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Abstrakt

Tato bakalářská práce se zaměřuje na oblast rozpoznáváńı řeči s pomoćı neu-
ronových śıt́ı a klade si za ćıl implementovat ”end-to-end” rozpoznávač řeči
jako hlasové uživatelské rozhrańı pro robota NAO.

Uvažovaná architektura rozpoznávače řeči je složena ze tř́ı d̊uležitých část́ı:
extrakce př́ıznak̊u signálu řeči za použt́ı metody mel-frekvenčńıch kepstrálńıch
koeficient̊u, rozpoznávače v podobě rekurentńı neuronové śıtě s ”long-short-
term-memory” buňkami a algoritmu ”connection temporal classification” k
źıskáńı finalńıho převedeného textu.

Výsledkem této práce je ”end-to-end” rozpoznávač řeči, natrénovaný na
VCTK korpusu a implementovaný v programovaćım jazyce Python s využit́ım
knihovny hlubokého učeńı TensorFlow.

Kĺıčová slova neuronové śıtě, rekurentńı neuronové śıtě, rozpoznáváńı řeči,
TensorFlow, CTC, LSTM, Robot NAO, Python

Abstract

The aim of this bachelor thesis is to explore the field of speech recognition
using neural networks with a goal to implement end-to-end speech recognizer
as voice-user interface for robot NAO.
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The proposed speech recognizer architecture is consisted from three main
components: feature extraction of speech signal using mel-frequency cepstrum
coefficients method, recognizer as recurrent neural networks with long-short-
term-memory cells, and connection temporal classification algorithm for pre-
dicting the final transcription.

The result of this work is end-to-end speech recognizer trained on VCTK
corpus and implemented in programming language Python, using deep learn-
ing library TensorFlow.

Keywords neural networks, recurrent nerual networks, speech recognition,
TensorFlow, CTC, LSTM, Robot NAO, Python
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Introduction

The problem of speech recognition (SR) has been an important research topic
since as early as the 70s. Recently, the field of SR has seen major advances
because of the rise of computing power (GPUs) which allowed innovation in
machine learning and artificial intelligence algorithms. Now we have access to
voice control through speech recognition in mobile devices, computers, smart
TVs or even fridges.

Before the emergence of deep learning, researchers often utilized other
classification algorithms such as Hidden Markov Model (HMM) with many
complex handcrafted components. The field is now gradually moving towards
end-to-end speech recognizer using just neural networks which learns to tran-
scribe an audio sequence signal directly to a word sequence, one character at
a time. Therefore, all the handcrafted components would be replaced with a
just one learning model.

In this thesis, we present the concept of artificial neural networks (ANN),
basics of the internal network architecture and explained the training phase of
ANN. We extend the knowledge of neural networks by introducing recurrent
neural networks and most importantly we cover how speech recognition system
works and how can we build end-to-end SR using neural networks.

Our goal is to get theoretical overview in this field and implement end-
to-end speech recognizer using neural networks and TensorFlow library which
would be used in Robot NAO as voice-user interface on Robot NAO.
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Chapter 1

Neural Network

Neural networks have a remarkable ability to derive meaning from complicated
data. They can be used to extract patterns and detect trends that are too
complex to be noticed by either humans or other computer techniques [33].
Even though they have been around since the 1950s, it is only in the last
decade when they started to outperform robust system or even humans in
specify tasks. However, they require a huge amount of training examples and
computational power to be trained for preforming a reasonable prediction.
Fortunately, GPUs has seen enormous increase in performance1 and 90% of
the data in the world today has been created in the last two years alone, at 2.5
quintillion bytes of data a day [18]. That’s why ANN is big topic in Computer
Science and in the technology industry and it currently provides the best
solutions to many problems such as speech recognition, image recognition,
and natural language processing.

1.1 Inspiration in Nature

Artificial neural network (ANN) is heavily inspired by the way how biological
neural networks process information in the human brain. Even though our
brain is extremely complex and still not fully understand, we just need to
know how information is being transferred. The basic building block is nerve
cell called neuron. It receives, processes, and transmits information through
electrical and chemical signals [27]. It’s estimated that an average human has
86 billion neurons [9].

As shown on Figure 1.1, dendrites are extensions of a nerve cell that prop-
agate the electrochemical stimulation received from other neurons to the cell
body. You may think of them as inputs to neuron, whereas neuron’s output
is called axon, a long nerve fiber that conducts electrical impulses away from

1GPUs are explicitly designed to handle multiple matrix calculations at the same time.
Evaluation and training of artificial neural networks are mostly matrix operations.
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1. Neural Network

Figure 1.1: Illustration of nerve cell and communication flow

the cell body. The end of axon is branched to many axon terminals which
can be again connected to other dendrites. The connection is managed by
synapses that can permit the passing of electrical signal to cell body. Once
the cell reaches a certain threshold, an action potential will fire, sending the
electrical signal down the axon to other connected neurons.

1.2 Artificial Neuron

Artificial neuron is a generic computational unit, basic building block for artifi-
cial neural network (ANN). It’s simplified version of the biological counterpart
and we can map parts of biological neuron with the artificial one. It takes n in-
puts represented as a vector x ∈ Rn which correspond to dendrites. Generally
artificial neuron produces single output y ∈ R as biological neuron where we
call it axon. Each neuron’s input i = 1, 2, . . . , n has assigned weight (synapse)
w1, w2 . . . wn, they refer to the connection strength between neurons. Weights
and same as for synapse are the backbone of learning because in training
phases, they keep changing to produce wanted output. Inside the artificial
neuron, input vector with their weights are combined and run through an
activation function producing some output y. This process is illustrated in
Figure 1.2.

1.3 Perceptron

Perceptron is the simplest ANN with just one neuron and since we covered
the basic intuition about artificial neuron we may proceed further and take a
look at how output is actually calculated. The equation for a perceptron can

4



1.3. Perceptron

Figure 1.2: Illustration of nerve cell and communication flow

be written as

y = f(
N∑
i=1

wi · xi + b) (1.1)

where

• x - input vector

• y - predicted output

• f - activation function

• w - weights

• b - bias

Perceptron is a basically linear classifier, therefore the data has to be lin-
early separable otherwise we would not be able to make the correct prediction.
Problems such as speech recognition are not definitely linearly separable, how-
ever we can solve non-linear decisions for example by introducing another layer
of neurons, thus creating Multilayered Perceptron.

1.3.1 Activation Functions

We have stated that biological neuron fires electrical signal to other connected
neurons whenever it reaches a certain threshold of incoming electrical im-
pulses. Activation function is based on that concept and inside an artificial
neuron it is used for calculating output signal via equation 2.1. It introduces
non-linear properties to our ANN and without an activation function would

5



1. Neural Network

be just a regular linear regression model. Nowadays many different activation
function are being used and their performance varies from model to model.

List of some activation function:

• Sigmoid

σ(x) =
1

1 + e−x

• Hyperbolic Tangent

tanh(x) =
(ex − e−x)

(ex + e−x)

• ReLU

f(x) =

{
0 for x < 0

x for x ≥ 0

• Softmax

fi(~x) =
exi∑J
j=1 e

xj
, i = 1, 2 . . . J

where i is number of output

1.3.2 Bias

We can think of bias as a value stored inside neuron and being used to calculate
its output. The bias value allows the activation functions to be shifted to the
left or right, to better fit the data.

1.4 Topology of Artificial Neuron Network

Basic ANN as feedforward model is a directed graph with nodes as neurons
and edges with weights representing connection to other neurons. ANN can
be divided to three important layers as shown in Figure 1.3. Yellow nodes
is an input layer which takes input data, dimension of input vector has to
correspond to number of input nodes. Hidden layer as the green nodes is most
important to ANN and that is where the training and evaluation happens.
Number of hidden layers and neurons needs to be in a good ratio between
its size and its effectiveness. Output layer produces output vector as the
prediction for given input.

1.4.1 Network Evaluation

ANN are sometimes called feedforward neural network. The reason behind is
that the input is fed into the neuron and then forward to another layer, thus
ANN are evaluated layer by layer. All neurons calculate the output using
similar formula as Perceptron 2.1.

6



1.5. Training

Figure 1.3: Basic topology of fully connected artificial neuron network with
input vector of size 3, output vector of size 2 and two hidden layers.

1.5 Training

The greatest trait of ANN is ability to learn from given data and then make
the best approximate prediction. The aim of the learning process is to find
the most optimal values for network’s weights and biases while minimizing
error on predicated values. For ANN to learn we have to introduce training
data consisted of input vector which will be fed to the network and desired
output value (label) for calculating our loss. This approach is called super-
vised learning2.

1.5.1 Loss Function

Loss function compares the prediction from ANN with the desired output
and returns the error of the prediction. During a training ANN, the goal is
to minimize given loss function. The most common and most intuitive loss
function is Mean Squared Error (MSE),

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2.

1.5.2 Backpropagation

Backpropagation algorithm is responsible for the ability to learn from given
training data. It is an iterative algorithm which for each training data from

2ANN can be also trained using unsupervised learning.
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1. Neural Network

given training dataset backpropagates the error and adjust the weights and
biases accordingly to get desired output.

1.5.2.1 Optimization

Backpropagation requires optimizer to minimize the error on the training data.
We will describe backpropagation with using gradient descent as the most
common optimization algorithm.
Weights and biases are updated using formula,

W l
jk := W l

jk − α
∂E

∂W l
jk

blj := blj − α
∂E

∂blj
(1.2)

where W l
jk is weight with connection between unit j in layer l and unit i in

layer l+ 1, blj is bias associated with unit i in layer l+ 1, α is a learning rate

[42], and ∂E
∂W l

jk

or ∂E
∂blj

can be interpreted as minimizing loss function with

respect to given weight and bias respectively.

By applying a chain rule twice on the partial derivative of the loss function
with respect to a weight, we get

∂E

∂W l
jk

=
∂E

∂alj

∂alj

∂zlj

∂zlj

∂W l
jk

(1.3)

where zlj is a sum of weighted inputs to unit j in layer l

zlj = blj +
K∑
k=1

wljka
l−1
k (1.4)

and alj is an output of node j in layer l

alj = f(zlj). (1.5)

Let’s calculate the last two products of equation 2.3:

∂alj

∂zlj
= f ′(zlj)

∂zlj

∂W l
jk

=
∂W l

jka
l
k

∂Wjkl
= al−1k (1.6)

We introduce a new variable δlj which represents the error in unit j in layer l

and helps us to better understand and calculate real interested value of ∂E
∂W l

jk

and ∂E
∂blj

.

δlj =
∂E

∂zlj
(1.7)
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1.5. Training

We will simplify the error equation on neuron j in output layer L as

δLj =
∂E

∂zLj
=
∂E

∂aLj

∂aLj

∂zLj
=
∂E

∂aLj
f ′(zLj ) (1.8)

Now we have enough information to reformulate equation 2.3 for output layer
to

∂E

∂W l
jk

= δLk a
L
j . (1.9)

However, to be able to update weights inside the hidden layers, we have to
redefine the calculation of δlj . We know that the error produced by an output
neuron is just influencing the output value but inside a hidden layer the pro-
duced error propagates to all following layers. Therefore, we have calculate
the δlj where layer l is inside a hidden layer and take into account all δl+1 from
following layer l + 1.

δlj =
∂E

∂zlj
=

∑
i

∂E

∂zl+1
i

∂zl+1
i

∂zlj
=

∑
i

∂E

∂zl+1
i

∂zl+1
i

∂alj

∂alj

∂zlj
=

∑
i

δl+1
i W l+1

ij f ′(zlj)

(1.10)
where the sum index i iterates over all neurons in layer l+ 1 and Notice that
we have substituted ∂E

∂zl+1
i

with δl+1
i which is calculated from previous iteration

[32].
Finally, we may calculate all weights adjustments through the whole network
as

W l
jk := W l

jk − αδlkalj (1.11)

where

δlk =
∂E

∂aLj
f ′(zLj ), l = L (1.12)

or
δlk =

∑
i

δl+1
i W l+1

ij f ′(zlj), l = 2, . . . , L− 1. (1.13)

We won’t be exampling the equation for biases adjustments because it
follows a similar process shown above with just little changes, resulting to
equation

blj := blj − αδ
j
l (1.14)

1.5.2.2 Backpropagation Algorithm

Backpropagation algorithm in pseudocode:

9



1. Neural Network

Algorithm 1 Backpropagation

1: Initialize network weights and biases
2: for each training data from training dataset do
3: Forward pass and calculate network prediction for given training input
4: Calculate error δL for output layer
5: Calculate errors δl for hidden layers
6: Update weights and biases using precalculated δl

10



Chapter 2

Recurrent Neural Network

Neural networks are powerful learning models that achieve state-of-the-art
results in a wide range of machine learning tasks. Nevertheless, they have
limitations in the field of sequential data. Standard ANNs rely on the as-
sumption of independence among the training examples but if data points are
related in time or space then ANNs would not be the right model for the task
[23].
Recurrent neural network (RNN) is type of neural network which is precisely
designed to work with sequential data through time. The key difference is that
RNN’s neurons in hidden layer have a special edge (recurrent edge) to a next
time step which can be interpreted as a loop. In RNN, the neuron’s output is
dependent on the previous computations which is sent through the recurrent
edge. Basically, the recurrent edges or loops allow persistence of information
from one time step to the next one as shown on Figure 2.1 [12].

Figure 2.1: Simple RNN topology and illustration of unrolled RNN through
time[40]
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2. Recurrent Neural Network

2.1 Evaluation

In 2.1 we may see simplification of evaluation process of RNN through the
time steps. RNN’s neuron cell in hidden layer takes two inputs, xt and ht−1
which is value (hidden state) sent through the recurrent edge from previous
time-step. The cell also produces two outputs, ht as hidden state for upcoming
time-step

ht = f(Whxxt +Whhht−1 + bh)

where f is arbitrary non-linear activation function, Whx is matrix of conven-
tional weights, Whh is the matrix of recurrent weights and bh is a bias. The
second output from cell is yt which outputs the predication using precalculated
hidden state ht,

yt = Whyht + by

where Why is matrix of output weights.

2.1.1 Softmax Fucntion

It is very common for RNN models to use softmax as activation function for
output layer. Softmax function helps to get probability distribution of outputs
so it’s useful for finding most probable occurrence of output with respect to
other outputs.

softmax(y)j =
ezj∑K
k=1 e

zk
, for j = 1, . . . ,K

Softmax is being used for calculating output value of yt resulting to formula

yt = softmax(Whyht + by).

2.2 Training

Training a RNN is similar to training a traditional ANN. We also use the
backpropagation algorithm, but since the parameters are shared by all time-
steps in the network, the gradient at each output depends not only on the
calculations of the current time-step, but also the previous time-steps [6].

2.2.1 Backpropagation Through Time

The most used algorithm to train RNN is backpropagation through time (BPTT),
introduced by Werbos in 1990 [36]. BPTT is basically an extended version
of backpropagation algorithm where we not only propagate the error to all
following layers but also through the hidden states. We may think of it as
unrolling the RNN to sequence of identical ANNs where the recurrent edge
connects the sequences of neurons in hidden layer together as shown on Figure

12



2.2. Training

Figure 2.2: Deriving the gradients according to the backpropagation through
time (BPTT) method. Notation for output value ε(t) corresponds to our
yt[24].

2.1 and 2.2. On Figure 3.2 2.2 is also indicated how the errors are propagated.
The propagation of errors through hidden states allows the RNN to learn long
term time dependencies. The calculated gradients of the loss function for de-
fined parameter (W , b) through the sequence of unrolled RNN are then sum
up, producing the final gradient for updating the weights or biases.

∂E

∂Wijl
=

T∑
t=1

∂Et
∂Wijl

where E is predefined loss function, W l
jk is weight with connection between

unit j in layer l and unit i in layer l + 1, T is number of input sequences
and ∂Et

∂W l
ij

is calculated similarly as in backpropagation with just considering

existence of recurrent edges

∂Et

∂W l
ij

=

t∑
k=1

∂Et
∂yt

∂yt
∂ht

∂ht
∂hk

∂hk

∂W l
ij

To compute the ∂ht
∂hk

we use simple chain rule over all hidden states in interval
[k,t].

∂ht
∂hk

=

t∏
i=k+1

∂hi
∂hi−1

Putting equations together, we have the following relationship [28].

∂E

∂W l
ij

=

T∑
t=1

t∑
j=1

∂Et
∂yt

∂yt
∂ht

(

t∏
i=k+1

∂hi
∂hi−1

)
∂hk

∂W l
ij

2.2.2 Exploding and Vanishing Gradients

Even though, RNNs had achieved success in learning short-range dependen-
cies, they haven’t been showing any worth mentioning achievement with learn-
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2. Recurrent Neural Network

ing mid-range dependencies. That was mainly cause by problems of vanishing
and exploding gradients, introduced in Bengio in 1994 [4].

The exploding gradient problem occurs when backpropagating the error
across many time steps, that could lead to exponentially grow of gradient
for long-term components. Basically, a small change in parameters at initial
stages can get accumulated through the time-steps resulting to the exponen-
tially grow. The values of weights can become so large as to overflow and
result in NaN values.

The vanishing gradient problem refers to opposite behavior when the gra-
dient values are shrinking exponentially fast and eventually vanishing com-
pletely. Gradient contributions from later time-steps become zero and the
states at those steps doesn’t contribute so we end up not learning long-range
dependencies. Vanishing gradients aren’t exclusive to RNNs, they also happen
in deep ANN[7].

2.2.2.1 Solutions

To overcome problem with exploding gradient we can apply gradient clipping
method. The values of the error gradient are checked against a predefined
threshold value and clipped or set to that threshold value if the error gradient
exceeds the threshold [1]. Another possibility is to use ReLU activation

Figure 2.3: Situation of using gradient clipping (dashed line) against the ex-
ploding gradient [28]

function which tends to reduce the the exploding gradient problem. To fix
the problem of vanishing gradient is little more complicated. We can always
try perform more careful initialization process but it does not always help. It
requires different architecture approach achieved by updating the RNN neuron
to more complex LSTM cells.
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2.3. LSTM

2.3 LSTM

Long-Short-Term-Memories (LSTM) is special kind of RNN cell, introduced
by Hochreiter and Schmidhuber in 1997 [15]. Conventional RNNs are only just
able to learn short-term dependencies because of vanishing gradient problem.
However, LSTM does not get effected and it’s capable of learning long-term
dependencies.

Figure 2.4: Diagram of LSTM cell [16].

As shown on Figure 2.4 we notice that LSTM is just more complex acti-
vation units. Similarly, as basic RNN cell which propagates hidden state of
ht to another time-step and also as cell output, the LSTM cell has extra state
denoted as ct and called cell state and it’s just being propagated to another
time-step. The cell state is more of a cell’s memory.

LSTM architecture follows stages during the evaluation where first we
have to decide what information we want to get rid of from cell state, that is
achieved applying formula using sigmoid function

ft = σ(Wfht−1 +Wfxt + bf ) (2.1)

and we call ft as forget gate. Another step is to calculate so-called input gate
denoted as it, it determines whether the input is worth preserving.

it = σ(Wiht−1 +Wixt + bi) (2.2)

The third value is memory gate as gt, it is using the input with the previous
hidden state to observe the input in the context of the past.

gt = tanh(Wght−1 +Wgxt + bc) (2.3)

Using equation 2.1, 2.2 and 2.3 we may calculate the new cell state using
formula

ct = ftct−1 + itgt (2.4)
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Basically, ct is constructed by applying the forget gate on the previous cell
state and the memory gate gets augmented by the input gate. The last value
to produce is hidden state which will be a sort of filtered cell state

ht = tanh(ct)ot (2.5)

where ot is called output gate and it augments input information using formula

ot = σ(Woht−1 +Woxt + bo) (2.6)

The whole process of the LSTM cell evaluation is also illustrated on Figure
2.4.

2.4 Connectionist temporal classification

Connectionist temporal classification (CTC) is a loss function used for clas-
sification of sequential data, initially presented by Alex Graves in 2006 [14].
The idea of CTC is that the label is not generated directly by the RNN, but
instead we calculate a probability distribution over all possible characters at
every time-step.

For a sequence labelling task where the labels are from an alphabet L,
we introduce extra unit as blank character, L̂ = L ∪ {blank}. CTC consists
of a softmax output layer which estimates the probabilities of observing the
corresponding labels at particular times [13].

Let’s denote that ytk of output unit k at time-step t is interpreted as the
probability of observing label k at time t and input sequence x of length T .
Now we can calculate a probability of path sentence π ∈ L̂ using formula

p(π|x) =

T∏
t=1

ytπt . (2.7)

Now let’s define many-to-one mapping β which simplifies the sentence path
by striping the multiple trailing character to just one and then removing the
blank characters altogether.

β(−− hh−−e−−ll − lll − oo−) = β(−h− e− l − l − o−) = hello

We may calculate the marginal probability of the sequence l using the defined
β mapping from given path:

p(l|x) =
∑

π=β−1(l)

(π|x) (2.8)

This so-called collapsing together of different paths onto the same labelling is
what allows CTC to use unsegmented data, because it removes the require-
ment of knowing where in the input sequence the labels occur. However, it
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also makes CTC unusable for tasks where the location of the labels must be
determined [13].

To decode the output for input sequence, we have to maximize the prob-
ability of sequence in respect to input data.

h(x) = argmax
l

p(l|x) (2.9)

For efficient calculation of p(l|x) we use backward-forward algorithm with de-
tail explanation on [14].

To use CTC for RNN training, we have to define the loss function for the
BPTT algorithm. CTC loss function is derived from the principle of maximum
likelihood with formula

E = −ln(
∏
x,z

p(z|x)) = −
∑
x,z

ln(p(z|x)) (2.10)

where (x, z) are from the training dataset [13].
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Chapter 3

Speech Recognition

Speech recognition is the task of converting speech audio to text representa-
tion. It has been attracting researchers for many years with a goal to pro-
duce efficient speech recognizer, because it’s a very easy and natural human-
machine interface tool.

Speech recognition system takes audio signal as an input and predicts
the text transcript. Arbitrary speech recognizers are normally divided into
two important building blocks as shown on 3.1. The Feature Extractor block
generates a sequence of feature vectors which are then fed to the recognizer
block generating the correct output words.

Figure 3.1: Basic building blocks of a Speech Recognizer [38]
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3.1 Feature Extraction

The feature extraction (FE) block used in speech recognition should aim to-
wards reducing the complexity of the problem, it should derive descriptive
features from speech signal to enable a classification of sounds. It is needed
because the raw speech signal contains other information besides the linguistic
message which would be counterproductive for recognizer.

3.1.1 Preprocessing

It is advantageous to apply preprocessing to raw speech signal before moving
to feature extraction block. Using some type of preprocessing leads to easier
feature extraction and faster training phase.

Advantageous preprocessing method is to downsample given speech signal.
Speech is mostly recorded with a sampling frequency of 44.1kHz or 48kHz,
although speech signal has frequency components in the audio frequency from
20Hz to 20kHz [31]. That’s because of Nyquist-Shannon sampling Theorem
[19], a time-continuous signal that is band-limited to a certain finite frequency
needs to be sampled with a double the maximum frequency. Since human
speech has a relatively low bandwidth, mostly up to 8kHz. That means that
sampling frequency of 16KHz is sufficient for speech recognition tasks [22].

Other part of preprocessing is to remove the parts between the recording
starts and the user starts talking as well as after the end of speech. That helps
to speed up the training phase because it reduces the size of training data.

Figure 3.2: Illustration of raw speech signal from wav file with sampling fre-
quency of 8kHz [11]

3.1.2 MFCC

Mel Frequency Cepstral Coefficients (MFCCs) are a feature widely used in
speech recognition. They were introduced by Davis and Mermelstein in the
1980’s, and have been state-of-the-art ever since [3].

MFCC mimics the logarithmic perception of loudness and pitch of human
auditory system and tries to eliminate speaker dependent characteristics by
excluding the fundamental frequency and their harmonics [21].
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Figure 3.3: Steps of MFCC [30]

To obtain MFCC features we have to follow operation steps as shown on
Figure 3.3:

• Pre-Emphasis - This step applies filter on the speech signal to amplify
the high frequencies. It balances the frequency spectrum and avoids
numerical problems during the Fourier transform operation.

y(t) = x(t)− αx(t− 1)

where x(t) is amplitude of signal in time t and α is filter coefficient which
typical values are 0.95, y(t) pre-emphasis speech signal.

• Framing - The process of segmenting the speech signal into small frames
with the length within the range of 10 to 40 milliseconds. Speech is
non-stationary signal but we consider all frames behave stationary so
they describe phonemes. In SR we process overlapping frames because
phonemes can dependent, resulting to smoother changes in values. Pop-
ular settings are 25 ms for the frame size, 10 ms stride (15 ms overlap)
[11].

• Windowing - This step applies Hamming window function [34] on each
speech signal frame. This is common operation for sound signal before
applying FFT.

• FFT - This step converts all speech frames from time domain into
frequency domain using Fast Fourier Transform (FFT) [35].

• Mel Filter Banks - This step applies the mel-filterbank which con-
sists of triangular overlapping windows that are spread over the whole
frequency range, outputting mel-frequency spectrum. It mimics the non-
linear human ear perception of sound, these filters are more discrimina-
tive at lower frequencies and less discriminative at higher frequencies
[29].
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• Logarithm - This step computes the logarithm of the mel-frequency
spectrum, to mimic the human perception of loudness because perceive
loudness on a logarithmic scale.

• DCT - This step converts mel-spectrum into time domain using Discrete
Cosine Transform (DCT) [41], resulting to MFCC vectors.

We have just given a theoretical overview how MFCC is calculated, for more
detailed explanation consider reading [21]. On Figure 3.4 is vector of MFCCs
calculated from speech signal Figure 3.2 where number of cepstral coefficients
is set to 13. We have extracted the features of speech signal and vectors of
MFCCs can be fed to recognizer.

Figure 3.4: Vector of Mel Frequency Cepstral Coefficients through time.

3.2 Traditional Speech Recognizers

Historically, most speech recognition systems have been based on a set of
statistical models representing the various sounds of the language to be rec-
ognized. We can define a problem of speech recognition as maximizing a
probability of the word sequence given some utterance.

W ∗ = argmax
W

P (W |X)

where X are acoustic vectors and transcribed W ∗ word sequence. However,
calculating directly W ∗ is a very difficult task. We may simplify it by using
Bayes rule resulting to equivalent equation

W ∗ = argmax
W

P (X|W )P (W )

where the likelihood P (X|W ) is called the acoustic model and the prior P (W )
is the language model. In traditional speech recognizers, we don’t form
words directly but we concatenating phonemes which are basic building block
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Figure 3.5: Diagram of traditional speech recognizer

of words and they are defined by pronunciation model. As shown on Fig-
ure 3.5, the decoder block works with language, acoustic and pronunciation
model. The language model has a word sequences probabilities, while the
acoustic model is generated by Hidden Markov Model (HMM) which is a tool
for representing probability distribution over sequences of phonemes using
pronunciation model [20].

In this thesis, we just provide a basic overview how traditional speech
recognizers, our primary focus is on end-to-end recognizers.

3.3 End-to-End Speech Recognizers

Recent advances in algorithms and computer hardware have made it possible
to train neural networks in an end-to-end fashion for tasks that previously
required significant human expertise. All the state-of-the-art speech recog-
nizers were HMM-based, they required pronunciation, acoustic and language
model which were hand-engineered and trained separately. Not only speech
recognizers based on neural networks require less human effort than tradi-
tional approaches, they generally deliver superior performance [39]. Training
independent components is complex and suboptimal compared to training all
components as one. Because it replaces entire pipelines of hand-engineered
components with neural networks, end-to-end learning allows us to handle
a diverse variety of speech including noisy environments, accents and differ-
ent languages [2]. End-to-end speech recognizers simplifies the training and
deployment process altogether.
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3.3.1 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) were introduced in 2.4 and it is
the best fit for end-to-end speech recognizer. Diagram on Figure 3.6 shows
overview of the model architecture. Speech can be interpreted as time se-
quence, thus RNN with LSTM cells will be used since they are they are de-
signed to deal with sequential data through time. The CTC make it possible to
train RNNs for sequence labelling problems where the input-output alignment
is unknown.

Figure 3.6: End-to-end speech recognizer diagram using CTC [26]

For example, this type of speech recognition model is used in Google Voice
Search on Android and iOS [25].

3.3.2 Listen, Attend and Spell

Listen, Attend and Spell (LAS) is current state-of-the-art end-to-end speech
recognizer [10].

It is based on Attention Mechanism [5], created from Encoder that reads
and encodes a source sentence into a fixed-length vector and a Decoder that
outputs a translation from the encoded vector. Attention Mechanisms are
now considered one of the most exciting advancements in the field of AI.

LAS is consisted from an encoder recurrent neural network (RNN), which
is named the listener, and a decoder RNN, which is named the speller. The
listener is a pyramidal RNN that converts low level speech signals into higher
level features. The speller is an RNN that converts these higher level features
into output utterances by specifying a probability distribution over sequences
of characters using the attention mechanism [8]. Both the listener and speller
are trained jointly which is the motivation of end-to-end speech recognizers.

24



Chapter 4

Implementation

The goal is to implement end-to-end speech recognizer using neural network.
High-level concept, how the implemented speech recognition system works is
illustrated on Figure 4.1. It takes a wav file as an input generated from given
microphone and performs preprocessing and feature extraction. The data are
fed to the recognizer which outputs the prediction of transcribed text from
speech.

Preprocessing 
Feature

Extraction

Recognizer 

Figure 4.1: Speech Recognition System

The implemented recognizer is built on recurrent neural networks, there-
fore they need to be trained, in order to make a successful predictions. On
Figure 4.2 is shown how the recognizer is being trained. It’s done by providing
speech and transcribed text from the training dataset. RNN feed-forwards all
the vectors of MFCC and the RNN’s output are processed by CTC. Obtaining
the prediction text of the speech signal. Using backpropagation through time
algorithm we update the weights and biases of RNN which minimize the error
of the loss function resulting to better prediction in future.

25



4. Implementation

Preprocessing 
Feature

Extraction

RNN (LSTM) 

VCTK Corpus 

CTC 

...

...

Backpropagation 
 

Label

Predicated Text

Figure 4.2: Diagram of the learning phase for the speech recognition system

4.1 Tools

4.1.1 Python

Speech recognition system is implemented in programming language Python

which is currently most popular approach in machine learning and AI. Python
is a very powerful, flexible, open source language that is easy to learn. The
greatest strength however is wide range of libraries and frameworks for ML
and AI.

4.1.2 TensorFlow

TensorFlow is open-source library developed by Google for deep learning and
other algorithms involving large number of mathematical operations. The pri-
mary unit in TensorFlow is a tensor. A tensor consists of a set of primitive
values shaped into an array of any number of dimensions. These massive num-
bers of large arrays are the reason that GPUs and other processors designed
to do floating point mathematics excel at speeding up these algorithms.

TensorFlow programs are structured into a construction phase that as-
sembles a computational graph, and an execution phase that uses a session
to execute operation in the graph. However, TensorFlow programs are hard
to debug because of the structure. Fortunately, TensorFlow offers a built-in
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function for visualization of the computation called TensorBoard.

4.2 Training Data

Training data are essential for neural networks performance and its quality,
variety, and quantity determine the success of the learning models. Since we
use approach of supervised learning for our recognizer, we have to provide
labeled data.

4.2.1 Dataset Base Class

In source code of the speech recognition system we have class DatsetBase

which stores path to audios and transactions (labels) from our training dataset.
It has also method next batch which takes as a parameter batch size and
returns next batch of MFFC vectors and its labels. In method, next batch

we retrieve speech signal data from audio file and perform preprocessing and
feature extraction, then also the text labels are loaded from its file path. Upon
the text labels is called preprocessing method which simplifies the text and
eliminates all the non-alphabetic characters.

However, retrieving data from file system and performing processing and
feature extraction upon them during a training phase is slowing down the
process. One of the solution could be to prepare the data beforehand and
store it as some variable which would lead to lower retrieving latency.

4.2.2 Numbers

Before using my learning model on large training dataset, I had been debug-
ging and validating it on smaller dataset. I have used Free Spoken Digit

Dataset from GitHub [17]. The dataset provides three English speakers with
1500 recordings, 50 recordings for each digit per speaker.

In source code, we have a class DigitDataset which extends the base class
DatsetBase. Class DigitDataset provides method called read digit dataset

which takes argument of digit dataset path and stores all training data paths
in audios and labels variables. They are later used in next batch method.

4.2.3 VCTK Corpus

VCTK Corpus is training dataset which includes speech data uttered by 109
native speakers of English with various accents. Each speaker reads out about
400 sentences, most of which were selected from The Herald newspaper [37].
Even though, this dataset was designed to maximize the contextual and pho-
netic coverage for HMM-based speech recognizers, we might as well use it
for ANN-based speech recognizer. The dataset size is around 15GB which is
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still not enough to create robust production ready speech recognizer but it’s
enough for the purpose of this thesis.

4.3 Config Reader

To efficiently use different hyperparameters, datasets or feature extraction
configurations. We run the speech recognizer training with YAML configura-
tion file. Class ConfigReader handles parsing of the YAML file and as object
it is passed to the main training method, where TensorFlow computational
graphs is being constructed using the provided parameters from the object.

4.4 Preprocessing and Feature Extraction

4.4.1 Audio

In source code we have python file audio utils with implements a func-
tion called audiofile to input vector. The function takes as parameter
file path to wav file and the number of cepstrum coefficients. First it loads
the wav file from the file system and downsize the sample rate to 16kHz as a
part of preprocessing. Even this reduced sample rate contains enough speech
information for our recognizer to make successful predication. Then feature
extraction is called upon the preprocessed wav file which is done by MFCC. Li-
brary python speech features provides implementation of MFCC method,
we just need to configure the used parameters such as the number of cepstrum
coefficients, length of window or the length of overlap.

4.4.2 Text

In python file text utils we have function get refactored transcript which
takes string and performs multiple operations for simplification. It converts
string to lowercases, eliminates all non-alphabetic characters besides the spaces
between words. Then string is converted to numpy array of characters which
gets encoded to integers values. Thanks to the encoding we can simply calcu-
late the loss function for given text label.

4.5 Recognizer

Recognizer was created by using TensorFlow library. Before we begin to as-
sembles a computational graph we

4.5.1 Computational Graph

TensorFlow requires to assemble a computational graph which will represent
the computational steps.
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4.5.1.1 CTC Network

In source code, we have CTCNetwork class representing important features
of the network such as input and output dimensions, loss function or used
optimizer.

The first method is generate placeholders. Placeholders are Tensor-
Flow objects able to store tensors. They don’t have to be initialized and input
tensors are provided during runtime. Their main purpose is for input and out-
put values. Therefore, the method generate placeholders is creating input
and output placeholders for the computational graph. Input placeholder for
the network is created as three-dimensional array. First dimension represents
batch index, second is for number of time-steps and last is for the length of
acoustic vector (MFCC vector). For input is also created another placeholder
of sequence length for each one on the batched sentences. Output of network
is represented by a sparse placeholder because it is required by TensorFlow’s
CTC.

Second method loss function creates CTC loss function inside a com-
putational graph. We use TensorFlow method tf.nn.ctc loss which takes
input parameters as a label in sparse matrix format, logits which is the last
layer of the network and sequence length. The TensorFlow method also per-
forms softmax operation upon the input before applying CTC loss.

The third method is train optimizer, it defines the used optimizer in the
graph. Optimizer is performing some type of gradient descent algorithm to
minimize the error on the loss function. There are many optimizer to choose
from but currently the recognizer uses one of the most popular and universal
optimizer in deep learning which is AdamOptimizer.

Another method is decoder which decodes predicated sentence from out-
putted probabilities using argument of input sequence length placeholder and
output from last layer. It uses TensorFlow method called tf.nn.ctc greedy decoder.
The same output can be decoded also by using tf.nn.ctc beam search decoder

but it is little slower than the greedy decoder.

Last method is compute label error rate which takes parameter as a
decoded sparse label and computes its label error rate.

4.5.1.2 LSTM CTC

Class LSTMCTC extends from the CTCNetwork class and it defines the inner
structure of the network. The constructor sets number of layers, hidden neu-
rons, input dimension and the size of acoustic vector.

The class has method define which creates the part of the computation
graph. It calls parent method for generating placeholders. Creates LSTM cells
using tf.contrib.rnn.LSTMCell method for all layers then we stack the cells
into multilayer RNN networks with method tf.contrib.rnn.MultiRNNCell,
the stacked network is used in method tf.nn.dynamic rnn which finalizes it
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with input placeholders. The method define returns the output layer of the
network.

4.5.2 Training

Training phase of the recognizer is implemented in file train.py by method
train network which takes dataset and config reader object. The method
first has to read the hyperparametrs of the network from the config reader
and then the computational graph is constructed using the LSTMCTC methods.

In TensorFlow the computation on created graphs are performed inside
a tf.Session(), thus the training phase is happing inside the session where
we loop thorough all the training epochs. In the epoch, we train RNN on all
training data which are provided using dataset object’s method next batch.
To run the c we will use function session.run(fetches, feed data). The
fetches will be graph operation which are responsible for the training and
feed data are network’s placeholder with assigned values from next batch

method in dictionary structure. Example code of running the session for
backpropagation algorithm:

f e ed = {
l s t m c t c . i n p u t p l a c e h o l d e r : t r a in x ,
l s t m c t c . l a b e l s p a r s e p l a c e h o l d e r : t r a i n y s p a r s e ,
l s t m c t c . i n p u t s e q l e n p l a c e h o l d e r : t r a i n s e q u e n c e l e n g t h

}

batch cost , = s e s s i o n . run ( [ l o s s o p e r a t i o n , o p t i m i z e r o p e r a t i o n ] , f e ed )

TensorFlow also offers a way of restoring trained networks. During a train-
ing, we may save checkpoint files with operations variables because tf.Variable
maintains state in the graph across the computations. It’s achieved by an ob-
ject tf.train.Saver(), we either call method save(session, checkpoint path)

or restore(session, checkpoint path).

4.6 Robot NAO

Robot NAO is an autonomous, programmable humanoid robot and the goal
is to use the implemented speech recognizer as a voice-user interface.

ALProxy provides remote connection to the NAO robot and gives us access
to all the robot’s methods. Speech recognizer will be python module running
remotely and using ALProxy object we can fetch the recorded robot’s sound
data. The sound data will be processed by the speech recognizer and robot
can react to the predicated text.
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Figure 4.3: Robot NAO
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Chapter 5

Experiments

In this section, we will review the speech recognizer performance. We will
introduce some optimization to increase the learning model accuracy and by
tweaking hyperparameters of the network we can achieve better results.

5.1 Computing Power

Training neural networks could be considered as computational difficult prob-
lem. However, with the right hardware we can speed up the process sig-
nificantly. Backpropagation algorithm is mostly about multiplying matrices
and GPUs are explicitly designed to handle multiple matrix calculations at
the same time, therefore it is highly recommended to use GPUs for training
neural networks.

Unfortunately, TensorFlow is just limited on using NVIDIA GPUs to prop-
erly work because the python library tensorflow-gpu which handles the Ten-
sorFlow GPUs computations is built upon CUDA toolkit. Therefore, I will be
using CPU for the experiments section as the main computational resource.
Because it would not be possible to train speech recognizer on the whole
VCTK dataset, for the experiment part I will use Free Spoken Digit Dataset.

The final training of the speech recognizer using VCTK dataset is done
on Floyd Hub which is a commercial Platform-as-a-Service for training and
deploying deep learning models in the cloud.

5.2 Dropout

Optimization of the learning model can be achieved by introducing dropout
method. Simply, the dropout ignores random neurons in the layer by given
probability value during a training phase. It majorly reduces overfitting on
given dataset.
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Hyperparameters

number of hidden neurons 100
number of hidden layers 1
batch size 8
number of epochs 400
learning rate 0.001
dimension of acoustic vector 13
dropout 1 (N/A)

Figure 5.1: Configuration of hyperparameters

We have applied the dropout to all RNN hidden layers with the dropout
probability of 0.5 which is considered as optimal in the study of *Ref*.

5.3 Cached Extracted Features

Training of speech recognition is extremely time consuming, that is the reason
why we cached the extracted features.

In the initial stage of creating a computational TensorFlow graph, we
perform preprocessing and feature extraction on all the given training dataset.
The acoustic vectors and labels are stored as numpy array in the dataset class.
During a training phase, whenever next batch method is called, it retrieves a
batch of preprocessed training data and no extra computation upon the data is
required. The duration of training phase was reduced by 30% on my personal
computer. However, the speed up can certainly very on different hardware
configurations.

In TensorFlow, this approach is not considered the most efficient, because
TensorFlow library provides tf.data module which can optimize the given
training dataset for computational graph.

5.4 Training on Digits

Training of the implemented speech recognizer on Free Spoken Digit Dataset
was first performed with the configuration of hyperparameters shown on Fig-
ure 5.1.

Validation of the speech recognizer performance is evaluated using label
error rate which is the Levenshtein distance, the minimum number of single-
character edits. On Figure 5.2 is shown how label error rate is decreasing
though the training process. The result error rate with the configuration 5.1
is 3%.

Unfortunately, the label error rate on Figure 5.2 is calculated on the train-
ing data. The right approach would be to calculate the performance of the
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Figure 5.2: Learning Error rate on Digits for configuration on Figure 5.1

Hyperparameters

number of hidden neurons 100
number of hidden layers 2
batch size 8
number of epochs 400
learning rate 0.001
dimension of acoustic vector 13
dropout 0.5

Figure 5.3: Configuration of hyperparameters

learning model on validation dataset. That is the reason why we get such a
low error rate, the model is overfitted.

To fight against overfitting, we will apply dropout method on new network
configuration shown on Figure 5.3. We have added another hidden RNN
layer and dropout with probability of 50%. Introducing another layer should
improve the learning model performance, but our model was overfitted and
dropout is constantly devaluating the performance. As shown on Figure 5.4,
the network error rate is around 5% which is worse performance than the first
trained model with just one hidden layer.

This outcome could be expected because the first model was overfitted
and the second model was always devaluated by dropout. However, during
the validation phase on learning model, the dropout has to be deactivated.
Whenever we tried to run the second trained model without the dropout,
we decreased the error rate from 5% to 1.5%. Even running the model on
validation dataset, we perform around 2% error rate.
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Figure 5.4: Learning Error rate on Digits for configuration on Figure 5.3

Hyperparameters

number of hidden neurons 100
number of hidden layers 3
batch size 64
number of epochs 1000
learning rate 0.001
dimension of acoustic vector 13
dropout 0.8

Figure 5.5: Configuration of hyperparameters

5.5 Training on VCTK Corpus

VCTK corpus was primarily created for HMM-based speech recognizers with
handpicked sentences to contain all the phonemes. Unfortunately, without
further exploration and deeper understanding of the VCTK corpus, we can-
not simply created validation dataset using for example train test split

method from sklearn library which we used for the Free Spoken Digit Dataset.
Our workaround to the validation dataset problem is to instead of using dif-
ferent sentences, we will exchange the speakers. Even though, it is not ideal,
we will verify if our speech recognizer is speaker independent.

Training speech recognizer on whole VCTK Corpus would take a couple
of days and that is why we are going to limit ourselves on some fraction of it.
We have trained the main learning model of the end-to-end speech recognizer
on just three speakers and they will be changing during the process. We have
empirically chosen this configuration of hyperparameters described on Figure
5.5.

On the Figure 5.6 is illustrated how label error rate was decreasing during
a training process achieving as low as 5%. However, we have not exchanged
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the speakers so we could consider that speech recognizer is speaker dependent
and dropout was set to just ignore 20% of neurons so overfitting is highly
possible.

Figure 5.6: Learning Error rate on VCTK for configuration on Figure 5.5

We have increased the dropout to 50% and the label error rate spiked up
to 23% as shown of Figure 5.7. Afterwards, we deactivated the dropout and
label error rate immediately decreased from 11% to 5% as shown in the middle
of Figure 5.7. To validate if the data are overfitted, we started to exchange
speakers and the dataset error rate was fluctuating around error rate of 3%.

Figure 5.7: Continuation of Learning Error rate on VCTK for configuration
on Figure 5.5 with dropout reduced to 0.5

Even though, it seems that recognizer is performing very well, we don’t
have the right validation data and that’s why we cannot state the general
recognizer performance. Also, to use this the speech recognizer in day to day
tasks, it needs to be trained on more complex dataset.
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Conclusion

The goal of the thesis was to get familiar with the speech recognition field and
implement speech recognizer using neural networks which would be used as
voice-user interface on Robot NAO.

We have covered the topics of artificial neural networks and recurrent neu-
ral network, and we explained how backpropagation algorithm works during a
training phase. Afterwards we explored speech recognition architectures and
explained how speech signals is modified for the purposes of speech recogni-
tion.

The implemented solution of end-to-end speech recognizer is built upon
recurrent neural networks with LSTM neurons, CTC loss function and speech
signal features are extracted using MFCC. The recognizer was firstly trained
on Free Spoken Digit Dataset where we achieved error rate of 3% but the
model was overfitted. We have tried to tweak the hyperparameters for better
performance and use dropout as optimization technique against overfitted. We
have successfully lowered the error rate on 2%. The main end-to-end speech
recognizer which will be used in Robot NAO, used VCTK Corpus as training
dataset and achieved error rate of 3%.

In future work we want to finish the integration of implemented speech
recognition with Robot NAO and train the RNN on more complex speech
corpus with deeper network. We would like to improve the recognizer by
using bidirectional recurrent neural networks and trained on large dataset
with properly prepared validation and test data.
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Appendix A

Acronyms

ANN Artificial Neural Network

RNN Recurrent Neural Network

CTC Connectionist Temporal Classification

MFCC Mel Frequency Cepstral Coefficents

SR Speech Recognition

GPU Graphic Processing Unit

CPU Central Processing Unit

FE Feature Extraction

FFT Fast Fourier Transform

DCT Discrete Cosine Transform

LAS Listen, Attend and Spell
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Appendix B

Contents of enclosed CD

README.md ................................the file contents description
BP Adam Zvada.pdf ..................... the thesis text in PDF format
bp text/ ...................................the directory of the thesis
speech recognition/ ........... the directory of the speech recognizer

src/ .............the directory of source codes for speech recognizer
audio numbers/ .............the directory of audio numbers dataset
trained models/ ................the directory of pretrained models
main .py/ ................................. project python main

requirements.py/ ............python file with project requirements
README.md/ ..........the speech recognizer contents description and
installation
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