
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

Filip Bulander

Interface iOS for control of an unmanned helicopter
in ROS

Department of Control Engineering

Thesis supervisor: Dr. Martin Saska

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

456876Personal ID number:Bulander FilipStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Systems and ControlBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Interface iOS for control of an unmanned helicopter in ROS

Bachelor’s thesis title in Czech:

Rozhraní iOS pro řízení bezpilotní helikoptéry v ROSu

Guidelines:
The goal of the thesis is to design, implement, and experimentally verify in Gazebo simulator and real experiments an
application in iOS for control an Unmanned Aerial Vehicle (UAV) equipped by onboard Linux PC with Robot Operating
System (ROS).
1. Implement an interface in iOS to operate by iPhones a UAV equipped by Linux onboard computer with ROS [1,2].
2. Design and implement an iOS application for basic UAV control by iPhones (joystick, setting GPS points, displaying a
UAV telemetry - position estimation, battery status, data from selected onboard sensors).
3. Verify the application in Gazebo and with a real platform in outdoor conditions.
4. Design and implement an iOS application to setup and control an inspection/monitoring task. A user submits a sequence
of points of snapshots and camera orientations in these points and the application returns a collision-free path in a known
map. The user can edit the obtained path and confirm its execution.
5. To verify the inspection/monitoring application in Gazebo in scenarios of warehouse monitoring and inspection of
historical buildings [3,4]. To verify the application with a real platform in outdoor conditions.

Bibliography / sources:
[1] T. Baca, P. Stepan and M. Saska. Autonomous Landing On A Moving Car With Unmanned Aerial Vehicle. In The
European Conference on Mobile Robotics (ECMR), 2017.
[2] G. Loianno, V. Spurny, J. Thomas, T. Baca, D. Thakur, D. Hert, R. Penicka, T. Krajnik, A. Zhou, A. Cho, M. Saska, and
V. Kumar. Localization, Grasping, and Transportation of Magnetic Objects by a team of MAVs in Challenging Desert like
Environments. IEEE ICRA and RAL, 2018.
[3] S. Winkvist, E. Rushforth, K. Young. Towards an autonomous indoor aerial inspection vehicle. Industrial Robot,
40(3):134-156. 2013.
[4] M. Saska, V. Kratky, V. Spurny, and T. Baca, "Documentation of dark areas of large historical buildings by a formation
of unmanned aerial vehicles using model predictive control," in IEEE ETFA, 2017.

Name and workplace of bachelor’s thesis supervisor:

Ing. Martin Saska, Dr. rer. nat., Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 31.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Martin Saska, Dr. rer. nat.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZBP-2015.1

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Date Signature

Acknowledgments

I would like to thank my adviser and supervisor Dr. Martin Saska for his advice.
And also thank all members from team multi-robotic systems, who helped me to finish
this thesis.

Abstract

This work aims to control unmanned helicopter with a mobile device
with operating system iOS. The goal is to implement a solution, that
can command helicopter in three ways. The first is Joystick Control, the
second set trajectory in Google Maps and last one is indoor navigation,
for which a precise map is needed. The work is based on results from De-
partment of Cybernetics at Czech Technical University in Prague group
Multi-Robotic systems.

Keywords

UAV, iOS, MacOS, ROS, mobile application, indoor navigation,

Abstrakt

Práce je zaměřená na ovládáńı bezpilotni helikoptery za pomoci mo-
bilńıho zař́ızeńı s operačńım systémem iOS. Ćılem je implementovat
řešeńı, které bude schopno ovládat helikoptéru ve v́ıce módech. Prvńı
je ovládáńı joystickem, druhá nastaveńı trajektorie pomoćı Google Map,
posledńı ja navigace v interiéru budov, pro kterou je potřeba źıskat
přesnou mapu. Práce vycháźı z výzkumu pracovńıku na Katedře ky-
bernetiky skupiny multi-robotických systémů.

Kĺıčová slova

UAV, iOS, MacOS, ROS, mobilńı aplikace, indoor navigace,

CONTENTS

Contents

1 Introduction 1

2 Problem definition 2

3 Unmanned helicopter 3

3.1 UAV . 3

3.2 Multi-robotic experiments . 4

3.3 Requirements for UAV in this project . 4

4 ROS 5

4.1 Uav core . 5

4.1.1 Uav core commands . 5

4.2 UTM coordinates . 5

4.3 Gazebo . 6

5 ROS on MacOS 7

5.1 Dual boot . 7

5.2 Boot camp . 7

5.3 Virtual machines – Parallels, VMWare, Docker, VirtualBox 7

5.3.1 Parallels Desktop . 7

5.3.2 Docker . 8

5.3.3 VirtualBox . 8

5.3.4 Conclusion of virtual machines . 8

5.4 Conclusion of ROS on MacOS . 8

6 Mobile app 9

6.1 Operating system . 9

6.1.1 Android applications . 9

6.1.2 IOS development . 9

6.1.3 Operating system comparison . 10

6.2 Communication . 11

6.3 Architecture . 11

i

CONTENTS

6.4 Design . 12

6.4.1 Navigation controller . 12

6.4.2 Storyboard . 12

6.4.3 Programatically implemented layouts and transitions 12

6.5 External libraries . 13

7 Main page 14

8 Joystick commanding 15

9 Google Maps trajectory 16

9.1 Installation Google Maps library . 16

9.1.1 Bundle ID . 16

10 Indoor navigation 18

10.1 Overview . 18

10.2 Preparation . 18

10.3 Ways of representation . 18

10.3.1 MetalKit . 19

10.3.2 UIBezierPath . 19

10.3.3 View in view . 19

10.4 Processing . 20

10.4.1 Approximation . 20

10.4.2 Sorting by the nearest point . 22

10.4.3 Sorting for views in view . 22

10.5 User interaction and tutorial . 22

11 Trajectory preparations 24

11.1 General preparation . 24

11.2 Preparation for simulator . 24

11.3 Preparation for real flying . 24

ii

CONTENTS

12 Experiments 25

12.1 Joystick commanding . 25

12.2 Google Maps . 25

12.3 Indoor navigation . 25

12.4 Problems and possible solution . 25

13 Conclusion 27

13.1 Next steps . 27

Appendix A DVD Content 31

iii

CONTENTS

iv

LIST OF FIGURES

List of Figures

1 Micro Aerial Vehicle . 3

2 UTM Zones [1] . 6

3 Screenshot from gazebo [2] . 6

4 VIPER architecture [3] . 11

5 Login page to the application . 14

6 Joystick controlling screen . 15

7 Map controlling screen . 16

8 Screen with displayed Metal Kit . 18

9 Points as view in view . 22

10 Longitude and latitude graph from experiment 26

11 Screenshot of inserted trajectory . 26

v

LIST OF FIGURES

vi

1 INTRODUCTION

1 Introduction

The twenty-first century is the century of big technological progress. Smartphones
are the most available and the most powerful ever. Almost everybody on the Earth has
a mobile phone. On the other side of progress are autonomous vehicles, which have the
biggest progress in the last ten years. This progress is in water, ground and aerial vehicles.
It led to the decision to implement an application for smartphone, that would be able to
control unmanned aerial vehicle. This project has been separated into few sub-projects,
where every work has different requirements. The first major requirement is an operating
system. The most works in this way are focused on Android devices. This thesis is for
iOS devices. Next requirements are very variable because every project can be focused on
a different trend. Trends can be agriculture, where UAV will map field and decide where
should be engraved. Next trend is processing in storage halls, which is operated by humans
now, but autonomous vehicles can improve processes in this way.

1/32

2 PROBLEM DEFINITION

2 Problem definition

The first requirement is UAV, for this purpose has been used the final product de-
veloped by team multi-robot systems[4] at FEE CTU. All helicopters contain a computer,
running on the operating system Ubuntu. The main feature on that computer is ROS. ROS
is middle-ware, which control everything on the board, deeper description of the helicopter
is in chapter 3. With this board can be communicated in many ways. In this work will
be used for communication between UAV and a mobile device a Wi-Fi. Communication is
wider described in chapter 6.2. A ROS for real helicopter computer is modified to work with
Gazebo. The gazebo is a simulator of the real world. The gazebo s described in chapter 4.3.
Every needed experiment can be before real flying tested in Gazebo simulator. That is very
recommended because an error on a real helicopter can be fatal.

Next requirement is a mobile application for the iOS operating system. Implemen-
tation of mobile applications for iOS can be done in many programming languages, but
the most recommended is Swift. Next need for developing an iOS application is to develop
on Apple device, which is the first problem of this work because development has to use
Ubuntu for running ROS and MacOS for running IDE. That conflict leads to virtualiza-
tion of the second operating system, or have dual boot on one device, attempts to this
simplification is described in chapter 5.

This work inhibits exploration of an indoor map, that is part of another work.

2/32

3 UNMANNED HELICOPTER

3 Unmanned helicopter

Figure 1: Micro Aerial Vehicle

As a device for controlling will be used an unmanned aerial vehicle, invented on
Department of Cybernetics by the group of multi-robotic systems. A requirement of this
work is only one UAV. Set of this vehicle are used for students research and development.
For example Control and Navigation in Manoeuvres of Formations of Unmanned Mobile
Vehicles[5].

The main feature of the helicopter is a self-stabilizing system. It can hold its latitude,
longitude, and height according to built-in very precise GPS locator. Due to this system
drone has better commanding options, for example, to move one meter left, or to rotate
by 50 degrees. Helicopters without self-stabilizing system have directly controlled motors.
That type of drones is often used for FPV racing.

The most used types of UAV are quad-copters with four propellers, but the used
helicopter is hexacopter, which means that it has six propellers. The reason, why to have
six propellers, is because each helicopter contains expensive parts and if some motor or
propeller fails, the inner system is able to safely land with five propellers, which is not
possible with quad-copter.

3.1 UAV

Definition of UAV tells that Unmanned aerial vehicle is a vehicle without any passen-
ger or driver on board. It can be controlled autonomously or remotely. It can carry lethal
package, which can be very dangerous.

3/32

3 UNMANNED HELICOPTER

3.2 Multi-robotic experiments

Even if this project is aimed only at one vehicle, multi-robotic experiments are un-
divided and main experiments of multi-robotic system group. As was mentioned in the
introduction, every experiment has lots of tests in a simulator before real visualization,
but on real hardware can every program fail. For this reason, has been developed Collision
avoidance system[6]. This system can avoid failed planned trajectory, in case of a possible
collision. System using multi-master system, where every vehicle knows about each other.
Thanks to the multi-master system can Collison avoidance system predict the future po-
sition of every aerial vehicle at the same time and set distance can cancel trajectory and
plan trajectory so they will miss.

3.3 Requirements for UAV in this project

In this project, UAV will use, necessary systems prepared in default settings. The
drone has the all sensors for self-stabilizing. Next connected component is GPS device,
which cares about every localization, that device is also present in every helicopter. For
localization is not used in standard GPS system, but UTM system, UTM coordinates
is better described in chapter 6.2. The last necessary component is Wi-fi because drone
must be connected to the same Wi-fi as a mobile device because every communication is
managed over Wi-fi. Before using the real helicopter, implementation has to be tested in a
simulation which is provided in Gazebo, graphic simulator connected with ROS, described
in next chapter.

4/32

4 ROS

4 ROS[7]

ROS means robot operating system. It is middle-ware used by many developers for
testing and implementing algorithms for run robots, starting with small simpler robot
projects going over our drones, ending with smart robots with almost infinity features. All
ROS is designed to be as distributed and modular as possible, which is also a reason why
there are over 3000 available packages in ROS ecosystem. Around ROS is a big community
of developers. Its community has about 1500 participants, and there are thousands of
discussed themes on their Wiki.

4.1 Uav core

Uav core is package implemented by students of FEE CTU in Prague from Depart-
ment of Cybernetics. It package implements control methods of UAVs and UGVs (Un-
manned aerial vehicles and Unmanned ground vehicles). This thesis aims to UAV. There-
fore UGVs will not be described. Around uav core has been implemented lots of packages
controlling simulated devices, which are using on real UAVs. Devices are, for example,
cameras, RFID locators used in this bachelor thesis[8] and many similar components. For
control of helicopter in this project is used Uav core package.

4.1.1 Uav core commands

Commands for drone can run via terminal on PC. There are few basic commands
implemented[9]. Their functions are mainly moving to absolute or relative positions com-
plexly or divided by axes. We can also set the trajectory for a drone. A setting of relative
positioning is simple. The unit of each parameter is one meter. For setting absolute position
is work little harder. Because every command use UTM coordinates and they are usually
offset, for adjusting zero position to the center of the testing area. This will be the last
step in communication with UAV. This leads to finding a communication tool for an iOS
device, described in chapter 6.2.

4.2 UTM coordinates

Universal Transverse Mercator coordinate system (UTM) is in contrast to Global
Positioning System (GPS) separated into zones from -60 to 60, zero is excluded. Zones
with a negative number are in the southern hemisphere, and the zones with a positive
number are in northern hemisphere[10]. With UTM was at the first time defined one
meter, because the distance from the equator to North pole was 10 000 km. That leads to

5/32

4 ROS

a result, where Easting and Northing coordinates are always in meters.

Figure 2: UTM Zones [1]

4.3 Gazebo

As was many times mentioned application for UAV has to be tested on a simulator,
and after successful tests, it can be built and run on real UAV. ROS is the middle-ware that
proceeds every controlling of drone, but for simulation is there Gazebo, robot simulation
tool. The gazebo can simulate dynamic systems, robots, sensors like a camera and cloud
simulation also. For our purpose has been prepared models of UAVs, with a camera and
typically same as real UAV contains.

Figure 3: Screenshot from gazebo [2]

6/32

5 ROS ON MACOS

5 ROS on MacOS

Best way to develop and implement iOS application is to use Xcode, which is rec-
ommended IDE for iOS development. Xcode is only able to run on MacOS and maybe on
some illegal copies, for example Hackintosh. When we want to go via the legal way, we
can only use the MacOS. So here comes the first complication. There is a ROS running
on Ubuntu and Xcode running on MacOS. To make development more comfortable and
straight by using one computer which would run both operating systems. There are few
ways how to do that.

5.1 Dual boot

The first option which can remove the problem of two machines is to use dual boot.
With dual boot can be reserved half of drive to Ubuntu and half for MacOS. But of course,
there is a problem. Apple devices have a guarantee, and by installing other OS on it, the
guarantee would have expired. Otherwise installing Ubuntu on Apple device is not so easy,
because these devices are very protected. Even if all problems are resolved, time to restart
the computer after updating the mobile application to start Ubuntu and ROS will take
much time. And in long-term work, it will be very uncomfortable.

5.2 Boot camp

Lots of Mac users use Bootcamp to run Windows, parallel with MacOS. That is the
cleanest way to start different operating system on Apple device and Windows are very
stable, because every Apple configurations are known, and there are not any differences
with a different setup. But the problem is, Boot camp is no compatible with Ubuntu or
other Linux derives.

5.3 Virtual machines – Parallels, VMWare, Docker, VirtualBox

5.3.1 Parallels Desktop[11]

Parallels Inc. is presented as the global leader of cross-platform solutions, and their
product Parallels Desktop is a program for Mac, that can virtualize Ubuntu and other
operating systems. With this type of virtualization, I was not able to run ROS.

7/32

5 ROS ON MACOS

5.3.2 Docker[12]

Docker does not work as similar to the other ones. Docker comes with the method,
that divides all apps into containers. Docker is very often used as a development product
for testing new apps on “clear systems.” It guarantees high security, portability, and agility.
But also, here I was not able to run ROS, major problem was with graphic interface, in
this case Gazebo.

5.3.3 VirtualBox[13]

VirtualBox is one of most used virtualization product, developed by Oracle. I tested
many Linux distributions on VirtualBox. I started with running classic Ubuntu, which was
recommended for uav core. There was ROS successful, but we were on about 5 FPS in
Gazebo simulation, but it is not so stable and easy to develop. After all these tests I found
out, VirtualBox with Ubuntu is not able to setup 3D acceleration, which can improve the
power of a virtual machine, increase frames in Gazebo simulation and of course, improve
the fluency of simulation. Here I moved to testing other derives from Linux, for example,
Lubuntu, Xubuntu. These types have the best rating for this type of applications. On both
operating systems I observed better fluency, higher FPS, but the problem comes when I
tried to repeat installation it always failed.

5.3.4 Conclusion of virtual machines

The idea of virtual machines seemed to be very positive at the beginning of this re-
search, but the result is that virtual box is not suitable for running such types of operations,
which ROS offer.

5.4 Conclusion of ROS on MacOS

The Result of this research should be for example package with the installation script,
that will compile and install all necessary components of ROS with uav core on MacOS.
But after all tests and tries, we decide to stop with this way and move back to two devices
and implement mobile app on MacOS and simulate drone on PC with Ubuntu. Result is not
very good, but hardware requirement for both development will split into two computers.

8/32

6 MOBILE APP

6 Mobile app

6.1 Operating system

At the department of cybernetics were this year developed four mobile applications,
three of them were developed for operating system Android. For this project has been
chosen iOS as an operating system.

6.1.1 Android applications

Applications for system Android could be developed in few programming languages,
mostly used is Java. These days lots of developers have started using Kotlin, which is now
recommended programming language for writing Android applications because it helps
programmers to increase stability and efficiency of their application. All my colleagues,
which has developed Android mobile application used to development Java, because they
had much experience with Java and it would be very hard to learn a new language and
simultaneously implement advanced features for mobile applications. I would like to refer
to the website of Multi-robot systems group[4], where can be found all these projects, in
bachelor theses folder.

6.1.2 IOS development

Developing of iOS applications started with releasing the first iPhone in the year 2007.
At the beginning of iOS development was mostly used in programming language Objective-
C usually shortened as ObjC. ObjC is programming language base on C, which is one of
most known programming languages worldwide. For development is highly recommended
Xcode as IDE developed by Apple Inc. Nowadays is mostly used language for development
Swift, which is little similar with Kotlin, mentioned in Android section, but Swift is older.
The latest version of Swift is Swift 4.0, which as first version is backward compatible.
Backward compatibility was one of the major issues of Swift because for example Android
application developed in Kotlin can also contain Java classes without any difficulties.

9/32

6 MOBILE APP

6.1.3 Operating system comparison

There is no relevant comparison for these operating systems. There will be described
major pros and cons.

1. Android pros

• Open source operating system

• Customizable system

• More affordable devices

2. iOS pros

• Stable system

• Apple support

3. Android cons

• Less stable system

• Easier to hack

4. iOS cons

• Closed system

• Expensive devices

Comparison of developing applications, will not be described, because in these days
quality of IDEs, languages, and community are at the very high level, and in my opinion
in both both cases are very similar.

Important to be mentioned is description of distributing of applications. Both operat-
ing systems have applications stores, places where to download applications. For Android
it is the Google Play and for iOS is there AppStore. Android developers have to pay 30
USD to be able to distribute applications on Google Play. After that payment developer
has an unlimited license without expirations for distributing Android applications. Next
option for distribution to share a file with apk format this file is automatically generated
from Android Studio. Every Android user can easily install that file.

With iOS development, it is harder. For distributing on AppStore is necessary to
license, this license costs 100 USD and has one-year validity. The reason, why this license
is so expensive, is firstly Apple policy, secondly Apple review team. After every application
upload to AppStore, developers must wait for a review. The review is done by one of Apple
review teams. These guys check the completeness of the application, unauthorized system
flows and forbidden themes. A review should decrease the count of applications of poor
quality with security problems.

10/32

6 MOBILE APP

6.2 Communication

As mentioned in ROS section of this thesis, there is set of useful scripts to control
the drone. With this option comes possibility to connect the app with drone or simulator
via SSH. For this communication, was used NMSSH library[14]. Library NMSSH can be
used in three ways. First is manual download from GitHub and insert classes into the
project, the second one is via Carthage. Carthage[15] is dependency manager, which helps
developers to use libraries developed by other developers to increase the quality of their
applications. Last way is to use dependency manager called CocoaPods. CocoaPods is the
most used dependency manager, and it was used for this application. With NMSSH library
can application start connection via SSH, log in as an arbitrary user, send bash commands
and receive responses for this commands.

6.3 Architecture

In the begging of developing mobile applications was not architecture or structure of
code resolved. In bigger has begun to be a problem with readability and reusability. For
developing a readable, reusable app, is needed to hold self-descriptive and clean code. For
this purpose, app architectures were used. After my experiences, I use B-VIPER, which
is little difficult, but very clean architecture. This architecture represents all screens as
separated blocks. Over these block is a component called router. This component routes
all blocks through the app. Every block contains three main components/classes. First
one is a view, this class holds instances of every view, which should be visible on that
screen. And handle all user interactions, that is presented into the second part presenter.
Its main purpose is to connect view with interactor and router. Interactor should do all
logic processes such as communication with API, parsing models from network responses,
communicate with databases. The penultimate class is the router. Router handle only starts
and finishes of the block. Name of architecture has meaning, Builder, View, Interactor,
Presenter, Entity, Router. Description of the builder is to construct that block and entity
only contain variables.

Figure 4: VIPER architecture [3]

11/32

6 MOBILE APP

6.4 Design

On all screens are used native basic native graphics components. I user two specific
views, first one is joystick from CDJoystick library[16]. This library was used only to
joystick commanding. Second one is Google Maps library for iOS[17].

6.4.1 Navigation controller

Every screen in the mobile application whether iOS or Android and for controlling
transitions between screens, hiding and showing screens is necessary some controller, in
iOS is navigation controller. Working with the controller can be in two ways. The first one
is to use storyboards, where every they are completely taking care of navigation controller.
The second one is to take care of navigation controller as a programmer.

6.4.2 Storyboard

Storyboard is a type of a file, which can be used for implementing mobile app user
interface in one section. A benefit is that every change and new screens can be updated
from one place. A disadvantage can be taken orientation in one big storyboard in some big
application. An important feature of storyboards as described in this paper [18], is that it
contains an opportunity to add a transition between screens. Thanks to this transition can
be implemented routing. Storyboard is a file which can be edited in Xcode with tool Inter-
face Builder. Anyways developers nowadays use programmatically implemented layouts,
and also switch screen by accessing the navigation controller.

6.4.3 Programatically implemented layouts and transitions

As was mentioned in the description of Storyboards, for development can be used
graphics implemented the same language as rest of application. Swift offers same features
as storyboards do. Setting view is not always absolutely, but almost every view is positioned
relatively. A benefit of this settings is that created layouts fit every resolution and sizes of
iOS devices. Every screen can be designed separately, but it is unnecessary except layouting
screens for tablets and mobile phones, this separation makes sense.

For there are functions from UINavigationController class, which are for exam-
ple pushViewController(viewController: UIViewController, animated: Bool) this function
present new UIViewController, optionaly animated. UIViewController is class representing
generally one screen. There are also function for hiding view controlller popViewController(
viewController: UIViewController, animated: Bool). Next varible of navigation controller
is root view controller, which is view controller showed in first, when starting application.

12/32

6 MOBILE APP

For setting root controller is there function set(rootViewController: UIViewController).
Important function is popToRootViewController(animated: Bool). With this function can
developers easily start application flow from beggining.

6.5 External libraries

For straighter development has been developed open sourced external libraries. In
this application has been used dependency manager called CocoaPods[19]. This is mostly
used dependency manager. From used libraries, I would like to mention Stevia Layout[20].
Stevia is a library that helps developers to more comfortable implement graphics as part
of an application directly in Swift instead of using storyboards.

13/32

7 MAIN PAGE

7 Main page

First page5 contains three fields to insert IP address of controlled drone, the name
of user account and password, next possible field should be UAV number, which would
specify drone for actual session.

The mobile device has to be connected to same Wi-Fi as the drone for successful
communication. After inserting correct data into fields, the application asks to choose a
type of control. If a user inserts wrong data or device is not connected to the same network
as UAV, the application makes pop-up dialog with the error message.

There are four types. The first type is Joystick commanding, and the second one
is Google Maps trajectory, the third is Indoor map trajectory and the last one Terminal
communication. Every communication except terminal is described in next sections. A
terminal was implemented only for development purpose. It works as a classic terminal
on a desktop computer. One input cares of commands and output are responses from
commands.

Figure 5: Login page to the application

14/32

8 JOYSTICK COMMANDING

8 Joystick commanding

The first type of control is joystick commanding, which is basis control.
On this page is two joysticks. Left one controls rotation and height of drone. Right one is
for moving forward, backward, left or right.

Figure 6: Joystick controlling screen

In the begging of development, I was facing few issues about setting SSH communi-
cation, because NMSSH library uses non-interactive access. After a short research, I found
the solution. After that, I move to testing. Testing on simulator was successful, but on the
real drone, SSH showed that it is not useful.
The problem was in speed of SSH connection, the standard command takes about one sec-
ond and one second was also paused interval in repeating loop of sending commands. That
leads to very noncontinuous movement. The result of these tests is, that SSH commanding
is too slow for real-time drone control.
The better way to control drone in real time is via sockets. In this way can be frequency
increased from 1 Hz to about 100 Hz.

15/32

9 GOOGLE MAPS TRAJECTORY

9 Google Maps trajectory

Next type of drone control, which was implemented is Google Maps trajectory. This
way can be the groundwork for more sophisticated planning algorithms.
On the screen7 is Google map after click on some place marker will be placed there. This
marker represents on of point where drone has to fly. These points can be easily added
and moved, after prepared points, the user clicks into the left side of the screen where is
a square button of drone, which approximate trajectory to the smaller distance between
each point and send this trajectory to the drone. In right top corner is button goto which
represent a command, which will send the drone to his start position. If a drone is one start
position, button start can be tapped, and the drone will start following set trajectory.

Figure 7: Map controlling screen

With this type, I did few experiments, at the UAV camp, which is one week of testing
all experiments for bachelor, magistrates and doctoral students. These experiments will be
described in next section.

9.1 Installation Google Maps library

Google Maps is free to use for all developers around the world. To implement maps
into application developer had to have Google account. With that account, the developer
has to register the application with its Bundle ID to Google Maps database. According to
this registration, Google provides guide and tutorial for integrating Google Maps into iOS
application. Google also provides App ID for identifying.

9.1.1 Bundle ID

Bundle ID is the unique identifier for every application and its environments. This
ID contains region identification, the name of company and name of the application all
separated by dots, e.g., cz.fel.cvut.droneapp. As I told this ID can also consist of an en-
vironment. Application environment is a specification of an application, which includes

16/32

9 GOOGLE MAPS TRAJECTORY

different application icons, different base URL to communicate with a server and many
others. Applications are generally implemented in three environments. Development, stag-
ing and release version. Development is for developers and testers only, staging version
is for client or crowd testers, and release version goes only into AppStore in case of the
Android operating system to Google Play.

17/32

10 INDOOR NAVIGATION

10 Indoor navigation

10.1 Overview

Last part of this project is an implementation of indoor navigation because drone
will be controlled as same as in the Google Maps. For implementing this feature can be
used some codes from the last part.

10.2 Preparation

For indoor navigation app needs some map. Scanning of an area to navigation is a
goal of another project, so it will not be described here. An output of that project will be
data in Point Cloud Data (PCD) format. This format is nothing more than a long list of
points in three dimensions. PCD is very often used in many projects, e.g., area mapping,
object modeling.

10.3 Ways of representation

Figure 8: Screen with displayed Metal Kit

18/32

10 INDOOR NAVIGATION

10.3.1 MetalKit[21] 8

The first way to display point cloud data is to use MetalKit as a native iOS compo-
nent. This component is available from iOS version 8.0, which is not complication because
the minimal version of the app is 10.0, that corresponds to iOS development standards.
These standards recommend at least supporting last two version of operating system. In
the year 2018 is the latest version 11.3. MetalKit can display lots of points in three dimen-
sions. The problem is that many points mean hundreds, but an average PCD file contains
about 50 000 points, and there should be even more. This problem can be solved with
approximation, that will be described in next section. The last and the biggest problem
of MetalKit is user interaction. Three dimension is very comfortable to observe and watch
models and data, but very uncomfortable to insert some points which will be necessary to
plan some trajectory.

10.3.2 UIBezierPath[22]

UIBezierPath is also a native component of Apple company. This feature is initialized
by the list of points, that should be shown. PCD is from its name based on points, but
Bezier does not place point but draws lines. This problem can be easily resolved in with
some type of sorting by the nearest point. This procedure will be described in next section
as well. But again this way is not very straight for PCD representation.

10.3.3 View in view

As a last try of representation of PCD is to use classic UIView[23]. UIView is basic UI
component to develop an iOS application using Swift language and Xcode. It is available
from lowest version of operating system and work is pretty simple. This way will be only
in two dimensions, that won’t be as nice as MetalKit, but user experience to add points
for trajectory would be better. The first process to start implementing this issue is to sort
all point by z-axes, sorting will be described in next section as well. After sorting all data
will be separated into ten layers in same heights. Every layer will be chosen by the slider.

19/32

10 INDOOR NAVIGATION

10.4 Processing

10.4.1 Approximation

Approximation for MetalKit has two steps first step is to sort all point by random
axis. For sorting is used QuickSort 1 algorithm and axis, which I had to choose is x. The
second step is to decrease density!2 of points by the removing points, which are to close to
others.

Algorithm 1 QuickSort - Pseudocode

function quickSort(arrayToSort, lowestObject, highestObject)
if lo <hi then

p = partition(arrayToSort, lowestObject, highestObject)
quickSort(arrayToSort, lowestObject, p)
quickSort(arrayToSort, p + 1, highestObject)

end if
end function

function partition(arrayToSort, lowestObject, highestObject)
pivot = arrayToSort[lowestObject];
i = lowestObject - 1;
j = highestObject + 1;
while true do

repeat
i = i + 1

until arrayToSort[i].x <pivot.x
repeat

j = j - 1
until arrayToSort[j].x >pivot.x
if i.x ≥j.x then return j
end if
swap(A[i], A[j])

end while
end function

20/32

10 INDOOR NAVIGATION

Algorithm 2 Decreasing density of points - Pseudocode

function decreaseDensity(arrayToDecrease, threshold)
comparedPoints = 0
checkedPoints = 0
while docomparedPoints <arrayToDecrease.count

actualPoint = arrayToDecrease[comparedPoints]
while (comparedPoints + checkedPoints) <arrayToDecrease.count do

checkingPoint = arrayToDecrease[comparedPoints + checkedPoints]
if abs(checkingPoint.x− actualPoint.x) >treshold then

break
else if actualPoint.distanceTo(point : checkingPoint) <treshold then

arrayToDecrease.remove(at: comparedPoints + checkedPoints)
else

checkedPoints = checkedPoints + 1
end if

end while
checkedPoints = 0
comparedPoints = comparedPoints + 1

end while
return arrayToDecrease

end function

function distanceTo(firstPoint, secondPoint)
xDiff = firstPoint.x - secondPoint.x
yDiff = firstPoint.y - secondPoint.y
zDiff = firstPoint.z - secondPoint.z
xDiff = xDiff * xDiff
yDiff = yDiff * yDiff
yDiff = zDiff * zDiff
return sqrtxDiff + yDiff + zDiff

end function

21/32

10 INDOOR NAVIGATION

10.4.2 Sorting by the nearest point

This sorting was not implemented, but the process would be much similar to the
preparation for MetalKit. The first step would be to sort points in the z-axis, for this can
be used QuickSort mentioned above. The second step is to separate points into layers. After
separation points have to be sorted according to the lowest distance. In begging there is
array sorted by z-axis and an empty array. Take the first point from sorted array insert it
to an empty array and find next nearest point, z-axis can take as a threshold of minimal
distance. Repeat the last step until the sorted array is not empty. New array can be used
as an initializer of the UIBezierPath. This leads to connecting all possible point by lines.

10.4.3 Sorting for views in view

Last processing method belongs to views in view representation. Point have to be
sorted by z-axis and separated into layers.

Figure 9: Points as view in view

Points represented as views in view is the final version of this part of the application.
This solution has not the best design, but the design is not the main purpose. The main
purpose should be user interaction. Interaction is described in next section.

10.5 User interaction and tutorial

Screen with indoor navigations has two active blocks, first one is the slider, which
controls visible layer of PCD as an indoor map. The second block is just a map, which
contains points in the selected layer. The map has gesture recognizers for zooming out and
zooming on the map, rotating the map and move on the screen. This two should ensure
good set the trajectory. For set trajectory user have to long press screen in the desired place
as same as in Google Maps. Same is also replacing points, hold finger again on the marker

22/32

10 INDOOR NAVIGATION

to replace marker. After prepared trajectory there are three buttons to set trajectory, go
to start trajectory and follow the trajectory.

23/32

11 TRAJECTORY PREPARATIONS

11 Trajectory preparations

As was mentioned in google maps and indoor navigation part of this thesis, every
selected trajectory have to be approximated, smoothed and prepared for each environment.
This process is described in next sections.

11.1 General preparation

After user interaction with an application, there is an array of coordinates, which
have three dimensions. For the ROS have to be trajectory approximated. Each point of
the trajectory has to be in maximum 8 cm distance. Reason for this requirement is that
optimal UAV speed is 4 m/s and tracker of UAV is implemented to fly between every two
points in 0.02 seconds.

11.2 Preparation for simulator

In simulator were tested both implementations of navigation. Google maps are very
useless in a simulator because the coordinations accords to real GPS positions and it can
not be practically tested in a simulator. Testing of indoor navigation in a simulator is very
straight and easy because points selected in mobile application accord to coordinations
shown in Gazebo.

11.3 Preparation for real flying

In real flying, there is more preparation for each part. The first step for Google Maps
is to convert GPS longitude and latitude as are standard coordination used in Google Maps
to UTM coordinations. For every testing session with real drones, are set some offset for
coordinates. All these offsets are unique for every session, and they have to be set every time
in an application. After adding these offset to all coordinates is trajectory approximated
and send to UAV to process. Easier processes come for indoor navigation. Map, which was
captured by UAV is in prepared with designated offset, and it is ready to use for send.
Only changes are connected with representation for a mobile device.

24/32

12 EXPERIMENTS

12 Experiments

While this work was executed with few experiments, they were not always successful,
unfortunately, but they were always rewarding. Results led to future improvements and
completion.

12.1 Joystick commanding

The first part of the application was implemented mainly for testing purpose, to check
if communication works, if UAV reacts, these features were successfully tested and gained
experiences could be used in next parts. But the result of the joystick was not the best
at last. Experiment in the simulator was so not so straight as the one on the real UAV.
Communication via SSH was too slow, and movement of UAV was discontinuous. This
suggests that SSH connection cannot be used for final product at least for a joystick.

12.2 Google Maps

Useful experiments were executed only on real UAV. There were two experiments.
Both were about setting trajectory on a mobile phone and sending it into UAV. Video and
screenshots of application are saved on DVD. In picture 10 and 11 are compared inserted
points and trajectory from rosbag, which is storage collecting data from flight. Graph is
processed in MATLAB. Results of experiments were in this case more successful than in
the previous part, but problems that come from testing were, more about speeding up and
improving development. Problems were with repeating setting of the number of UAV, offset
of coordinates and for example implement take off function or battery status for UAV.

12.3 Indoor navigation

Unfortunately, tests of indoor navigation were not executed on real UAV, neither on
simulator, problem was in work with Gazebo and ROS systems, where I was unable to
render PCD. PCD is format of points in 3D.

12.4 Problems and possible solution

After all experiments, few issues can be implemented in next thesis or as next indi-
vidual projects.

25/32

12 EXPERIMENTS

Known issues and Possible solutions

• Improve development of iOS - ROS applications by launching ROS on MacOS

• Replace SSH communication with socket direct socket communication with ROS

• Implement node for handling map offset

• Implement feature for a mobile application that can set number of UAVs as user

• Implement node that can send captured data of the map to a mobile device

Figure 10: Longitude and latitude graph from experiment

Figure 11: Screenshot of inserted trajectory

26/32

13 CONCLUSION

13 Conclusion

At the beginning of this work was a goal to have ROS middle-ware running on MacOS,
interface for the iOS device, which can communicate with ROS and command the UAV.
That can be used for next development projects, that can, for example, extend the whole
application, or focus on one part which, would be used for the final product. At the start
of this thesis is described UAV, which was used for every real experiment. A helicopter
has not any additional components against the traditional UAV in group multi-robotic
system. Next was described used interfaces between application and UAV, that interface is
ROS, very open and distributed system, that takes care of every communication on board.
Experiments of running ROS on MacOS were tried on much virtualization products and
with many parallels system, but no one was so good for next development. Development
of application for iOS and UAV has been separated into two devices. In part called mobile
application was in detail described differences between developing for Android and iOS
devices in focus on the iOS device, where was development described more detailed because
this work is aimed at iOS applications. In this section were also illustrated the algorithm
for processing map. This algorithm is not very sophisticated, because the emphasis was
not put on algorithms. Next part is clearly described experiments. These experiments were
executed in a simulator and on real helicopter too. All attempts were in the end successful,
but communication was not so optimal, because SSH is not enough fast for controlling
UAV.

13.1 Next steps

Several tasks can be done in future. First one is to focus on virtualization of Ubuntu
and set the best possible configuration to run Gazebo with ROS smoothly. Next possible
way is to run ROS on MacOS, there is a possibility to download ROS working with MacOS,
but it is only in experimental mode, and start with a blank project and little by little put
in operation every implemented ROS package. Last most important and remarkable task is
to communicate directly with ROS not by SSH using one of available CocoaPods libraries,
there are many of them available on www.github.com.

27/32

13 CONCLUSION

28/32

REFERENCES

References

[1] “Utm zones image,” accessed: 2018-05-19. [Online]. Available: http://www.
resurgentsoftware.com/images/UTM WORLD.gif

[2] P. Petracek, “Screenshot from gazebo,” 2017, accessed: 2018-05-24. [Online].
Available: http://mrs.felk.cvut.cz/data/students/petracekBP.pdf

[3] “Viper block diagram,” accessed: 2018-04-15. [Online]. Available: https:
//cdn-images-1.medium.com/max/1600/1*0pN3BNTXfwKbf08lhwutag.png

[4] “Website of multi-robot systems group,” accessed: 2018-04-15. [Online]. Available:
http://mrs.felk.cvut.cz/people/martin-saska

[5] M. Saska, J. Mejia, D. Stipanovic, V. Vonasek, K. Schilling, and L. Preucil, “Control
and Navigation in Manoeuvres of Formations of Unmanned Mobile Vehicles,”
European Journal of Control, vol. 19, no. 2, pp. 157–171, March 2013. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0947358013000204

[6] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory
tracking and collision avoidance for reliable outdoor deployment of unmanned aerial
vehicles,” 2018, (submitted to IEEE Robotics and Automation Letters).

[7] “Website of multi-robot systems group,” accessed: 2018-03-20. [Online]. Available:
http://www.ros.org/is-ros-for-me/

[8] M. Vrba, “Active searching of rfid chips by a group of relatively stabilized helicopters,”
2016. [Online]. Available: http://mrs.felk.cvut.cz/data/students/vrbaBP.pdf

[9] “Commanding drone,” accessed: 2018-04-15. [Online]. Available: https://mrs.felk.
cvut.cz/gitlab/uav/uav core/wikis/commanding the drone

[10] “Utm coordinates,” accessed: 2018-05-19. [Online]. Available: http://www.
resurgentsoftware.com/GeoMag/utm coordinates.htm

[11] “About parallels,” accessed: 2018-03-20. [Online]. Available: https://www.parallels.
com/eu/about/

[12] “What is docker,” accessed: 2018-03-20. [Online]. Available: https://www.docker.
com/what-docker

[13] “Welcome to virtualbox.org,” accessed: 2018-03-20. [Online]. Available: https:
//www.virtualbox.org/

[14] “Nmssh github repo,” accessed: 2018-04-15. [Online]. Available: https://github.com/
NMSSH/NMSSH

29/32

http://www.resurgentsoftware.com/images/UTM_WORLD.gif
http://www.resurgentsoftware.com/images/UTM_WORLD.gif
http://mrs.felk.cvut.cz/data/students/petracekBP.pdf
https://cdn-images-1.medium.com/max/1600/1*0pN3BNTXfwKbf08lhwutag.png
https://cdn-images-1.medium.com/max/1600/1*0pN3BNTXfwKbf08lhwutag.png
http://mrs.felk.cvut.cz/people/martin-saska
http://www.sciencedirect.com/science/article/pii/S0947358013000204
http://www.ros.org/is-ros-for-me/
http://mrs.felk.cvut.cz/data/students/vrbaBP.pdf
https://mrs.felk.cvut.cz/gitlab/uav/uav_core/wikis/commanding_the_drone
https://mrs.felk.cvut.cz/gitlab/uav/uav_core/wikis/commanding_the_drone
http://www.resurgentsoftware.com/GeoMag/utm_coordinates.htm
http://www.resurgentsoftware.com/GeoMag/utm_coordinates.htm
https://www.parallels.com/eu/about/
https://www.parallels.com/eu/about/
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.virtualbox.org/
https://www.virtualbox.org/
https://github.com/NMSSH/NMSSH
https://github.com/NMSSH/NMSSH

REFERENCES

[15] “Carthage,” accessed: 2018-04-15. [Online]. Available: https://github.com/Carthage/
Carthage

[16] “Cdjoystick github repo.” [Online]. Available: https://github.com/Coledunsby/
CDJoystick,note=

[17] “Google maps library for ios,” accessed: 2018-04-15. [Online]. Available: https:
//developers.google.com/maps/documentation/ios-sdk/intro

[18] J. Stefancik, “Mobile application development for ios in objective-c,” 2015. [Online].
Available: https://theses.cz/id/zhfxzf/stefancik bp.pdf

[19] “Cocoapods,” accessed: 2018-04-15. [Online]. Available: https://cocoapods.org/about

[20] “Stevia layout,” accessed: 2018-04-15. [Online]. Available: https://github.com/
freshOS/Stevia

[21] Metalkit. Accessed: 2018-04-15. [Online]. Available: https://developer.apple.com/
documentation/metalkit

[22] “UIBezierPath - UIKit | apple developer documentation,” accessed: 2018-04-15.
[Online]. Available: https://developer.apple.com/documentation/uikit/uibezierpath

[23] “Uiview,” accessed: 2018-04-15. [Online]. Available: https://developer.apple.com/
documentation/uikit/uiview

30/32

https://github.com/Carthage/Carthage
https://github.com/Carthage/Carthage
https://github.com/Coledunsby/CDJoystick, note =
https://github.com/Coledunsby/CDJoystick, note =
https://developers.google.com/maps/documentation/ios-sdk/intro
https://developers.google.com/maps/documentation/ios-sdk/intro
https://theses.cz/id/zhfxzf/stefancik_bp.pdf
https://cocoapods.org/about
https://github.com/freshOS/Stevia
https://github.com/freshOS/Stevia
https://developer.apple.com/documentation/metalkit
https://developer.apple.com/documentation/metalkit
https://developer.apple.com/documentation/uikit/uibezierpath
https://developer.apple.com/documentation/uikit/uiview
https://developer.apple.com/documentation/uikit/uiview

APPENDIXA DVD CONTENT

Appendix A DVD Content

In Table 1 are listed names of all root directories on DVD.

Directory name Description
thesis the thesis in pdf format
thesis sources latex source codes
app source codes of application
media videos and screen shots from experiments

Table 1: DVD Content

31/32

APPENDIXA DVD CONTENT

32/32

	Introduction
	Problem definition
	Unmanned helicopter
	UAV
	Multi-robotic experiments
	Requirements for UAV in this project

	ROS
	Uav_core
	Uav_core commands

	UTM coordinates
	Gazebo

	ROS on MacOS
	Dual boot
	Boot camp
	Virtual machines – Parallels, VMWare, Docker, VirtualBox
	Parallels Desktop
	Docker
	VirtualBox
	Conclusion of virtual machines

	Conclusion of ROS on MacOS

	Mobile app
	Operating system
	Android applications
	IOS development
	Operating system comparison

	Communication
	Architecture
	Design
	Navigation controller
	Storyboard
	Programatically implemented layouts and transitions

	External libraries

	Main page
	Joystick commanding
	Google Maps trajectory
	Installation Google Maps library
	Bundle ID

	Indoor navigation
	Overview
	Preparation
	Ways of representation
	MetalKit
	UIBezierPath
	View in view

	Processing
	Approximation
	Sorting by the nearest point
	Sorting for views in view

	User interaction and tutorial

	Trajectory preparations
	General preparation
	Preparation for simulator
	Preparation for real flying

	Experiments
	Joystick commanding
	Google Maps
	Indoor navigation
	Problems and possible solution

	Conclusion
	Next steps

	Appendix DVD Content

