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Abstrakt

Desitky miliont celych zivych koncertt jsou k dispozici na sluzbach pro sdileni
video- a audiozdznami, a seznamy pisni spolu s ¢asovymi tdaji jsou podstat-
nou informaci, ktera je s nimi poskytovana. Jelikoz je ru¢ni anotace repetitivni
a Casové narocnd, automaticky néstroj je velmi hodnotny.

Tato bakalarska prace predkladd reseni pro nefizenou segmentaci pisni
v audiozdznamu koncertu. Podle mych poznatkt je to vibec prvni pokus
o feseni problému takto zadefinovaného. Hranice segmentti jsou urc¢eny pomoci
siroce pouzivaného testu logaritmického vérohodnostniho poméru a t¥i rtizné
modely pro klasifikaci jsou predstaveny.

Na shromazdéném datasetu, obsahujicim rtzné hudebni Zanry a kvality
zvuku, dosahuje implementovany systém 88,92% f-skore a 81,30% specificnosti
spravné oznacenych sekund audio signalu. Celkové vysledky ukazuji, ze je jeho
detekce hranic pomérné Uspésnd, a muze tedy slouzit jako obstojny zakladni
model k porovnani s budoucimi resenimi.

Klicova slova segmentace pisni, celé koncerty, nerizeny, transformace s kon-
stantnim Q, mel-skalované spektrum, stfedni kvadratickd energie, spektral-
ni centroid, spektralni tok, spektralni plochost, logaritmicky vérohodnostni
pomeér, detekce anomalii

ix



Abstract

Tens of millions of full live concerts are available on video- and audio-
sharing services, and set lists with song time annotations are an essential
information provided with them. Since the manual annotation is repetitive
and time-consuming, an automatic tool is very valuable.

This thesis proposes a solution to the unsupervised song segmentation in
full concert audio. To my best knowledge, it is the first attempt to deal with
the problem of this particular definition. Segment boundaries are identified by
the log-likelihood ratio method and three different models for the classification
are introduced.

On the collected dataset, containing various musical genres and audio qual-
ity, the implemented system achieves 88.92% f-measure and 81.30% specificity
of correctly labeled seconds in audio signal. Owverall results show that its
boundary detection is relatively successful, and therefore it serves as a decent
baseline system for future solutions.

Keywords song segmentation, full concerts, unsupervised, constant-Q trans-
form, mel-scaled spectrum, root-mean-square energy, spectral centroid, spec-
tral flux, spectral flatness, log-likelihood ratio, anomaly detection
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Introduction

In the last few years, tens of millionsE] of full live concerts were uploaded on
video-sharing websites like YouTube or Vimeo, and audio-sharing websites
like SoundCloud. Video and audio quality of such recordings range from ama-
teur smartphone recordings with a significant amount of noise to professional
camera shots with audio taken directly from the mixer.

Viewers and listeners of these full concerts usually request a list of song
names with corresponding time boundaries or at least song beginning times.
And indeed, these set lists are often attached to them, either put directly into
the description by the uploader or contributed by a fan in comments. However,
in a lot of cases, especially when the artist is less known or the recording is
nonprofessional, these metadata are missing.

An automated identification of set list in such concerts is desirable because
the manual labeling is quite time-consuming. Even if you know the artist well,
you have to determine the time boundaries. This problem can be divided into
two subtasks:

e Song segmentation — The goal of this procedure is to split the full-length
audio recording into individual songs. The main challenges for a solution
are the poor audio quality, where distinction of music and noise can be
difficult, and show-related aspects of live performance such as consecut-
ive songs without a break (separation of two consecutive songs is nearly
impossible without identification of these songs) or, on the other hand,
break in a song for whatever reason.

e Song identification — The task here is to identify individual songs. In
other words, a solution in some way compares the live version with the
database of studio versions of (if possible) all songs of the artist. The key
challenges are differences in live and studio performances, for example,
in tempo, pitch, sound in general, structure and audio condition.

!The search phrases “full concert” and “full set” give about 36 millions and 32 millions,
respectively, of results on YouTube at the time of writing this thesis.



INTRODUCTION

It should be noted that this problem is one of the tasks of Music In-
formation Retrieval Evaluation eXchangeﬂ (MIREX) where many researchers
present their results in the music information retrieval (MIR) field. In this
thesis, I deal only with the former subtask.

Although the work would be even more beneficial for the end user if the
song identification was included, it is still useful since the song segmentation
process is a repetitive task which is always time-consuming, even if an annot-
ator knows the artist. It can serve as a cornerstone for another system which
deals with the song identification, for example, utilizing already available tools
and services (Shazam, MusicID or Gracenote to name a few).

The reason I chose this subtask is mainly that the unsupervised song seg-
mentation is an unexplored area, contrary to the song identification (or music
search in general) where plenty of research exists [I]. Furthermore, for func-
tional song identification system, one must have a sufficiently large database
of music available, and such database is difficult and resources-heavy to collect
in practice.

Problem Definition

In the problem of the unsupervised segmentation of songs in full concert audio,
the task is to identify the start and end time boundaries of semantic audio
segments, and properly classify these segments as either song or non-song,
however, without pretraining a segmentation or classification model. In live
performances, time boundaries are often fuzzy, that is, a song can be started
and/or ended with an audience entertaining techniques (such as guitar solos,
big rock endings, band improvisation continually turning into a song, etc.). It
is then difficult to decide whether a music-like audio belongs to a song or not.
In this thesis, I approach this problem in the unsupervised setting, which
means that there is no labeled dataset available for training a model. Instead,
the task is to segment the audio based merely on the given content itself.
The main advantages are that there is no need to collect sufficiently large and
diverse dataset intended for training; and that an unsupervised approach — if
it is successful — does not suffer from performance degradation on samples not
present in training set as might be the case for a supervised approach [2].
On the other hand, there are some considerable challenges for such choice.
Without a training dataset, the system must depend solely on assumptions
derived from the prior knowledge of signal and spectral characteristics of mu-
sic, brought by the creator of the model. Also, the “training” size might be
insufficient for feature learning approaches. Because the solution operates
only on the audio of given concert, the amount of information available for
training an automatic feature extractor might not be enough to catch complex

Znttp://www.music-ir.org/mirex/wiki/MIREX_HOME
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Motivation

characteristics of the input and therefore to converge to a good and robust
representation resulting in useful features.

Motivation

My motivation is to create a tool which identifies the song boundaries in full
concert audio and is easy to use for the end users. I make the source code
publicly available so it can be extended in the future, either by myself or by
members of the community. I believe that it has potential to attract users’ and
developers’ attention, because the multimedia content is a large part of our
lives, and song list of full concerts is among the interests of a large number
of people. Due to the ability of multimedia consumers to share their own
content (thanks to multimedia sharing websites), there is a growing need for
automatic processing and analysis tools.

I feel an obligation to justify the decision that my work is taken as an
unsupervised problem. My goal is to make my tool to be able to handle the
wide range of musical genres, and possibly audio of various quality, since it
is mainly intended to function together with user-shared concerts on websites
like YouTube or Vimeo. I suppose that training some model in a supervised
way would require a significantly huge amount of training data, and collecting
it is labor-intensive and time-consuming, and requires cautious treatment due
to the copyright laws.

Related Work

In this section, I try to summarize work which has been done in the field of
MIR and is more or less related to my work in this thesis. The following
paragraphs are only a brief overview and listing of methods without any deep
analysis. Some concepts and techniques mentioned here are described and
examined in

General audio segmentation has many applications, for example, separa-
tion of sections (speech, music, movie) in radio [3, 4] and TV broadcasts [5],
speaker change detection [6], or music structure segmentation [7, 8], among
others. Therefore, various techniques have been developed.

Two essential phases of the audio signal segmentation are feature ex-
traction from audio and identification of segment boundaries. Among the
most popular features for these tasks are mel-frequency cepstral coefficients
(MFCC), tonality coefficients such as linear prediction coefficients, zero cross-
ing rate (ZCR) of the signal, and various spectral features such as energy, spec-
tral centroid, spectral flatness or spectral flux |9} [10]. Recently, feature learn-
ing approaches using deep learning techniques [I1] or spherical K-means [12]
achieved success in various MIR tasks, because they overcome some weak-
nesses of hand-crafted features, such as the scalability (the possibility to use

3
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it in any task) or the limitation to short-time analysis, which is common for
such approaches [2].

There are two main categories for the identification of segment boundaries.
One approach is to measure a distance between successive windows and find
peaks in resulting function of time. The Bayesian information criterion (BIC)
is found in the literature probably the most often, followed by its simplifica-
tions like generalized likelihood ratio (GLR) or log-likelihood ratio (LLR), and
Kullback-Leibler divergence. 9]

The second technique is based on machine learning models which are
trained to classify each frame of audio. Two most common algorithms are
Gaussian mizture model (GMM) and hidden Markov model (HMM) hybrid,
and support vector machine (SVM) [9]. As with the feature learning, neural
networks have been getting attention in the last few years thanks to their
significant successes [13].

According to [I4], relatively little work has been done on handling the
audio content of full concerts. In the work, they present a solution to the
problem of set list identification (i.e., song segmentation and song identifica-
tion together). Their greedy algorithm takes an excerpt from the beginning
of unprocessed audio and compares it with each song in the artist’s database.
From few top candidates, it then selects the best one and estimates the bound-
aries based on the studio version of the song. Because the solution is based
on a database of studio songs and the segmentation is approached trivially, it
cannot be an inspiration for my work. Authors also presented this problem
as a new task in MIREX, however, there are no participants other than the
authors yet.

Applause identification is being solved in [10], although described tech-
niques are applied solely on Carnatic music (a subgenre of Indian classical
music), and not tried on western music concerts. Authors observe quite an
intuitive fact, that spectra are more flat for applauses than for music. This
knowledge is generally projected into the features like spectral entropy or
spectral flatness.

Approaches for speech/non-speech segmentation in user-produced videos
are presented in [13]. According to authors, little research has been done on
consumer-produced audio. This type of content brings considerable difficulties
in processing, for instance, variance in audio quality, background noise or
specific content defects caused by the equipment or events happened to the
author during the recording. However, user-produced content is significantly
growing and already a huge part of the media (as shown in numbers at the
very beginning of this thesis) and therefore deserves the appropriate attention
of researchers.

I was searching for a literature where authors solve the task as I defined in
the [Problem Definitionl To my knowledge, there does not exist such a work,
and therefore my thesis is the first contribution to the problem in this exact
definition, with similar problems being solved in the literature listed in the

4
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paragraphs above.

Contributions

The goal of this thesis was to develop a system which deals with the song seg-
mentation in full concert audio without any pretraining or knowledge about
the content of the concert. As far as I know, it is the first attempt to solve
such defined problem. The proposed method draws inspiration from solu-
tions of similar tasks and combines them with the knowledge gained during
experimentation and analysis.

Four spectral features are utilized for the segmentation and classification,
namely root-mean-square energy, spectral centroid, spectral flux and spectral
flatness. Although commonly used in supervised classification tasks, their use
in class discrimination without pretraining a model is not so common, since
unsupervised audio classification in general is quite an unusual task.

Incorporating the prior knowledge about the features’ properties, three
models are presented. Silence detection is widely used in speech processing
tasks, but its adoption in music-related problems is limited by the scope of
the applicability. Detection of parts between songs in concerts is one of a few
such applications. Next, a simple threshold-based technique utilizing all four
features and their behavior in audio classes of interest is proposed. The third
model employs the nearest neighbor anomaly detection technique on the space
of features. Since unsupervised song segmentation is an unexplored problem,
all these models are applied to it probably for the first time.

All the code implemented in this thesis is open—sourcedﬁ and distributed
as a Python package. Despite its only partial success rate, it can be used for
practical purposes. Furthermore, as probably first attempt on this problem,
it can serve as a perfect baseline for a future research, especially because
techniques employed in this thesis are straightforward and not very complex,
or are widely used in audio signal processing.

To evaluate the performance of the presented system, a dataset of full
concerts and their time annotations was collected and published as a Python
package, which also provides the performance measurement utilities. It is
separated from the source code of this thesis in order to offer an independent
evaluation framework for the unsupervised song segmentation in full concert
audio. A public dataset is also important for results reproduction and quant-
itative comparison of various works.

Organization

The rest of this thesis is organized as follows:

3https://github.com/pnevyk/segson
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. presents the architecture of the system and describes the
underlying concepts and topics. It starts with an elementary character-
ization of the sound and its properties and continues with a discussion
about the characteristics of music. Then, it presents techniques of rep-
resenting the audio signal in the time-frequency domain and describes
following stages of the pipeline, namely feature extraction, normaliza-
tion, segmentation, classification, and postprocessing.

° presents the dataset used in evaluation and metrics employed
for measuring the performance. Then, it describes the implementation
and discusses the practical applicability of the system. The results and
the influence of different parameters are demonstrated at the end of the
chapter.

o discusses the results, provides explanations and highlights the
important findings. Some recommendations for future research are given
afterward.



CHAPTER 1

Theoretical Background

This chapter quite thoroughly defines and describe the concepts and tech-
niques which my system is based on. Since my work is rather an application
of available methods, and not a research in a specific area, the description of
the following topics is not as deep as that which could be found in the liter-
ature focused primarily on the terms themselves. However, it should still give
a strong intuition of the internals of my work.

The architecture of the system’s pipeline is based on those commonly found
in the literature, indeed, it is the most straightforward and intuitive way how
to design it for this kind of problems. Diagram of the architecture is shown

in |[Figure 1.1

1.1 Audio Signal Processing

The following subsections draw information from [15] 16, 17, 18, 19], which
more deeply describe concepts outlined here. I recommend going through
them for the more detailed explanation.

1.1.1 Audio Signal and Its Properties

What humans perceive as sound corresponds to air pressure variations near
the eardrums. Larger variations cause louder sounds, and faster variations
cause sounds higher in pitch. The air pressure varies with time continuously,
and it has a precise measurable value at any point in the time. Therefore, the
sound can be represented as a mathematical function and is often referred to
as a continuous signal.

As already noted, the size of the variations corresponds to the loudness of
the sound. If the air pressure is constant or the size of the variations is below
a frequency-dependent threshold, no sound is being heard. With increasing
magnitude, the sound is louder, and even short exposure to variations of size
above some certain threshold can lead to the hearing damage.

7



1. THEORETICAL BACKGROUND

Audio

Spectrum

Features

" k “ I N Normalization

Segmentation

W\M Classification
Postprocessing WMM

Figure 1.1: Architecture of the system.

Air pressure is measured by the SI derived unit Pascal (Pa) which corres-
ponds to N/m? (force/area). The usual value at the sea level is 101325 Pa.
The term sound pressure then represents pressure variations relative to the
surrounding air pressure. Because human ears — given that attribute by evol-
ution [20] — perceive sound logarithmically, it is common to express the sound
pressure at the logarithmic scale, in the unit of decibels (dB), which is defined
by

2
p p
L,=10lo — | =20lo (—) , 1.1
P g10 (p%) g10 20 ( )

where p is the measured sound pressure and py is the reference sound pressure,
usually equal to 0.00002 Pa as this value corresponds to the quietest sound
audible by humans. Square of the sound pressure (used in the equation)
represents the power of the sound which relates to the loudness as perceived by
humans. Note that decibel is the dimensionless quantity and has no physical
unit because it is the ratio of two pressures. shows few sound sources
and important levels of the sound pressure in Pascals and decibels.

The second fundamental property of the sound is its pitch which corres-
ponds to the frequency (speed) of the variations of the air pressure. If f(¢) is

8



1.1. Audio Signal Processing

Pa dB
Jet aircraft (50 m distance) 200 140
Threshold of pain 63.2 130
Threshold of discomfort 20 120
Disco (1 m distance) 2 100
Conversation (1 m distance) 0.02 60
Rustling leaves in the distance 0.000063 10
Threshold of hearing 0.00002 0

Table 1.1: Examples of sound sources and important sensation thresholds
with corresponding sound pressure in Pascals (Pa) and decibels (dB). Note
that the distance from the sound source is important, because the air pressure
variations decrease with the distance.

a periodic function of time ¢ with the period T'= 1 (i.e., f(t+7T) = f(t) holds
for every ¢ and T is the smallest positive number with such a property), then
we say that f(¢) has the frequency v. Frequency is usually measured in Hertz
(Hz) where 1 Hz is equal to one cycle per second. The human ear is able to
perceive sounds with a frequency between 20 Hz and 20 kHzEL

Audio waveforms can be either periodic or aperiodic. Periodic waveforms
are complex tones consisting of a fundamental frequency and a series of over-
tones (frequencies higher than the fundamental) and/or multiples of the fun-
damental frequency. These sounds can be played by the vast majority of
musical instruments (e.g., string and wind instruments) and are perceived by
the listener as clearly defined pitch or their combination.

On the other hand, aperiodic waveforms are created by non-harmonically
related sine tones (more deeply discussed in the [Subsection 1.1.2)). Percussion
instruments are an example of the source of such sounds. Both tonal and
noise-like properties can contribute to a sound. For example, speech consists
of voiced, tone-like signals (vowels such as /a/ or /i/) and unvoiced, noise-like
signals (consonants such as /f/ or /s/) [21], whereas music is usually composed
of notes and therefore is highly tonal.

Although the audio signal is a physical phenomenon and therefore is con-
tinuous by nature, we usually need to represent it in digital devices, which are
on the contrary discrete. The discrete audio signal is a sequence x = ($n)7]¥;01
whose values correspond to measurements of the air pressure of a sound, recor-
ded at a fixed frequency (called sampling rate) and mapped into a countable
set of numbers (this process is called quantization). In the real world, a widely
used sampling rate is 44 100 Hz with 16-bit number format. However, it can be
observed that the most information is present in lower frequencies, and hence
a significantly smaller sampling rate can be used for automatic audio analysis

resulting in a faster computation where unnecessary details are missing.

4The range is getting narrower with the age.



1. THEORETICAL BACKGROUND

1.1.2 Music, Melody, Harmony and Rhythm

An exact definition of music is problematic, but there are usually some prop-
erties which the majority of people recognize as the properties of music. As
the main goal of music is, arguably, to please its listeners, it should reflect
specific aspects of human auditory perception.

One fact is that two signals whose frequencies fall into ratio 2:1 (which is
called octave) are perceived as highly similar. There are other ratios which
share many harmonics and are therefore perceived as similar and pleasant to
listen. These are called consonant harmonies. Examples include 3:2 or 4:3 (in
general, ratios where the nominator and denominator is a small integer).

The sequence of notes at a certain pitch with a certain duration forms the
melody. Melody is one of the essential features of music recognized by the
listeners. Another one is harmony, which is a combination of simultaneously
played notes at different pitches, usually in consonant ratios. One important
note is that the ubiquity of simultaneous pitches sharing harmonics is a major
challenge in automatic music analysis.

The last fundamental property of music — somewhat orthogonal to melody
and harmony — is rhythm. It is described by beat which intuitively corresponds
to a sequence of significant pulses (note onsets or percussive events) that
are regularly spaced in time. The rate of these pulses then refers to the
term tempo. Both terms contribute to the rhythmic dimension of music and
therefore are very important for the listeners.

1.1.3 Fourier Transform

This subsection briefly summarizes the mathematical foundations of Fourier
analysis for the purposes of this thesis. I refer to [18] or [I5] for more thorough
description and formal proofs. Fourier’s theorem says that any reasonably
well-behaved function — while the meaning of “reasonably well-behaved” is
out of the scope of this thesis — defined on some interval can be decomposed
into a sum of sines and cosines, or equivalently, a sum of complex exponential
functions.

In audio signal processing, the discrete variant of Fourier transform is
used since the processing is performed on discrete signals. Recall that discrete
signal is a vector x = (z,)N, its discrete Fourier transform (DFT) is a
vector X defined as

—2mikn

1 N-1
T, = —— xeT, 1.2
IR LT -

where 7y, are called DFT (complex) coefficients, and £k =0,1,..., N — 1.

The absolute value of I corresponds to the amount of contribution of
the complex sinusoid at the frequency k%, where fg is the sampling rate.
The spectrum of absolute values is called magnitude spectrum (or sometimes

10



1.1. Audio Signal Processing

amplitude spectrum), and its second power is called power spectrumﬂ It can
be seen that both sampling rate and length of the signal affect the frequency
resolution of discrete Fourier transform.

The argument of Zj corresponds to the phase — or in other words, the shift
or delay — of the sinusoid. Note that in signal processing, the factor \/Lﬁ is
usually omitted because it is useful only in the mathematical point of view
and presents an unnecessary computational overhead.

One important property of discrete Fourier transform is that if x is a real-
valued vector (which is the case in signal processing), the following equality
applies:

IN-p=Tp, forl1<n<N-1, (1.3)

where Z denotes the complex conjugate of a complex number z. That is,
the half of the coefficients is redundant and is usually omitted in practical
applications.

It should be noted that with the naive implementation by definition, the
computational complexity of DFT is O(N?), which is unfeasible for larger,
or many, inputs. However, an algorithm for its fast computation, called fast
Fourier transform (FFT), was developed and with it, one is able to compute
DFT in O(Nlog N). Therefore it is usable in practical applications.

1.1.4 Time-Frequency Representations

Two essential properties of the sound are the spectral composition (frequency
content) and the temporal dimension. Both these properties are highly relev-
ant to the perception of sound and therefore to audio analysis, so it is natural
to describe the audio signal in both terms jointly.

Spectrum is usually obtained by Fourier transform of the signal which
produces a complex-valued vector. Each value of the vector corresponds to
one frequency band whose properties depends on the transformation settings.
The phase of the short-time spectrum is considered insignificant for practical
applications and therefore is often omitted.

Although the audio signal is nonstationary (its properties change over
time), automatic analysis usually assumes that the signal properties change
relatively slowly with time. Following this assumption, spectral properties of
the signal are computed for short — usually overlapping — windows. Concat-
enation of these frequency representations of windows (referred to as frames)
then forms a time-frequency representation of the signal called spectrogram.
Examples can be seen in

Determining the window length represents the trade-off between the fre-
quency resolution of relatively stable content and the time resolution of rapid
changes. The length in time units depends on the sampling rate and the win-

5The term relates to power of the sound as mentioned in [Subsection 1.1.1

11



1. THEORETICAL BACKGROUND

(a) STFT (b) CQT (c) Mel-scaled spectrum

Figure 1.2: Various spectrograms of the same excerpt of audio signal which
contains the start of a song. Horizontal axes correspond to the time and
vertical to frequency bins of a spectrum.

1 -

_1 -
time

Figure 1.3: Visualization of Hamming window function (red line).

dow length in the number of samples and is typically in tens of millisecondsﬂ
Also, windows are usually overlapped by 50% or more.

It is advisable to multiply the signal of the window by a window func-
tion before applying the Fourier transform. The reason is that the process
of windowing creates so-called spectral leakage, in other words, the emer-
gence of artificial frequencies not present in the original input. Among oth-
ers, Hamming window is an example of such a window function, defined as
w(n) = 0.54 — 0.46 cos %\%‘, where N,, denotes the length of the window. Note
that these functions have usually very similar shape (visualization of Hamming

window is in |[Figure 1.3) and differ only in details.

Short-Time Fourier Transform

Short-time Fourier transform (STFT) is the most popular spectrum computa-
tion method and directly derives from the Fourier analysis. It is just discrete
Fourier transform computed on a short window.

Let x = (wn)ﬁy:_ol be a discrete audio signal represented as a vector and let

w = (w; );V:’”O_l be a vector corresponding to a window function of choice, then

5For example, when the sampling rate fs equals to 44 100 Hz and the window length in

the number of samples N,, is 4096, then the window length equals to 1{;1: =~ 92.9 ms.

12



1.1. Audio Signal Processing

STFT is given by

STFT Nt —2mik)
X (kyn) = Z WXppje Nw o (1.4)
=0

Wherek::(),l,...,% and n=20,1,...,N — Ny, — 1, and N, is chosen to be
an even number. The reason why k goes only to % lays in [Equation (1.3)
Notice that the definition directly resembles [Equation (1.2) X (k,n) cor-

responds to the window beginning at ﬁ in seconds, and frequency k ]J\c;; in
Hertz, where the bandwidth of k-th bin is equal to A" = ]{,S;

Constant-Q Transform

Frequency bins of STEF'T are linearly distributed over the spectrum, that said,
each bin has exactly the same width as others. However, as already mentioned,
human perception of sound is rather related to the logarithmic frequency scale,
and commonly used musical scales follow this fact. Constant-@Q transform
(CQT) transforms the signal from the time domain into the frequency domain
so that the center frequencies of the bins are geometrically spaced.

The parameters of the constant-Q transform are also being closer to mu-
sical theory, in particular, there are parameters b denoting the number of
frequency bins per octave and fumin, fmax Specifying frequencies of the lowest
and the highest bin, respectively. These boundaries are usually set to represent
particular musical notes.

The name of the transform originates in so-called Q-factor — the ratio of
the center frequencies to bandwidths. In this case, the factor is equal for all
bins, that is, constant. Since bandwidth in constant-Q transform is dependent
on frequency k, there is a need to adjust the window length for each bin to
reach this property.

The center frequency of k-th bin is given by

I :fmm-Q%, where £k =0,1,..., {blogQ (J]ccma)()—‘ . (1.5)
The Q-factor is computed as follows:
Jk fr 1 -1
pr = = 217 — 1 . 1.6
< ALY fro— fr ( ) (1.6)

The last needed component for the constant-Q transform is the window
length used to compute bin fg:

Ny = [AJEQJ = [foj : (1.7)
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1. THEORETICAL BACKGROUND

Ni—1 . : .
Let wir = (w;) i%o  be a vector corresponding to a window function of

choice. Constant-Q transform is then defined by

Nj—1 o
XOU () = S i, o R 1
(k,n) = N, > W Xp e N (1.8)
=0

It should be noted that the term N%c serves as a normalization factor. It
is present in the Fourier transform literature as well (i.e., it could be present
in [Equation (1.4)), but is often omitted in practice because it brings unne-
cessary computational overhead. However, in the constant-Q transform, it
plays a little bit different role since the window varies in length for different
frequency bins, and is mandatory for the transform to behave correctly.

Mel-Scaled Spectrum

Mel-scaled spectrum is created by mapping STFT spectrum to the mel scaléﬂ
This scale arose from listening experiments in human interpretation of a pitch
in the 1930s. It has been observed that the human auditory system perceives
the pitch as linear in the frequency range 0-1000 Hz, and as logarithmic
when the frequency is higher than 1000 Hz. Later, the change point has
been adjusted and various formulas have been introduced. Probably the most
popular is

M(f) = 2595 - log;, <1 + 7‘(};0> ; (1.9)

with the inverse
M~ (m) =700 (1025 — 1) . (1.10)

For the purpose of mapping frequencies to the mel scale, mel filterbank is
created and then used to effectively do the scaling operation. The parameters
of the mel-scaled spectrum, apart from the input spectrum, are fiin and fiax
representing the frequency range, and the number of mel bins

Let m; be the function from mel bin index [ to the space of mels, bounded
by minimum and maximum frequency, defined by

. M(fmax) - M(frnin)
L+1

my :M(fmin)+l (1‘11)

Two artificial mel bin centers, which represent the range boundaries, must
be created, and for that reason, the variable [ goes from 0 to L + 1. Because
the frequency resolution in mel space is usually lower than the resolution of
STFT, there is the need to round mel frequencies into the nearest STFT bin.

"The name “mel” originates in the word “melody”, indicating that it relates to the sound
pitch as human perceives it.

8The number of mel bins is usually chosen to be in the range 20-50, sometimes exceeding
this interval.
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Figure 1.4: Blue line corresponds to the mel scale mapping from Hertz to
mels. Red lines denote the area where the mel scale is supposed to behave
nearly linearly (illustrated by orange line). For k-th STFT bin (green dashed
line) there are shown the closest neighbors on the mel axis (solid green lines).
On the right, there is the function W;(k) for that particular k& from which it
is visible how much i-th mel bin contributes to the k-th frequency bin.

The following function is used to compute frequency bin index from mel bin

index:
fi= V\WJ : (1.12)

The last step is defining a collection of weight functions (represented as
a matrix in practice) which properly weigh the contribution of mel bin i to
STFT bin k:

0 k< fic1
;::?_1 fici <k<f;
Wi(k) = sz _"kl (1.13)
[ fi <k< fiqa
0 k> fir

where 1 =1,2,...,Land £k =0,1,..., % The intuition behind these weight
functions is fairly simple. For two mel bins nearest to given k-th frequency bin,
the weight of the contribution of these mel bins is computed proportionally
to their distance (the second and the third case in [Equation (1.13)|). Notice
that in the special case when k = f;, corresponding weight is equal to 1. For
all other mel bins other than the closest neighbors, the weight is set to zero.

shows this intuition in a graphical interpretation.
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1. THEORETICAL BACKGROUND

With the mel filterbank W;(k), it is then possible to construct the mel-
scaled spectrum by mapping the power spectrum (i.e., squared absolute values
of the complex-valued STFT spectrum) to mel frequencies as follows:

L
XM k,n) = Wilk) | X5 (k,n)|? . (1.14)
=1

Mel scale is also one of the cornerstones of mel-frequency cepstral coef-
ficients (MFCC) which are heavily used in speech analysis tasks (mainly in
speech recognition), and lately also in music analysis problems. However, they
are primarily used to encode timbre (“sound color”) and discards the pitch
information [I2]. Therefore I cannot use them as features directly, because it
is not straightforward how they behave in a song and outside a song.

1.2 Feature Extraction

In this section, I introduce several feature extraction techniques found in the
literature, whose properties are promising — and in the experiments more or
less proven — to be helpful in song/non-song discrimination. While spectral
and time representation of audio signal could be possibly used for the classifica-
tion directly, they have high dimensionality and low discriminative power [16],
and therefore they would exhibit a poor performance.

A popular approach for feature design is utilizing the prior knowledge
about audio signals and their spectral characteristics for computing a proper
low-dimensional representation which is able to characterize the signal for a
given task. A set of features is well-designed when an audio class — song/non-
song in my case — can be determined from its values.

In the rest of this section, X (k,n) denotes any of the spectrum functions

defined in [Subsection 1.1.4l

Root-Mean-Square Energy

Root-mean-square energy (RMS) is a simple characteristic which measures the
energy in a signal, therefore corresponds to its loudness. As loudness is the
most basic and very common discriminator of songs and parts between songs,
this feature is suitable for the task.

RMS value can be computed either from the time domain directly or from
a computed spectrum:

1 Ny—1
RMS(n) = v > X2, (1.15)
wo5=(
1 K-1 .
== X(k 1.1
Kg::ol (k,n)|”, (1.16)
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1.2. Feature Extraction

(a) Music (b) Applause

Figure 1.5: Two examples of CQT spectra and corresponding spectral
centroid.

where N,, is the window length in the number of samples, x represents the
discrete audio signal, and K is the number of frequency bins of a spectrum
X(k,n).

Note that this equality holds true only in the case of STFT spectrum
and with no window function applied during its computation. In practice,
[Equation (1.15)|is used if no spectrum is used in the task (which is not usually
the case), whereas [Equation (1.16)|is used when a spectrum is computed for
further analysis. The reason is that computation from a spectrum yields more
accurate representation due to advantages of the window function and allows
to use a different spectrum other than STFT.

Spectral Centroid

Spectral centroid represents the center of the magnitude spectrum, that said,
it is the weighted arithmetic mean of magnitudes in frequency bins, given by

Centroid(n) = , 1.17
o) = SR X (k) (17

where fj, denotes the frequency of k-th bin. Greater high-frequency content
causes higher spectral centroid, which is illustrated in While the
major concentration of energy in music lays in lower frequencies, applause and
similar noise-like sounds exhibit higher centroid.

Note that this feature somehow correlates with widely used zero crossing
rate, which measures the number of zero-crossings in the audio signal in the
time domain. ZCR can be called as a measure of dominant frequency [22] in
the audio signal, and hence is very closely related to the spectral centroid.
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1. THEORETICAL BACKGROUND

Spectral Flux

Spectral flux characterizes the rate of change between two consecutive frames,
or in other words, how quickly the power spectrum changes. It is defined as

K-1
Flux(n) = 3 (X (k,n)| — | X (k,n—1)])°, (1.18)
k=0

where Fluxz(0) := 0. A high value of spectral flux indicates a significant
change in the shape of spectral magnitudes. As music is more structured, it
usually features higher amount of change in the bins, and therefore its value
of spectral flux is usually higher.

In [10], authors presented a variant of spectral flux, where each spectral
frame is divided by a maximum magnitude value of the frame. All values of a
spectrum are therefore scaled into the range [0, 1], so only the relative contri-
bution of each frequency bin is preserved. The purpose of this normalization
is that if a spectrum is flat, then all values are close to 1 and the change
between adjacent frames is small. On the other hand, changes between struc-
tured frames result in a high value, which should be the case for music. In
this variant, called peak-normalized spectral flux, instead of using a spectrum
X (k,n) directly, it is first normalized as follows:

X(k,n)

X(k,n) = ——2"— .
(k) maxy X (k',n)

(1.19)

Spectral Flatness

Spectral flatness is used to estimate how much is a sound signal noise-like or
tone-like, and is defined as the ratio of the geometric mean and the arithmetic
mean of the power spectrum [23]:

exp (7 SASy In | X (k,n)|” )
- 2
x Lico [X(k,n)l
Instead of using traditional formula, the exponential of the arithmetic

mean of logarithms is used for the geometric mean in the equation. The
equality

Flatness(n) =

(1.20)

K-1 ) 1 K1 ,
N X(k = — In | X (k 1.21
OD<M|emKZm<wr (1.21)
k=0 k=0

derives from the application of algebraic identities, and is completely legitim-
ate here, because the value of the power spectrum cannot be negative (since it
is a square). In practice, values below some “noise” threshold (e.g., 1-10719)
are replaced with that threshold value to handle zeros in logarithm and to
avoid floating point number errors.
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1.3. Normalization

Value of spectral flatness is always from the range (0, 1), while values close
to zero correspond to structured, non-flat spectra (i.e., tone-like signals), val-
ues close to one represent spectra which are flat (i.e., noise-like signals). It is
somewhat related to spectral entropy which is a measure of randomness of a
spectrum. In spectral entropy, the power spectrum is expressed as a probabil-
ity distribution. If density values are more or less equal across frequency bins
(i.e., the spectrum is flat), the randomness is high so it is the entropy.

Features like spectral flatness and spectral entropy are used in discrimina-
tion between music and non-music because music exhibits structure since it is
purposely composed of harmonies and melodies. In my experiments, spectral
flatness showed better performance than spectral entropy, especially in the
case of noisy recordings.

1.3 Normalization

Before features are passed into the next stages of the pipeline, three nor-
malization steps are applied to them in order to improve the performance of
the model. This phase is not mandatory in the process, however, it is very
important and helpful.

Outlier Removal

Extracted features can contain some values which significantly differ from the
other values. These are called outliers [24]. Such points can occur for different
reasons, but they are often related to the audio recording and/or processing
circumstances, for instance, when a part of the audio signal is completely
muted, then the value of spectral flatness is extremely high.

The classification process can suffer from the presence of outliers, however,
their detection and removal are problematic. When the method is too eager,
it can significantly affect the distribution of the data and consequently the
classification performance.

I utilize a well-known technique, so-called empirical rule [24], which states
that if the distribution is approximately bell-shaped, then 68% of the data fall
into the interval 4o, 95% into the interval p=+2c and 99.5% into the interval
£ 30, where p denotes the mean and o denotes the standard deviation.

However, as can be seen in except for spectral centroid, all
features are rather right-skewed than bell-shaped. Therefore, I apply the
assumption about covering 99.5% of the data to the exponential distribution,
which is a well-known right-skewed long tail distribution.

Recall that the probability density function for the exponential distribution
is p(x) = Ae™** for x > 0, while 0 otherwise. Its mean is given by p = % The
threshold 6 of the data, where all samples above this threshold are marked as
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A L

(a) RMS (b) Centroid (c) Flux (d) Flatness

Figure 1.6: Distributions of features in a concert, where horizontal axis is
for feature’s value and vertical axis for count of frames in a bin. For spectral
flux and spectral flatness, they resemble exponential distribution (red line). In
the case of root-mean-square energy, the distribution is close to exponential,
however, it is not always the case and it depends on the concert.

outliers, is computed as follows:

0
/ Ae M dz = 0.995,

0
1—e?=0.995,

e = 0.005,
—\0 = In(0.005),
0 = —u1n(0.005) . (1.22)

Outliers are not actually removed from the data, but their values are cut
down to the threshold value, in order to keep the continuity of the sequence of
feature values. Moreover, I do not need them to be removed, the information
that they are still very high is sufficient. For root-mean-square energy, spectral
flux, and spectral flatness, the following conditional adjustment is applied:

£ = min(z;, 0) (1.23)
where x; is a value from the feature series and 6 is the threshold given by
[Equation (1.22)] Note that even when a feature has bell-shaped distribution,
outlier removal described above can be applied without any damage, since the
mean of such distribution would be somewhere in the middle and hence the
threshold would lay far on the right.

Moving Average

Two-sided moving average (sometimes called running mean or rolling average)
is used to smooth the series in order to estimate the underlying trend [25].
Large variations could harm threshold-based techniques for segmentation and
classification [I0], as the curve is very noisy. Note that moving median, which
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1.4. Segmentation

is robust to outliers, could be used instead of moving average. However,
as outlier removal described above is applied before the smoothing, moving
median would not be that useful in this case.

The formula for computing moving average is

[SIEN

1
.CEZ-Wg = — .TiJrj (124)
! (+1 Py’
2
fori=2%L4+1,...,N—£%—1, where ¢ is the window length over which the
212 2

value is averaged, and is chosen to be an even number. Undefined £;"® at the
ends of the series are not very important if a reasonably small ¢ is used, so
when an arbitrary value is assigned, it does not distort the series considerably.

Min-Max Scaling

For the most multidimensional distance-based classification algorithms, scal-
ing of individual features is important, since the difference in magnitudes can
hurt their performance. Also, for threshold-based solutions, unified range al-
lows using fixed thresholds regardless of original values of the series.

Min-max normalization is a simple linear transformation, preserving the
relationship among original data, used to fit the values into a specific range
[ar, B] [26]. It is defined as

r; —min X

~scale
xi =

(B — . 1.2
max X — min X (B-a)ta (1.25)
where z; € X and X is the set of values which is to be scaled. The range
[a, B] is usually chosen to be [0, 1].

1.4 Segmentation

Many approaches have been introduced for automatic audio signal segmenta-
tion. In general, these techniques fall into two basic categories [9]:

e Distance-based (or metric-based) — In this method, chosen distance is
computed between two adjacent feature vectors, or more often between
two adjacent windows of such feature vectors. The peaks (i.e., local
maxima) identified in the distance curve, which is derived by applying
the distance function, then corresponds to the boundaries in the au-
dio signal. This method is unsupervised and does not require any sort
of training data, however, this fact implies that it cannot be used for
labeling found segments.

e Model-based — This technique uses classification algorithms, which are
trained on ground truth data, and then used to classify each audio frame
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independently. Either one universal model is used for all audio classes,
or for each class there is an individual model. After frames are labeled,
those adjacent ones, which belong to the same audio class, are merged
together. The result of this approach is both audio segmentation and
label for each segment.

In this thesis, I treat the song segmentation as the unsupervised problem.
Therefore, the model-based approach cannot be the choice.

For the rest of this section, let X = (mn)nNgol be a sequence of frame-
based feature vectors, where x,, € R? and d is the number of features. In this
thesis, the features are described in The frames are assumed to
be independent, which is naturally not the case in the real world, but this fact
is usually ignored in practice.

Most distance-based techniques formulate the boundary detection as fol-
lows [6]:

(1) either, there is no significant change at a time b, in other words, the
whole sequence X falls into the same audio class;

(2) or there does exist such a change, that said, frames on the left side of
the boundary at a time b fall into one category, whereas frames on the
right side fall into another.

For that purpose, let X4, Xp to be two adjacent windows from X split at
time b, that is, X4 = (xn)fl_:lo, Xp = (xn)f:[:_bl.

It is common practice to model the sequences of feature vectors as mul-
tivariate Gaussian distributions [6]. The cases of the problem listed above are
then transformed into two assumptions: (1) the whole sequence is generated
by a single multivariate normal distribution, that is, X ~ N (u,X); or (2)
the windows are generated by two different multivariate normal distributions,
that is, X4 ~ N (a,24) and Xp ~ N (up,XB).

Outlier removal and moving average normalization methods, described in
are applied also on distance curves computed by the technique
defined below.

Bayesian Information Criterion

The most popular distance measure used in audio segmentation, especially in
the field of speech processing and tasks like speaker diarization, is Bayesian
information criterion (ABIC) [5]. The task can be converted into a model
selection problem between the following models:

My: X ~N(X)
M - XANN<MA,EA);XBNN(MB,EB) (1.26)
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Bayesian information criterion of a model takes the form of a penalized
log-likelihood and is defined as

BIC; = In £(X|M) — Au\;' InN, (1.27)

where L£(X|M) denotes the maximum likelihood of data X given a model
M, X is the penalty weight, |M| denotes the number of free parameters in a
model M, while N denotes the length of the sequence X. Note that for the
case of Gaussian model, |M| = d + 3d(d + 1). In the original form of the
I[Equation (1.27)| the penalty A was not present. It was introduced later as a
“tuning” parameter for the segmentation performance [6].

Determining which one of these two assumptions is more likely corresponds
to finding for which model the expression in [Equation (1.27)is larger. For
models My, M7, their corresponding BIC formulas are

A M
BICy, =Inp(X;i,%) — /\|2’ InN, (1.28)
N - M
BICy, =Inp(Xa;fia,X4) + Inp(Xp; i, XB) — )\’2‘ InN, (1.29)

A

where p(X;i,>) denotes probability density function of the normal distri-
bution and /i, 3 are maximum likelihood estimators for its mean vector and
covariance matrix, respectively.

The difference between BIC);, and BIC,, is the distance metric used in

boundary detection and is computed as
ABIC(b) = BICy;, —BICyy, , (1.30)

where b=0,1,..., N — 1.

If max, ABIC(b) > 0, then model M; fits the data better than My, that
is, subsequences X 4, X g are better estimated by parameters different for each
subsequence than by parameters which are common for the whole window.
The boundary is chosen to be where the value of ABIC is maximal, i.e.,
where the peak of the distance curve is (as illustrated in .

In order to detect multiple change points, the following algorithm was
proposed [5]:

(1) Choose a small window starting at the beginning of the audio and denote
it as the current window.

(2) Inside the current window, evaluate the test defined in [Equation (1.30)|
for every sample b in the window.

(3) If no boundary was found, extend the current window. If a boundary
does exist, set the current window to be a new window with the initial
size and starting at the detected boundary.
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Figure 1.7: Distance curve with identified peaks (red dashed lines).

(4) Unless the end of the audio is reached, go to the point 2.

However, this approach is very computationally expensive as it has quad-
ratic time complexity. There have been proposed many algorithm variants for
improving the speed as well as the accuracy. One family of such improvements
are multi-stage approaches [5], where faster, yet not so robust stages are per-
formed before BIC stage, which then only refines previously found boundaries.

The second approach is computing the distance between constant-sized
sliding windows [27]. In this case, b := § where N is chosen to be an even
number and the technique of growing N is not used. In this case, the penalty
term in [Equation (1.27)| becomes constant (as the length of X is fixed) and
therefore serves only as some threshold value. The A BIC then reduces to the
log-likelihood ratio (also referred to as generalized likelihood ratio) [6]. Since
full concerts are usually quite long, the computation of A BIC described above
would be unbearable, so this simplified variant is used in this thesis.

Log-Likelihood Ratio

Likelihood ratio test is a statistical test where the problem is divided into
two competing models/hypotheses Hy, H;. The test is based on the ratio of
likelihoods corresponding to these hypotheses, that is:

L(X|Ho)

A(X) C(X[H)’ (1.31)
where £(X|H) denotes the maximum likelihood of data X under a hypothesis
H. A decision to “reject Hy in favor of Hy” is then made if the ratio A is less
than some particular threshold.

Taking the models definition in [Equation (1.26)|and changing the notation
to be Hy := My and H; := Mj, the likelihood ratio for the audio signal
segmentation looks as follows:

A

ACY) = p(X; 4, %) .
p(XA; ﬂAv EA)p(XB; ﬂBa EB)

(1.32)
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1.5. Classification

However, it is more practical to take the logarithm of the ratio for com-
putational reasons. Furthermore, to be compatible with BIC framework de-
scribed above, hypotheses are usually flipped so it can be also referred to as
peak detection process (instead of valley detection). The equation for the
log-likelihood ratio (LLR) then becomes

LLR = p(Xa; fia, $a) + p(Xp; 5, Xp) — p(X; 1,3) . (1.33)

Peak Detection

Simple, yet flexible peak detection method, described in [28], is used in this
thesis. Let (2,)) 4 be a vector of interest, then z,, is selected as a peak if the
following conditions hold true:

(1) zp =max(Tp—ry,- -, Tniry)
(2) xp > mean(xp_gq, ..., Tnte,) +0

(3) n—n'> 45

where /1, ..., /5 are tunable parameters, ¢ is a fixed threshold and n’ denotes
the last detected peak. The first condition finds a local maximum, the second
one determines if the peak is sufficiently significant, and the third condition
can prevent oversegmentation. In order to be adaptable to given data, I set §
to be equal to the standard deviation of data scaled by a parameter . This
parameter is estimated empirically and is fixed.

1.5 Classification

Since the task of this thesis is defined to be unsupervised, I can utilize none of
those classification algorithms used in the machine learning field, which rely
on learning on a labeled dataset. Furthermore, clustering, which is a typical
unsupervised approach, cannot be used either, because it basically groups
points in a multidimensional space, and as can be seen in there is
no clear separation in the space of features used in this thesis.

Three classification methods are introduced in this section — two of them
being based solely on prior knowledge about the features, and one being taken
from machine learning field. They can be applied separately, or combined
together into a so-called ensemble.

The first approach implements arguably the simplest intuition that comes
to mind when the problem of song segmentation occurs — the detection of
silence; the second one utilizes the prior knowledge about features described
in and is basically threshold-based; and the last method is some
kind of anomaly detection in the space of features.
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Figure 1.8: Scatterplot matrix of features in a concert. Features are plotted
against each other (the boxes in the upper right half are mirrored in the lower
left half). It is useful for visual analysis of correlation and class discrimination
power of variables.

Classification is performed on frames combined into one-second data points
aggregated using mean along the time axis, that is, a data point is composed
of mean values of individual features within the one-second window. However,
labels are assigned to the whole segments identified in the segmentation stage.
The audio class is decided simply by the majority rule: if more frames in a
segment are classified as in song than not in song, then the whole segment is
labeled as in song, and vice versa. This solution is to some extent robust to
odd frames which are assigned to an incorrect class because the majority of
correct frames outweigh them in the segment.

The reason why a separate segmentation step is performed, instead of
dividing the concert using just frame-based labelings, is that the latter would
exhibit significant oversegmentation. The approach described in
identifies a boundary only where a considerable change between two windows
occurs.

Silence Detection

Silence detection is very important and common in automatic speech pro-
cessing, where it is usually referred to as wvoice activity detection or speech
activity detection, as the presence of non-speech parts considerably affects the
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1.5. Classification

performance of models used in such tasks. Many techniques for voice activ-
ity detection have been proposed in the past (see [29] for their review). The
most straightforward approach is based on energy values, where an empirical
threshold is adopted. Despite its simplicity, it is widely used and achieves
satisfactory results [29].

Although the full-concert domain is considerably different from the speech
domain, I suppose that an energy-based technique can be used in this task.
The key is in proper determination of the threshold. The approach for com-
puting its value used in this thesis is as follows:

6 = ~ - mean(X"™F) (1.34)

where X™5 ig the sequence of root-mean-square energy values for the full
concert given by [Equation (1.16), and + is the parameter which should be
estimated empirically. In other words, it is just a scaled mean of the energy
across frames.

All frames with root-mean-square energy below this threshold are then
labeled as not in song, whereas the rest is labeled as in song.

Rule-Based Classification

Assuming the properties of features described in it is possible to
build a threshold-based classifier that labels frames according to their spec-
tral characteristics. Here is the concise list specifying what values individual
features exhibit, considering the task addressed in this thesis:

e Root-mean-square energy — as music is the fundamental part of the full-
concert content, it is assumed that the root-mean-square energy, which
strongly correlates with the loudness, is higher for songs than for parts
between them.

e Spectral centroid — applause and similar noise-like content exhibit higher
centroid than is the case for music.

e Spectral flux — as music spectrum is more structured, its value of spectral
flux is usually higher.

e Spectral flatness — applause spectrum is usually flat, therefore spectral
flatness of music is much lower than for parts between songs.

As can be seen in in the ideal case, a feature curve looks like a
hill or a valley — depending on the property of the feature — in parts between
songs. As with silence detection, the problem here is the determination of the
threshold.

Generally, two techniques can be applied: global (fixed) or local (adaptive)
thresholding. In fixed setting, there is one threshold for all frames in the whole

27



1. THEORETICAL BACKGROUND

—— RMS I
Centrcud
,. \
1
5: OO

10 00 15: 00 20:00

Figure 1.9: Values of root-mean-square energy and spectral centroid for a
part of a concert. Green blocks represent songs.

concert. This is the more straightforward approach, however, its assumption
is that the audio characteristics remain the same for the whole duration of the
concert.

On the other hand, adaptive thresholding is able to handle significant
audio changes, caused by for example location moves of the recording author
or technical difficulties. Furthermore, it should exhibit superior performance
in hill/valley identification, since it considers only the neighborhood of it.

I take the arithmetic mean of a sequence as the base for the threshold,
which is then weighted by an empirically estimated parameter . I argue
that the mean is suitable statistic here because its value is biased toward the
mass of the data (in this case, music content) and therefore is able to reveal
— in some form — unusual segments (in this case, parts between songs). Note
that the parameter v can be estimated for each feature separately in order
to fine-tune the model for better performance. On the other hand, this is
also a weakness, because the success rate of the model is strongly affected by
the parameters’ values — which moreover depend on a particular audio signal
being processed —, and it is quite prone to poor settings.

The threshold-based method also offers some kind of confidence score —
basically the difference between the value and threshold. This score can be
used to weigh the class estimated by individual features in order to scale the
amount of confidence in the final prediction.

Let W, (X)) be a function returning the neighboring frames of n-th frame
in X(), which denotes the curve for feature f. It is given by

Wi (X)) = (i)} (1.35)

1=a

14
g _ — 0
a = max (n 5 ) ,

b:min(n—f—g,N—l),

where £ denotes the length of the window and is chosen to be an even num-
ber. Note that for fixed thresholding approach, W, (X)) is just an identity
function.
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1.5. Classification

Let Gr(lf ) be the threshold value for n-th frame in feature f computed as

n

0 = 4D . mean (Wn( X(f))) : (1.36)

where v(f) denotes the threshold scaling parameter for feature f.

Given the threshold Gﬁbf ), let g(xglf ), 9,(1]0 )) be a function, whose sign corres-
ponds to the estimated audio class, and whose value represents the amount
of confidence of such classification. The body of the function depends on the
properties listed at the beginning of this subsection, and is defined as follows:

(f) _ g(f) for RM S, Fl
g(fvﬁf),eéf)):{% " o e, T (1.37)

—(2) — o)) for Centroid, Flatness

Finally, the result estimation is given by the weighted contribution of all
features:

yn = |g(@l), 0| - sgn (9(=0),04)) . (1.38)
f

Frames with y,, > 0 are classified as in song and the other frames are given
the not in song label.

Anomaly Detection

Anomalies (or outliers) are data points which significantly deviate from the
remaining data. In other words, they do not conform to a normal behavior,
whose definition is based on the application. Anomaly detection is applicable
in various fields, for example, detection of intrusion in computer systems,
detection of financial fraud, interesting sensor events or medical diagnosis [30].

Techniques that operate in the unsupervised mode assume that normal
instances are far more frequent than anomalies [31]. I take this assumption as
to some extent valid for the task since songs usually fill much more content
than parts between them. Although there seem to be no obvious clusters in
the feature space (Figure 1.8]), I suppose that an anomaly detection can be
partially successful in the discovery of frames which are likely to be from parts
between songs.

There are several categories of anomaly detection approaches with many
algorithms in them (for a review, see [31] or [30]). Distance-based tech-
niques incorporating nearest neighbor analysis are widely used, as they are
very straightforward and interpretable. They work on the assumption that
normal instances occur in dense neighborhoods, while anomalies lay far from
their closest neighbors. See for the illustration of this concept.

A basic approach is to define the anomaly score of a data point as its
distance to its k-th nearest neighbor. Value of k serves as a parameter of
the model which needs to be estimated from data. Small sets of anomalies
are discoverable if this parameter is greater than one [30]. Usually, applying
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Figure 1.10: Illustration of nearest neighbor anomaly detection. The dis-
tance of k-th neighbor of outlier is much bigger than that of normal point.

some threshold value on the score is used in order to determine if the point
is anomalous or not. Several variants of this method have been proposed (see
[31] for their description). However, I use this simple approach, because it
exhibits better performance in my experiments than some of those extensions.

The requirement of the nearest neighbor technique is the specification of
a distance or similarity measure between two points. The most popular one
is Euclidean distance, but others can be used and the choice depends heavily
on the application domain [31].

After the anomaly score curve is computed, I basically use the same tech-
niques described in the previous subsection about the rule-based classifier,
that is, the window function is defined as in [Equation (1.35)} and the threshold
value is computed as in [Equation (1.36)} All scores d,, which are below the
threshold 6, are considered as in song and scores above as not in song.

One of the advantages of this approach is that it does not rely on any prior
hardcoded knowledge about the features. Its parameters are also simple to
estimate, contrary to the rule-based model where the number of parameters
is problematic.

Ensemble

An ensemble is a set of models which combines in some way their decisionsﬂ
to obtain more accurate predictions. Empirical studies have shown that en-
sembles are superior to single models, and some theoretical studies attempt
to explain this success [32].

90r their learning algorithms, or different views of data, or other specific characteristics.
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There are two main categories of ensemble techniques. Non-generative
try to combine existing base classifiers, whereas generative methods generate
new base learners in a way which improves their diversity and accuracy [32].
Since classification models presented in this thesis are designed to work on
the whole audio of the concert, feature space is quite low-dimensional and
adapting the task to generative approaches would require further analysis of
data and models, the non-generative approach, which is considerably simpler
and easier to understand, is chosen for this thesis.

The most popular and straightforward method is the majority voting en-
semble [32]. In this case, “votes” represented by base models’ predictions are
collected and the class which receives the majority is decided to be the final
prediction. Since three classifiers are used and the problem has two classes,
in this thesis, majority voting has always a clear decision.

1.6 Postprocessing

After segmentation and classification stages are completed, there are often
segments, labeled as being from the positive class, which are presumably not
actual songs considering their short length. Although exceptions exisﬂ, mu-
sical compositions last usually tens of seconds at minimum.

For that reason, song segments which are shorter than a threshold 7" are
either merged with a neighboring positive segment or discarded, according to
the following rules:

e If the distance to the closer neighbor is less than a threshold C, then
the segment is merged with this neighbor.

e Otherwise, the segment is discarded.

OFor an extreme example, the song “You Suffer” by the British band Napalm Death is
only 1.3 seconds long.
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CHAPTER 2

Experimental Evaluation

This chapter first introduces the dataset and performance metrics, together
serving as the evaluation framework of the thesis. Then, the implementation
of the system proposed above is briefly described. At the end of this chapter,
the results are presented and the influence of different parameters is evaluated.

2.1 Data and Metrics

2.1.1 Dataset

As far as I know, there is no publicly available dataset of song time annota-
tions in full concerts other than that used in “Set list identification” task
in MIREXEL However, the dataset contains only precomputed chroma fea-
tured"?| and not the original audio files. For that reason, it cannot be used for
evaluating model presented in this thesis since it is based on different features.

Furthermore, in publicly released part of the set, there are only three
artists, therefore the genre range is very limited. Also, the audio quality of
recordings is not known, so it could not be used for noise robustness evaluation.

For the purposes of this thesis, I collected a dataset of full concerts from
video-sharing website YouTube, along with their high-quality song time an-
notations, usually produced by myself. It features several artists playing vari-
ous musical genres, and the audio quality is purposely diversified, addressing
the shortcomings of the MIREX dataset.

The dataset is available on GitHub™®] which is a contribution platform
so the dataset can be extended in the future, either by myself or by the

"http://wwwmusic-ir.org/mirex/wiki/2017:Set_List_Identification

'2Chroma-based audio features represent the signal spectrum as twelve (or multiply of
twelve) pooled bins corresponding to twelve pitch classes of the equal-tempered scale, used
in western music [33].

3https://github.com/pnevyk/time-annotations-of-live-concerts-dataset
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2. EXPERIMENTAL EVALUATION

community. For results presented in this thesis, the version from 1th May
2018 is used.

To comply with the copyright rules, only links to the content-sharing ser-
vice is present in the repository. If, for any reason, a concert is removed from
its destination, it will not be available in the dataset anymore. However, it
is a trade-off which on the contrary allows collecting a larger dataset more
conveniently without breaking the copyright laws.

lists all concerts available at the time of writing this thesis, along
with other metadata.

2.1.2 Metrics
F-measure and Specificity

Although the most common scoring measure for a model evaluation is accur-
acy, given as the ratio of correctly classified data points and all data points,
in the case of imbalanced datasets, it can lead to misleading results [34]. Im-
balance occurs when one class is significantly underrepresented in a dataset.
Considering the amount of song content in comparison with non-music con-
tent, this disproportion is indeed the case for this thesis. If a model labels all
frames as in song, then it still gets quite a good accuracy score.

For this reason, f-measure (also f-score or f; score) is employed, as it bal-
ances the precision (model’s certainty in identification of the positive clasﬂ
and recall (model’s capability of the positive class discovery).

More precisely, all the following measures derive their values from confu-
sion matriz (illustrated in , which expresses all four cases that can

occur in binary classification scenario:

e true positive (TP) — model’s prediction of the positive class corresponds
to the ground truth,

e false positive (FP) — model incorrectly classified an instance as positive,
e false negative (FN) — model failed to identify a positive instance,

e true negative (TN) — model’s prediction of the negative class corresponds
to the ground truth.

147t is tagged as v1.0.0 in the relevant repository.
15«Positive” here refers to one of two classes which is chosen arbitrarily to be a positive
case, for example in song class in this thesis.
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2. EXPERIMENTAL EVALUATION
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Figure 2.1: Confusion matrix illustration.

Given these values, precision, recall and afterward f-measure is computed
as follows:

TP
Precision = #Tlfé—l—#FP , (2.1)
4TP
l=—r——— 2.2
Recall = 25 2N (22)
P9 Precision - Recall (2.3)

" Precision + Recall

Note that f-measure is, in fact, the harmonic mean of precision and re-
call. In a more general variant, their contribution can be weighted by some
parameter to put emphasis on model’s focus (for example on the ability to
identify negative cases in an imbalanced dataset). However, I do not take this
approach in this thesis.

Another important statistic for the problem of this thesis is specificity — the
rate of correctly identified instances of the negative class. If a model classifies
all frames as in song, then it still achieves considerably high f-measure, but
the specificity — in other words, identification of not in song parts — is zero.
Such model would not be very useful in practice for this application. The
formula for specificity takes this form:

#TN
#TN + #FP

As model presented in this thesis performs classification on the one-second
basis, these statistics are computed having second-long labeled frame aggreg-
ations as instances. This measurement does not take the segmentation into
account at all (or at least not explicitly), it is rather an evaluation of the
classification only.

Specificity = (2.4)

Normalized Dynamic Time Warping Error

There are multiple approaches for measuring segmentation accuracy since au-
dio segmentation is a very common task in signal analysis. Nevertheless, the
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problem addressed in this thesis is a little bit specific and different from tra-
ditional segmentation tasks.

One scoring measure could be the application of f-measure (as described
above) on segment boundaries. This approach is used for example in [35].
The problem is that the song boundaries in live performances are often not
clear and their identification is not trivial, hence every scoring method which
evaluates only the fact if a boundary was identified precisely or not, will result
in a poor performance and not be very helpful accuracy indication.

Segmentation error score (SER) is another way of evaluating segmentation
task, and it is defined also for multilabem tasks. SER is computed as a frac-
tion of the class time that is not correctly assigned [36]. The signal is divided
into segments where the boundary of every segment is a class change point,
either in the model’s prediction or in the ground truth. For each segment, the
number of incorrectly assigned classes is weighted by the segment’s length, and
the summation of these error values is then normalized with the summation
of every segment’s length multiplied by the number of ground truth labels in
it.

However, this error measure is not quite suitable for the task addressed
in this thesis, whose application is to provide the user with time boundaries
of songs. If a model produces several very short segments in a song, while
labeling them as not in song, then its SER is still small because of shortness
of these segments. But because of these boundary false positives, the usability
of such model is not proportionate to the low level of its segmentation error.

In [I4], where authors address a very similar problem to mine, for segment-
ation performance evaluation a measure called boundary deviation is used. It
is computed as absolute values of differences between predicted the bound-
aries and the ground truth, but only of songs which were correctly labeled
(song name identification is an integral part of their task). As there is no such
concept of song recognition in my thesis, I cannot take this measure in this
form.

Nevertheless, taking inspiration from it, I propose an error measure which
I call normalized dynamic time warping error. The cornerstone of the er-
ror measure is dynamic time warping (DTW), a well-known and popular al-
gorithm for time series similarity computation [37]. It minimizes the effects
of shifting and distortion in time, and also works with sequences of different
length.

The requirement of DTW is the specification of a distance measure between
two points of time series. The choice is crucial and depends on the actual ap-
plication. The algorithm then builds a distance matrix representing pairwise
distances between the series, and finds the optimal path in it (so-called align-

18Tn multilabel classification, more than one class can be assigned to an instance. It is
a different term from multiclass classification, where there are multiple possible classes, but
just one can be assigned to an instance.
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Figure 2.2: ITllustration of dynamic time warping algorithm.

ment path) regarding these three conditions:

(1) the starting and ending points of the path must be the first and the last
points of sequences,

(2) time order of the path must be preserved, that said, it never goes back
in time in either series,

(3) the step size is always one, either horizontal, diagonal or vertical way.

See for an example of a distance matrix and corresponding
alignment path.

Let Smod = (5:))Y; be a sequence of pairs s; € (start, end) representing the
song boundaries identified by a model, and Syef = (5;)*; be a sequence of the
ground truth boundaries. Taking the inspiration from the boundary detection
evaluation used in [14], I use boundary deviation in DTW framework to get
the segmentation error of a model.

Two distances, defined in [Equations (2.5)[ and are employed: the
first measures the difference between both start and end boundaries, while
the second takes only the start boundary into account. The rationale behind
the latter distance is that only start times of songs are usually requested and
provided on full-concert-sharing services since the main purpose of the time
annotations for the listeners is being able to find a song of interest.

dpoth(a, b) = a1 — bi| + |ag — by (2.5)
dstart(a; b) = |Cll - bl|

One problem is that the error value is to some extent dependent on the
number of songs in the concert. If a model labels the whole audio signal as
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Figure 2.3: Examples of songs segmentation results along with their
NDTWE. Green segments represent the ground truth, blue segments corres-
pond to the estimation.

in song, then the error is higher with a greater number of songs in ground
truth and therefore has little descriptive power. For this reason, it should
be somehow normalized so it is as independent on concert being classified as
possible in order to be a descriptive measure regardless of what is actually
evaluated.

I take the case when the whole audio signal is classified as in song as some
form of the worst case, and its error as a normalization factor. The value of
this normalization incorporates both the number of songs and the length of
the concert.

Value of normalized dynamic time warping error is computed as follows:

dtwd(Smoda Sref)
dtwy (((0, L)) , Sref> 7

NDTWE = (2.7)

where d is either dpotn Or dstart and denotes the distance used in dynamic time
warping algorithm, and L is the length of the concert in seconds.

shows two examples of segmentation results along with their
computed normalized dynamic time warping error, in order to get an intuition
about its behavior and properties.

One of the advantages of this error measure is that it penalizes both
over- and undersegmentation (although the latter is penalized more than the
former), which are both harmful for a practical application addressing this
task. On the other hand, concerts which are longer and have a greater num-
ber of songs tend to have a smaller error, due to the way how the normalization
factor is computed. Nevertheless, I argue that it is still a suitable measure.
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2.2 Implementation

The system described in this thesis is implemented in Python programming
language using scientific libraries from SciPy ecosystem [38], audio and music
processing library Librosa [39], and machine learning toolkit Scikit-learn [40].
All these libraries provide a pythonic interface, but heavy computation parts
are backed by performant implementations in C programming language.

All the code is released as an open source package and is available on
GitHubE The implementation is modular so it is easy to add a new tech-
nique. Interfaces of functions provide very convenient possibility to configure
all the parameters inside the whole model from the top level, thus allowing
to experiment with different values in order to achieve the best performance
possible.

Values of parameters used in the model, of which results are presented in
were estimated using manual analysis and grid search algorithm,
which basically evaluates all combinations from given parameter space. The
main performance criterion was normalized dynamic time warping error de-
scribed in [Subsection 2.1.2

Values of the sampling rate, spectrum window shift, and number of fre-
quency bins of the spectrum were set to default values of Librosa library,
that is, 22.05 kHz, 512 frames, and 84 and 128 for constant-Q transform and
mel-scaled spectrum, respectively. Different values were experimented with,
however, the default ones have shown the best performance.

For practical application, a segmentation tool must have a reasonable run-
ning time and memory consumption. Although it is not necessary — and con-
sidering the length of full concerts, it is perhaps impossible — to offer almost
instant-time experience, the segmentation should take an acceptable amount
of time even on low-cost personal computers.

The tool presented and implemented in this thesis takes roughly 30 seconds
with 700 MB and 2 minutes with 3.5 GB on processing twenty-minute and
two-hour long uncompressed audio file, respectively, on a middle-end com-
puter, while approximately 75% and 20% of the time is spent in the spectrum
computation and signal segmentation, respectively. Nevertheless, the runtime
performance and memory efficiency were not the goals of this thesis, and there
is room for optimization and parallelization.

2.3 Results

This section briefly presents results obtained during experimental evaluation.
The most descriptive measure for the task is the error, since it is a score for
both segmentation and classification jointly, while f-measure and specificity

"https://github.com/pnevyk/segson
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2.3. Results

Feature = Spectrum Scale F-measure Specificity = Error

RMS STFT 1.0 82.95% 78.50% 0.03699
RMS cQT 0.9 87.20% 79.19% 0.03505
RMS Mel 1.0 72.62% 82.06% 0.05569
Centroid STFT 1.0 52.99% 44.43% 0.05346
Centroid CQT 1.1 90.41% 67.77%  0.04043
Centroid Mel 0.9 78.58% 84.40%  0.04103
Flux STFT 0.9 82.70% 74.53% 0.03647
Flux cQT 1.0 77.9% 81.95% 0.03681
Flux Mel 0.9 78.03% 82.25% 0.04331
Flatness STFT 1.0 61.51% 33.68% 0.05250
Flatness CQT 1.0 59.90% 44.11% 0.05481
Flatness Mel 0.8 70.70% 56.05% 0.07099

Table 2.2: Performance of individual features, where scale values are those
that result in a minimal error.

STFT CQT Mel

RMS 1.3 1.1 1.1
Centroid 1.3 1.1 1.3
Flux 1.1 1.1 1.1

Flatness 1.3 1.3 1.8

Table 2.3: Parameter values used in the rule-based model.

characterize the performance of the classification only. If not specified oth-
erwise, all presented errors stand for normalized dynamic time warping error
with dyein distance .

The constant-Q transform proved to be the most suitable spectrum for
this task, as can be observed throughout this section, where comparisons with
other spectra occur. For this reason, if it is not specified which spectrum is
used, it is always CQT.

The predictive power of individual features is listed in It was
measured incorporating the same technique as used in silence detection model.
Note that scale parameters deviate from 1 less than in the rule-based model
on average, where the features are applied jointly (parameter values used in
the rule-based model are listed in .

It can be seen that root-mean-square energy is the best descriptor, followed
by spectral flux. An important observation is that spectral centroid performs
much better for logarithmic spectra than for linear STFT. All features, except
for spectral centroid, have a significantly greater error in the case of the mel-
scaled spectrum.

Peak-normalized spectral flux turned out to be a very poor feature for
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2. EXPERIMENTAL EVALUATION

Model Spectrum  F-measure Specificity  Error

Silence STFT 82.95% 78.50% 0.03699
Silence cQT 87.20% 79.19% 0.03505
Silence Mel 72.62% 82.06% 0.05569
Rule-based STFT 77.62% 71.34% 0.03701
Rule-based CQT 86.35% 80.12%  0.02962
Rule-based Mel 88.30% 71.10% 0.03919
Anomaly  STFT 82.18% 58.04% 0.03508
Anomaly CcQT 87.70% 75.94% 0.02986
Anomaly Mel 86.26% 52.73% 0.04823
Ensemble  STFT 83.69% 76.83% 0.03692
Ensemble  CQT 88.92% 81.30% 0.02968
Ensemble  Mel 87.96% 75.20% 0.03896

Table 2.4: Results of various model and spectra combinations.
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Figure 2.4: Model performance depending on the length of classification
window. Zero indicates that no window is used.

discrimination between songs and parts between them. It implies that absolute
contribution to flux computation plays an important role, and consequently
that success of spectral flux is partially caused by its correlation with the
loudness.

shows the results for all combinations of models and spectra.
The lowest error is achieved by the rule-based model, however, the difference
from the ensemble model is negligible. On the other hand, values of f-measure
and specificity are better in the ensemble model. Therefore, the latter is taken
as the best model.

The influence of choosing the length of the window, in which threshold in
rule-based and anomaly detection models is computed (from now on called
“classification window”), is visualized in The length indeed plays
some role in the performance, and as visible in the figure, its use improves the
results.

As can be seen in postprocessing stage has a negligible impact
on overall performance. In the case of anomaly detection, the results are even
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2.3. Results

Model Postprocessing F-measure Specificity  Error

Silence X 87.45% 79.17%  0.03488
Silence v 87.20% 79.19%  0.03505
Rule-based X 86.69% 79.92%  0.02988
Rule-based v 86.35% 80.12%  0.02962
Anomaly X 88.00% 75.06%  0.03051
Anomaly v 87.70% 75.94%  0.02986
Ensemble X 89.18% 81.28%  0.02977
Ensemble v 88.92% 81.30%  0.02968

slightly worse.

Table 2.5: Influence of postprocessing.

Summarization results of individual concerts are listed in[Table 2.6l In this
table, there are values of error for both introduced distances, that is, dpoin, and
dstart- The latter is a valuable measure since usually only the start times of
the songs are requested by the listeners. If this error is lower for a concert,
it loosely indicates that the algorithm was more successful in detection of the
start times, while the end times caused troubles, and vice versa.
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EXPERIMENTAL EVALUATION

2.

Concert F-measure Specificity Error (dpotnh) Error (dstart)
AC/DC (Capital Centre) 81.81% 86.99% 0.02338 0.02004
AC/DC (Munich) 88.40% 93.58% 0.00895 0.00719
Adele 87.68% 86.23% 0.01092 0.01079
B.B. King 88.32% 96.94% 0.01176 0.01062
Beatles 91.47% 67.81% 0.03371 0.03059
CHVRCHES 88.68% 88.89% 0.02613 0.02882
Code Orange 94.61% 60.32% 0.03245 0.03586
Coldplay 80.08% 88.72% 0.01991 0.01866
Eminem 90.51% 82.76% 0.03308 0.03831
Katy Perry 88.14% 97.57% 0.02582 0.03125
Metallica 93.49% 65.49% 0.03672 0.02673
Michael Jackson 90.65% 76.81% 0.02192 0.02377
Nails 92.80% 73.51% 0.04996 0.04474
Punch 93.16% 64.81% 0.06049 0.05292
System of a Down 90.67% 89.22% 0.02286 0.02080
Wu-Tang Clan 82.26% 81.08% 0.05682 0.06786

88.92% + 4.16%

81.30% + 11.51%

0.02968 £ 0.01490 0.02931 £ 0.01562

Table 2.6: Segmentation and classification results of all concerts using the best model.
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CHAPTER 3

Discussion

A solution for the unsupervised song segmentation in full concert audio was
presented throughout this thesis. Despite being used frequently in the literat-
ure, the application of described techniques in this particular domain is not so
common, partly because full concerts are not so popular and extensively stud-
ied area in audio processing and machine learning communities. Therefore,
there are some findings which deserve further discussion.

First, the results convincingly show that logarithmically scaled spectra
(constant-Q transform and mel-scaled spectrum) exhibit better performance
than linear short-time Fourier transform. This is not surprising since the main
content of interest in this work is music which is based on logarithmic scales
following the properties of human perception of sound.

Although features chosen for the system have, in theory, properties suit-
able for the task, the assumption about their behavior does not always hold
true in the real world. And even in instances where they behave ideally, the
threshold of deciding if a frame corresponds to a song or not is strongly de-
pendent on particular audio signal conditions and semantic content as well.
This causes serious problems, especially for models where the features’ beha-
vior is somehow hardcoded into. In this thesis, this applies to the rule-based
model the most.

Segmentation using log-likelihood ratio proved to be sufficiently success-
ful. Although it exhibits some degree of oversegmentation, this issue was to
some extent solved by merging segments labeled as the same audio class and
eventually the postprocessing stage.

Silence detection technique has shown very decent performance considering
its simplicity. However, this probably indicates that other models, introduced
in this work, did not bring the expected improvement. Identification of quiet
parts is arguably the first solution which comes to the mind when this task is
presented, and more complex approaches should significantly outperform it.

Rule-based model acts as some kind of extension of silence detection as it
incorporates all features instead of just energy. The major weakness turned
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3. DIiscussiON

out to be the setting of its parameters. It is very prone to poor configuration
and slightly changed values often lead to significantly different performance.
That also means that values presented as the best in this work are optimized
only for the evaluation dataset and the success rate for other concerts might
be lower.

Nearest neighbor anomaly detection does not explicitly utilize any prior
knowledge about the features. Despite that fact, it achieves decent results. Its
performance could be slightly tuned by weighting the contribution of features
by scaling to different ranges for each feature. In such case, the prior know-
ledge would be introduced into this model, however, this information would
be only external — only the space passed into the model would differ, whereas
the internals would remain exactly the same. Nevertheless, this improvement
would be only minor and it would introduce the problem of setting the ranges,
very similar to the thresholds’ estimation in the rule-based technique.

Although it cannot be said confidently due to the limited size of the eval-
uation dataset, the solution does not seem to be significantly worse or better
depending on the genre of a concert. The only exception is probably hip hop
and related styles, where songs usually change without any pause. Further-
more, audio quality does not affect the performance considerably either, as
the error in noisy concerts is comparable with professionally recorded ones.

3.1 Future Research

The most difficult and unexplored area of this thesis is the classification phase.
As no extrinsic information is given to a classifier, none of the traditional
algorithms can be employed. There are two ways how to achieve better per-
formance in the pipeline presented in this work: either come up with different
features which are better predictors of audio classes of interest, or adopt a
better technique which is able to discover non-song data points in the space
of features. Building a classifier based on hardcoded knowledge of features’
properties is problematic and not flexible.

Although the segmentation phase performs quite well in this work, there is
certainly room for improvement. Technique capable of identifying boundaries
only at those times where a song actually starts or ends would significantly
help in overall performance and effectively suppress the importance of the
classification stage. However, such a method is arguably much more difficult
to develop than a better classifier.

One noteworthy limitation of models proposed in this thesis is that they
work only on very short time scale. However, there is a huge potential in
temporal features which are able to characterize audio signal with long-term
relationships since the music by definition is composed of melodies (sequences
of notes) and has a rhythmic structure.
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3.1. Future Research

There are two aspects which more advanced models should deal with:
immediately consecutive songs and breaks in them. In order to solve these
problems, techniques from music similarity area should be employed. A robust
solution would be able to distinguish two distinct songs even when there is
almost no pause and to merge two segments if they belong to one song, solely
based on the content of the segments identified as music.

Quite a different approach could be incorporating deep learning methods.
Their great success in machine learning field leads to the motivation for their
adoption in this task as well. One problem is that these techniques usually
need a huge amount of data. However, collecting a large number of concert
audio without time annotations for unsupervised learning is not that hard
due to their abundance in today’s world. Nevertheless, my initial experiments
with neural networks have shown that their application is not trivial, and it
would require thorough analysis and solid experience.
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Conclusion

The goal of this thesis was to develop a system for the song segmentation in full
concert audio which works in the unsupervised setting, that is, without labeled
dataset for pretraining a segmentation or classification model. The reason for
this constraint is that the solution is not biased and should to some extent
function with various musical genres and audio qualities without collecting a
massive ground truth data. This assumption was evaluated experimentally
and the results were presented.

The whole pipeline for solving such problem was proposed, from sound
and music description through spectrum computation and feature extraction
to segmentation and classification. Then the experimental evaluation details
were described and the results of the implementation were discussed. The
implementation is released as an open-source Python package.

It turned out that the problem is non-trivial. There were two main dif-
ficulties: (1) the diversity of concerts and their spectral properties, and (2)
the fact that audio signal of polyphonic music, especially if recorded in noisy
environments, is complex and hard to retrieve the information from.

This thesis employed widely used spectrum types, features and segment-
ation technique. As far as I know, the literature lacks advanced methods
for song/non-song classification without pretraining from a labeled dataset.
Therefore I introduced three simple models and their ensemble. The score
achieved on the dataset is 88.92% f-measure and 81.30% specificity of cor-
rectly labeled seconds in audio signal, and visualizations demonstrate that
the song segmentation is relatively successful. Although it is not perfect,
the best model from this thesis serves as an appropriate baseline for future
approaches.

This work is perhaps the first attempt in this research area, which eventu-
ally results in a practical application that is able to discover the time bound-
aries of songs in full live concerts. Such application is useful in media-sharing
services, where set lists of concerts are often requested by the users.
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APPENDIX A

Acronyms

BIC Bayesian Information Criterion

CQT Constant-Q Transform

DFT Discrete Fourier Transform

DTW Dynamic Time Warping

FFT Fast Fourier Transform

GLR Generalized Likelihood Ratio

GMM Gaussian Mixture Model

HMM Hidden Markov Model

LLR Log-Likelihood Ratio

MFCC Mel-Frequency Cepstral Coefficients

MIR Music Information Retrieval

MIREX Music Information Retrieval Evaluation Exchange
NDTWE Normalized Dynamic Time Warping Error
RMS Root-Mean-Square Energy

SER Segmentation Error Score

STFT Short-Time Fourier Transform

SVM Support Vector Machine

ZCR Zero Crossing Rate
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APPENDIX B

Results Visualization

AC/DC - Capital Centre 1981

T T FT e s [ [ o

0:00:00 0:17:00 0:34:00 0:51:00 1:08:00 1:25:00 1:42:00

AC/DC - Munich 2001

0:00:00 0:21:00 0:42:00 1:03:00 1:24:00 1:45:00 2:06:00

Adele - Royal Albert Hall 2011

NES P, T NN RO TS RN MAY S OB SN

0:00:00 0:16:00 0:32:00 0:48:00 1:04:00 1:20:00 1:36:00

B.B. King - A Blues Session 1987

0:00 9:00 18:00 27:00 36:00 45:00 54:00

Beatles - Atlanta Stadium 1965

0:00 5:00 10:00 15:00 20:00 25:00 30:00

CHVRCHES - Glastonbury 2016

0:00 8:00 16:00 24:00 32:00 40:00 48:00

Green segments represent the ground truth, blue segments correspond to the
estimatation.
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B. RESULTS VISUALIZATION

Code Orange - The Electric Factory 2014

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

Coldplay - Toronto 2006

T T e [ T (SR WSS I

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00 1:15:00 1:30:00

Eminem - Reading Festival 2017

0:00:00 0:16:00 0:32:00 0:48:00 1:04:00 1:20:00 1:36:00

Katy Perry - Big Weekend 2017

0:

(=
(=)

7:00 14:00 21:00 28:00 35:00 42:00

Metallica - Moscow 1991

0:00:00 0:13:00 0:26:00 0:39:00 0:52:00 1:05:00 1:18:00

Michael Jackson - Rome 1988

0:00:00 0:10:00 0:20:00 0:30:00 0:40:00 0:50:00 1:00:00

Nails - This is Hardcore 2013

0:

o
o

4:00 8:00 12:00 16:00 20:00 24:00

Punch - The First Unitarian Church 2011

0:

(=}
(=)

3:00 6:00 9:00 12:00 15:00 18:00 21:00

System of a Down - Lowlands 2001

0:00 8:00 16:00 24:00 32:00 40:00 48:00
Wu-Tang Clan - Hultsfreds Festival 1997
|
L I I h || _ I
0:00 4:00 8:00 12:00 16:00 20:00 24:00 28:00

Green segments represent the ground truth, blue segments correspond to the
estimatation.

60



APPENDIX C

Contents of Enclosed CD

readme.txt...the file with the thesis overview and execution instructions

< ol o2 the directory of source codes
timpl ...................... the directory with implementation sources

thesis.............. the directory of IXTEX source codes of the thesis
thesis.pdf......... ...t the thesis text in PDF format



	Introduction
	Problem Definition
	Motivation
	Related Work
	Contributions
	Organization

	Theoretical Background
	Audio Signal Processing
	Feature Extraction
	Normalization
	Segmentation
	Classification
	Postprocessing

	Experimental Evaluation
	Data and Metrics
	Implementation
	Results

	Discussion
	Future Research

	Conclusion
	Bibliography
	Acronyms
	Results Visualization
	Contents of Enclosed CD

