are fundamentally
able to communicate with the interfaces as well as with the main eNB part ensuring the
scheduling, etc. Although the file is originally dedicated to the communication between the
eNB and MME, adding extra code does not cause any harm to the present function. The
next step is to put the MEC source code aside into its own file - this will make the platform
well arranged. However, for testing purposes, the current solution is sufficient and easier
too, as the dependencies in build structure do not have to be considered.

Depending on the demanded capabilities and level of integration into the OAI platform,
several subsequent files must be changed besides the s1ap_eNB.c. Mainly header files so
they include newly created MEC function and allow cooperation of the existing code with
the newly added MEC.

At this moment, the MEC implementation is as a matter of fact only a separated system
inserted into the OAI, allowing further integration in the future. This makes it a clean
testing solution with a minimal impact on the rest of the system.

4.1.2 Thread allocation

To keep the MEC implementation clean and structured, the implementation follows OAI
current code manner to divide task functionality into functions. As in any other program,
these functions have clearly specified threshold event followed by the processing of the
code. The OAI is optimised to achieve the highest performance. However, the optimisation
makes almost impossible to test the proposed MEC solution within the task (or thread
intended for the task) originally dedicated to another task. To ensure the uninterrupted
MEC operation in the OAI, a new thread dedicated just to MEC must be created – this is
the only way how to have separated space on the platform for MEC.

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

20

The tasks, which are set up, are (mostly) listed in file create_tasks.c in
\targets\COMMON. Additional conditions, depending on the compiled version affect the
number of started tasks. To allocate a thread for MEC, a new entry is added:

if (itti_create_task (TASK_MEC, mec_eNB_task, NULL) < 0) {

LOG_E(UDP_, "Create task for MEC failed\n");

return -1;

}

The function itti_create_task(…) starts a thread associated with the task. The
parameters are a task to start and an entry point for this task; the optional argument to
the start routine can be passed in the last argument. If the creation failed, the function
return -1, otherwise 0.

When the task is created, the actual code has to be put to the function marked as a start
point. In the proposed design, the procedure looks like this:

void *mec_eNB_task(void *arg)

{

 ...

 itti_mark_task_ready(TASK_MEC);

 ...

}

Procedure void *mec_eNB_task(…) is located in the file s1ap_eNB.c, which is the same
file for starting S1AP, as mentioned previously.

It should also be noted that a procedure to mark the task to be in the ready state
(itti_mark_task_ready(…)) is called at the beginning. Only the variables necessary for
the proper MEC operation are defined before calling this procedure. The main loop starts
after this procedure.

Creating a new task also brings another advantage: the ITTI tool knows that there is a
part for MEC and internal messages can be addressed then to this task directly.

4.2 Challenge 2: connection between Multi-Access Edge Host and
eNodeB

The MEC server usually does not need to exploit the information stored in CN, so the OAI
openair-cn part is not considered in the proposed architecture. In the rare occasion when
MEC needs a special network-state input from CN, it can be transmitted through the
mediation of eNB. These data do not change frequently, so the incurred latency due to the
mediator does not affect the MEC performance.

4.2.1 Connection options

OAI openair5G is currently endowed with two interfaces to communicate with other nodes
over Ethernet: S1-C for MME and S1-U for S-GW. Several possible scenarios, how to

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

21

connect the MEH and OAI (eNB respectively) are discussed, as each of them has its
advantages and disadvantages.

The first possible approach is to exploit the existing interface. The suitable existing
interface for this purpose is an S1-C as it does not use any additional encapsulation
protocol.

To separate the communication, packet-filtering based on a key attribute (keyword, flag)
is necessary. The function of branching off the packet destined to the MEH and routing
the traffic must be performed by an additional node between the eNB and the MME (e.g.
Open vSwitch [41]).

This approach requires fewer code changes in OAI structure, as the already made
procedures and function would be exploited. Contrarily, the additional software, e.g. Open
vSwitch, developed outside the OSA is necessary and complicates the whole system
architecture.

In the opposite to the previously mentioned approach is a creation of a new, third, interface
designed only for the MEC communication. In this case, bigger changes in OAI would be
necessary as the new interface has to be set up and maintain.

The third option is to use FlexRAN, a platform for SDR RAN developed by the University
of Edinburgh, Eurecom and NCSR “Demokritos” [42]. Deploying of FlexRAN requires
separation of data and control plane and involves new entity denoted as Master Controller.
The Master Controller manages the SDN applications and a group of so-called FlexRAN
Agents which are implemented in each eNB.

In 2016, FlexRAN was implemented to the OAI. The code had to be changed dramatically,
as the data and control plane had not been separated entirely before [43]. Nowadays, even
though the FlexRAN implementation remains in OAI, it is disabled by default due to
higher delay in the MEC scheduling and thus overall throughput rate decrease.

However, for the MEC implementation, it is highly effective to exploit FlexRAN
possibilities, even with the incurred delay. It is already implemented in OAI and provides
many functions gathering the RAN statistics. However, due to mentioned lag in MEC
scheduling, the direct engagement is not acceptable. Nevertheless, some functions
processing RAN state information may be still implemented into proposed MEC without
switching from internal eNB’s scheduler to FlexRAN scheduler.

Creation of new interface only for MEC was decided to be the most suitable solution. It
clearly separates the existing and newly created data traffic. The transition is also faster,
as no additional software is needed and the overall system structure clearer. This
arrangement also gives higher flexibility, e.g. in protocol choice.

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

22

4.2.2 Protocol choice

OAI platform currently uses two transferring protocols, as shown in Figure 3.2. First of
them is User Datagram Protocol [44] which serves to transport datagrams (data units)
between the computers. Just as a Transmission Control Protocol (TCP), UDP needs an
Internet Protocol (IP) as the underlying layer. In the OSI model, UDP represents the
transport layer.

The UDP is a lightweight protocol since it does not support any acknowledgements.
Because of this fact, UDP is not suitable for the transmissions where the duplicate and
delivery protection is needed. If the application needs a guaranteed transmission, other
protocol should be used (such as STCP). The received data are checked by the upper layer.
Because of this, minimum of protocol mechanism is necessary. UDP does not establish a
connection prior the data transmission (it is connectionless).

The second protocol used in OAI is Stream Control Transmission Protocol [45] – an
internet protocol originally designated for communication using Public Switched Telephone
Network (PSTN) signalling messages. The SCTP operates on top of the IP networks and
brings several useful features which make it useful not only for the MEC implementation
but also other network applications:

 when data is transmitted using SCTP, the receiving side acknowledge non-
duplicated and error-free reception of data to the sender,

 SCTP allows data fragmentation to fit maximum transmission unit (MTU) as well
as bundling of multiple data messages into one SCTP packet,

 SCTP network-level is fault tolerable,
 SCTP supports multi-streaming for user messages and sequenced delivery of

messages,
 SCTP supports multi-homing, which means that all network interfaces are

accessible from all other network interfaces. This fact reduces internal routing of
incoming IP datagram.

SCTP was developed to overcome some limitation of stream-oriented Transmission control
protocol (TCP) such as the strict sequence order of delivered data or limited capacities of
TCP sockets. SCTP deals with mentioned issues and brings a packet-oriented standard
suitable for telecommunication applications.

The reliable transfer of data is provided by connection-oriented nature of SCTP between
two endpoints. To be able to transfer user data, the connection must be established first.
The initialisation is done by packet handshake, as illustrated in Figure 4.2. To establish a
connection, a 4-way handshake is used: the connection is initiated by an SCTP client, the
SCTP server answers with a cookie sent back to the client and waits for acknowledging to
allocate the necessary resources. After the transmission of all data, the established
connection should be torn down properly utilising so-called graceful SHUTDOWN chunk

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

23

as demonstrated in Figure 4.2. The connection can be instantaneously closed with ABORT
chunk when unrecoverable errors appear.

Figure 4.2 SCTP establishment and termination.

Considering the nature of the MEC data, the right choice for the communication protocol
with MEH is SCTP due to its use for control plane transmission. The decision concurs with
the overall OAI structure, where UDP is employed for data transfer between UEs and the
Internet and the SCTP is used for communication between eNB and MME and between
several eNBs.

4.2.3 Employment of ITTI

OAI is already endowed with a task specialised for communication over SCTP. This task
creates, watches and closes the connection. Located at the bottom of OAI stack, SCTP
task provides upper layers with pre-processed data through ITTI.

The basic scenario of SCTP layer interaction starts with a request from the upper layer
with message SCTP_NEW_ASSOCIATION_REQ containing the name of the task, which require
the connection establishment and the local and remote address, port number, SCTP
Payload Protocol Identifier (PPID) together with the number of input and output streams.
Functions of the SCTP task then process provided data and if no error occurs, respond to
the requestor with SCTP_NEW_ASSOCIATION_RESP. Inside the SCTP task, the file descriptor
(FD) of each connection is linked with the requestor and when new data arrives, the
message is handed over to the upper task. The workflow in the opposite way is the same.

The MEC runs as a separated task which means that it can send and receive ITTI
messages. However, it should be remembered that the utilisation of ITTI internal messaging
function requires the allowed-message list.

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

24

A deeper analysis of required connections between task is necessary before employing the
internal messaging functionality. Then the allowed-message list must be created and newly
written function implemented to the remaining tasks as a new option of the incoming
message. This follows the evolution of the simple test MEH server introduced in this thesis
into the solution which is exploiting the whole functionality of the OAI.

However, the engagement of ITTI to serve the SCTP was already tested as follows. The
procedure static void s1ap_eNB_register_mme(…) is modified to suit the MEC
requirements, especially the port number and PPID, which are not given to the function
as an argument. A new structure describing MEC is created, and after receiving the
response, modified procedure void s1ap_eNB_handle_sctp_association_resp(…)
stores the connection parameters into the newly created structure. The data to be sent to
the SCTP are then transported using the procedure void

s1ap_eNB_itti_send_sctp_data_req(…) to the SCTP layer.

The connection with this approach is always established correctly. The crucial issue, in this
case, is the ciphering – procedures and functions in SCTP task expect that the provided
data are already encrypted using an external library libasn1c. Owing to this fact, the
transfer of plaintext data is unfeasible.

4.3 Challenge 3: eNodeB data harvesting and Multi-Access Edge
Computing control

To develop a working MEC system, the data from the eNB have to be collected and after
the processing in the MEC must control the system. The suitable functions and procedures
in current source code must be found in order to collect and change the internal
information.

4.3.1 Data harvesting

The variety of possible sources for data harvesting within OAI platform brings the question
from where to collect the data for network optimisation. Two simple options are to either
access the required data directly from the PHY layer or use the pre-processed data from
RRC or MAC layer.

In the case of collecting data from the MAC layer, descriptor MAC_xface, which serves as
an interface between MAC and PHY layer, is exploited. Its structure is defined in
\openair2\PHY_INTERFACE\defs.h and contains many functions which are useful for
further implementation.

Another option is to exploit the presence of FlexRAN source codes. The FlexRAN has its
own internal processes, protocols, and functions. However, many of them can be easily
rewritten to work alone without the rest of the FlexRAN software. Sometimes passing a
different parameter than originally expected (a FlexRAN internal variable) is sufficient.

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

25

To demonstrate both possible approaches, three functions were selected (two from OAI,
one from FlexRAN), implemented to the proposed MEC design, and tested. Short
introduction of these functions is below:

 Function uint32_t get_rx_total_gain_dB(…) is one of the functions dealing
with measurements of one specific UE based on its reference signal strength and
transmission power of the eNB. The parameters are the module ID for the UE and
Component carrier ID. The function is located in
openair1\PHY\LTE_ESTIMATION\defs.h and processes elementary variables used
in PHY layer.

 The second function also focuses on the connection status between the UE and
eNB: int16_t get_PL(…). The function to obtain the path-loss in dB is defined
at the same place as the previously mentioned function. It has one extra parameter
compared to the previous function, the index of the eNB on which to act.

 The last function originates from FlexRAN function int flexran_get_tpc(…)
and returns the current TPC command. To suit the MEC purposes, the function
was updated, so it does not use FlexRAN variables anymore and rely only on
internal eNB variables. The successor function is now defined directly in
s1ap_eNB.c file and under the name mec_get_tpc().

4.3.2 eNodeB control

A proof of concept of OAI MEC implementation includes a part which utilises the power
of MEC and puts received commands into its place. In the proposed system, this feature
is represented by modifying uplink (UL) transmit power.

The UL power control is part of the uplink scheduler and can be found in
\openair2\LAYER2\MAC\eNB_scheduler_ulsch.c. The power control algorithm takes
into account several aspects, such as Path Loss and signalling from a higher layer, as
further explained in [37]. The commands are sent to the UE through the Transmit Power
Control (TPC) commands in Downlink Control Indicator (DCI) format. These commands
are sent frequently, up to 1000 times per second. TPC command field in DCI format can
have following values: 0 indicates a decrease of UE transmit power, 1 means no change, 2
indicates an increase of UE transmit power by 1 dB and 3 increases transmit power by 3
dB. However, in the OAI scheduler, the TPC value 3 is not utilised.

The decision which command to send to the UE is done based on a comparison between
Normalized Received (NRX) power and Target Received (TRX) power. The NRX power
is obtained from the Received Signal Strength Indicator (RSSI), the TRX power on is
constant value loaded from the configuration file. The TRX power is also the parameter,
which is modified based on the input from the MEC.

To do so, the global variable control_tpc_mec in OAI is added. In the future, this should
be rewritten to use the internal messaging tool. The demonstration with a global variable,

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

26

accessible from both MEC and scheduler, is good for test purposes as this very
straightforward solution is easy to control and debug. On the other hand, it does not
separate these two parts of the platform, which is not desirable.

Three options of power control are integrated into the MEC – Received (RX) power
increase, RX power decrease and reset to the original value. The step is set to 5 dBm in
function void schedule_ulsch_rnti(…):

target_rx_power = mac_xface->get_target_pusch_rx_power(module_idP, CC_id) +
5 * control_tpc_mec;

The higher difference was selected to the clearly demonstrate the behaviour of OAI once
the command is received, and to observe the process of adjusting the RX power in the
system. The MEC command modifies the RX power for all UEs and Component Carries
(CC), which represent the Resource Blocks (basic scheduling unit in LTE-A). More
complicated structure including UE id and CC id would be necessary to change only one
specific device. Currently, the MEH expects only one device connected to the eNB. This
simplification is also reflected in data harvesting functions, where only the UE with id 0 is
considered.

4.4 Challenge 4: Multi-Access Edge Computing source code

To have a working test set-up, a new MEH must be written and additional functions and
procedures added to the OAI platform. The MEH development is easier because it can be
designed freely. On the contrary, the intervention into the OAI requires paying extra care
to suit existing code and extend it appropriately.

4.4.1 Common characteristics

Proposed system design assumes that the MEH may be located on a different machine than
OAI, connected over Ethernet network. Both nodes are accessible through the IP address
of its interface. Neither OAI nor the MEH needs to have special interface dedicated only
to the MEC, as any current existing interface (its IP address) can be exploited if the
selected port is free.

The connection is done via SCTP. The SCTP special mark called Payload Protocol
Identifier (PPID) indicates the type of message and is received from the upper layer. For
the S1AP, the PPID 18 is assigned; for X2AP the PPID is 27. These values are generally
accepted and external tools, for example, packet analysers, can benefit from their presence.
For the proposed MEC connection, PPID 100 was chosen, as this number is not assigned
to any special service [46].

In the proposed setup, the MEH acts as an SCTP server. This means that it awaits
incoming connection from the SCTP client (OAI platform) and then accepts the
connection. The exact process of creation and termination of the connection between server

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

27

and client is shown in Figure 4.2. The process diagram of communication for both MEH
part and the OAI client part shows the Figure 4.3.

The whole system is currently designed as a request-oriented: the MEH sends requests, and
the OAI client responds. The response can be either provision of requested value or
acknowledgement of updating internal parameters.

For the sake of simplicity, some code parts in the following sections were replaced with an
ellipsis (“…”), or keyword “error” and only important components are shown.

Figure 4.3 SCTP process flow diagram.

4.4.2 Multi-Access Edge Host – server part

The server part of the MEC in proposed design controls the whole MEC system – it is
capable of sending commands to the eNB or request values from the eNB once the
connection is established.

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

28

Before accepting the connection request from the client, several operations have to be done.
First of all, the socket has to be created. For this purpose serves the function int
socket(…), which creates the socket endpoint and returns a descriptor of the socket.

When the socket is created, an IP address must be assigned to it. The assignment is done
through the function int bind(…). The third step is to mark the socket as a passive
socket: marked socket will accept incoming connection requests. A function which set the
socket as a passive is int listen(…). The last step is to establish the peer-to-peer
connection by calling the function int accept(…). The function creates a new connected
socket from a request of the listening socket and returns a new file descriptor. At this point,
the connection is established. However, in each mentioned step (as well as in the following
steps) an error can occur – then the establishment is not successful and the program
terminates.

The initial process of connection establishment is in the proposed system covered in the
function int connect_enb_SCTP(…). The input parameters are a port, on which the MEH
is listening for incoming connections and address of the selected interface. The schematic
structure of this function together with some important steps follows.

int connect_enb_SCTP(uint16_t port, char *address) {

...

listenSock = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP);

if (error) { ... }

...

servaddr.sin_addr.s_addr = inet_addr(address);

...

setsockopt(listenSock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(int));

if (error) { ... }

bind(listenSock, ...);

if (error) { ... }

...

setsockopt(listenSock, IPPROTO_SCTP, SCTP_INITMSG, &initmsg,
sizeof(initmsg));

if (error) { ... }

listen(listenSock, ...);

if (error) { ... }

...

connSock = accept(listenSock, (struct sockaddr *) NULL, (int *)NULL);

if (error) { ... }

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

29

else { return connSock; }

}

One attribute of the SCTP is the multi-homing ability. It supports multiple IP paths to
the endpoint. If the machine has more active interfaces with assigned IP addresses, all of
them can be used for the connection establishment. For testing purposes and analysis, only
one address is used. This is the reason for passing one exact address to the function instead
of utilising all available addresses through INADDR_ANY.

To avoid the error on binding, the socket is marked with flag SO_REUSEADDR allowing
the socket to be bound to a socket address which is already used. Since the MEH is the
only one who is using this current socket, no thread of data reception from other service
comes.

The second setsockopt(…) function then specifies the initial message parameters: number
of input and output streams and the maximum number of connection attempts. This
setting is valid only for the SCTP protocol – IPPROTO_SCTP parameter is thus used.
In the previous use of this function, the socket layer itself was referred by SOL_SOCKET.

Once the connection has been established, a loop for requests and commands takes place.
Because during the simulation OAI does not run in real time, it is impossible to request
the values and send commands periodically in desired time interval related to the eNB
clock. The internal clock of the computer can be used, but this time reference will not
match the time in OAI, where special functions are designed to provide a time references.
The “speed” of time in OAI depends on the computational power of the hosting machine.
The solution for this issue would be sending a message from OAI to the MEH in the exact
time period. However, this requires studying of time estimation process in OAI. Until that,
the system expects a user input through the terminal. It can also be easily modified to send
commands in the selected time period if the test environment (computational power) will
not vary during the time. This period must be set properly to correspond OAI internal
time stamp.

The function int listen_enb_sctp(…) receives and prints the eNB response. Currently,
it is outputted only to the terminal, but the string containing the desired data can be
transformed into an integer and processed afterwards. The function overview is below:

int listen_enb_sctp(int connSock) {

...

sctp_recvmsg(connSock, buffer, sizeof(buffer), (struct sockaddr *) NULL, 0,
&sndrcvinfo, &flags);

if (error) { ... }

else

 {

 printf("%d bytes of data recieved:\n", ret);

 printf(" %s\n", buffer);

if (error) {

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

30

 close(connSock);

 return -1;

 }

...

}

The whole function is created to read the data from the provided socket as a parameter
(recvmsg() function), put them to the buffer and print them if the reception passed off
without any problems; otherwise, the function closes the socket and returns -1. The further
reception is not possible, and the program terminates.

It is important to clear the buffer before its usage with the procedure bzero(). Even
though the buffer is created within the function and thus its address is discarded once the
function ends, the value stored at this address is not overwritten and causes trouble if the
buffer is allocated again with the same address.

The procedure command_enb_sctp(…) sends the data passed in the buffer to the provided
socket and tags the message with the assigned PPID. This procedure also handles errors
which can occur during the process of message sending:

void command_enb_sctp(int connSock, int ppid, char *buffer) {

...

sctp_sendmsg(connSock, (void *)buffer, (size_t)strlen(buffer), NULL, 0,
htonl(ppid), 0, 0, 0, 0);

if (error) { ... }

else { ... }

}

The main function of MEH first calls the function connect_enb_SCTP(…) to prepare the
connection and then awaits the eNB connection and initial message which is sent from the
eNB and indicates that the connection has been established on both sides. Then continues
with an infinite loop, where the user enters the command and – after the newline removal
– the function passes the command to the function command_enb_sctp(…) and waits for
the eNB’s response though listen_enb_sctp(…). If the process is successful, the loop
starts again:

 main()

{

...

sd_enb = connect_enb_SCTP(...);

listen_enb_sctp(sd_enb); //initial message

...

while (1) {

 bzero(buffer, ...);

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

31

 printf("Enter command number: ");

 fgets(buffer, ..., stdin);

 buffer[strcspn(buffer, "\r\n")] = 0;

 command_enb_sctp(sd_enb, ..., buffer);

 listen_enb_sctp(sd_enb, ...);

 if (error) {

 ...

 close(sd_enb);

 exit(1);

 }

 }

}

4.4.3 OpenAirInterface – client part

The client carries out the tasks received from the server. The task can be a request for a
value or command to change a parameter.

The initial process of connection in OAI to the MEH is caused by function int
connect_mec_SCTP(…) which returns the file descriptor for the MEC socket. Firstly, the
socket is created; after that the connection to the remote peer (MEH) as specified in
function call connect(…) follows:

int connect_mec_SCTP(uint16_t port, char *address) {

...

connSock = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP);

if (error) {...}

...

connect(connSock, (struct sockaddr *) &servaddr, sizeof(servaddr));

if (error) { ... }

return connSock;

}

The second function in the OAI MEC client serves as the initial data transmission. It
indicates whether the transmission is successful. The function is implemented as follows:

int welcome_mec_sctp(int connSock, int ppid) {

...

sctp_sendmsg(connSock, (void *)buffer, (size_t)datalen, NULL, 0,
htonl(ppid), 0, 0, 0, 0);

bzero(buffer, ...);

if (error) { ... }

else

printf("Successfully sent %d bytes data to server\n", ...);

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

32

return 0;

}

The function listen_mec_sctp(…) watches the socket for any incoming messages. If no
error occurs during the reception, the buffer is separated using the function atoi(…) and
returned. This is due to the fact that the buffer is a string:

int listen_mec_sctp(int connSock) {

...

sctp_recvmsg(connSock, buffer, sizeof(buffer), (struct sockaddr *) NULL, 0,
&sndrcvinfo, &flags);

if (error) { ... }

else

 {

 printf("%d bytes of data recieved:\n", ret);

 command = atoi(buffer);

 printf(" Command : %s\n", buffer);

 bzero(buffer, ...);

 return command;

 }

}

The most important function on the client side is int process_mec_sctp(…) where the
command code is evaluated and processed. First, the case structure is used to execute the
proper function and put the response into the buffer. In the second part, the buffer is
returned to the MEH. The response is a plain numeric value for data request or a word
string for the commands:

int process_mec_sctp(int connSock, int ppid, int command) {

...

switch (command) {

 default:

 printf("detected unknown request!\n");

 strncpy(buffer, "error", 5);

 buffer[strlen(buffer)] = '\0';

 break;

 case 1:

 printf("detected PL request\n");

 sprintf(buffer, "%d", get_PL((*PHY_vars_UE_g[0])->Mod_id,
(*PHY_vars_UE_g[0])->CC_id, 0));

 break;

 case 2:

 printf("detected TPC request\n");

 sprintf(buffer, "%d", mec_get_tpc((*PHY_vars_UE_g[0])->Mod_id,
0));

 break;

 case 3:

 printf("detected GAIN request\n");

PROPOSED MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DESIGN

33

 sprintf(buffer, "%d", get_rx_total_gain_dB((*PHY_vars_UE_g[0])-
>Mod_id, 0));

 break;

 case 4:

 printf("detected TPC INCREASE request\n");

 control_tpc_mec++;

 strncpy(buffer, "TPC increased", 13);

 buffer[strlen(buffer)] = '\0';

 break;

 case 5:

 printf("detected TPC DECREASE request\n");

 control_tpc_mec--;

 strncpy(buffer, "TPC decreased", 13);

 buffer[strlen(buffer)] = '\0';

 break;

 case 6:

 printf("detected TPC RESTORATION request\n");

 control_tpc_mec = 0;

 strncpy(buffer, "TPC restored", 13);

 buffer[strlen(buffer)] = '\0';

 break;

 }

sctp_sendmsg(connSock, (void *)buffer, (size_t)datalen, NULL, 0,
htonl(ppid), 0, 0, 0, 0);

if (error) { ... }

...

}

FURTHER AND OPEN RESEARCH CHALLENGES

34

5 Further and open research challenges
During the analysis of the possible MEC implementation and its later demonstration,
several further challenges appeared. None of the mentioned open challenges poses an
obstacle for the use of the proposed design. The reason for describing the open challenges
is to define tasks to enable merge of the developed MEC implementation into the OAI.
Due to the time required to merge proposed code into the OAI, it is not possible to start
the merge process during the work on this thesis. Furthermore, the code for merge request
must be revised by a group of OAI developers. Note that the open challenges do not impact
the functionality of implemented MEC solution in any way.

5.1 Data routes

The provided MEC exploits global variables for communication, which should be replaced
by the ITTI for the communication between the tasks. The MEC acts as an additional
component and, thus, should use the messaging tool as its only communication option.

In order to do this, the exact functionalities of MEC need to be defined. After that, the
message list is created and implemented into the all tasks, not only a MEC task. The
commands are then sent through the ITTI messages, avoiding global variables as
introduced in the proposed concept. The data to the MEH are passed using the ITTI and
the SCTP task, not directly from the MEC task.

In the implemented MEC design, the UEs are served only by one MEH server, meaning
that mobility of connected UEs is limited to one cell. To extended mobility, the
communication model for MEC handover must be designed and implemented. The mobility
aspects are discussed in [12].

5.2 Data transfer between the client and the server

The SCTP protocol is used to create a connection between the client (OAI) and the server
(MEH). The protocol choice is valid; however, several further changes are not yet
implemented.

 Data ciphering - In the present version of MEC, all information is transmitted in
plain text. Additional protection to secure the connection is appreciated. OAI
already uses a system to secure messages over the S1-C connection; the similar
process should be done on the MEC connection. Another alternative is to create
an encrypted tunnel connection.

 Streams settings - The SCTP protocol allows its users to use the number of
streams, which are negotiated during the initial setup. The user messages are
associated with streams numbers [45]. In OAI, stream 0 is used for non-UE
associated signalling and streams with a higher number for specific UEs. There is
no need to use streams in the current state since only one UE is expected to be

FURTHER AND OPEN RESEARCH CHALLENGES

35

connected, but if more UEs use the MEC, the involvement of stream is highly
beneficial.

 PPID - In the present day, there is no PPID associated with MEC. Once the
PPID is assigned to the MEC by the assigning authority, it is necessary to
change it also in MEC code. The proposed design uses the unassigned PPID 100.

5.3 OpenAirInterface client extension

The future versions of MEH implementation should be improved in several aspects, which
are not yet solved:

 The MEC setting, especially IP address and port number, should be loaded from
the configuration file in OAI,

 Proper termination of MEC task if an error occurred; sending a notification the
peer in OAI,

 Extending the range of supported functions collecting and altering parameters,
 The source code separation into its files.

The work with MEC will be more comfortable if the open OAI extension challenges are
solved. However, none of them is crucial.

5.4 Multi-Access Edge Host extension

Also, the server application of MEC system deserves to be more complex. Current MEH is
a simple machine to demonstrate the main functionality of the MEC concept. It is possible
to extend current code or rewrite brand new MEH exploiting the existing connection with
OAI client with respect to the request oriented design. Another alternative is to redesign
also the SCTP messages scheme to be able to transport more complicated structures (e.g.
UE id, frame and subframe number together with the desired parameter) in one single
message.

MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DEMONSTRATION

36

6 Multi-Access Edge Computing implementation
demonstration

In this chapter the setup of the MEC testbed and evaluation is described. Both simulation
and real hardware are used during the testing. The set-up and acquired results are
presented in this chapter.

6.1 Environment setting

For both evaluation via simulation and testbed, two computers as described in Table 2.1
are exploited to run the RAN and the CN parts. On the computer with the CN, which is
run as a virtual machine for the MEC is run. The computers are interconnected via 1
Gbit/s link, which makes the delay between the RAN and the MEC negligible. For the
simulation, the PHY abstraction was turned off to receive as accurate results as possible.

For the emulation, the Universal Software Radio Peripheral (USRP) B210 board by Ettus
Research is used as a Software Defined Radio in combination with Huawei P8 lite
smartphone acting as a UE.

The eNB and CN parameters setting is the same for both experiments; however small
changes had to be done due to the usage of the real HW. In all measurements, only one
UE (simulated or real) is attached to the created LTE network. OAI v0.6.1 master branch
was used for all measurements.

Table 6.1 Testbed specifications.

Specification PC1 PC2

Specification
EPC +

MEC VM
RAN

CPU

Intel®
Core™ i5-
4590 3.4
GHz, 4C/4T

Intel®
Core™ i5-
7400 3.0
GHz, 4C/8T

CPU
Dual-core 3.0
GHz

Intel®
Core™ i5-
4590 3.4
GHz, 4C/4T

RAM 8 GB 32 GB RAM 4 GB 8 GB

Connectivity
1 Gbit/s
LAN

1 Gbit/s
LAN

Connectivity
1 Gbit/s
LAN

1 Gbit/s
LAN

OS

Ubuntu 14.04
with 3.19 low
latency
kernel

Ubuntu 14.04
with 3.19
generic
kernel

OS

Ubuntu 14.04
with 4.7.7
generic kernel
with GTP
kernel
support

Ubuntu 14.04
with 3.19 low
latency
kernel

6.2 Data harvesting

The MEH user interface is shown in Figure 6.1. When the request is detected in the eNB,
command ID and its name is printed before sending the response back to the MEH, as
shown in Figure 6.2. At the client side, the MEC log is printed directly to the terminal

MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DEMONSTRATION

37

together with other OAI logs. All three currently supported parameters, as described in
Subsection 4.3.1, were tested.

The request-oriented system is able to obtain the desired parameters from the eNB with
the virtualised UE by sending the pre-defined command’s ID. When the SDR board is used
together with the real UE, a segmentation fault appears once the function gathering the
desired data is called. This issue is now being analysed with other OSA members.

Figure 6.1 MEH user interface: data harvesting.

Figure 6.2 OAI user interface: data harvesting.

MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DEMONSTRATION

38

6.3 eNodeB control via Mobile Edge Host

The demonstration of the eNB control via the MEC is demonstrated on the P0 nominal
Physical Uplink Shared Channel (PUSCH) parameter, which defines the target power level
of a received resource block (RB) at the eNB. The request to increase or decrease the
Target RX power is sent from the MEH to the eNB, where its internal scheduler decides
how to modify the transmitting power of connected UE.

In the case of control commands, the response from the eNB is the confirmation whether
the requested modification is processed successfully. The screenshot of MEH and OAI
shows the Figure 6.3 and Figure 6.4.

MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DEMONSTRATION

39

Figure 6.3 MEH user interface: eNB control.

Figure 6.4 OAI user interface: eNB control.

The processes of the transmit power modification in dependency on time and TRX for
simulated and real UE are shown in Figure 6.5 and in Figure 6.6, respectively. It is evident
that the algorithm for PHY simulation works differently compared to the real testbed.
Pleasingly the results gained from the real HW shows lower RSSI fluctuation.

MULTI-ACCESS EDGE COMPUTING IMPLEMENTATION DEMONSTRATION

40

Figure 6.5 Comparison of Target and Normalised RX power: simulated UE.

Figure 6.6 Comparison of Target and Normalised RX power: real UE.

CONCLUSION

41

7 Conclusion
Mobile network optimisation exploiting Multi-Access Edge Computing is a highly effective
way how to satisfy the quickly developing mobile networks market. Even though the MEC
concept is in its early era and it is still being developed, a number of papers in this area
already exist.

To be able to capitalise the MEC, the MEC concept has been implemented into the OAI
platform. During the consecutive testing, it has been proven that the MEC implementation
is working and eNB follows the commands from the MEH. The provided implementation
is to be submitted to the community of the OAI with a goal to merge it to the OAI code.

Current status of the MEC implementation gives a vast range of opportunities for further
employment in various situations. Working groups can build their solutions on the
presented implementation and extend the MEC exploitation to the areas of interest. All of
this brings the MEC deployment to the real mobile networks closer.

Although focused on the MEC, this thesis also provides valuable information about
implementation of a new task to the OAI platform. The process of creation and maintaining
is the same for all threads in the OAI, not just limited to the MEC; relevant chapters can
be thus helpful for the further OAI expansion.

The future work for this thesis consists in completing the outlined open challenges and
extending the MEC implementation by the support of multiple MEHs communicating to
optimise the mobile network on the larger area.

REFERENCES

42

8 References

[1] ETSI MCC department, "Overview of 3GPP Release 10 V0.2.1", Sophia Antipolis
Cedex, France, 2014.

[2] S. Mattisson, "Overview of 5G requirements and future wireless networks", ESSCIRC
2017 - 43rd IEEE European Solid State Circuits Conference, pp. 1-6, 2017.

[3] S. Lien, S. Hung, D. Deng and Y. Wang, "Efficient Ultra-Reliable and Low Latency
Communications and Massive Machine-Type Communications in 5G New Radio",
IEEE Global Communications Conference, pp. 1-7, 2017.

[4] S. Qureshi, T. Ahmad, K. Rafique and Shuja-ul-islam, "Mobile cloud computing as
future for mobile applications - Implementation methods and challenging issues",
IEEE International Conference on Cloud Computing and Intelligence Systems, pp.
467-471, 2011.

[5] ETSI Industry Specification Group, "ETSI GS MEC 001: Mobile Edge Computing
(MEC); Terminology", Sophia Antipolis Cedex, France, 2016.

[6] N. Nikaein, M. Marina, S. Manickam, A. Dawson, R. Knopp and C. Bonnet,
"OpenAirInterface: A Flexible Platform for 5G Research", ACM SIGCOMM
Computer Communication Review, vol. 44, no. 5, pp. 33-38, 2014.

[7] B. Bilel, N. Navid, K. Raymond and B. Christian, "OpenAirInterface large-scale
wireless emulation platform and methodology", ACM workshop on Performance
monitoring and measurement of heterogeneous wireless and wired networks -
PM2HW2N '11, pp. 109-112, 2011.

[8] K. Kumar, J. Liu, Y. Lu and B. Bhargava, "A Survey of Computation Offloading for
Mobile Systems", Mobile Networks and Applications, vol. 18, no. 1, pp. 129-140, 2013.

[9] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini and C. Bonnet, "Low latency MEC
framework for SDN-based LTE/LTE-A networks", IEEE International Conference on
Communications (ICC), pp. 1-6, 2017.

[10] Y. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, "Mobile Edge Computing: A
key technology towards 5G", ETSI White Paper No. 11, 2015.

REFERENCES

43

[11] P. Mach and Z. Becvar, "Mobile Edge Computing: A Survey on Architecture and
Computation Offloading", IEEE Communications Surveys and Tutorials, vol. 19, no.
3, pp. 1628-1656, 2017.

[12] ETSI Industry Specification Group, "ETSI GR MEC 018: Mobile Edge Computing
(MEC); End to End Mobility Aspects", Sophia Antipolis Cedex, France, 2017.

[13] Y. Mao, C. You, J. Zhang, K. Huang and K. Letaief, "A Survey on Mobile Edge
Computing: The Communication Perspective", IEEE Communications Surveys &
Tutorials, vol. 19, no. 4, pp. 2322-2358, 2017.

[14] M. Deng, H. Tian and B. Fan, "Fine-granularity based application offloading policy
in cloud-enhanced small cell networks", IEEE International Conference on
Communications Workshops (ICC), pp. 638-643, 2016.

[15] M. Barbera, S. Kosta, A. Mei and J. Stefa, "To offload or not to offload? The
bandwidth and energy costs of mobile cloud computing", IEEE INFOCOM, pp. 1285-
1293, 2013.

[16] Y. Kao, B. Krishnamachari, M. Ra and F. Bai, "Hermes: Latency Optimal Task
Assignment for Resource-constrained Mobile Computing", IEEE Transactions on
Mobile Computing, vol. 16, no. 11, pp. 3056-3069, 2017.

[17] 3rd Generation Partnership Project, "3rd Generation Partnership Project; Technical
Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release
10)", Sophia Antipolis Cedex, France, 2010.

[18] V. Jacobson, R. Braden and D. Borman, "RFC 1323 - TCP Extensions for High
Performance". 1992.

[19] J. Plachy, Z. Becvar and P. Mach, "Path selection enabling user mobility and efficient
distribution of data for computation at the edge of mobile network", Computer
Networks, vol. 108, pp. 357-370, 2016.

[20] ETSI Industry Specification Group, "ETSI GS MEC-IEG 004: Mobile - Edge
Computing (MEC); Service Scenarios", Sophia Antipolis Cedex, France, 2015.

[21] C.-L. I, J. Huang, R. Duan, C. Cui, J. Jiang and L. Li, "Recent Progress on C-RAN
Centralization and Cloudification", IEEE Access, vol. 2, pp. 1030-1039, 2014.

REFERENCES

44

[22] F. Hu, Q. Hao and K. Bao, "A Survey on Software-Defined Network and OpenFlow:
From Concept to Implementation", IEEE Communications Surveys & Tutorials, vol.
16, no. 4, pp. 2181-2206, 2014.

[23] H. Hawilo, A. Shami, M. Mirahmadi and R. Asal, "NFV: state of the art, challenges,
and implementation in next generation mobile networks (vEPC)", IEEE Network, vol.
28, no. 6, pp. 18-26, 2014.

[24] X. Wang, M. Chen, T. Taleb, A. Ksentini and V. Leung, "Cache in the air: exploiting
content caching and delivery techniques for 5G systems", IEEE Communications
Magazine, vol. 52, no. 2, pp. 131-139, 2014.

[25] I. Farris, T. Taleb, M. Bagaa and H. Flick, "Optimizing service replication for mobile
delay-sensitive applications in 5G edge network", IEEE International Conference on
Communications (ICC), pp. 1-6, 2017.

[26] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and Challenges",
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, 2016.

[27] C. Wang, Z. Lin, S. Yang and P. Lin, "Mobile edge computing-enabled channel-aware
video streaming for 4G LTE", International Wireless Communications and Mobile
Computing Conference (IWCMC), pp. 564-569, 2017.

[28] S. Yi, C. Li and Q. Li, "A Survey of Fog Computing", Workshop on Mobile Big Data
- Mobidata, pp. 37-42, 2015.

[29] A. Ahmed and E. Ahmed, "A survey on mobile edge computing", International
Conference on Intelligent Systems and Control (ISCO), pp. 1-8, 2016.

[30] "FP7-ICT: Distributed computing, storage and radio resource allocation over
cooperative femtocells", TROPIC project, 2012, [Online], Available:
https://cordis.europa.eu/project/rcn/105469_en.html, [Accessed: 2018-02-12].

[31] S. Wang, G. Tu, R. Ganti, T. He, K. Leung, H. Tripp, K. Warr and M. Zafer, "Mobile
Micro-Cloud: Application Classification, Mapping, and Deployment", Annual Fall
Meeting of ITA (AMITA), 2013.

[32] K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der Merwe and K. Webb, "MobiScud",
Workshop on All Things Cellular: Operations, Applications and Challenges -
AllThingsCellular, pp. 19-24, 2015.

REFERENCES

45

[33] T. Taleb and A. Ksentini, "Follow me cloud: interworking federated clouds and
distributed mobile networks", IEEE Network, vol. 27, no. 5, pp. 12-19, 2013.

[34] J. Liu, T. Zhao, S. Zhou, Y. Cheng and Z. Niu, "CONCERT: a cloud-based
architecture for next-generation cellular systems", IEEE Wireless Communications,
2014.

[35] ETSI Industry Specification Group, "ETSI GS MEC 003: Mobile Edge Computing
(MEC) ; Framework and Reference Architecture", Sophia Antipolis Cedex, France,
2016.

[36] "OpenAirInterface: 5G software alliance for democratising wireless innovation", 2018,
[Online], Available: http://www.openairinterface.org/, [Accessed: 2018-02-12].

[37] E. Dahlman, S. Parkvall and J. Sköld, 4G: LTE/LTE-advanced for mobile broadband.
Amsterdam: Academic Press, 2011.

[38] "openairinterface5G: Openairinterface 5G Wireless Implementation", GitLab. 2018.

[39] I. Latif, F. Kaltenberger, R. Knopp and N. Nikaein, "Large scale system evaluations
using PHY abstraction for LTE with OpenAirInterface", International ICST
Conference on Simulation Tools and Techniques, pp. 1-7, 2013.

[40] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D. Nussbaum and
R. Ghaddab, "OpenAirInterface: an open LTE network in a PC", International
conference on Mobile computing and networking - MobiCom '14, pp. 305-308, 2014.

[41] "Open vSwitch", 2016. [Online]. Available: https://www.openvswitch.org/. [Accessed:
2018-04-17].

[42] "FlexRAN: A Flexible and Programmable Platform for Software-Defined Radio
Access Networks", Edinburgh Networks Research Group. Edinbourgh, United
Kingdom, 2018.

[43] X. Foukas, N. Nikaein, M. Kassem and K. Kontovasilis, "FlexRAN: A flexible and
programmable platform for software-defined radio access networks", International on
Conference on emerging Networking EXperiments and Technologies, ACM, 2016.

[44] J. Postel, "RFC0768 - User Datagram Protocol". 1980.

[45] R. Stewart, "RFC4960 - Stream Control Transmission Protocol". 2007.

REFERENCES

46

[46] "SCTP Payload Protocol Identifiers", Stream Control Transmission Protocol (SCTP)
Parameters. 2018.

