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Instructions
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Specific patterns, characteristic of different types of faults, are often easier to identify in the frequency
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defective conditions and verify it on real world data sets.
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Abstrakt

Většina mechanických zař́ızeńı vydává vibračńı a akustické signály. Tyto
signály mnohdy obsahuj́ı informace o oscilačńım pohybu těchto zař́ızeńı, které
mohou pomoci odhalit jejich aktuálńı stav, jakožto např́ıklad že trṕı závadou.
Fourierova a Vlnková transformace jsou metody spektrálńı analýzy, jež dokážou
reprezentovat signály pomoćı oscilaćı a tedy jsou běžně použ́ıvány pro zjǐsťováńı
aktuálńıho stavu mechanických zař́ızeńı.

Tato práce popisuje Fourierovu a Vlnkovou transformaci a demonstruje je-
jich aplikaci ve vibračńı a akustické analýze mechanických zař́ızeńı pomoćı ex-
periment̊u provedených na reálných datech. Výsledky experiment̊u potvrzuj́ı,
že obě metody dokáž́ı detekovat závadný stav mechanických zař́ızeńı. Přesněji,
Furierova transformace může identifikovat př́ıtomnost závady, kdežto Vlnková
transformace dokáže i lokalizovat specifické vadné chováńı v čase.

Kĺıčová slova Fourierova transformace, Vlnková transformace, spektrálńı
analýza, vibračńı a akustická analýza mechanických zař́ızeńı
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Abstract

Majority of industrial machinery emits vibration and acoustic signals. These
signals often contain information about the oscillatory movement of the ma-
chinery that could reveal its condition, such as a defective state. Fourier and
Wavelet transforms are spectral analysis methods which decompose signals
into a representation by oscillatory functions. Thus, those methods are often
used for condition monitoring of machinery.

This Thesis describes Fourier and Wavelet transforms and demonstrates
their application for vibration and acoustic analysis of machinery on experi-
ments conducted upon real-world data sets. The results of the experiments
verify that both of the methods can distinguish different conditions of a ma-
chinery. Specifically, the experiments show that Fourier transform can identify
a defective condition while Wavelet transform can even localize specific defec-
tive behavior in time.

Keywords Fourier transform, Wavelet transform, spectral analysis, vibra-
tion and acoustic analysis of machinery
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Introduction

An industrial machinery often contains essential components which are un-
der permanent stress. If they malfunction, the machine will stop or will not
work correctly which could have a significant negative impact in production.
Therefore, the condition of such parts is monitored and when a developing
fault is detected, an appropriate action can be taken. Majority of machinery
elements emit vibration and acoustic signals, which can contain characteristic
patterns that could reveal the condition of the machine. Therefore, vibra-
tion and acoustic analysis is a standard condition monitoring technique of
machinery.

One of the ways to analyze vibration and acoustic signals is application of
spectral analysis methods that could decompose a signal into a representation
by oscillatory functions, where each function is given a magnitude (weight)
forming a spectrum of the signal. Specific spectral analysis methods differ in
how they decompose the signal and in the choice of the oscillatory functions.
The spectral analysis itself then consists of interpreting the weights of specific
oscillatory function in the signal’s spectrum.

Fourier and Wavelet transforms are state-of-the-art spectral analysis meth-
ods in various domains. Both the transforms have been successfully applied
for analysis of vibration and acoustic signals of machinery in many works
[3],[5],[6],[7],[8],[9]. However, authors usually provide only a breif definition of
the methods as they suppose the reader is already familiar with them.

Goals

The first goal of this Thesis is to describe the two state-of-the-art spectral
analysis methods – Fourier and Wavelet transform. The second goal is to
describe how the spectra of the vibration and acoustic signals emitted from
the machinery can reflect its condition and verify it on real world data sets.

The main contribution of this Thesis is that it provides both theoretical
and practical background for application of the spectral analysis methods.
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Introduction

We introduce the spectral analysis methods from their basics and conclude
experiments upon real world data sets based on the theory defined in the
first part of the Thesis. Thus, this work can serve as an introduction for
anyone who is interested in spectral analysis methods and their application in
vibration and acoustic analysis of machinery.

Organization of the Thesis

The Chapter 1 establishes necessary basics of signals and spectral analysis.
Chapters 2 and 3 theoretically describe Fourier and Wavelet transforms. The
Chapter 4 provides description of several most common machinery compo-
nents, their characteristic frequencies and describes how defective conditions
of those components can affect vibration and acoustic signals they emit. The
Chapter 5 demonstrates the application of spectral analysis methods on three
experiments conducted upon real-world signals obtained from different types
of machinery components. The Thesis is then concluded in Chapter 6.

2



Chapter 1
Preliminaries

In this Chapter we provide definitions of some essential terms and operations
which occur in the rest of this thesis.

1.1 Time Series and Discrete Signals

Time series is generally defined as a chronological sequence of observations in
time [10]. By x[n] ∈ R we will denote an observation at time n of a time series
x, where n ∈ {0, 1, 2, ..., N − 1}. To N we will refer as the length of the time
series. The same definition can be applied to discrete signals, therefore we
will not distinguish between a time series and a discrete signal. By a signal,
we will refer to a discrete signal, unless said otherwise.

1.2 Cross-correlation

Cross-correlation is a measure of similarity between two signals. It is common
to measure similarity between a longer and a shorter signal – i.e. looking for
a pattern in the longer signal. Therefore, cross-correlation has a parameter
commonly called shift or lag which shifts one of the signals in time. The cross-
correlation between a signal x of length N and a signal y of length M at lag
n, where N ≥M , is then defined as

(x ? y)[n] ≡
∑
m

x[m]y[m+ n]. (1.1)

1.3 Convolution

Convolution is a modification of one signal by another signal of the same or
smaller length. Convolution of signal x of length N with a signal y of length

3



1. Preliminaries

M , where N ≥M , is a discrete signal of length N defined as

(x ∗ y)[n] ≡
∑
m

x[m]y[n−m]. (1.2)

Convolution is a similar operation to cross-correlation. Specifically, (x ∗
y)[n] = (x ? y′)[n], where signal y′ is signal y reversed in time – y′[n] = y[−n].

1.4 Spectral Analysis of Signals

Spectral analysis involves decomposition of the signal as a chronological se-
quence of observations in time into oscillations of different frequencies or scales
[11]. The motivation is, that sometimes the oscillations can better characterize
the information in the signal.

Methods for spectral analysis then assign magnitudes (weights) to the
specific oscillations by calculating their cross-correlation with the signal or by
convolution of the signal with the oscillation.

4



Chapter 2
Fourier transform

Fourier transform (FT) is a spectral analysis method which decomposes a
function into a sum of sine waves of different frequencies. In this Chapter, we
will focus on two types of Fourier transform which decompose discrete signals
– Discrete Fourier transform and Short-time Fourier transform. We will aim to
provide neccessary background of Fourier transform for its practical usage in
discrete signal analysis. Therefore, we will not dive deep into its mathematical
concepts. Those can be found e.g. in [12], [13] or [14].

The first Section (2.1) provides an introduction to sine waves. The second
Section (2.2) describes Discrete Fourier transform (DFT) which decomposes
a signal into sine waves of the same length as the signal, thus giving us the
frequency spectrum of the signal. Since some signals change in time (e.g.
an acoustic signal of a song played on piano changes with every new key
pressed) a modified version of DFT, called Short-time Fourier transform, has
been developed which decomposes a signal into sine waves localized in time
forming a time-frequency spectrum of the signal. Short-time Fourier transform
is described in Section 2.3.

Both the frequency and the time-frequency spectrums might suffer from an
unwanted effect called spectral leakage. Applying special window functions
during the transform is a common method to reduce this effect. Spectral
leakage and the specific window functions are described in Section 2.4.

Computation of DFT of signal of length N was widely considered as a
task of complexity O(N2). However, in 1965 an algorithm called Fast Fourier
transform (FFT) was introduced to general public1 which is capable of com-
puting DFT of length N in time complexity O(N logN) [16].

1Even though the roots of FFT can be tracked back to Gauss in 1805 [15].

5



2. Fourier transform
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x [n]=2sin(2  1n/100)
x [n]=sin(2  4n/100)
x [n]=0.5sin(2 t 2n/100 - /2)
x [n]=0.3sin(2 t 10n/100 + /2)

Figure 2.1: A few examples of discrete sine waves

2.1 Sine Waves

A sine wave is a function describing an oscillatory movement. A definition of
a sine wave as a discrete signal x using a sine function is

x[n] = A sin (ωn+ ϕ). (2.1)

where the parameters are:

• ω – angular frequency: the duration of one oscillation in radians (when
ω = 1 the duration is 2π)

• A – amplitude: the height of oscillations

• ϕ – phase shift (or simply phase): the position where the start of oscil-
lations is (at t = 0) with ϕ ∈ (−π, π)

The angular frequency of the sine wave can also be expressed as a number
oscillations k per N time points in radians – ω = 2πk

N . We call k the ordinary
frequency. With this notation, a sine wave can be defined as:

x[n] = A sin
[2πkn
N

+ ϕ

]
. (2.2)

Figure 2.1 shows several discrete sine waves defined by the ordinary frequency.
Another way how to define a sine wave is by a linear combination of a

sine and a cosine function of the same frequency [17]. The cosine function is
a sine function shifted by a quarter of the oscillation (ϕ = π

2 ). The sine wave
expresed by the sine and the cosine function is then defined as

x[n] = a sin
(2πkn

N

)
+ b cos

(2πkn
N

)
. (2.3)

6



2.2. Discrete Fourier transform

The amplitude a (b) can be seen as the amount of contribution of a sine
(cosine) function to the sine wave. Specifically, the relations between a and b
and the amplitude A and phase ϕ of the sine wave from definitions 2.1 and
2.2 are:

A =
√
a2 + b2, (2.4)

tan(ϕ) = b

a
. (2.5)

The last definition of a sine wave is by the complex exponential. Using
the Euler’s formula

ein = cosn+ i sinn (2.6)

we are able to rewrite 2.3 as a complex discrete function x : C→ C

x[n] = cei
2πkn
N , (2.7)

where c is a complex number with relation to the amplitude A and the phase
ϕ of the sine waves from definitions 2.1 and 2.2 by equation:

A =
√
<(c)2 + =(c)2, (2.8)

tan(ϕ) = =(c)
<(c) . (2.9)

The definition of a sine wave by the complex exponential allows us to
define a sine wave by only two parameters – the ordinary frequency k and
complex amplitude c. Therefore, even if we work with real valued functions
only, e.g. discrete signals, it is common to use this definition of a sine wave
for convenience reasons.

2.2 Discrete Fourier transform

Any finite discrete signal x of length N can be expressed in a sum of sine
waves by equation

x[n] =
N−1∑
k=0

cke
i2πkn/N , (2.10)

where each complex coefficient ck corresponds to a sine wave of frequency
2πk
N . Discrete Fourier transform is then an operation that can tell us how to

calculate the coefficients ck given any signal x. The set of coefficients ck for a
function x is called the frequency spectrum of the function x.

In this Section, we will define DFT, show an example how a discrete signal
can be decomposed into its frequency spectrum and we describe how to convert
the ordinary frequencies k of the sine waves to the sampling rate of the discrete
signal – i.e. express frequency k in Hz.

7



2. Fourier transform
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Figure 2.2: A discrete signal x of length N = 100.
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Figure 2.3: Amplitude and phase frequency spectras of signal x.

2.2.1 Definition

DFT is as linear transformation which transforms any finite discrete signal x of
length N from a time domain into N complex coefficients ck, k ∈ {0, 1, ..., N −
1} each representing a sine wave of frequency ωk = 2πk

N . DFT of the signal x
is defined as

ck = 1
N

N−1∑
n=0

x[n]e−i2πkn/N . (2.11)

2.2.2 Frequency spectrum

Figure 2.2 shows a discrete signal x[n] of length N = 100. We see that the
signal seems to follow a sine wave of frequency ω = 2π4

100 oscillating around
value 0.5. Figure 2.3 shows its amplitude frequency spectrum calculated from
its coefficients ck. We see a high peak at the frequency k = 4. Moreover, it
contains peak of height around 0.5 at frequency k=0. A sine wave of frequency
ω = 0 is equal to one at all time points. Therefore, the amplitude of the
frequency k = 0 in the signal’s frequency spectrum is always equal to the

8



2.2. Discrete Fourier transform

0 1 2 3 4 5 6 7 8 9 10
n
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0.25
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1.00 sin(2  3n/10)
- sin(2  7n/10)
n

Figure 2.4: Continuous sine waves of different frequencies having the same
values when discretized

average of the signal.
Notice that the frequency spectrum is horizontally symmetrical around the

the frequency N/2. An important property of discrete sine waves is, that a
sine wave of frequency 2πk

N has the same values as a sine wave of frequency
2π(N−k)

N except the sign. Figure 2.4 illustrates this property by showing two
discrete sine waves and their continuous equivalent, where one is shown as
negative. We see they have exactly the same values when discretely sampled.
This leads to the fact, that in case of real-valued signals only N/2 sine waves
are needed to fully represent it. Therefore, only frequencies up to N/2 are
commonly shown in the frequency spectrum when working with real-valued
signals.

Similarly, we can visualize phase spectrum which tells us how are the sine
waves aligned. However, we are usually more interested in the amount of
presence of the sine waves in the signal rather than their alignment.

2.2.3 Frequency normalization

Let us take an input signal x sampled at sampling rate Fs = 50Hz of length
N = 200 (2 seconds) which has a periodic pattern recurring two times per
second (2Hz). The amplitude spectrum of the signal x will have a high peak
at frequency k = 8 oscillations per time interval N = 200 since the pattern
is present 2 times per 50 samples. It is common to normalize the ordinary
frequencies k with respect to the sampling rate of the signal. To do so we use
the following formula:

fk = Fs
N
k. (2.12)

The fraction Fs
N tells us the spacing between the two consecutive frequencies

k. The frequency fk is then the frequency normalized with respect to the
sampling rate Fs. In our case above, the length of the signal is 4 times the

9



2. Fourier transform
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Figure 2.5: A signal changing its frequency spectrum during time.
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Figure 2.6: Frequency spectrum of the signal from figure 2.5.

sampling frequency – we have 4 seconds of the signal. Therefore each frequency
k corresponds to fk = k

4 Hz.

2.3 Short-time Fourier transform

In the previous Section, we transformed a signal to its frequency domain
assuming that its frequency spectrum does not change during time. However,
frequency spectrum of some signals we encounter in real-world do change
during time. Figure 2.5 shows a signal x of length N = 256 which contains a
sine wave of frequency f1 = 2π 32

256 at the first quarter, frequency f2 = 2π 16
256

at the second quarter and f3 = 2π 8
256 at the last two quarters. Figure 2.6

then shows its frequency spectrum. We see the peaks at frequencies f1, f2
and f3, but there is also a lot of contribution from other frequencies. This
only roughly tells us which frequencies are present in the signal. However, we
have no information about the localization of the frequencies in time which
could be of high importance. Short-time Fourier transform is trying to solve
this issue by using time localized sine waves.

Short-time Fourier transform decomposes a signal into M frequency spec-
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2.3. Short-time Fourier transform
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Figure 2.7: Spectrogram of the signal x from figure 2.5.

trums which together form the time-frequency spectrum of the signal. For
each of the M frequency spectra, one chunk of the input signal is processed.
The size of the chunk and the division of the signal into the chunks is done
via a window function w which is nonzero for only a short period of time – it
has a small support. The simplest window function if the square window, or
the flat top window, defined as:

w[n] =
{

1 if n ∈ [0, l]
0 otherwise

(2.13)

where l is a parameter of the window function – the length of the non-zero
interval (support).

STFT has two parameters k and m where k is the ordinary frequency of
a sine wave and m is the translation of the window function in time. STFT
of a function x is defined as:

STFTx[k,m] =
N−1∑
n=0

x[n]w[n−m]e−i2πkn/N . (2.14)

Figure 2.7 shows a spectrogram (time-frequency spectrum) form ∈ {0, 64, 128, 192}
of the signal x from figure 2.5 with the square window function of length t = 64.
We see that STFT localizes the signals’s frequencies in time.

The size of the window function (the non-zero interval) is fixed for the
whole computation. Therefore, choice of the window size is crucial in order to
split the input signal to the chunks that correspond with the way the frequency
spectrum changes during time.

Values of m can be chosen in a way that the translations of the window
function overlap. Eg. in our case above choosing m ∈ {0, 32, 64, 96, ..., 224}
for the window w which is non-zero on interval [0, 64] would lead to splitting
the input signal into eight chunks where some values would be processed by
STFT two times (eg. the interval [32, 64]). It is common to run STFT multiple
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2. Fourier transform
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Figure 2.8: Signal of length N = 100 containing pattern sine wave of frequency
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Figure 2.9: Frequency spectrum of the signal from figure 2.8.

times with different window sizes and different values of m and comparing the
results in order to find the best parameters for the specific signal.

2.4 Spectral leakage

Both DFT and STFT use sine waves to describe the real-valued signal of
length N . Each sine wave has frequency ωk = 2πk

N where k ∈ [0, 1, ..., N/2]
(in case of real valued input). However, it could happen that the signal con-
tains frequency which is not equivalent to one of the listed frequencies. Fig-
ure 2.8 shows a signal x of length N = 100 consisting of a sine wave of
frequency f0 = 2π 21

200 = 2π 10,5
100 . DFT of this signal will contain frequen-

cies f ∈ {2π 0
100 , 2π

1
100 , 2π

2
100 , ..., 2π

10
100 , 2π

11
100 , ..., 2π

50
100}. Our frequency f0 is

right in between two frequencies of DFT. The frequency spectrum in figure
2.9 shows what happens – several sine waves near the frequency f0 have high
amplitude (the frequency f0 leaks to the adjacent frequencies). This effect
is called spectral leakage. It is an unwanted effect and because it biases the
frequency spectrum it is desirable to reduce it.
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Figure 2.10: Hanning window function.

The most straight-forward way how to reduce the spectral leakage is by
removing its source – the inability of DFT/STFT to cover all the frequencies.
That could be done by taking a longer function we are analyzing which results
in a higher density of the frequencies used by DFT and so higher chance that
the frequencies used by DFT will be closer to the real ones in the signal. Eg.
in the case shown above, extending the signal to length N = 200 makes the
frequency f0 to be contained in the frequency spectrum. However, sometimes
we cannot or we do not want to take a longer signal – e.g. in STFT we want
to analyze small chunks in order to have better time localization. In those
cases, specific window functions can be used.

Window functions were already introduced in the previous section (2.3)
where they were used to split the signal into the chunks (a square window
function was used to perform that). The source of the spectral leakage can be
also seen as the input signal not being periodic (it has unfinished oscillations).
Therefore, specific window functions that reduce weight on the edges of the
signal could reduce this negative effect. Figure 2.10 shows a Hann window
function defined as:

w[n] = 1
2

(
1− cos

( 2πn
N − 1

))
, (2.15)

where N is a length parameter.2
Figure 2.11 shows the frequency spectrum of the signal using no window

function and using the Hanning window3. As seen, the spectral leakage is
mostly reduced. The spectrum has high values only at two frequencies (at
f = 10

100 and f = 11
100) which is accurate because the frequency present in the

signal is right in the middle of them.
2We could apply a window function even in DFT – a DFT of length N can be seen as a

special case of STFT where only one chunk with window length N is processed.
3Note that not applying any window function equals to applying a square window func-

tion. When we say no window function is used or we do not specify which window function
is used, we will refer to using a square window function.
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2. Fourier transform
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Figure 2.11: Frequency spectrum of the signal from figure 2.8 using Hanning
window.

There are several established window functions including Hanning, Ham-
ming, Kaiser-Bessel and Blackman-Harris [18]. They differ in a way how they
assign weights to specific parts of the signal. Choice of the best performing
window function is not a trivial task and is beyond the scope of this Thesis.
We will use only Hanning window since it is sufficient in most applications.
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Chapter 3
Wavelet transform

Wavelet transform (WT) is a spectral analysis method which decomposes a
signal into a set of oscillatory functions called wavelets. The wavelets are
localized in time and thus WT provides a time-frequency representation. It
is an operation similar to Short-time Fourier transform but it is younger –
engineers started using WT for signal analysis and processing in the late 20th

century. Therefore, in the first Section (3.1) we give a motivation example
– analysis of a signal where STFT does not perform ideally and we describe
how WT is supposed to solve this.

In this Chapter, we will focus on two types of Wavelet transform which are
commonly used for signal analysis – Continuous Wavelet transform (CWT)
and Discrete Wavelet transform (DWT). Despite its name, CWT is often used
for discrete signal analysis. It provides a redundant representation of a signal
in terms of scaled and translated wavelets derived from a continuous function
called the mother wavelet. CWT is described in the second Section (3.2) of this
Chapter. DWT, on the other hand, provides a non-redundant representation
of a signal by a set of discrete orthonormal wavelets. DWT is described in the
third Section (3.3) of this Chapter.

The focus of this Chapter is to provide neccessary background for practical
application of CWT and DWT. Thus, we will not dive deep into mathematical
concepts of Wavelet transform. Those are in detail described in many books
written by experts in Wavelet domain [19], [20], [21], [22], [12]. Except those,
we also recommend [23], [24], [25] and [26] as they can help understand Wavelet
transform in more depth.

3.1 Introduction

In this section, we introduce the concept of Wavelet transform by a motivation
example. The example consists of an analysis of a discrete signal by Short-
time Fourier transform, which, however, will not give satisfying results and
we explain how Wavelet transform is supposed to improve it. In the following
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3. Wavelet transform

Figure 3.1: Signal x of length N = 1024
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Figure 3.2: STFT with window length 64 and overlap 63 samples
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Figure 3.3: STFT with window length 512 and overlap 511 samples
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3.1. Introduction

section of this Chapter, the signal from this example will be analyzed by
Continuous and Discrete Wavelet transform.

Figure 3.1 shows a discrete signal x of length N = 1024 with sampling
rate Fs = 1024Hz. The signal consists of a sine wave of frequency 8Hz (low
frequency pattern) and a sine wave of frequency 64Hz (a high frequency pat-
tern). The low frequency pattern is present in the whole signal except for
three short intervals where only the high frequency pattern is present. Short-
time Fourier transform seems as an ideal choice since the signal has different
frequency spectrum among different time intervals.

Figure 3.2 shows spectrogram of the signal using the square window of
length 64 and overlap 63. From the spectrogram, we are able to localize the
high frequency sinusoid in time. We can as well identify, that there is a low
frequency pattern among the whole signal. However, we have relatively coarse
resolution of frequencies – we can identify that the high frequency pattern is
somewhere between 60 and 80Hz and the low frequency pattern somewhere
between 0 and 20Hz. To achieve higher frequency resolution, we can increase
the length of the window.

Figure 3.3 shows a spectrogram of the signal using the square window
length 512 and overlap 511. In this spectrogram, we can clearly identify that
the low frequency pattern is of frequency 8Hz. In case of the low frequency
pattern, we now have a better estimate about its frequency as well – somewhere
between 60 and 70Hz. However, we have now coarser time resolution.

To summarize, both spectrograms give us interesting information – the
first localized the high frequency pattern in time and the second gave us good
frequency localization of the low frequency pattern. In the real world, this
is the usual kind of information we want – good time resolution at high fre-
quencies and good frequency resolution at low frequencies. Wavelet transform
does exactly this by an operation of scaling.

Wavelet transform represents a signal by a set of wavelets – oscillatory
functions with compact support. The set of wavelets is derived from a function
called the mother wavelet, commonly denoted as ψ, by scaling and translation.
Figure 3.4a shows real part of the Morlet wavelet. The Morlet wavelet is de-
fined as a complex exponential multiplied by a Gaussian function. Therefore,
it can be seen as a special case of STFT when Gaussian function is chosen
as the window function. Figure 3.4b shows what happens if we increase the
frequency of the complex exponential in STFT. Figure 3.4c then shows what
happens when we scale down the Morlet wavelet. This is the key difference
between the concept of STFT and WT. Loosely speaking, WT using the Mor-
let wavelet is like STFT where we shrink the window size while increasing
frequency. In Wavelet transform, this operation is called scaling. The scaling
operation allows us to achieve good frequency resolution at low frequencies
while having good time resolution at high frequencies.
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3. Wavelet transform
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Figure 3.4: (a) real part of the Morlet wavelet, (b) higher frequency, (c) lower
scale

3.2 Continuous Wavelet Transform

Continuous Wavelet transform provides a redundant representation of a func-
tion in terms of scaled and translated wavelets derived from the mother
wavelet. A brief mathematical definition of CWT is provided in Subsection
3.2.1 along with a few examples functions that can be used as the mother
wavelet. In order to be implemented on a computer, CWT has to be dis-
cretized. Therefore, the discretization of CWT is described in Subsection
3.2.2. The third Subsection (3.2.3) analyzes the signal from the previous
Section by CWT. The last Subsection (3.2.4) briefly describes computational
complexity of CWT.

3.2.1 Definition

CWT represents a signal by scaled and translated wavelets ψs,τ derived from
the mother wavelet ψ by equation

ψs,τ (t) = 1√
s
ψ

(
t− τ
s

)
. (3.1)

Figure 3.5 shows a few scaled and translated versions of the Morlet wavelet.
The parameters s and τ are called scale and translation. CWT of a continuous
and well behaved4 function f is defined as

CWTψ(s, τ) =
∫ ∞
−∞

f(t)ψ∗s,τ (t)dt, (3.2)

where s ∈ R+, τ ∈ R, ψ is the mother wavelet and ψ∗ is the complex conjugate
of ψ.

4The function has to be from L2 space.
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3.2. Continuous Wavelet Transform
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Figure 3.5: Scaled and translated wavelets derived from Morlet wavelet
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Figure 3.6: Examples of admissible wavelets: (a) real-valued Morlet wavelet,
(b) Mexican hat wavelet, (c) Shannon wavelet, (d) fbsp wavelet (B-spline)
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3. Wavelet transform

In order for the transform to be inversible, the mother wavelet has to sat-
isfy the admissibility condition [20]. Definition of the admissibility condition
and the inverse formula for CWT is, however, beyond the scope of this thesis.
For our purpose, it is enough to say that the admissibility condition implies
that the mother wavelet has to be compactly supported and has to be oscil-
latory around zero – hence the term wavelet. Application of CWT usually
does not involve reconstruction of the signal from its coefficients. However,
the inversibility of the operation guarantees us that all the information from
the original signal, is also present in its CWT. Therefore, even though the re-
construction is not necessary, admissible wavelets are commonly used. Figure
3.6 shows a few admissible wavelets.

As seen in the Figure 3.6, different mother wavelets can have different
width (support). Therefore, the scale parameter depends on the mother
wavelet and it can be difficult to interpret it. As illustrated at the beggining
of this Chapter, scale is closely related to frequency. Thus, it is common to
approximate frequencies of the scaled wavelets. The approximation is possible
using the central frequency of the scaled wavelet [27]. E.g. the central fre-
quency of the Morlet wavelet is defined as the position of the global maximum
of its Fourier transform [28].

3.2.2 Discretization

By definition, CWT is calculated for infinite number of scales and translations.
In this section, we will describe how to discretize both scales and translations
of CWT in order to be applicable on finite discrete signals.

CWT of a finite discrete signal consists of N translations and M scales.
The amount of translations N is usually set to be equal to the length of the
signal and the translation values are chosen to correspond with the sampling
rate of the signal. E.g. if we have a signal of length N , we choose translations
τ ∈ {0, 1, ..., N − 1}. The discretization of scales into M values then consists
of two steps – selection of the range of scales and discretization of that range.

The range of scales can be set to cover all frequencies present in the signal
based on the convertion between the scale and frequency. However, with the
amount of scales raises the computational complexity. Therefore, there are
several methods how to discretize a selected range of scales.

The selected range of scales can be discretized by linear sampling – e.g.
from the range s ∈ [1, 16] we take {1, 2, 3, 4, ..., 16}. However, the scaling equa-
tion (3.1) results in the fact that the difference in size between two low scale
wavelets is much higher than the difference between two high scale wavelets.
In other words, the scaling of the wavelets is logarithmic. Therefore, it is com-
mon to discretize the scale range exponentially [29]. The scales are discretized
dyadically. the scaling equation for the wavelets then becomes

ψj,τ (t) = 1√
2j
ψ

(
t− τ

2j
)
.
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Figure 3.7: Scalogram of the signal from Figure 3.1 with linear sampling of
the scale range

0 200 400 600 800 1000
translation ( )

832.0

416.0

208.0

104.0

52.0

26.0

13.0

3.25

fre
qu

en
cy

 (H
z)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

CW
T

(s
,t

)

256.0

64.0

32.0

16.0

8.0

4.0

2.0

1.0

sc
al

e 
(s

)

Figure 3.8: Scalogram of the signal from Figure 3.1 with dyadic sampling of
the scale range

The dyadic scaling results in a very coarse discretization of scales. There-
fore, it is common to pick the base as some root of two – 21/v. The scaling
equation then becomes

ψj,τ (t) = 1√
2j/v

ψ

(
t− τ
2j/v

)
.

When we take twice the higher parameter v, the resolution becomes twice
finer. The parameter v is often reffered to as the number of voices per octave
[30].

3.2.3 Signal Analysis

A common way how to visualize the coefficients of CWT is by a scalogram.
The scalogram is a three dimensional visualization which usually shows scale
on the vertical axis, translation on the horizontal axis and CWTψ(s, τ) as a
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Figure 3.9: Scalogram of the signal from Figure 3.1 with exponential sampling
of the scale range with base 21/16

color from a color range5. The scale is often converted to frequency. Then,
either only the frequency is displayed on a vertical axis or the scalogram has
two vertical axes.

Figures 3.7-3.9 shows scalograms of the signal from the motivation example
at the beginning of this Chapter for scale range s ∈ [1, 256] using a real valued
Morlet wavelet. Each of the figures shows different discretization of the scale
range, namely linear, dyadic and with base 21/16.

When we fix the scale parameter s, the equation 3.2 can be interpreted as
a cross-correlation between the signal and translated wavelet ψ of scale s at
lag τ [22]. The value of CWTψ(s, τ) can be then interpreted as the amount
of similarity between the signal and the wavelet ψs,τ or in other words –
amount of presence of the pattern similar to the wavelet ψs,τ in the signal.
Therefore, in the scalogram, we are usually interested in both coefficients with
high negative values and high positive values.

3.2.4 Computation Complexity

Calculation of CWT coefficients for one scale can be realized by a convolution
operation. Since convolution of two signals can be computed by the FFT
algorithm with complexity O(N logN), the calculation of CWT for M scales
and N translations yield complexity of O(MN logN).

3.3 Discrete Wavelet Transform

Discrete Wavelet transform (DWT) is an operation of decomposing a signal
into a set of discrete orthonormal wavelets. It was first introduced by hun-
garian mathematician Alfred Haar [31], however, back then he did not call

5When a complex function is used as the mother wavelet, the coefficients of CWT be-
comes complex numbers. In that case, it is common to show amplitude and phase scalograms.
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3.3. Discrete Wavelet Transform
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Figure 3.10: Haar scaling function and Haar wavelet

it Discrete Wavelet transform yet. The advent of DWT came with Ingrid
Daubechies’s introduction of a family of orthonormal wavelets [32]. Moreover,
Stephen Mallat introduced an algorithm called Fast Wavelet transform capa-
ble of computing DWT with complexity O(n) [33]. We give an introduction
to general concept of DWT in the first Subsection (3.3.1) in a form of compar-
ison with CWT. In the second Subsection (3.3.2) we briefly describe how the
decomposition of a discrete signal is realized by DWT. The last Subsection
(3.3.3) describes how can be the mentioned computation complexity O(N)
achieved.

3.3.1 Concept

CWT was discretized by exponential sampling of scales while the amount of
translations was fixed – equal to the length of the analyzed signal. However,
we can have coarser time resolution at higher scales than on lower scales while
capturing the same amount of information. In other words, we can reduce
the amount of translations at higher scales. DWT does exactly this by dyadic
sampling of both scale and translation. The dyadic sampling of translations
is then commonly called dilation. In DWT, the wavelets ψj,k derived from the
mother wavelet ψ are scaled and dilated by equation

ψj,k(t) = 1√
2j
ψ

(
t− 2jk

2j

)
= 2−j/2ψ(2−jt− k). (3.3)

Another difference of DWT from CWT is, that the wavelets used in DWT
are discrete. Moreover, the mother wavelet ψ is defined by a scaling function
φ, commonly called the father wavelet, by equation

ψ[n] =
∑
k

(−1)kg[k]φ[2n− k]. (3.4)
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3. Wavelet transform

The scaling function φ has to satisfy the following recursive condition:

φ[n] =
∑
k

h[k]φ[2n− k]. (3.5)

The discrete signals h and g are called the high pass and low pass analysis
filters of the scaling function φ and the mother wavelet ψ. Figure 3.10 shows
Haar scaling function and Haar mother wavelet.

3.3.2 Fast Wavelet transform

Fast Wavelet transform decomposes a finite discrete signal x of length N
into detail and approximation coefficients in form of discrete signals and total
length of N . It consists of successive decomposition steps called levels using
the high pass and the low pass analysis filters of the scaling function φ and the
mother wavelet ψ. The first level of decomposition of a signal x containing
frequencies [0, f ] is defined as

cD1[n] = (x ∗ h)[n] ↓ 2,
cA1[n] = (x ∗ g)[n] ↓ 2,

where ↓ 2 denotes subsampling by two (discarding every second value) and
h and g are the high pass and the low pass analysis filters. cD1[n] contains
frequencies [f/2, f ] of the signal x and is commonly called level 1 detail coef-
ficient. cA1[n] contains frequencies [0, f/2] of the signal x and is commonly
called level 1 approximation coefficient. The level k approximation coefficient
cAk can be further decomposed into level k + 1 detail and approximation co-
efficients by another convolution with the high pass and the low pass filters
and downsampling:

cDk+1[n] = (cAk ∗ h)[n] ↓ 2,
cAk+1[n] = (cAk ∗ g)[n] ↓ 2.

The original signal x can be then reconstructed back from its coefficients cD1,
cD2,..., cDk and the coefficient cAk.

Figure 3.11 shows six levels of decomposition of a signal x from Figure 3.1
from the beggining of this Chapter. The detail coefficients are often visualized
in scalogram. The scalogram of the whole decomposition of the signal (up to
level 10) is shown in Figure 3.12.

3.3.3 Computation Complexity

Each level of decomposition consists of two convolution operations. Convolu-
tion operation has by definition a complexity of O(N ∗M) where N and M
are lengths of the signals being convolved. If the filters h and g are finite,
which e.g. in case of Haar wavelet are, then the complexity of the first level
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Figure 3.11: DWT decomposition of the signal from Figure 3.1 on detail and
approximation coefficients using Haar wavelet
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Figure 3.12: DWT using Haar wavelet of the signal from Figure 3.1

of decomposition is O(2N) where N is the length of the input signal of DWT.
The k-th level of decomposition is then of complexity O(N/2k−1). This leads
to a reccurence relation T (N) = 2N + T (N/2) which yields O(N).
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Chapter 4
Vibrations and acoustic
emissions of machinery

This chapter established necessary background of vibration and acoustic sig-
nals the machinery emit and its characteristics. The first Section (4.1) de-
scribes the signals and how they can be acquired from the machinery. The
second Section 4.2 describes basic machinery elements and characteristics of
their vibrations and acoustic emissions. The third Section (4.3) describes
how the signals of a healthy and a faulty machine could differ and how that
knowledge can be used to determine the condition of a machine.

4.1 Data acquisition

Both vibration and acoustic emission contain information about oscilatory
movement of molecules in space (mechanical waves) around a reference po-
sition. Vibration refers to the movement in a solid matter while acoustic
emission refers to the movement in liquids and gases. The two signals are
closely correlated since an oscillatory movement of a solid matter also gener-
ates acoustic waves and vice versa.

The data are acquired from sencors in a form of finite discrete signals. In
case of acoustic emissions the sensor is a microphone placed near the machine
and measuring the sound pressure level. In case of vibrations three types of
sensors can be used: accelerometer, velocimeter and proximity probe measur-
ing acceleration, velocity and displacement, respectively. Those sensors have
to be physically connected to the machine.

4.1.1 Displacement, velocity and acceleration

Vibration data can be represented in three units – displacement, velocity and
acceleration. Figure 4.1 shows frequency spectra of the same vibration sig-
nal in different units. Notice that in the frequency spectrum of displacement
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4. Vibrations and acoustic emissions of machinery

Figure 4.1: Frequency spectrum of different units of vibration data. Source:
[1]

higher the frequency lower the amplitude and vice versa in the acceleration fre-
quency spectrum. Level of amplitude in velocity frequency spectrum remains
relatively same across the whole frequency spectrum. This is a common be-
haviour of most machinery parts.

Proximity probes are then commonly used for low frequency analysis.
Since velocity provides detail in both low and high frequencies, it is the most
convenient unit for general vibration analysis. However, usage of velocime-
ters is uncommon due to difficulties in their construction. The most common
sensor for measuring vibrations is then an accelerometer, which can measure
vibrations at high sampling rates and its construction is relatively easy.

4.2 Basic machinery elements and their
characteristic frequencies

A machine is an apparatus which consumes power in order to apply forces
and control movement. It usually consists of many parts (elements) such as
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4.2. Basic machinery elements and their characteristic frequencies

Figure 4.2: A ball bearing. Source: [2]

gears, bearings, valves and others. Each moving element emits vibrations and
acoustic noise which contain characteristic frequencies based on the physical
properties of the element and its speed of movement.

Majority of vibrations and acoustic noise in machinery is generated by
rotating elements. Building a perfectly balanced rotating machine is hard
to achieve. Therefore it often emits vibrations and acoustic noise at vari-
ous frequencies called the characteristic frequencies. The first characteristic
frequency of every rotating element of machinery is then the frequency equiv-
alent to the speed of its rotation – the driving frequency. In most cases it is
the speed of a shaft connected to the rotating element. We will denote it as
F . Other characteristic frequencies are based on specific machinery element
types and its properties. In this Section, we will describe three basic rotating
machinery elements, which are the most common subjects of vibration and
acoustic analysis – a bearing, a gear and a turbine.

4.2.1 Bearing

A bearing is a machinery element which reduces friction between two parts of
the machinery. The most common type is a rolling element bearing, shown
in Figure 4.2. The bearing is attached to two parts of the machinery via an
outer and an inner race. The driving frequency of the bearing is the speed
of movement between the outer and the inner race. A space between the
races is filled with a cage containing rolling elements – most commonly balls
— which allow an independent movement the races, and thus the machinery
parts connected to it, at little friction.

Basic parameters of a ball bearing are [2]:

• Bn – number of balls

• Bd – ball diameter
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4. Vibrations and acoustic emissions of machinery

• Pd – pitch diameter (distance between centers of the two opposite balls
as shown in Figure 4.2)

• Θ – contact angle between a ball and the outer race

The characteristic frequencies of a ball bearing are then:

• CPF (cage pass frequency) = 1
2F

[
1− Bd

Pd cos Θ
]

– Frequency at which the cage with rolling elements fully spins itself.

• BSF (ball spin frequency) = Pd
2BdF

[
1−

(
Bd
Pd cos Θ

)2
]

– Frequency at which one ball fully spins itself.

• BPFO (ball pass frequency of the outer race) = Bn
2 F

(
1− Bd

Pd cos Θ
)

– The lowest frequency at which two balls pass the same location at
the outer race.

• BPFI (ball pass frequency of the inner race) = Bn
2 F

(
1 + Bd

Pd cos Θ
)

– The lowest frequency at which two balls pass the same location at
the inner race.

4.2.2 Gear

A gear is a part of a machinery which transmits torque. It has cut teeth
which mesh with another toothed part of a machinery and causes it to move.
Multiple gears can be connected to each other making together a gearbox
which provides torque conversion (transmission). When speaking of two gears
connected to each other the smaller gear is usually refered to as a pinion.

A basic property of a gear is its number of teeth – n. A basic characteristic
frequency of a gear is then the gear mesh frequency (GMF) defined as the
number of teeth multiplied the driving frequency – GMF = F ∗ n.

4.2.3 Turbine

A turbine is a rotating machinery which extracts energy from a fluid such as
wind or water. It consists of a shaft connected with an assembly of blades.
The fluid or the gas applies force to the blades which causes the turbine to
move. The shaft of a turbine is then usually connected to a generator, which
transforms that mechanical energy into electricity.

A basic property of a turbine is number of blades in its assembly – n.
A basic characteristic frequency of a turbine is then the blade pass frequency
(BPF) calculated as the number of blades multiplied by the driving frequency.
BPF tells us the lowest frequency at which two blades pass the same position.
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4.3. Condition monitoring

4.3 Condition monitoring

The set of frequencies contained in the vibration or acoustic signals emitted
by the machinery usually consists of the machine’s characteristic frequencies
and other naturally occuring frequencies either of the machine itself or of its
near environment. We call this set of frequencies emitted by the machinery at
time t the spectral signature of the machine at time t. The time t can be a one
time point or an interval between two time points depending on the context.

A machine can suffer from a wear after some time under operation which
can be seen as a continuous degrading process. Moreover, a machine can
suffer from a defect which might be as well continuously developing during
some time due to eg. a fault in construction or onproper maintenance or
it might be caused by a sudden accident such a shaft crack. Therefore, the
spectral signature of the machine may vary in time. The main goal of condition
monitoring is to detect these changes and decide whether the device is in a
defective condition and how severe that condition is. This Section describes
basic defects and wear conditions of rotating machinery elements described in
the previous Section.

4.3.1 Unbalance, misalignment and looseness

Unbalance, misalignment and looseness are common defective conditions of
a general rotating machinery. They are commonly related to the driving fre-
quency of the rotating element causing the spectral signature to contain higher
presence of the driving frequency (F), its harmonics (2F, 3F,...) or even its
subharmonics (F/2,F/3,...) [6].

Unbalance is characterized by high presence of the driving frequency. Mis-
alignment typically causes the rotating element to move in a shorter periodic
pattern, thus it is often identified by higher presence of the driving frequency’s
harmonics, especially 2F [34]. Looseness might on the other hand cause the
rotating element to move in longer periodic patterns and thus might be con-
nected with subharmonics of the driving frequency. Figure 4.3 shows example
frequency spectrums of a healthy rotating machine (unfault) and a machine
suffering from unbalance, misalignment and looseness.

Sometimes identifying exact type of the fault can be difficult, especially
between misalignment and looseness. The vibration and acoustic data can be
then measured at several places on the machinery and in different directions,
e.g. radial and axial. Analysis of the differences between the spectral sig-
natures obtained from different places or directions may then distinguish the
faults [1].
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4. Vibrations and acoustic emissions of machinery

Figure 4.3: Spectrum of typical vibration faults of general rotating machinery
elements. Source: [3]

4.3.2 Bearing defects

Bearing specific defects are faults at the inner and the outer race. The defect
can be any imperfection on the surface of the race. When a ball of the bearing
strikes a localized defect on of the race, it usually generates short high fre-
quency resonance of the whole structure (bearing) [35]. This resonance then
repeats at the BPFO or BPFI frequency, depending on which race the defect
is.

4.3.3 Gear defects

A common defect of a gear is a broken or a worn tooth. A gear with such defect
usually emits high amplitude vibrations and acoustic noise of frequency equal
to GMF and its harmonics and subharmonics when it meshes with another
toothed part of machinery. In other words, a gear with a damaged tooth emits
vibration and acoustic signal at GMF whose amplitude is modulated6 by the
driving frequency.

4.3.4 Turbine defects

A turbine blade assembly can suffer from various defects which are often
caused by imperfect manufacturing process such as improper joints of blades
within the assembly. The defects on a blade of the turbine then typically
cause the turbine to be unbalanced.

6Amplitude modulation is change of amplitude in time while keeping the same frequency
of the oscillations.
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Chapter 5
Experiments

This chapter describes experiments conducted upon real-world datasets. The
goal of the experiments is to demonstrate the application of Fourier and
Wavelet transforms in vibration and acoustic analysis of machinery. Our focus
is revealing a defective condition of rotating machinery. For that purpose, we
chose four publicly available datasets containing measurements of both defec-
tive and healthy machinery of the same type. The datasets contain vibration
data only. However, based on characteristics of the data described in Chapter
4, acoustic emission should closely correlate with vibrations. Therefore we
assume the vibration measurements to be enough for the demonstration.

Each experiment is done upon one dataset and consists of a description
of the measurements in the dataset followed by analysis of the healthy and
defective state. The analysis consists of processing the signals by DFT, DWT
and CWT. We will not use STFT, since DWT and CWT should provide better
time-frequency representation, as explained in the Chapter 3.

From DFT, we show the amplitude frequency spectrum. In order to achieve
the best results of DFT and minimize spectral leakage, the input for DFT
is always the entire measurement (typically several seconds) multiplied by
Hanning window.

Since the output of both DWT and CWT is time localized, it would not be
feasible to analyze scalograms obtained from the entire measurement. More-
over, it is not even necessary. Majority of the defects occur at frequencies
equal to or higher than the driving frequency. Therefore, the length of input
for DWT and CWT is always equal to several rotation cycles. We first show
scalogram of DWT up to the maximum decomposition level. If DWT reveals
high presence of a certain range of frequencies, CWT is then computed for the
same input and the corresponding range of scales is sampled at finer resolution
in order to provide more details. In the scalograms, the individual rotation
cycles are separated by a vertical dashed line. The mother wavelets chosen
for the transforms are Haar wavelet for DWT and real-valued Morlet wavelet
for CWT.
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Figure 5.1: Frequecy spectra of the healthy turbine

The individual experiments are described in Sections 5.1-5.3. The sum-
mary of the experiments and the conclusion how or whether the methods
revealed the defective state is then given in section 5.4.

Since the purpose of the experiments is purely demonstrative, we chose
implementation in Python where many packages with Fourier and Wavelet
transforms are available. NumPy [36] was used for computation of Discrete
Fourier transform and PyWavelets [37] were used for computation of Con-
tinous and Discrete Wavelet transforms. The visualizations were made in
Matplotlib [38]. Each experiment is written as a Jupyter Notebook [39] which
allows us to easily reran the experiments.

5.1 Gas Turbine Dataset

Gas Turbine dataset contains two vibration measurements of a simplified tur-
bine test rig. The data were measured by Gareth L. Forbes and were used,
along with pressure measurements, to estimate turbine blade natural frequen-
cies [40].

The turbine was equipped with 19 blades arrangement and ran at constant
speed of 2000 rpm. During the first measurement, the turbine was in a healthy
state while during the second measurement one blade was replaced by a shorter
blade to simulate mass unbalance. Both measurements were taken at sampling
rate 65336Hz and their length is 10 seconds each.

The driving frequency F is 33Hz. The blade pass frequency of the turbine
is 632Hz.

5.1.1 Analysis of Healthy Turbine

Figure 5.1 shows the frequency spectrums of the healthy turbine at frequencies
[0, 100] and [0, 10000]. We are able to identify the blade pass frequency (BPF)
with its first two harmonics and the driving frequency F and its first harmonic.
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5.1. Gas Turbine Dataset
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Figure 5.2: DWT scalogram of the healthy turbine
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Figure 5.3: CWT scalogram of the healthy turbine

In the higher frequencies, there is a high presence of frequencies between 3000
and 9000Hz, especially around 4500Hz.

Figure 5.2 shows the scalogram obtained from DWT. As expected from the
frequency spectra, we see high presence of frequency range [2041, 8167] and
[510, 1020]. Figure 5.3 shows the CWT scalogram where a periodic pattern of
19 times per rotation is visible around BPF. The higher frequencies around
4500Hz seem to follow similar periodicity as the BPF.

5.1.2 Analysis of Defect: Shorter Blade

Figure 5.4 shows the frequency spectrums of a turbine with one blade shorter
which simulates mass unbalance defect. We see that the driving frequency is
around two and a half times higher than at the basline data (0.36 compared
to 0.14). The blade pass frequency is now lower by almost a half, but there is
a high amplitude peak around frequency 3900Hz. We can again see a visible
distance between this frequency and other frequencies with high amplitude
again of length equal to BPF.
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Figure 5.4: Frequecy spectrum of the turbine with one blade shorter
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Figure 5.5: DWT scalogram of the turbine with one blade shorter
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Figure 5.6: CWT scalogram of the turbine with one blade shorter
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5.2. High Speed Gear Dataset

Figure 5.7: A fault found on the wind turbine gear, source: [4]

DWT scalogram in Figure 5.6 shows a little increase the presence of range
where the driving frequency is. Aside that, it shows, similarly as DFT, signifi-
cantly higher presence of frequencies at range [2041, 8167] compared to rest of
the frequencies. In the CWT scalogram, shown in Figure 5.6, we can identify
a high presence of frequencies around 4000Hz with high coefficients repeating
around 19 times per rotation (BPF).

5.2 High Speed Gear Dataset

High speed gear dataset was obtained from Acoustic and Vibration Database
[4]. It consists of three radial vibration measurements taken on three different
3MW turbine gears of the same type. The measurement of the first turbine
showed high initial vibrations and the turbine was stopped after one week of
operation. A defect on a tooth of the gear was later found. The photo of the
defect is shown in the Figure 5.7. The two other measurements were taken
on gears of the same type with no known faults. For our experiment, we took
one of the measurements taken on gear with no known faults as the baseline
data.

The measurements were taken by an accelerometer with sampling rate
97969Hz and are 6 seconds long each. The gear had 32 teeth and ran at
nominal speed 1800 rpm. The driving frequency is then 30 Hz and GMF is
960 Hz.
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Figure 5.8: Frequency spectrum of a healthy gear
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Figure 5.9: DWT scalogram of a healthy gear

5.2.1 Analysis of Healthy Gear

Figure 5.8 shows the frequency spectrum of the baseline data up to frequency
6500Hz. We can clearly identify GMF and its first harmonic 2xGMF.

DWT scalogram is shown in the Figure 5.9. We can see higher presence
of frequencies at range [762, 12207]. CWT scalogram for the corresponding
range is shown in the Figure 5.10.

5.2.2 Analysis of Defect: Damaged Tooth

Figure 5.11 shows the frequency spectrum of the gear with a damaged tooth.
We can identify GMF and its first harmonic and subharmonic. Moreover,
there are visible frequency sidebands around those frequencies with distance
equal to the driving frequency.

Figure 5.12 shows a DWT scalogram. We see a pattern recurring once per
rotation in the frequency range [762, 3051]. CWT scalogram shown in 5.13
then reveals the pattern in more detail. At the first harmonic and subharmonic
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Figure 5.10: CWT scalogram of a healthy gear
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Figure 5.11: Frequency spectrum of the pinion with a damaged tooth
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Figure 5.12: DWT scalogram of the pinion with a damaged tooth
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Figure 5.13: CWT scalogram of the pinion with a damaged tooth

of GMF, we can identify the moments when the damaged tooth of a pinion
meshes with the teeth of the other gear.

5.3 Case Western Bearing Dataset

Case Western bearing dataset contains vibration measurement of ball bear-
ings at different conditions. Specifically, it contains measurements of healthy
bearings and bearings with seeded faults of different severity including inner
race fault, outer race fault and ball fault. Each measurement contains descrip-
tion about the parameters of the fault (diameter and depth). The data were
measured by Case Western Bearing Data Centre7.

For purpose of our experiment, we chose the measurement of a healthy
bearing and a bearing with an outer raceway fault of diameter 0.18mm and
depth 0.28mm. For comparison, the outside diameter of the bearing is 5.2cm
and the inside diameter is 2.5cm. During both measurements the bearing ran
at constant speed of 1730 rpm. The characteristic frequencies of the bearing
are:

• F = 1730/60 ≈ 28.8Hz

• Ball pass frequency outer race (BPFO) = 3.5848xF ≈ 103Hz

• Ball pass frequency inner race (BPFI) = 5.4152xF ≈ 156HZ

• Ball spin frequency (BSF) = 4.7135xF ≈ 136HZ

The measurements were taken by an accelerometer with of sampling rate
48000Hz and are 10 seconds long each.

7http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-
university-bearing-data-center-website
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Figure 5.14: Frequency spectrum of a healthy bearing
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Figure 5.15: DWT scalogram of a healthy bearing

5.3.1 Analysis of Healthy Bearing

Figure 5.14 shows a frequency spectrum of a healthy bearing. We can identify
BPFI. Aside that, the frequency around 360Hz ha high amplitude as well as
some high frequencies above 4000Hz. However, it is not clear how to interpret
their presence.

Figure 5.15 shows DWT scalogram which reveals that there is a pattern
in the frequency range [3000, 6000] recurring approximately 3.5 times per rev-
olution. That indicates that those high frequencies above 4000Hz could relate
to BPFO since BPFO is 3.58 times the driving frequency. Moreover, we see a
high presence of frequencies at range [187, 750] with no obvious pattern. CWT
scalogram shown in the Figure 5.16 reveals a periodicity of around 11 times
per revolution at frequencies around 380Hz. Based on that, we can assume
that the frequencies around 380Hz could relate to the first harmonic of BPFI.
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Figure 5.16: CWT scalogram of a healthy bearing

0 100 200 300 400 500 600 700
frequency (Hz)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

am
pl

itu
de

BPFI

0 1000 2000 3000 4000 5000 6000
frequency (Hz)

0.00

0.02

0.04

0.06

0.08

am
pl

itu
de

Figure 5.17: Frequency spectrum of a bearing with outer race fault
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Figure 5.18: DWT scalogram of a bearing with an outer race fault
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Figure 5.19: CWT scalogram of a bearing with an outer race fault

5.3.2 Analysis of Defect: Outer Race Fault

Figure 5.17 shows a frequency spectrum of a bearing with an outer race fault.
We see the frequency spectrum for frequencies lower than 700Hz remains sim-
ilar to the spectrum of a healthy bearing except the BPFI being now slightly
higher. At the higher frequencies we see high rise of amplitudes at frequencies
around 3000Hz. Howerer, it not clear how to interpret it.

DWT scalogram shown in figure 5.18 shows majority of energy of the signal
being concentrated at frequency range from 1500 to 6000Hz. Moreover, there
is a clear pattern of periodicity around 3.5 times per revolution which matches
BPFO. Scalogram of CWT shown in figure 5.19 reveals that it corresponds
to the frequencies around 3000Hz and shows exact moments when the ball
strikes the defect at the outer race.

5.4 Results

The first experiment compared a turbine suffering from a mass unbalance with
a healthy turbine. Fourier transform revealed that the frequency spectra of
the two turbines differ in amplitude of the driving frequency – a turbine with
mass unbalance had almost three times higher amplitude. The difference in the
amplitude of the driving frequency was visible in the scalogram of the Wavelet
transforms as well, but no additional information was revealed compared to
Fourier transform.

The second experiment compared a gear suffering from a damaged tooth
with a healthy gear. Fourier transform revealed that the frequency spectrum
of the gear with damaged tooth differs from a healthy gear in the presence
of frequency side bands around gear mesh frequency and its harmonics and
subharmonics. From that, we could assume a presence of a fault at GMF.
Wavelet transform then revealed a pattern recurring once per revolution of
the gear which showed the specific vibration patterns generated when the
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damaged tooth meshed with the other toothed part of machinery.
The third, and the last, experiment compared a bearing suffering from an

outer race fault with a healthy bearing. Fourier transform revealed presence
of high frequencies in the frequency spectrum of the bearing with the fault,
but there was no clear connection between the characteristic frequencies and
the fault. Both DWT and CWT then revealed that there are periodic patterns
at those high frequencies whose periodicity matched with the characteristic
frequencies of the bearing. When the bearing suffered from the outer race
fault, the corresponding characteristic frequency matched the periodicity of
the pattern at the high frequencies and exact moments when a ball striked
the defect were visible.

From the results of the experiments, we conclude that both Fourier and
Wavelet tranforms can reveal defective state of the machinery. Fourier trans-
form can detect mass unbalance, as seen in the first experiment, by presence
of higher amplitude of the driving frequency. It can also detect presence of
faults at higher frequencies by frequency sidebands around characteristic fre-
quencies of the machinery, as seen in the second experiment. However, in the
third case, when the defect was characterized by short high frequency patterns,
it struggled to identify type of the fault. Wavelet transforms were as well able
to identify specific faults, as seen in the second and the third experiment, and
moreover, they were able to localize the defective behaviour in time.

44



Chapter 6
Conclusion

In the first part of this Thesis, we described two state-of-the-art spectral anal-
ysis methods – Fourier and Wavelet transform. The description was provided
with examples of signal analysis by those methods. In the second part, we
focused on vibration and acoustic analysis of machinery. We described char-
acteristics of vibration and acoustic signals emitted by the machinery and
how those characteristics can be used to identify a condition of the machinery
component using spectral analysis. Finally, the experiments conducted upon
real world data verified that Fourier and Wavelet transforms can be applied
for condition monitoring of the machinery by comparison of its spectrum with
a spectrum of a healthy machinery.

In the experiments, we compared the spectrums manually – by eye. There-
fore, future work could focus on automatization of this process possibly leading
to early detection of the faults or their prediction based on historical data.
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Appendix A
Mathematical symbols

N domain of natural numbers

R domain of real numbers

R+ domain of positive real numbers

C domain of complex numbers

<(c) real part of the complex number c

=(c) imaginary part of the complex number c∑
k sum over all values k for which is the expression in

the sum defined
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Appendix B
Acronyms

BPF Blade pass frequency

BPFO Ball pass frequency outer race

BPFI Ball pass frequency inner race

BSF Ball spin frequency

CFT Continuous Fourier transform

CPF Cage pass frequency

CWT Continuous Wavelet transform

DFT Discrete Fourier transform

DWT Discrete Wavelet transform

FFT Fast Fourier transform

FT Fourier transform

GMF Gear mesh frequency

STFT Short-time Fourier transform

WT Wavelet transform
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Appendix C
Contents of enclosed CD

experiments.........................experiments in Jupyter Notebooks
data............................................. data for experiments
thesis.......................LATEX source codes and PDF of the thesis
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