
Faculty of Electrical Engineering
Department of Control Engineering

Bachelor’s thesis

Automatic Control of an Unmanned Aerial
Vehicle in Robot Operating System
Jan Machálek

Prague, May 2018
Supervisor, Ing. Tomáš Báča

Declaration

I declare that I have worked out my thesis separately and that I have listed
all the information sources used in accordance with a Methodical Guideline on
Ethical Principles in Preparation college final thesis.

Prague, date
signature

i

Acknowledgement

I would like to thank Ing. Tomáš Báča who has helped me with everything. I
would also like to thank all my friends who helped me with my thesis, and my
family, which has supported me to study a college and work on this thesis.

iii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

456902Personal ID number:Machálek JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Systems and ControlBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Automatic Control of an Unmanned Aerial Vehicle in Robot Operating System

Bachelor’s thesis title in Czech:

Automatické řízení bezpilotní helikoptéry v systému ROS

Guidelines:
The goal of the work is to design and implement an automatic controller for Unmanned Aerial Vehicles (UAVs) developed
in the MRS lab at FEE CTU. The work aims to replace the currently used backstepping controller [1], which the lab obtained
in the form of a black box. The thesis should cover the following points:
* Design a PID controller [2, 3] which will control the position of a multirotor UAV.
* Implement the controller using ROS (Robot Operating System) and integrate it within the software architecture used in
the MRS lab.
* Design a modular system which will allow connecting the controller to various control reference generators, e.g., currently
used MPC tracker.
* For testing of the control system, design and implement a simple reference generator, e.g., linear reference generator.
* Investigate the backstepping control approach [1] and simulate it using Matlab. Compared it to the PID controller.
* Conduct tests and experiments of the implemented control system in realistic ROS Gazebo simulator and compare it to
the proprietary controller currently used on the MRS aerial platform.

Bibliography / sources:
[1] Lee, Taeyoung, Melvin Leok, and N. Harris McClamroch. 'Nonlinear robust tracking control of a quadrotor UAV on SE
(3).' Asian Journal of Control 15.2 (2013): 391-408.
[2] T. Baca, 'Control of Relatively Localized Unmanned Helicopters', Bachelor's thesis, CVUT FEL, 2013
[3] V. Endrych, 'Control and Stabilization of an Unmanned Helicopter Following a Dynamic Trajectory', Master's thesis,
CVUT FEL, 2014

Name and workplace of bachelor’s thesis supervisor:

Ing. Tomáš Báča, Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 30.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Tomáš Báča
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Abstrakt

Tato práce se zabývá návrhem systému ř́ızeńı polohy pro bezpilotńı letecká
vozidla (UAV). Vyšetřujeme dva př́ıstupy, PID regulátor a backstepping regulátor.
Regulátory byly integrovány do stávaj́ıćıho prostřed́ı. Oba regulátory byly
testovány v simulátoru Gazebo. V př́ıpadě PID byl také proveden skutečný
letový test. V této práci se také popisuje architektura použité platformy. Výsledkem
této práce je funkčńı systém ř́ızeńı polohy. Je zde popsán proces návrhu nového
systému. V pokusech z reálného světa jsme porovnali náš regulátor s p̊uvodńım
regulátorem.

Kĺıčová slova

ROS, Gazebo, PID, backstepping, MRS group, UAV, ř́ızeńı, Matlab, Simulink

Abstract

This thesis is about design of a position control system for Unmanned Aerial
Vehicles (UAVs). We investigate two approaches. The first approach is the PID
controller, and the backstepping controller. Regulators are then deployed into
ROS environment. Regulators are integrated into an already existing pipeline.
After the implementation of regulators they are tested in Gazebo simulator. In
the case of PID, real flight tests are conducted. The architecture of a UAV
platform used in this thesis is described. The result of this thesis is a functional
position control system. The design process of the new system is described as
well. Using results from the real-world tests, we compared our regulator with
the one currently used in MRS group pipeline.

Keywords

ROS, Gazebo, PID, backstepping, MRS group, UAV, control, Matlab, Simulink

vii

Contents

1 Introduction 1
1 State of the art . 1

2 Problem Statement . 2

3 Outline . 3

2 Unmanned Aerial Vehicles 4
1 Unmanned Aerial Vehicles in MRS group 4

2 Model of Unmanned Aerial Vehicles 5

2.1 Coordinates System . 6

3 Kinematics and Dynamics model of UAV 6

3.1 Rotational Matrix . 6

3.2 Translational Equation of Motion 7

3.2.1 Implementation of translation model 8

3.2.2 Identification of translation model 9

3.2.3 Rotational dynamics of UAV 11

3.3 State space model of the UAV 11

3 Control 13
1 Design and testing of PID controller 13

1.1 Altitude control with PID 13

1.2 Longitudinal control with PID for x-axis 14

1.3 Longitudinal control with PID for y-axis 14

1.4 Completion of PID . 14

1.4.1 Gain scheduling 14

2 Design and testing of backstepping controller 15

2.1 Roll control with backstepping 15

2.2 Pitch control with backstepping 17

2.3 Yaw control with backstepping 19

2.3.1 Simulation . 19

2.4 Altitude control with backstepping 20

2.5 Longitudinal Control in x-axis 22

2.6 Longitudinal Control in y-axis 23

4 Simulation 24
1 Matlab simulation . 24

1.1 Parameters of the simulation 24

1.1.1 Dynamic model and Environment 24

1.1.2 PID controller . 24

1.1.3 Backstepping . 25

1.2 Resolution of the simulation 25

viii

5 Linear reference generator 27
1 The proprietary (original) interface between controller and tracker 27
2 Implementation of the linear tracker 28

2.1 Linear tracker mathematically 28
2.2 Linear tracker in ROS . 28
2.3 Structural point of view on linear trucker 29

2.3.1 How to make a plugin 29

6 Designing of a modular guidance system 31
1 Towards complete modularity 32

7 Simulation in Gazebo Simulator 33
1 Description of the simulated scenario 33
2 Simulation . 33

8 Real flight comparison 36
1 Real flight measures . 36
2 The first real flight . 36
3 Path for comparison . 36
4 Control performance . 37

9 Conclusion 41

References 42

CD content 44

ix

List of Figures

1 Diagram of the control pipeline which includes the MPC tracker
and the collision avoidance mechanism [1]. 2

2 MRS’s group hexacopter in flight when equipped with minimal
equipment. 4

3 MRS’s group hexacopter onboard equipment [2]. 5

4 Coordinates system and position vector. 6

5 Translation model in Matlab Simulink and Gazebo. 9

6 Simuling model of Unmanned Aerial Vehicles with the embeded
stabilization loop closed. 9

7 Speed in z-axis simulated in Matlab Simulink. 10

8 Speed in x-axis simulated in Matlab Simulink and Gazebo. . . 11

9 Block diagram of PID regulation. 13

10 Roll angle part of backstepping controller. 17

11 Roll and pitch angle part of backstepping controller. 18

12 Roll, pitch and yaw angle of backstepping controller. 19

13 Block scheme for simulation backstepping controller on second
order system. 20

14 Output of simulation of backstepping controller. 20

15 Comparison of the PID and the BackStepping controllers. (a)
shows the vertical axis, (b) shows the horizontal axis. 25

16 Both regulators following reference in 3D space. (a) shows the
BackStepping controller, (b) shows the PID controller. 26

17 Block diagram of the modular system for connecting various con-
trol reference generators. 31

18 Block diagram of modular system for switching various control
reference generators, and feedback controller. 32

19 Step responses comparison between the PID and the original con-
trollers in horizontal axis. 33

20 Comparison of the PID and original controllers in horizontal plane
when following sine reference. (a) shows comparison in x-axis, (b)
shows comparison in y-axis. 34

21 Comparison of both controllers in z-axis and overall view. (a)
shows comparison on the PID and original controllers, (b) shows
overall view. 34

22 Comparison of both controllers in 3D space. (a) shows perfor-
mance of the original controller, (b) shows comparison of both
controllers. 35

23 Trajectory has been generated in Matlab. 36

24 UAVs estimated position in horizontal plane when controlled by
the PID controller. (a) shows following reference in x-axis, (b)
shows following reference in y-axis. 37

25 Estimated position of the UAV in vertical axis and overall view of
the performance. (a) shows postion of UAV in z-axis, (b) shows
overall view of the flight. 37

x

26 Comparison of both controllers in horizontal plane. (a) shows
both controllers in x-axis, (b) shows both controllers in y-axis. . 38

27 Comparison of both controllers in 3D space. 38
28 Snapshots of testing of the system in real-world conditions. Video

from the experiment can be found at https://www.youtube.

com/watch?v=tpn7tCahuIQ. 39
29 Unmanned aerial vehicle when controlled by the developed con-

troll system. 40

xi

https://www.youtube.com/watch?v=tpn7tCahuIQ
https://www.youtube.com/watch?v=tpn7tCahuIQ

List of Tables

1 UAVs onboard hardware [2]. 5
2 Altitude control description of parameters. 13
3 Longitudinal (x) control description of parameters. 14
4 Longitudinal (y) control description of parameters. 14
5 UAV model parameters for Matlab Simulation. 24
6 PID parameters for Matlab Simulation. 24
7 Backstepping controller parameters for Simulation, k5, k6, k7, k8,

k9, k10 ∈ R+. 25
8 CD content. 44

xii

Listings

1 Code for gain scheduling. 15
2 Interface between controller and tracker. 27
3 How to get node-handle. 27
4 Creating a subscriber. 27
5 Linear tracker core. 29
6 Plugin registration in code. 29
7 Plugin dectription file. 30
8 Plugin makefile changes. 30
9 Package.xml adding export tag. 30
10 Package.xml adding build dependencies. 30

xiii

Part 1

Introduction

Flying objects have always had the great fascination of a man which has encouraged him to
do all kinds of research and development. Recent technological progress of sensors, actuators,
processors and power storage devices caused a notable improvement of unmanned aerial ve-
hicles (UAVs) around us. Owing to those improvements, todays UAVs are both easy to build
and control. UAVs are capable of performing complex tasks and staying in the air for more
than 25 minutes, based on equipped hardware. UAVs can be used in various ways including
aerial surveillance, package delivery, drone racing, search and rescue operations and more [3].
In this thesis, our primary focus is on hexacopter type UAV.

Hexacopters are a favourite subset of UAVs their name comes from the number of rotors
they have. Hexacopters still face some challenges in the control field because of its highly
nonlinear, multivariable system and its six Degrees of Freedom. These control problems are
handled by onboard PixHawk, an industry standard autopilot [2].

In the first section of this thesis, we will be looking at the modeling and control of a
hexacopter type UAV. The Second section will be about Matlab [4] Simulink model and
we will have look at the outcome of the simulation. We will then move to ROS1 (Robot
Operating System) conceptual description of this problem in this framework. Lastly, we
will make a conclusion of the control of the UAV and two different methods: PID [5] and
backstepping [6]. The assignment of this thesis is to develop and implement a PID and
backstepping controllers for the multi-copter platform used in the MRS group at FEE CTU
in Prague. The proposed control system will be tested in realistic Gazebo simulator [7] and
the real world.

The contributions of this work are: derivation of an accurate mathematical model of
the hexacopter UAV with PixHawk controller, development of linear and non-linear control
algorithms and application of those to the derived mathematical model in computer-based
simulations and real flight. The thesis will be concluded with a comparison between the
developed control algorithms with the focus on their dynamic performance and their ability
to stabilize the system.

1 State of the art

Several concepts have been proposed to control UAV when the lower regulation is handled by
PixHawk. In MRS group, the currently used original controller is based on paper [8] and it
is optimal for MRS group tasks. The controller is only a part of regulation pipeline in the
figure 1 which is not open source. Whole regulation cascade in the figure 1 has a source code,
except for the element S0(3).

Two main approaches are PID controller from paper [9] which is an inspiration for this
thesis and also another backstepping approach in paper [10] that gives us the tools to construct
our own solution allowing the backstepping controller to replace original controller. In [11]
paper, there is presented stabilizing control laws synthesis by sliding mode based on back-
stepping approach. In paper [12] they presented a novel backstepping controller for velocity
control of a UAV such as Yamaha R-Max. This controller design is part of an overall objective
of landing the R-Max helicopter. In paper [13] a robust control strategy to solve the path

1http://wiki.ros.org/

1/44

http://wiki.ros.org/

tracking problem for a quadrotor helicopter has been presented. The proposed strategy was
designed in consideration of external disturbances like aerodynamic moments. The movement
dynamic equations by Lagrange-Euler formalism have been developed. In paper [14] a new
approach of the full state backstepping control using sliding mode observer has been applied
to a quadrotor unmanned aerial vehicle. Although the behavior of the quadrotor, affected by
aerodynamic forces and moments, is non linear and high coupled, the backstepping technique,
applied to the helicopter, turns out to be a good starting point to avoid complex nonlinear
control solutions. Next well know type of regulation is in work [9] this method is named
Sliding Mode Controller which can be used for the same task as the others.

2 Problem Statement

Mission
planner

Collision
avoidance

MPC
tracker

S0(3)
controller

Attitude
controller

UAV
Dynamics

State
observer

30 Hz

rD, ϕD

desired
trajectory

100 Hz

rR, ϕR

reshaped
trajectory

100 Hz

xD

100 Hz

TD

R(ϕD, θD, ψD)

1 kHz

motor control

UAV state
estimate
100 Hz

predicted trajectory 2 Hz

onboard sensor data 100 Hz

Figure 1: Diagram of the control pipeline which includes the MPC tracker and the collision
avoidance mechanism [1].

Figure 1 shows the system from MRS group. Every element can be modified inside of the
MRS group with the exception of S0(3) this element which is a binary file. Moreover, the
main goal of this thesis is the replacement for original (S0(3)) controller with accessible and
editable source code. The source code can be found in CD at the end of this thesis.

Our main goal is to replace a node in ROS that is programmed by the University of
Pennsylvania. MRS group has a control pipeline which can be seen in figure 1. Our main goal
is the replacement of a node in ROS that is programmed by the University of Pennsylvania so
as to enable us to make a publication of the pipeline which would not be otherwise possible
due to the original controller not being owned by the MRS group. This modular system can
switch between multiple reference trackers.

We need to make core node that contains controller and system that can switch tracker
for the controller. Moreover, implemented test linear tracker. The linear tracker should use
current interface from the actual system. This tracker will be used for take off.

The last goal is to test the system. The system should be tested in Gazebo simulator and
then in real flight. The results are presented by this thesis.

2/44

3 Outline

The modular system was design and implemented with ability to connect various control
references generators. The modular system can be seen in section 6. We also implemented
linear tracker generator in section 5. The linear tracker generator was tested in Gazebo
simulator. We investigate backstepping control approach and simulated in Matlab Simulink.
The backstepping was investigated in section 3. We compared the PID and backstepping in
Matlab. The comparison PID and backstepping controllers was conducted in section 4. The
proposed system has been successfully implemented into the ROS pipeline. We conducted
tests in Gazebo simulator in section 7. We tested PID in real world which can be seen in
section 8.

3/44

Part 2

Unmanned Aerial Vehicles

Unmanned areal vehicles (UAVs) in figure 2 can be remotely operated by a human, or they
can be either operated by a person using a remote operated or fully autonomous. The latter
case forms a crucial part of this thesis. For this thesis we will be designing a controller for
position of a UAV with specifically prescribed characteristics. We describe the UAV as a
mathematical model which takes form of differential equations or diagram in simulink which
can be seen in figure 6.

Figure 2: MRS’s group hexacopter in flight when equipped with minimal equipment.

1 Unmanned Aerial Vehicles in MRS group

Hexacopter have been developed by the MRS group of Czech Technical University in Prague
Faculty of Electrical Engineering, with the help of University of Pennsylvania (original con-
troller). Figure 3 shows the hardware equipment of an helicopter of the MRS group.

4/44

Figure 3: MRS’s group hexacopter onboard equipment [2].

PixHawk autopilot Pixhawk PX4 Flight Controller

Intel NUCi7 Powerful onboard PC running the
ROS

Frame Commercial DJI F550 hexacopter

3DR uBlox GPS, Tersus GNSS Absolute localization system for
outdoor environment.

Terraranger One External altitude sensor for applica-
tion, where a knowledge of the pre-
cise distance to the surface is re-
quired.

Mobius ActionCam Horizontal camera

mvBlueFOX Vertical camera

Table 1: UAVs onboard hardware [2].

From our point of view, we need to know dynamics of the whole frame with the already
implemented PixHawk autopilot (controller).

2 Model of Unmanned Aerial Vehicles

In this chapter, we construct a model of UAV. This model will not include the complete
rotational model of UAV. However, we will associate the rotational model done by first-
order systems because it already controlled by in build regulators on the UAV itself so this
approximation is sufficient.

5/44

2.1 Coordinates System

We need two coordinate systems to describe our system. The first system is attached to Earth
and the second one is connecting the to UAV with its origin in Center of Gravity of the UAV.
Schematic in figure 4 of a hexacopter with the body frame of reference denoted by X, Y, Z
axes. The four decrease of freedom of the UAV are the Euler angles yaw, pitch, roll and thrust
force which is in the direction of Z ′.

Figure 4: Coordinates system and position vector.

In order to derive the model of the UAV, we first need to define the coordinate frames
that will be used. Figure 4 shows two different reference frames. One of them is S = [x y z]
which is Earth reference system. The other one is the body-fixed frame S′ = [x′ y′ z′] with
the origin in the center of gravity of UAV while x′ points in the direction of flight or forward.
The y′ points to the left when UAV is flying forward, and z′ axis points upwards when UAV is
in hover mode. The translation between the Earth frame S and the body frame S′ describes
the absolute position of the center of mass of the UAV

r = [x y z]T. (1)

The rotation R from the body frame S′ to the Earth frame S describes the orientation of the
UAV. The orientation of the UAV is described using roll, pitch and yaw angles (ϕ, θ and ψ)
representing rotations around the X, Y, and Z axes respectively.

3 Kinematics and Dynamics model of UAV

UAV we use Newton-Euler method [9]. For this procedure we need to add some assumptions:

� UAV has rigid and symmetrical construction,

� Center of Gravity is in the origin of body-fixed frame coordinates system of UAV.

3.1 Rotational Matrix

For deriving complete Rotational Matrix R we need to rotate around all three axes in order
to get right result. The inertial frame S is rotated about its z-axis by the yaw angle ψ to get

6/44

the S1 frame. The first rotation is given as

RS1
S =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (2)

The resulting frame S1 is then rotated by the pitch angle θ around its y-axis to result in the
S2 frame. The transformation from the S1 frame to the S2 frame is given by

RS2
S1

=

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 . (3)

The last rotation is the rotation of the S2 frame about its x-axis to result in the body frame.
The transformation from the S2 frame to the body frame S′ is given by

RS′
S2 =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 . (4)

Finally the rotation matrix or transformation from the inertial frame S to the body frame S′

is given by

RS′
S = RS′

S2R
S2
S1

RS1
S (5)

RS′
S =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (6)

After the multiplication we get complete rotational matrix from S frame to S′ frame

RS′
S =

 cos θ cosψ cos θ sinψ − sin θ
sinψ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ sinψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

 . (7)

For the other direction we simply need to use

RS′
S = RS

S′
T

= RT. (8)

The rotation matrix R will be used in formulating the dynamics model of the UAV. The
rotation matrix is because some states are measured in the body frame S′, for example, the
thrust forces produced by the propellers while some others are measured in the inertial frame
S, for example, the gravitational forces g and the UAV’s position. Thus, to have a relation
between both types of states, a transformation from one frame to the other is needed.

3.2 Translational Equation of Motion

Action quantity is between 0 and 1 for this thesis we will call this quantity thrust t it makes
a force in the direction of −z′ in body frame and this force is described

Fthrust =

 0
0
−T

 (9)

7/44

T is given by

T = t ·Mt, (10)

where Mt stand for Max thrust is part of the model and has to be identify. This parameter
describe Max thrust when t = 1 then T is equal to Max Thrust.

The translation equations of motion for the UAV are based on Newton’s second law and
they are derived in the Earth frame S as

mr̈ =

 0
0
−mg

+ RFthrust, (11)

where m is UAV’s mass, g is gravitational acceleration and its value is 9.81, m
/

s2, r position
vector from equation (1) and figure 4, R rotation matrix, Fthrust force thrust vector from
equation (9).

According to Fayman from this moment we will use the Feyman’s trigonometric notation
to describe sin() as s() and cos() as c(). After that we can rewrite (11) as

mr̈ =

 0
0
−mg

+

+

c(θ)c(ψ) s(ψ)s(θ)c(ψ)− c(ϕ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)
c(θ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)s(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ)
−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

 0
0
−T

 . (12)

When we decompose this vector equation 12 then it yields this result

ẍ = − T
m

(
cosϕ sin θ cosψ + sinϕ sinψ

)
(13)

ÿ = − T
m

(
cosϕ sin θ sinψ − sinϕ cosψ

)
(14)

z̈ =
T

m

(
cosϕ cos θ

)
− g. (15)

3.2.1 Implementation of translation model

With this set of equations follow with modelling the system using
(Matlab Simulink) as shown in figure 5 below this equation are written in blocs named as
fcn

8/44

Phi
Theta
Psi
Thrust
m

out

DDX

Phi
Theta
Psi
Thrust
m

out

DDY

Phi
Theta
Thrust
m
g
DZ

out

DDZ

1
s

1
s

1
s

1
s

1
s

1
s

g

m

1 Phi

2Theta

3 Psi

4

Thrust

1

DX

2

X

3

DY

4

Y

5

DZ

6

Z

-K-

-K-

Y

DX

DDY

DZ

DDX

DDZ

DY

Z

X

Figure 5: Translation model in Matlab Simulink and Gazebo.

3.2.2 Identification of translation model

Figure 6: Simuling model of Unmanned Aerial Vehicles with the embeded stabilization loop
closed.

� When we already have a model we need to adjust parameters of this model to agree
with the model in the Gazebo simulator. The first part of identification consisted of
extracting definitons from simulator, such as the UAV mass m = 3 kg and gravitational

9/44

acceleration g = 9.81 m/s2. The rest of parameters (list) was obtained using experiments
in the simulator.

� First Experiment was done by original controller which sets roll and pitch angles to zero
which means that thrust vector has the direction opposite to gravitational force, then
we measured the response with full thrust, gives us the step response of the first order
system. After this measurements, we fit the responses of our Matlab model to measured
responses.

0 20 40 60 80
Time [s]

0

10

20

30

40

S
pe

ed
 [m

/s
]

Z-axis identification

Gazebo
Matlab

Figure 7: Speed in z-axis simulated in Matlab Simulink.

� When we have z-axis identified then we run another experiment for x or y axes to
identify parameters in this axis. The experiment was done by transition UAV from
work point to small angle θ or ϕ. In this experiment, we changed to 5 ◦ from the
operation point. Moreover, we measured the response in this experiment we neglect
the rotational dynamics of the system because it matches faster then dynamics of x, y
axes. Time constants are very different one of them is in range of 1 - 100 ms (Rotational
dynamics) and the other one is in seconds (Translation dynamics). After we had the
data from gazebo simulator, we to fit our model.

10/44

0 10 20 30 40
Time [s]

-30

-20

-10

0

S
pe

ed
 [m

/s
]

X-axis identification

Gazebo
Matlab

Figure 8: Speed in x-axis simulated in Matlab Simulink and Gazebo.

3.2.3 Rotational dynamics of UAV

We came to conclusion that modelling the whole rotational dynamic of the UAV is not neces-
sary because of low-level controllers which take care of this dynamics approximate with second
order system between θref and θ, ψref and ψ, ϕref and ϕ. When we have this Matlab model
for experimenting, we start to try to implement backstepping regulation for this model.

3.3 State space model of the UAV

If we model rotational system of UAV with low-level regulator on board with second order
system then we can write:

H(s) =
ω2
i

s2 + 2ζiωis+ ω2
i

, (16)

where ωi is natural frequency of the system and ζi is dumping ratio. This simplification is
very convenient because it is simple to tune to identified and also help us with building our

11/44

backstepping algorithm:

ẋ1 = x2 = ϕ̇

ẋ2 = ϕinωϕ − 2ζϕωϕϕ̇− x1ω2
ϕ

ẋ3 = x4 = θ̇

ẋ4 = θinωθ − 2ζθωθθ̇ − x3ω2
θ

ẋ5 = x6 = ψ̇

ẋ6 = ψinωψ − 2ζψωψψ̇ − x5ω2
ψ

ẋ4 = ż = x5

ẋ5 = z̈ =
T

m

(
cos(ϕ) cos(θ)

)
− g

ẋ6 = ẋ = x7

ẋ7 = ẍ = − T
m

(
cosϕ sin θ cosψ + sinϕ sinψ

)
ẋ8 = ẏ = x9

ẋ9 = ÿ = − T
m

(
cosϕ sin θ sinψ − sinϕ cosψ

)
.

(17)

For the simplicity we suppose

ωϕ = ωθ = ωψ (18)

ζϕ = ζθ = ζψ. (19)

This is consequence of assumption that our UAV with on board regulator is symmetrical.
Thus we can write

ẋ2 = ϕinω0 − 2ζω0ϕ̇− x1ω2
0 (20)

ẋ4 = θinω0 − 2ζω0θ̇ − x3ω2
0 (21)

ẋ6 = ψinω0 − 2ζω0ψ̇ − x5ω2
0. (22)

12/44

Part 3

Control

In this section, we focus on a mathematical derivation of principles that make backstep-
ping possible. Three controllers will be developed, PID controller, backstepping, and Gain
Scheduling PID controllers. Every single controller will be made, Matlab/Simulink and will
be used to asses the performance of the developed controllers. For PID with gain, scheduling
will be implemented in C++ for ROS and then tested in gazebo simulation.

1 Design and testing of PID controller

PID regulator in the implementation to MRS environment we will add gain scheduling to PID
and we will get better performance form it. After the state space model of the UAV we can
test and develop PID controller on our own as it is shown in figure 9. This task is separated
in three smaller tasks: altitude (z-axis) and two longitudinal for x, y axes.

Set Point +

Kd

Kp

Ki

S

1
S

+
UAV
Dynamics

X

X

−

Figure 9: Block diagram of PID regulation.

1.1 Altitude control with PID

A PID controller is developed to control the altitude z of the UAV. The controller generates
the thrust input to controller one layer below (PixHawk) and its output normalized to be
from 0 to 1. In this thesis T stands for thrust. From [5] book about control. The control law
for the PID is defined as

T = kp(z − zdes) + kd
∆(z − zdes)

∆t
+ ki

∑
(z − zdes)∆t, (23)

where:

kp proportional gain

kd derivative gain

ki integral gain

zdes desired altitude

z estimated altitude

T Thrust produced by our PID to next layer (PixHawk autopilot) controller.

∆t small change in time, in our case for 200 Hz loop it is five milliseconds.

13/44

Table 2: Altitude control description of parameters.

1.2 Longitudinal control with PID for x-axis

For x-axis we use this control law which can be written as

θdes = −asin
(
kp(x− xdes) + kd

∆(x− xdes)
∆t

+ ki
∑

(x− xdes)∆t
)
, (24)

where:

kp proportional gain

kd derivative gain

ki integral gain

xdes desired position in x-axis

x estimated position in x-axis

θdes desired angle for PixHawk controller

∆t small change in time, in our case for 200 Hz loop it is five milliseconds.

Table 3: Longitudinal (x) control description of parameters.

1.3 Longitudinal control with PID for y-axis

For y-axis we use this control law which can be written as

ϕdes = asin
(
kp(y − ydes) + kd

∆(y − ydes)
∆t

+ ki
∑

(y − ydes)∆t
)
, (25)

where:

kp proportional gain

kd derivative gain

ki integral gain

ydes desired position in y-axis

y estimated position in y-axis

ϕdes desired angle for PixHawk controller

∆t small change in time, in our case for 200 Hz loop it is five milliseconds.

Table 4: Longitudinal (y) control description of parameters.

1.4 Completion of PID

After we have all components of PID, we have to make upgrades. This upgrades consists of
Gain scheduling, and in z-axis we take part of back stepping approach, and we decide output
of the controller T by cos(θ) · cos(ϕ) in order to make our PID usable in real-world scenario
or in Gazebo simulation. We need to set up operation point for the altitude subsystem and
angle output limits on our longitudinal subsystem. For angle, ψ is not set and control low
because we can send our reference to PixHawk autopilot.

1.4.1 Gain scheduling

We can improve PID with gain scheduling. We can make a look up table where we can set up
(kp, kd, ki) in order to produce more relevant input to UAV. This table has input difference
between estimated position and reference position in space. This difference can be simplified

14/44

in to the distance between the reference and estimated position. We can set (kp, kd, ki) as a
function of distance. This addition to PID can improve PIDs properties. In implementation
to C++ we come with gain scheduling that is in this case possible. We change kp in our angle
parts of PID. If UAV is closer then distanceth increase kp and of course the other way around.
We can obtain kp as,

if(distance > distanceTh){

Kp = kpOut;

}else{

Kp = kpIn;

}

Listing 1: Code for gain scheduling.

Where kpOut and kpIn are manually set to some adequate numbers. In this instance we have
the sphere which has origin in our set point and the UAV is point in space. This type of
collision is easy and quick to check.

2 Design and testing of backstepping controller

Backstepping is a recursive control algorithm that can be applied to both linear and nonlinear
systems. Nowadays is proposed the use of backstepping and sliding-mode nonlinear control
methods to control the UAV which should give better performance in the presence of dis-
turbances. For example, Lee et al. [8] used a backstepping controller to control the position
and attitude of a UAV; the proposed controller was tested in a noisy environment and gave
an excellent performance In our case, the backstepping controller is used for altitude and
heading control. The backstepping controller is based on the state space model which can be
written as 17 backstepping works by designing ordinary control laws (constraints) for some
of the state variables. These state variables are called “virtual controls” for the system [15].
Unlike other control algorithms that try to linearize nonlinear systems such as the feedback
linearization algorithm, backstepping does not work to cancel the nonlinearities in the system.
This backstepping algorithm leads to more flexible designs since some of the nonlinear terms
can contribute to the stability of the system.

2.1 Roll control with backstepping

The first two states of the state space model in equation (17) is the roll angle ϕ and its rate
of change as

ẋ1 = x2 = ϕ̇, (26)

ẋ2 = ϕinωϕ − 2ζϕωϕϕ̇− x1ω2
ϕ. (27)

The roll angle ϕ subsystem is in the strict feedback form (only the last state is a function
of the control input ϕin) which makes it easy to pick a positive definite Lyapunov function.
Lyapunov function, which can be used to prove the stability of an equilibrium of an ordinary
differential equations we obtain

Lap1 =
1

2
e21, (28)

where e1 is error between the desired ϕin and actual ϕ roll angle defined as follows

e1 = ϕdis − ϕ. (29)

15/44

Now we need to make a time derivative of the Lyapunov function defined in equation (28) is,

L̇ap1 = e1ė1 (30)

= e1(ϕ̇dis − ϕ̇) (31)

System is guaranteed to be stable according to Krasovskii–LaSalle principle if the time deriva-
tive of a positive definite Lyapunov function is negative semi-definite [15]. If we want to achieve
that choose a positive definite bounding function

f1(e1) = k1e
2
1, (32)

to bound L̇ap1 as

L̇ap1 = e1(ϕ̇dis − ϕ̇) ≤ f1(e1) (33)

= e1(ϕ̇dis − ϕ̇) ≤ k1e21. (34)

This choice of f1(e) is also a common choice for a bounding function for strict feedback
systems [15]. where k1 is a positive constant to preserve positive definite bounding function.
To satisfy this inequality the virtual control input can be chosen to be

ϕ̇d = ϕ̇dis + k1e1. (35)

A new error variable e2 to be the deviation of the state ϕ̇ from its desired value

e2 = ϕ̇− ϕ̇dis − k1e1. (36)

Now we have opportunity to rewriting Lyapunov’s function time derivative Lap1 in the new
coordinate (e1,e2) and we get

L̇ap1 = e1(ϕ̇dis − (e2 + ϕ̇dis + k1e1)) (37)

= −e1e2 − c1e21. (38)

We have to be careful because the presence of the term e1e2 in L̇ap1 may not be a negative
semidefinite time derivative but this will be taken care of in the next iteration of the back-
stepping algorithm. The next step is to augment the first Lyapunov function Lap1 with a
quadratic term in the second error variable e2 to get a positive definite Lap2:

Lap2 = Lap1 +
1

2
e22. (39)

next step in the algorithm has to be the time derivation of equation (39) thus we get

L̇ap2 = L̇ap1 + e2ė2 (40)

= −e1e2 − k1e21 + e2(ϕ̈− ϕ̈des − k1ė1). (41)

Choosing the positive definite bounding function to be f2(e) = −k1e21 − k2e
2
2 where k2 is

a positive definite and substituting by the value of ϕ̈ from equation (27) brings us to the
following inequality:

L̇ap2 = −e1e2 − k1e21 + e2(ϕinω0 − 2ζω0ϕ̇− ϕω2
0 − ϕ̈des − k1ė1) ≤ −k1e21 − k2e22. (42)

Solving the last inequality, the control input ϕref can be written as,

ϕin = 2ζϕ̇+ ϕω0 +
1

ω0

(
ϕ̈des + k1e

2
1 − k2e2

)
(43)

16/44

The end of this algorithm tells us how to control roll angle ϕ. Now we can continue to next
step in our journey for complete backstepping regulator. If you look to next figure 10 you
can see that a lot of controllable inputs to our UAV is not connected so we will make our
regulator better when we make this exact procedure for pitch angel θ. In order to make next
part of our regulator we will repeat previous process once again.

Rotational
System

Translation
System

Roll Control
BackStepping

X

ϕdes

T

θ, ϕ, ψ Xϕin

T

Dynamic Model of UAV

Figure 10: Roll angle part of backstepping controller.

2.2 Pitch control with backstepping

The pitch controller is derived with same procedure as the roll controller. The states used are
angular speed and pitch angle are express as

ẋ3 = x4 = θ̇, (44)

ẋ4 = θinω0 − 2ζω0θ̇ − x3ω2
0. (45)

Now we need to choose Lyapunov function

Lap3 =
1

2
e23, (46)

where e3 is error between the desired θin and actual θ pitch angle defined as follows

e3 = θdis − θ, (47)

Now we need to make a time derivative of the Lyapunov function defined in Equation (46) as

L̇ap3 = e3ė3 (48)

= e3(θ̇dis − θ̇). (49)

System is guaranteed to be stable according to Krasovskii–LaSalle principle if the time deriva-
tive of a positive definite Lyapunov function is negative semi-definite [15]. If we want to achieve
that choose a positive definite bounding function

f3(e3) = k3e
2
3 (50)

to bound L̇ap3 as

L̇ap3 = e3(θ̇dis − θ̇) ≤ f3(e3) (51)

= e3(θ̇dis − θ̇) ≤ k3e23. (52)

17/44

This choice of f3(e) is also a common choice. Where k3 is a positive constant to preserve
positive definite bounding function. To satisfy this inequality the virtual control input can be
chosen to be

θ̇d = θ̇dis + k3e3. (53)

A new error variable e4 to be the deviation of the state θ̇ from its desired value

e4 = θ̇ − θ̇dis − k3e3. (54)

Now we have opportunity to rewriting Lyapunov’s function time derivative Lap3 in the new
coordinate (e3,e4) and we get,

L̇ap3 = e3(θ̇dis − (e4 + θ̇dis + k3e3)) (55)

= −e3e4 − c3e23. (56)

We have to be careful because the presence of the term e3e4 in L̇ap1 may not be a negative
semidefinite but this will be taken care of in the next iteration of the backstepping algorithm.
The next step is to augment the first Lyapunov function Lap3 with a quadratic term in the
second error variable e4 to get a positive definite Lap3 as

Lap4 = Lap3 +
1

2
e24. (57)

The next step in the algorithm has to be the time derivation of equation (57) thus we get

L̇ap4 = L̇ap3 + e3ė4 (58)

= −e3e4 − k3e23 + e4(θ̈ − θ̈des − k3ė3). (59)

Choosing the positive definite bounding function to be f4(e) = −k3e23 − k4e
2
4 where k4 is

a positive definite and substituting by the value of θ̈ from equation (45) brings us to the
following inequality,

L̇ap4 = −e3e4 − k3e23 + e4(θinω0 − 2ζω0θ̇ − θω2
0 − θ̈des − k3ė3) ≤ −k3e23 − k4e24. (60)

Solving the last inequality, the control input θref can be written as

θin = 2ζθ̇ + θω0 +
1

ω0

(
θ̈des + k3e

2
3 − k4e4

)
. (61)

We concluded the same output as before but now we can do the same for yaw angle ψ we will
repeat this procedure once again to come up with last angle controller for our complete angle
control.

Rotational
System

Translation
System

Roll Control
BackStepping

X

ϕdes

Pitch Control
BackStepping

X

θdes

T

θ, ϕ, ψ Xϕin

T

θin

Dynamic Model of UAV

Figure 11: Roll and pitch angle part of backstepping controller.

18/44

2.3 Yaw control with backstepping

Following exactly the same steps as the pitch and roll controllers, the control input for the
yaw angle is derived to be

ψin = 2ζψψ̇ + ψωψ +
1

ωψ

(
ψ̈des + k5e

2
5 − k6e6

)
. (62)

And the errors (e5, e6) are

e5 = ψdis − ψ (63)

e6 = ψ̇ − ψ̇dis − k5e5. (64)

We would like to point out that k5, k6 are positive constants.

Rotational
System

Translation
System

Roll Control
BackStepping

X

ϕdes

Pitch Control
BackStepping

Yaw Control
BackStepping

X

ψdes

θ, ϕ, ψ Xϕin

θin

ψin

T

θdes

X

Dynamic Model of UAV

Figure 12: Roll, pitch and yaw angle of backstepping controller.

In this moment we have controllers for all three degrease of freedom pitch roll and yaw. All
of this is already on board of our UAV so it was not necessary but when we were performing
this steps we come to conclusion that this exercise was irreplaceable when we applied this
algorithm to our real problem which is making ψdes, θdes and ψdes but the last thing to do is
thrust, which should be done in similar manner and it is useful in our real application.

2.3.1 Simulation

After derivation of this controllers we simulate it in Matlab Simulink. The simulation was
conducted with the following parameters:

ω0 = 0.8

ζ = 0.9

k1 = 6

k2 = 50

(65)

19/44

ω2
0

s2+2ζω0s+ω2
0

BackStepping
Controller

xdes
u X

x, ẋ

Figure 13: Block scheme for simulation backstepping controller on second order system.

0 2 4 6 8 10
Time [s]

0

0.5

1

1.5

P
os

iti
on

 [m
]

Simulation test for backstepping

Input [m]
Output[m]
Output with reg. [m]

Figure 14: Output of simulation of backstepping controller.

In a figure 14 we can be seen how the controller improves characteristics of our plant and
what was very interesting to us is that if we changed some parameter of the system we did not
see any changes to our regulated output. After concluding that backstepping is so powerful,
we continue our work towards out regulator. Next step is to invent altitude control for our
UAV, and that is done in next section.

2.4 Altitude control with backstepping

In this subsection, we will try to construct part of our backstepping controller which is re-
sponsible for thrust. This thrust we call T, and it has to be derived. The first two states of
the state space model in Equation (17) are related to the thrust as

ẋ4 = ż = x5 (66)

ẋ5 = z̈ =
T

m

(
cos(ϕ) cos(θ)

)
− g. (67)

The thrust T is in the strict feedback form (only the last state is a function of the control
input T)

Lap5 =
1

2
e25, (68)

20/44

where e5 is an error between the desired zdes and actual z z-axis position defined as

e5 = zdes − z. (69)

Now we need to make a time derivative of the Lyapunov function defined in Equation (68) as

L̇ap5 = e5ė5 (70)

= e5(żdis − ż). (71)

When we want to achieve a positive definite bounding function

f5(e5) = k5e
2
5, (72)

to bound L̇ap5 as

L̇ap5 = e5(żdis − ż) ≤ f5(e5) (73)

= e5(żdis − ż) ≤ k5e25, (74)

where k5 is a positive constant to preserve positive definite bounding function. To satisfy this
inequality the virtual control input can be chosen as

żd = żdis + k5e5. (75)

A new error variable e6 to be the deviation of the state ż from its desired value is

e6 = ż − żdis − k5e5. (76)

Now we have an opportunity to rewriting the Lyapunov’s function time derivative Lap5 in the
new coordinate (e5,e6) and we get

L̇ap5 = e5(żdis − (e6 + żdis + k5e5)) (77)

= −e5e6 − c5e25. (78)

Now we make second iteration of backstepping algorithm.

Lap6 = Lap5 +
1

2
e26 (79)

next step in the algorithm has to be the time derivation of equation (79) thus we got,

L̇ap6 = L̇ap5 + e6ė6 (80)

= −e5e6 − k5e25 + e6(z̈ − z̈des − k5ė5). (81)

Choosing the positive definite bounding function to be f6(e) = −k5e25 − k6e
2
2 where k6 is

a positive definite and substituting by the value of z̈ from equation (67) brings us to the
following inequality

L̇ap6 = −e5e6 − k5e25 + e6

(
T

m

(
cos(ϕ) cos(θ)

)
− g − z̈des − k5ė5

)
≤ −k5e25 − k6e26. (82)

Solving the last inequality, the control input T can be written as

T =
m

cos(ϕ) cos(θ)

(
− e5 − z̈des + g − k5żdes + k6ż + k5ż

)
. (83)

The end of this algorithm tells us how to control thrust (83) according to our altitude and
our desired altitude. Simulation are shown in end of this section.

21/44

2.5 Longitudinal Control in x-axis

According to [10] we can define error as

e7 = xdes − x. (84)

Considering a Lyapunov function

Lap7 =
1

2
e27 > 0 (85)

we can rewrite this as follows

L̇ap7 = e7ė7 = e7(ẋdes − ẋ) (86)

In equation (86) the virtual control ẋv can be chosen as

ẋv = xdes + k7e7. (87)

After this step we can define another error e8 as

e8 = ẋv − ẋ = ẋdes + k7e7 − ẋ, (88)

and then we get

ė8 = ẍdes + k7ė7 −
T

m
Λ. (89)

Next iteration brings new Lyapunov’s function,

Lap8 = Lap7 +
1

2
e28 > 0 (90)

Then we substitute from equation (89) and get

L̇ap8 = L̇ap7 + e8

(
ẍdes + k7ė7 −

T

m
Λ
)
. (91)

If we combine equation (86) and equation (88) we get

L̇ap8 = −k7e27 + e7e8 + e8
(
ẍdes + k7ė7 − z

T

m
Λ
)
, (92)

where Λ = 1/m + cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ). It is easy to see from (92) that the
fictitious control Λx can be considered as the orientation responsible for the motion in x
position, then we get

Λx =
m

T

(
ẍdes + k7ė7 + e7 + k8e8

)
. (93)

Then, it is possible to find the desired pitch angle θ in order to track the reference of x
position, this angle is given by

θdes = sin−1
Λx − sinϕ sinψ

cosϕ cosψ
(94)

After we have derived desired angle θ we will repeat same steps in order to derive desired
angle ϕ.

22/44

2.6 Longitudinal Control in y-axis

Since the fictitious control zy can be considered as the orientation responsible for the motion
in y position, we obtain

zy =
m

T

(
ÿdes + k9ė9 + e9 + k10e10

)
, (95)

where z is

z =
1

m
+ cos(ϕ) sin(θ) sin(ψ)− sin(ϕ) cos(ψ) (96)

and the errors (e9,e10) are

e9 = ydes − y (97)

e10 = ẏdes + k9e9 − ẏ. (98)

Finally, replacing θ in (95) by θdes from (94), it is possible to find the desired roll angle ϕdes
as

ϕdes = sin−1
(
zy sin(ψ)−zy cos(ψ)

)
. (99)

After this last step we now have in our hands complete backstepping regulator which we will
compared to PID controller design in next section.

23/44

Part 4

Simulation

1 Matlab simulation

In this section, we will focus on comparing backstepping regulator and PID in Matlab Simul-
ing. We will test them on step inputs, and we will change an amplitude of our steps function,
and we will observe how the output of our dynamic model will change in order to determine
better controller. To be able to compare reasonably between the two implemented control
techniques, the response graph of the system under the effect of each controllers was plotted
overlap one to another.

1.1 Parameters of the simulation

To test our developed controllers we need set up our dynamic model and also parameters and
constants of our controllers.

1.1.1 Dynamic model and Environment

For UAV model we will use this parameters:

Symbol Value Unit Description

m 2.97 [kg] mass of the UAV

g 9.81 [m/s2] gravitational constant of the environment

t1 18.15 [-] constant that realize normalization of thrust 1

t2 48.57 [-] constant that realize normalization of thrust 2

Table 5: UAV model parameters for Matlab Simulation.

1.1.2 PID controller

For PID controller it has been used,

Symbol Value Unit Description

Pz 1.1 [-] proportional constant in altitude

Iz 0.9 [-] integral constant in altitude

Dz 1.02 [-] derivative constant in altitude

Px 1.12 [-] proportional constant in longitude (x-axis)

Ix 0.01 [-] integral constant in longitude (x-axis)

Dx 2.1 [-] derivative constant in longitude (x-axis)

Py 1.12 [-] proportional constant in longitude (y-axis)

Iy 0.01 [-] integral constant in longitude (y-axis)

Dy 2.1 [-] derivative constant in longitude (y-axis)

Table 6: PID parameters for Matlab Simulation.

As you can see in our simulation we presumed symmetry in x and y axes therefore the
constants are same for x and y axes.

24/44

1.1.3 Backstepping

For backstepping controller we used this constants that were derived in section 3.3 and their
values are,

Symbol Value Unit

k5 18 [-]

k6 1.85 [-]

k7 17 [-]

k8 0.18 [-]

k9 8.5 [-]

k10 0.385 [-]

Table 7: Backstepping controller parameters for Simulation, k5, k6, k7, k8, k9, k10 ∈ R+.

1.2 Resolution of the simulation

The simulation was done in software called Matlab Simulink, which is provided by our univer-
sity. A version of this software is 2017a, and all files necessary to run the Matlab simulation can
be acquired by sending email to machaj45@fel.cvut.cz or on CD. The whole ROS node system
form MRS group will be available in the near future on http://mrs.felk.cvut.cz/platform.
From figure 15 (a) is visible that for PID without Gain Scheduling is difficult to not overshoot
when the steps are bigger. On the other hand, the backstepping controller has no problem
with that. In the next situation, PID is managing to give better results then backstepping
controller, and it looks that backstepping controller is somehow under regulates int longitu-
dinal region as can be seen in 15 (b). From 16 can be seen that the last change of reference
any of controllers did not make it in time, so they start to reduce their altitudes in order to
produce zero regulation error.

0 20 40 60
Time [s]

0

2

4

6

8

10

P
os

iti
on

 [m
]

Z-axis comparison

Reference
Backstepping
PID

(a) Comparison of the PID and the BackStepping
controllers in vertical axis.

20 30 40 50 60 70
Time [s]

0

2

4

6

8

10

P
os

iti
on

 [m
]

X-axis comparison

Reference
Backstepping
PID

(b) Comparison of the PID and the BackStepping
controllers in horizontal axis.

Figure 15: Comparison of the PID and the BackStepping controllers. (a) shows the vertical
axis, (b) shows the horizontal axis.

From 16 can be seen that the last change of reference any of controllers did not make it
in time so they starts to reduce theirs altitudes in order to make zero regulation error.

25/44

http://mrs.felk.cvut.cz/platform

0
2

2

1

Z
P

os
iti

on
 [m

]

4

Y Position [m]

1

X Position [m]

6

0.5
0 0

Reference
Backstepping

(a) Flight of simulate UAV when regulated by the
BackStepping controller.

0
2

2

1

Z
P

os
iti

on
 [m

]

4

Y Position [m]

1

X Position [m]

6

0.5
0 0

Reference
PID

(b) Flight of simulate UAV when regulated by the
PID controller.

Figure 16: Both regulators following reference in 3D space. (a) shows the BackStepping
controller, (b) shows the PID controller.

In figure 16 a we can clearly see that we did not give enough time for our regulator to
get to the point a the end of its trajectory. In conclusion we picked to implementation PID
because of its simplicity and for not that poorly at all.

26/44

Part 5

Linear reference generator

1 The proprietary (original) interface between controller and
tracker

In order to implement linear reference generator we need to consider that in the MRS pipeline
we already had a tracker. We need to make sure that the old tracker is still able to connect to
our regulator.Thus we decided to use their interface which defines the communication between
the controller and reference generator. This interface can be seen in listings 2. The interface
trackers manager::Tracker consists of five methods and one constructor.

class <TrackerName > : public trackers_manager :: Tracker {

public:

<TrackerName >(void); // Constructor

void Initialize(const ros:: NodeHandle &nh,

const ros:: NodeHandle &parent_nh);

bool Activate(const quadrotor_msgs :: PositionCommand :: ConstPtr &cmd);

void Deactivate(void);

const quadrotor_msgs :: PositionCommand :: ConstPtr

update(const nav_msgs :: Odometry :: ConstPtr &msg);

const quadrotor_msgs :: TrackerStatus ::Ptr status ();

Listing 2: Interface between controller and tracker.

The methods that trackers need to implement are Initialize, Activate, Deactivate and update.
The initialize method sets up the tracker. The initialize method is called once at the beginning.
The initialize method should not contain never ending loops.The initialize method should not
contain long term operations. We give the initialize method two pointers to node-handle one
of them is for the node of the tracker and the second one is parent node which is in our case
our PID controller. In Initialize, we fill the first node-handle with our node-handle pointer

ros:: NodeHandle priv_nh(nh , "linear_tracker");

Listing 3: How to get node-handle.

Now we have access to the parent node-handle from the PID side. Next things to set up are
publishers and subscribers.

desPosition = priv_nh.subscribe

("desired_position", 1, &LinearTracker :: desPositionHandle ,

this ,ros:: TransportHints ().tcpNoDelay ());

Listing 4: Creating a subscriber.

In this our node will create and subscribe to topic named “desired position” but this topic
can be found /uav#/linear tracker/desired position, where you can give necessary commands
to our tracker, where # represents the ID of UAV. Setting is loaded as a last part of the
initialized method.

The activation method can be called after initialization at any time. The activation
method activates the tracker.The activation method give the trucker information about the
last command from the predecessor to ensure smooth transition from one tracker to another.

27/44

The deactivate method we disable the tracker.

The update method is called in a cycle after initialization method is called. The update
method give back command to the controller and takes estimated state of UAV. The com-
munication is not realized by topics. Topic communication is slow for our proposes. We used
the update method (non-copy pointers) communication. The non-copy communication can
be describe as a calling a function in C++.

2 Implementation of the linear tracker

In this section, we will mathematically derive and implement the linear tracker.

2.1 Linear tracker mathematically

Let us have a point in space U, which is a position of our UAV, and second point S, our
setpoint position.

The direction from to s is defined algebraically as

D = S−U, (100)

where D is a vector, pointing in a direction of the setpoint. We have normalized the direction
vector as

Dir =
D

||D||
, (101)

where symbol ||D|| stand for Euclidean norm. The Dir is the desired direction of flight. Now
we construct linear reference generator as

C = U + Dirs∆t, (102)

where C is our output command and s stands for speed and ∆t for time elapsed in a loop.

2.2 Linear tracker in ROS

In ROS the linear tracker is implemented using C++ as shown in listing 5.

28/44

// Get information about where to fly and where uav is

double vectorLength = sqrt((desX - x) * (desX - x) +

(desY - y) * (desY - y) + (desZ - z) * (desZ - z));

// set positions from odom

if (vectorLength > 5) {

position_output.position.x = x +

((desX - x) / vectorLength) * speed;

position_output.position.y = y +

((desY - y) / vectorLength) * speed;

position_output.position.z = z +

((desZ - z) / vectorLength) * speed;

} else {

position_output.position.x = desX;

position_output.position.y = desY;

position_output.position.z = desZ;

}

// set yaw based on current odom

if (useYaw) {

position_output.yaw = desYaw;

position_output.yaw_dot = 0;

}

//Send command to the controller

Listing 5: Linear tracker core.

As you can see in listing 5 the core of linear tracker. Furthermore,the use of yaw is optional
and can be enabled on demand.

2.3 Structural point of view on linear trucker

The linear trucker resambles a library. In order to make plugin we have to change package.xml.
Next change is to call macro in sorce file (lineartracker.ccp). We use plugin for extending the
PID controller [16].

2.3.1 How to make a plugin

1. Registering the plugin

2. Make the plugin description file linear trackers.xml

3. Register the plugin with ROS package System

To satisfy the first point we need to add to our code pluginlib macro library and use the
macro, as the linear tracker. Registering as a plugin can be seen in listing 6.

#include <pluginlib/class_list_macros.h>

PLUGINLIB_EXPORT_CLASS(LinearTracker , trackers_manager :: Tracker)

Listing 6: Plugin registration in code.

Macro will function only when we give it the class that will be made as a plugin and the
interface to communicate with ROS packages. Next, task we create the linear trackers.xml,
which carries out description of the plugin. Example can be found in 7

29/44

<library path="lib/liblinear_tracker">

<class name="linear_tracker/LinearTracker" type="LinearTracker"

base_class_type="trackers_manager :: Tracker">

<description >This is Linear tracker. </description >

</class >

</library >

Listing 7: Plugin dectription file.

The file linear trackers.xml gives rest of the ROS information about the location of the plugin
and which interface uses. The file linear trackers.xml gives information to user about the
plugin. This file has to be in package folder. Acording to [16] “We need this file in addition
to the code macro to allow the ROS system to automatically discover, load, and reason about
plugins.” Before last step we have to make our plugin compatible with catkin build system.
The makefile is updated according to listings 8.

add_library(linear_tracker src/linear_tracker.cpp)

install(FILES linear_trackers.xml DESTINATION

${CATKIN_PACKAGE_SHARE_DESTINATION })

Listing 8: Plugin makefile changes.

The last step is to change plugin.xml to enable the plugin. In order for pluginlib to query all
available plugins on a system across all ROS packages, each package must explicitly specify
the plugins it exports and which package libraries contain those plugins. A plugin provider
must point to its plugin description file in its package.xml inside the export tag block [16].

<export >

<trackers_manager plugin="${prefix }/ linear_trackers.xml" />

</export >

Listing 9: Package.xml adding export tag.

Further more for the above export command to work properly, the providing package must
depend directly on the package containing the plugin interface. That means we need to add
two more lines to our package.xml file as in listing 10.

<build_depend >trackers_manager </ build_depend >

<run_depend >trackers_manager </run_depend >

Listing 10: Package.xml adding build dependencies.

After all these steps, we now have fully functional plugin, which can be tested in the Gazebo
simulator.

30/44

Part 6

Designing of a modular guidance system

In this section, we will focus on modular reference generator system. The system responsible
for UAV navigation is based on the PID controller and integrates MPC tracker and Linear
tracker.

First prototype of the modular system can be seen in figure 17. Connection from Services

block is implemented either by ROS service or ROS topic.

Connections in TRACKER INTERFACE are implemented by update.

Manager, PIDServices

Linear tracker

MPC tracker

tracker interface

Figure 17: Block diagram of the modular system for connecting various control reference
generators.

The switching between MPC and Linear tracker can be done using dynamic reconfigure.
Dynamic reconfigure provides a standard way to expose a subset of a node’s parameters to
reconfiguration. Client programs, e.g., GUIs, can query the node for the set of reconfigurable
parameters, including their names, types, and [17]. This tool is highly useful for real-time
tuning a controller or setting its operation point. Figure 17, shows services that are con-
nected to all nodes and the ability to switch controller is not possible because it is embedded
in manager node. Experiment verification of the system can be found in section 6 subsection 4.

31/44

1 Towards complete modularity

Based on the prototype system, we propose even more modular system which can be seen in
figure 18.

Manager

PID

BackStepping Services

Linear tracker

MPC tracker

tracker interfacecontroller interface

Figure 18: Block diagram of modular system for switching various control reference generators,
and feedback controller.

Firstly, the service from figure 18 can be seen as a bundle of ROS services and ROS topics
controlling the behaviour of the system. For example, we can tell to linear tracker to set
desired position by publishing on special topic or we can call service on MPC tracker to goTo

and set desired position again. Also we can directly communicate with the PID directly using
dynamic reconfigure to select tracker or set PID constants in runtime. Another main block
in figure 18 is the Manager. The manager block handles all services and enables switching
of trackers and controllers. This state is only cosmetic but when we have another controller
(BackStepping), we can switch them.

32/44

Part 7

Simulation in Gazebo Simulator

1 Description of the simulated scenario

In this section, we will test our regulator in Gazebo simulator, and we will test properties in
comparison with the old controller, which is currently used in the MRS group. For testing
in simulator, we used the same trajectory as in real flight as you can see in figure 23. This
trajectory is followed after a series of relative go-to commands to MPC tracker. The series of
goTo commands is composed from 8-meters steps and can be seen in figure 19

2 Simulation

The simulation was done in Gazebo simulator. In MRS group it is said that if a software
is flown in this simulator, then it has chance that the same phenomenon will be seen in
real life. That is shown in section 8 subsection 4 where we present result from a real flight.
We conducted tests in Gazebo simulator for both of regulators, the PID and the originally
used and proprietary Back-stepping regulator that is currently used by MRS group. Both
regulators have the same trajectory to flight and results are shown in figures 19, 20, 21.

0 10 20 30 40

Time [s]

-5

0

5

10

15

P
o
s
it
io

n
 [
m

]

X-axis Comparison

PID

Original

Reference

Figure 19: Step responses comparison between the PID and the original controllers in hori-
zontal axis.

As you can see in figure 19 we compared both regulators on the same trajectory. We can
see that the old regulator tracks reference perfectly, but our new regulator has a difficulty to
track these changes despite the fact that the regulator is given a smooth reference produced
by the tracker, which satisfies dynamical constrains of the UAV. The biggest overshoot is 0.6
m, which is acceptable, for autonomous flight with the vehicle localized using GPS. Precise
control was not the primary criterion. The regulator was tuned for smooth flight and to
minimize chances of high frequency oscillations, which may cause a crash of the real UAV.

33/44

40 60 80

Time [s]

0

5

10

15

P
o
s
it
io

n
 [
m

]

X-axis Comparison

PID Original Reference

(a) Comparison of the PID and original controllers
in horizontal (x) axis when following sine refer-
ence.

40 60 80

Time [s]

-5

0

5

10

15

P
o
s
it
io

n
 [
m

]

Y-axis Comparison

PID Original Reference

(b) Comparison of the PID and original controllers
in horizontal (y) axis when following sine refer-
ence.

Figure 20: Comparison of the PID and original controllers in horizontal plane when following
sine reference. (a) shows comparison in x-axis, (b) shows comparison in y-axis.

In this figure 20 we see the circling part of our preplanned trajectory.

50 60 70 80 90

Time [s]

4

4.5

5

5.5

P
o
s
it
io

n
 [
m

]

Z-axis Comparison

PID Original Reference

(a) Comparison of the PID and original controllers
in vertical (z) axis.

0

2

10 15

Z
[m

] 4

Comparison in all axes

Y [m]

105

X [m]

6

5
0 0

PID
Reference

(b) Performance in 3D space of the PID controller.

Figure 21: Comparison of both controllers in z-axis and overall view. (a) shows comparison
on the PID and original controllers, (b) shows overall view.

Figure 21 (a) shown the heigh control, which the new regulator can handle better than
the old backstepping regulator.

Figure 21 (b) shown flight in 3D space, where blue line represents flight path of UAV and
the red one reference. This figure gives reader full picture of the flight that was performed in
simulation.

34/44

3

4

10 15

Z
[m

] 5

Comparison in all axes

Y [m]

105

X [m]

6

5
0 0

Reference
original

(a) Overall view of performance original controller
in 3D space.

0

2

10 15

Z
[m

] 4

Comparison in all axes

Y [m]

105

X [m]

6

5
0 0

PID

Reference
Original

(b) Comparison of both controllers in 3D space.

Figure 22: Comparison of both controllers in 3D space. (a) shows performance of the original
controller, (b) shows comparison of both controllers.

Figure 22 (a) shown original backstepping regulator where green line represents flight path
of UAV and the red one reference. Figure 22 (b) shown the PID controller where green line
represents flight path of UAV when backstepping is used and the red one reference. The blue
one represents the UAV position when controlled by PID. Figure 22 (b) shown comparison in
3D space where green line represents flight path of UAV when backstepping is used and the
redone reference also the blue one represents UAV position when the PID was used. Again,
full view to both regulators in one plot.

35/44

Part 8

Real flight comparison

1 Real flight measures

Because the UAV is valuable, we have to take measures with the start sequence. In order to
perform a take off safely we implemented two new services to enable thrust T and the control
in x and y axes (ϕ and θ) separately. When the UAV is on the ground, the safest way to take
off and after the UAV is in the air, the regulating in x and y axes is enabled.

2 The first real flight

In the first flight, the PID was fine tunned for the particular UAV hardware. We used the
dynamic reconfigure [17] for tuning our controller. The tuning was performed on step changes.
The step changes were done by operator. The operator called goToRelative service provided
by MPC tracker, which allows defining new setpoint based on the current position of the UAV.

3 Path for comparison

In order to compare our PID whit original controller, we made a path that both regulators
have to follow. For that, we use Matlab to generate the path. This path is a circle that is
loaded using a dedicated trajectory loader package. We had to make the path with dynamic
parameters in mind. First, is acceleration that is set in the configuration file for MPC tracker
to 1 m/s2 and the maximal speed that is also set in MPC tracker to 2 m/s. The path was
made to meet requirements. Figure 13 shows the circle trajectory. We tested circle of 5 m
radius with design velocities of 1 m/s.

Trajectory for real comparison

0
5

10
15

X [m]
0

5
10

15

Y [m]

4

5

6

Z
 [m

]

Trajectory

Figure 23: Trajectory has been generated in Matlab.

36/44

4 Control performance

As you can see in figures 24 (a) and (b), the proposed PID regulator follows the reference
sufficiently.In the next set of figures you can see a comparison with the old proprietary regu-
lator.

40 60 80 100 120 140

Time [s]

-15

-10

-5

0

5

10

P
o
s
it
io

n
 [
m

]

X-axis flight

Measured positon

Reference

(a) UAV following specific reference in horizontal
(x) axis when controlled by the PID controller.

40 60 80 100 120 140

Time [s]

-20

-15

-10

-5

0

P
o
s
it
io

n
 [
m

]

Y-axis flight

Measured positon

Reference

(b) UAV following specific reference in horizontal
(y) axis when controlled by the PID controller.

Figure 24: UAVs estimated position in horizontal plane when controlled by the PID controller.
(a) shows following reference in x-axis, (b) shows following reference in y-axis.

The PID regulator follows the reference in both axes. The step responses can be seen in
figure 24 (a). The responses in figure 24 (a) and b are sufficient in out door flight with GPS
localization. The controller performed similarly even with steps as large as 50 m thanks to
the tracker.

0 50 100

Time [s]

0

0.5

1

1.5

2

2.5

3

P
o
s
it
io

n
 [
m

]

Z-axis flight

Measured positon

Reference

(a) Estimated position of the UAV in vertical (z)
axis when controlled by the PID controller.

5

Flight

0

X [m]

0

1

-5-5

Z
[m

]

2

Y [m]

3

-10 -10-15

PID
Reference

(b) Flightpath in 3D space reference (red) esti-
mated position (blue)

Figure 25: Estimated position of the UAV in vertical axis and overall view of the performance.
(a) shows postion of UAV in z-axis, (b) shows overall view of the flight.

Figure 25 (a) shows an initial step in height issued take off. Figure 25 (b) shows PID in
control during a complex trajectory that consist of steps changes in position and the circle
reference 1 m/s, describe in section 8 subsection 3. The PID performance is comparable to

37/44

old proprietary controller. Comparison between our new PID and old controller can be seen
in figures 26, 27.

80 100 120

Time [s]

-10

-5

0

5

10

P
o
s
it
io

n
 [
m

]

X-axis Comparison

PID Original Reference

(a) Comparison of both controllers in horizontal
(x) axis when following sine reference.

80 100 120

Time [s]

-20

-15

-10

-5

0

P
o
s
it
io

n
 [
m

]

Y-axis Comparison

PID Original Reference

(b) Comparison of both controllers in horizontal
(y) axis when following sine reference.

Figure 26: Comparison of both controllers in horizontal plane. (a) shows both controllers in
x-axis, (b) shows both controllers in y-axis.

1.8

-5

2

5

Z
 [m

]

Comparison in all axes

Y [m]

-10

2.2

X [m]

0
-15 -5

PID Original Reference

Figure 27: Comparison of both controllers in 3D space.

In figure 27 can be seen that old controller has different starting sequence the PID. Fig-
ure 28a shows UAV controlled by PID control system as well as figure 28b. Figures 28a, 28b

38/44

shows step form position in figure 28a to position in figure 28b. Both picture are at hover
mode before and after step change in reference.

(a) UAV 5 controlled by the PID controller at the beginning of trajectory

(b) UAV 5 controlled by the PID controller at the end of trajectory

Figure 28: Snapshots of testing of the system in real-world conditions. Video from the
experiment can be found at https://www.youtube.com/watch?v=tpn7tCahuIQ.

39/44

https://www.youtube.com/watch?v=tpn7tCahuIQ

Figure 29: Unmanned aerial vehicle when controlled by the developed controll system.

40/44

Part 9

Conclusion

In this thesis, we have developed software solution that allows execution of the model position
control of micro aerial vehicles. We designed and tested PID controller. The PID controller
was implemented in C++. The implemented PID was integrated in to ROS pipeline. The
dynamical model of the UAV has been derived and its parameters have been experimentally
and numerically identified. The modular system was design and implemented with ability to
connect various control references generators. We also implemented linear tracker generator.
The linear tracker generator was tested in Gazebo simulator. We investigate backstepping
control approach and simulated in Matlab Simulink. The backstepping was investigated and
then simulated in Matlab Simulink. We compared the PID and backstepping in Matlab and
conducted that follow reference as well as backstepping controller. The proposed system has
been successfully implemented into the ROS pipeline. We conducted tests of PID in Gazebo
simulator in order to confirm that the PID is able to fly in real world. We tested PID and fine
tuned in real world. The PID sufficiently followed reference from tracker. We are now able to
flight without the original controller. The entire assignment of this thesis has been fulfilled
successfully. During the development of this thesis, several ideas emerged that specify our
future work. The modular system will be overdo to proposed ideal state. We will separate
main manage form controller. We will construct plugins controllers: PID, backstepping. And
we will fine tuned system to usable state. We also add more tracker for better performed at
take offs.

41/44

References

References

[1] T. Báča, D. Hert, G. Loianno, M. Saska, and V. Kummar, “Model pedictive trajectory
tracking and collision avoidance for reliable outdoor deployment of unmanned aerial
vehicles,” 2018.

[2] P. Petráček, “Decentralized model of a swarm behavior boids in ros,” in Bachelor’s
Thesis. CTU FEE, 2017.

[3] P. Štibinger, “Localization of a radiation source by a formation of unmanned aerial
vehicles,” in Bachelor’s Thesis. CTU FEE, 2017.

[4] Y. Altman. (2018) Undocumented matlab. [Online]. Available: https:
//undocumentedmatlab.com/ [Accessed: 2018-05-20]

[5] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems.
Addison-wesley Menlo Park, CA, 1998, vol. 3.

[6] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Control systems,
vol. 12, no. 3, pp. 7–17, 1992.

[7] O. S. R. Foundation. (2018) Gazebo. [Online]. Available: http://gazebosim.org/
[Accessed: 2018-05-12]

[8] H. Lee, S. Kim, and T. Ryan, “Backstepping control,” in Backstepping Control on SE(3)
of a Micro Quadrotor for Stable Trajectory Tracking, 2013.

[9] H. talla Mohamed Nabil ElKholy, “Dynamic modeling and control of a quadrotor using
linear and nonlinear approaches,” in The degree of Master of Science in Robotics, Control
and Smart Systems, 2014, pp. 0–143.

[10] C. A. Arellano-Muro, L. F. Luque-Vega, B. Castillo-Toledo, and A. G. Loukianov, “Back-
stepping control with sliding mode estimation for a hexacopter,” in International Con-
ference on Electrical Engineering, Computing Science and Automatic Control (CCE),
2013.

[11] H. Bouadi, M. Bouchoucha, and M. Tadjine, “Sliding mode control based on backstep-
ping approach for an uav type-quadrotor,” World Academy of Science, Engineering and
Technology, vol. 26, no. 5, pp. 22–27, 2007.

[12] H. R. Pota, B. Ahmed, and M. Garratt, “Velocity control of a uav using backstepping
control,” in 45th IEEE Conference on Decision and Control (CDC). IEEE, 2006, pp.
5894–5899.

42/44

https://undocumentedmatlab.com/
https://undocumentedmatlab.com/
http://gazebosim.org/

[13] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “Backstepping/nonlinear h control for
path tracking of a quadrotor unmanned aerial vehicle,” in American Control Conference
(ACC). IEEE, 2008, pp. 3356–3361.

[14] T. Madani and A. Benallegue, “Sliding mode observer and backstepping control for a
quadrotor unmanned aerial vehicles,” in American Control Conference (ACC). IEEE,
2007, pp. 5887–5892.

[15] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, “Nonlinear design of adaptive controllers
for linear systems,” in Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc.,
1994.

[16] M. Arguedas. (2015) Pluginlib. [Online]. Available: http://wiki.ros.org/pluginlib
[Accessed: 2018-05-19]

[17] B. Gassend. (2015) Dynamic reconfigure. [Online]. Available: http://wiki.ros.org/
dynamic reconfigure [Accessed: 2018-05-19]

43/44

http://wiki.ros.org/pluginlib
http://wiki.ros.org/dynamic_reconfigure
http://wiki.ros.org/dynamic_reconfigure

CD content

Table 8 lists names of all root directories on CD together with their content.

Directory name Description

/main.pdf Bachelor thesis in pdf format.

/matlab All Matlab files for simulation and making plots and mea-
sured data form gazebo simulation and real flight .

/PIDBackStepping Location of all nodes in ROS.

/texfiles Location of all texfiles for this thesis.

/source Main node only source file pidcontroll.cpp and lin-
ear tracker.cpp.

Table 8: CD content.

44/44

	1 Introduction
	State of the art
	Problem Statement
	Outline

	2 Unmanned Aerial Vehicles
	Unmanned Aerial Vehicles in MRS group
	Model of Unmanned Aerial Vehicles
	Coordinates System

	Kinematics and Dynamics model of UAV
	Rotational Matrix
	Translational Equation of Motion
	Implementation of translation model
	Identification of translation model
	Rotational dynamics of UAV

	State space model of the UAV

	3 Control
	Design and testing of PID controller
	Altitude control with PID
	Longitudinal control with PID for x-axis
	Longitudinal control with PID for y-axis
	Completion of PID
	Gain scheduling

	Design and testing of backstepping controller
	Roll control with backstepping
	Pitch control with backstepping
	Yaw control with backstepping
	Simulation

	Altitude control with backstepping
	Longitudinal Control in x-axis
	Longitudinal Control in y-axis

	4 Simulation
	Matlab simulation
	Parameters of the simulation
	Dynamic model and Environment
	PID controller
	Backstepping

	Resolution of the simulation

	5 Linear reference generator
	The proprietary (original) interface between controller and tracker
	Implementation of the linear tracker
	Linear tracker mathematically
	Linear tracker in ROS
	Structural point of view on linear trucker
	How to make a plugin

	6 Designing of a modular guidance system
	Towards complete modularity

	7 Simulation in Gazebo Simulator
	Description of the simulated scenario
	Simulation

	8 Real flight comparison
	Real flight measures
	The first real flight
	Path for comparison
	Control performance

	9 Conclusion
	 References
	 CD content

