
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 12, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: SQL Engines for Big Data Analytics; Comparison and its Usage in Business Field

 Student: Elena Agapova

 Supervisor: Ing. Michal Valenta, Ph.D.

 Study Programme: Informatics

 Study Branch: Information Systems and Management

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

The aim of this work is to investigate a rapidly growing market of SQL engines used for big data analytics
and to define which of them should be used under different businesses requirements.

1. Describe how has the concept of big data had influenced the data analytics field, learn its history and the
last trends. Describe a big data architecture, its components and how does the big data platform work for
data analytics purposes.

2. Study existing approaches of using SQL in big data. Define a list of big data SQL engines you will focus
on in the rest of your work. Justify your choice using criteria defined together with your supervisor.

3. Compare SQL engines defined in step 2 according to business and technical criteria and specifications
(the most frequent use cases, existing business model, implementation costs, speed, security etc.)

4. Make a final report collecting all pros and cons and a brief conclusion considering the best usage of every
analyzed SQL engine.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

SQL Engines for Big Data Analytics;
Comparison and its Usage in Business
Field

Elena Agapova

Supervisor: Ing. Michal Valenta, Ph.D.

10th May 2018

Acknowledgements

I would like to thank my supervisor, Ing. Michal Valenta, Ph.D., for his
guidance and assistance while working on this thesis. I would also like to
express my gratitude to my family and friends for their encouragement and
support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 10th May 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c• 2018 Elena Agapova. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Agapova, Elena. SQL Engines for Big Data Analytics; Comparison and its
Usage in Business Field. Bachelor’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2018.

Abstrakt

Dı́ky rostoućım objemům dat generovaným v dnešńı době, jejich vývoji a
změnám, koncept velkých dat (big data) se stal objektem velkého zájmu.
Tento koncept popisuje sadu technik a metod pro efektivńı práci s velkými
soubory dat.

V moderńım světě informace je jedńım z nejd̊uležitěǰśıch prostředk̊u, který
může přisṕıvat k optimalizaci podnikových proces̊u a rozhodováńı. Nicméně,
pro źıskáńı přehledu a využit́ı potenciálu dat je nutné je zpracovat a zjistit
jaká informace se skrývá uvnitř, k čemuž slouž́ı analýza dat. Platformy pro
analýzu dat umožňuj́ı manipulovat s datami pro zjǐstěńı jejich přesného ob-
sahu. Podobné systémy jsou velmi komplexńı a obsahuj́ı v́ıce jednotlivých
komponent̊u a proto jejich návrh vyžaduje rozsáhlý pr̊uzkum dostupných
možnost́ı.

Tato bakalářská práce má za ćıl popsat jak analýza dat funguje pro velká
data a jejich společné využit́ı v praxi. Zaměřuje se na popis existuj́ıćıch tech-
nologíı a př́ıstup̊u k realizaci infrastruktur pro datovou analýzu. Práce se
také zabývá definićı faktor̊u které by měly být vzaté v úvahu při výběru ne-
jvhodněǰśıho softwarového řešeńı pro konkrétńı př́ıpady užit́ı.

Výzkum je proveden pomoćı studia architektonických základ̊u systémů pro
zpracováńı velkých dat a pr̊uzkumů trhu softwaru pro analýzu dat. Výsledkem
praćı je zpráva porovnávaj́ıćı vybrané technologie a popisuj́ıćı jednotlivé kritéria,
které byly vzaté v úvahu při porovnáńı. Tato zpráva může být použita jako
návod k výběru vhodného softwarového řešeńı pro implementaci analytického
systému v r̊uzných podnićıch.

Kĺıčová slova Big data, analýza velkých dat, databázové stroje, platformy
pro analýzu dat, porovnáńı technologíı

vii

Abstract

With a growing amount of data generated, their changing and evolving, the
concept of big data has become incredibly popular in last years. It provides
a set of new approaches and techniques allowing to work e�ciently with huge
volumes of records.

Nowadays, information is one of the most important resources; it can help
with decision making and business processes optimization. However, to get
actual insights and unlock a potential of data, it is necessary to process them
and discover the information hidden inside it which is a goal of data analytics.
Data analytic platforms allow to manipulate with raw data in order to find
out what exactly they contain. These systems are complex and includes mul-
tiple components therefore their designing requires comprehensive analysis of
available options.

This thesis aims to describe how data analytics works for big data and how
they are used in business. It gives an overview of existing technologies and ap-
proaches to building data analytics infrastructures. It also defines points that
should be taken into consideration while choosing the most suitable software
solution for a particular use case.

The research is done by studying architectural principles of big data sys-
tems and investigating the market of data analytics software. The result of
this work is a composite report including comparison of several technologies
and a list of criteria considered. The final report can be used as a guideline for
choosing the most suitable technology for implementing an analytical platform
in a broad variety of organizations.

Keywords Big data, big data analytics, SQL engine, data analytics plat-
form, technologies comparison

viii

Contents

Introduction 1

1 Theoretical part 3
1.1 What is big data . 3
1.2 What is Data Analytics . 8
1.3 Big data analytics for business 9

2 Practical part 11
2.1 List of engines to compare . 11
2.2 Overview of separate engines 12
2.3 Final report . 25
2.4 Use case examples . 31

Conclusion 35

Bibliography 37

A Acronyms 45

B Contents of enclosed CD 47

ix

List of Figures

1.1 Annual size of the global datasphere[1] 3
1.2 Big Data Architecture diagram[9] 7
1.3 DIKW pyramid[10] . 8

2.1 Hive architecture[35] . 14
2.2 Impala architecture[39] . 17
2.3 Drill query flow[45] . 20
2.4 Presto architecture[58] . 22
2.5 Table comparing chosen engines . 30

xi

Introduction

The amount of data existing in the world is growing rapidly nowadays with
an increasing number of machines and systems producing them. Data are be-
coming more diverse, uneven, mixed; they are changing and evolving together
with overall technologies landscape.

However, the existence of data by itself does not make any real impact;
to take an advantage of having them, it is necessary to process it to discover
what is hidden inside. The true value of data is in information they contain
as it can give insights into business processes and customer behavior, help
to predict changes and make prognoses about the future. Understanding the
potential of data and leveraging it helps to optimize organizational activities
and operations which in turn brings competitive advantage and make business
more successful and profitable. It also unlocks an opportunity to enable a
data-driven approach when decisions are taken based on facts and verified
information derived from them.

E�ective leveraging of data analytics techniques requires having an infra-
structure for consuming, storing and processing data with following submit-
ting obtained results to end users. These systems usually consist of data stor-
ages, SQL engines and reporting tools integrated together to create a seamless
pipeline taking raw data as an input and returning results of analytic quer-
ies executed on it. Designing such systems brings a lot of challenges as it is
necessary not only to pick up suitable components but also ensure that they
can work together.

This work is focused on SQL engines particularly as they are de-facto the
key element for analytical systems since it is the component which actually
processes the data and helps to discover what they contain. SQL engines
execute queries sent by end users for getting specific insights answering their
questions or providing them with findings which can help to do so.

Nowadays market o�ers dozens of software solutions for building data ana-
lytics infrastructure for any workloads and a big variety of options available
does not make the choice easier; contrarily, it may be confusing or even over-

1

Introduction

whelming. Moreover, big data ideas are becoming more and more popular and
today leveraging it is already considered a necessity rather than a nice-to-have
option.

The goal of this paper is to provide an overview of how do big data analyt-
ics workflows function in general and to summarize main aspects important
for choosing the right engine capable of e�ciently solving given tasks. The
research is done by exploring the big data technology market together with
studying architectural principles of data analytics systems. The resulting re-
port includes the table comparing the chosen engines, detailed explanations of
criteria considered in examination and example of use cases for each of them.
This report can be used as a guideline for choosing a particular engine to
use or as a checklist for reviewing any other technology in a broad variety of
organizations.

2

Chapter 1
Theoretical part

1.1 What is big data

1.1.1 How did the big data concept appear

Humanity has been naturally generating all kinds of information throughout
its history – with getting to know the world, describing it and transferring
knowledge to others. With the evolution of science data was becoming more
and more diverse and stored in di�erent formats with di�erent techniques.
From tally sticks through books and magnetic tape, people finally came to the
point where information became digital. It was the beginning of a completely
new era of storing and processing data.

Nowadays, the amount of information in the world is growing rapidly. For
example, last year there was generated 16.1ZB of data, and according to IDC
the global datasphere will grow to 163ZB by 2025[1].

Figure 1.1: Annual size of the global datasphere[1]

3

1. Theoretical part

But what does ”big data” exactly mean? Does it stand only for enormous
amount of data or is there something more? The first appearance of term
”big data” refers to 1999, when it was used in the article ”Visually exploring
gigabyte data sets in real time” published by the Association for Computing
Machinery. Two years later, Doug Laney from Gartner published his paper
”3D Data Management: Controlling Data Volume, Velocity and Variety”,
where he defines i.e. 3V (volume, velocity, variety) which will come to be the
commonly-accepted characteristics of big data[2]. Those three attributes cap-
ture the main aspects determining if some particular data can be considered
”big” or not:

• the ”volume” characteristic defines the amount of data, which is usually
ranges of petabytes.

• the ”velocity” characteristic is the measure of how fast the new data
appears and are processed

• the ”variety” characteristic represents the diversity of data and an inten-
tion to caption all data related to the decision-making process, whichever
structure they have (structured, unstructured or semi-structured)

Quite often in the context of big data, there is mentioned the fourth V
standing for veracity. Veracity refers to the data quality and its trustworthi-
ness. It is not that common as the classical 3V, but it is used more and more
in the last years.

In essence, big data is a new way of looking on data and processing them
along with a set of technologies necessary for this. Since 1970, when a concept
of relational database was proposed by E.F.Codd, it was a standard approach
to any manipulations with data (mostly storing them in the predefined model
and querying with SQL).

But as data became more diverse and its amount increased significantly,
the relational databases became insu�cient for working with them e�ectively
as they were pushed to its limits. It turned out that classic approaches and
techniques can not be scaled to handle such loads. There are several reasons
causing this.

First of all, relational databases were not designed for handling data in
the range of petabytes; it would require i.e. vertical scaling which means
adding either more CPU cores or memory. There are several problems with
vertical scaling – it is expensive, not all vendors allow to do it, and it increases
the risk of hardware failures which can cause major system outages. Second,
relational databases were created primarily for storing of steady data, not for
rapid growth; hence it faces certain problems with handling data generated
with a high velocity (such is the most of big data). And finally, relational
databases are able to work only with data tailored to the predefined model

4

1.1. What is big data

(or schema); and since the vast majority of records in big data is either semi-
structured or unstructured, it cannot be used with relational databases or
must be reformatted accordingly; whatever of these would require a lot of
resources or is completely impossible.

That was the moment when new technologies started breaking into the
market to fill the gap created by users in need of working with changed data
and lack of the tools capable to do it e�ciently. The most important one,
which is today de facto a synonym for big data, is NoSQL (this acronym
stands for ”Not Only SQL”). A NoSQL database concept was created as
the opposite of the relational database model – it is designed to work with
data without putting them into a model with tabular relationships. It was
developed primarily in order to deal with limitations of SQL databases, espe-
cially scalability and multi-structured data.

1.1.2 NoSQL vs. RDBMS
To analyze these two database approaches, it is important to specify the com-
parison criteria. To start with, it is definitely worth mentioning the CAP
theorem formulated by Eric Brewer. According to this theorem, it is im-
possible for a networked shared-data system to simultaneously provide more
than two out of the following three guarantees[3]:

• consistency (meaning all nodes within the system have the same and
up-to-date version of data)

• availability (guarantee that every request to the system will receive either
success or failure response)

• partition tolerance (ensuring the ability of the system to be scaled hori-
zontally)

The proven correctness of the CAP theorem implies a need for making
trade-o�s when choosing which of its aspects (and to what extent) will be
provided in the certain system. And the way this problem is solved in rela-
tional and NoSQL databases di�ers significantly.

In the context of database technologies, data are consistent if they are
completely the same across all existing instances at any moment of time.
Database consistency refers to the requirement that any given database trans-
action must change a�ected data only in allowed ways[4] to ensure that any
data written to the database are valid according to all rules defined in it (e.g.
all integrity constraints are met).

Consistency model determines rules for visibility and apparent order of
updates[5]. For decades the traditional approach to databases was based on
ACID model, where A stands for availability, C for consistency, I for isolation
and D for durability. This model’s properties are mainly focused on providing

5

1. Theoretical part

maximal possible consistency. But as the CAP theorem claims, once the
consistency is ensured, it is possible to choose either availability or partition
tolerance. Most of relational databases are provided with availability and since
then they cannot be distributed across several nodes. Despite that, some of
them can be configured in a way allowing horizontal scaling but restricting its
availability.

But as new database technologies came, new consistency models appeared
naturally. One of them, called BASE (Basically Available, Soft state, Even-
tual consistency) was created in the late 1990s to capture the emerging design
approaches for high availability[6]. What it suggests is to be optimistic about
the consistency by not forcing every operation to put the database in a con-
sistent state necessarily[7]. By sacrificing this aspect, the BASE model allows
the system to achieve a higher level of scalability which is unreachable within
ACID model.

Undoubtedly, it is impossible to say that any of these approaches is better
than another one. Another important point is to remember that it is not
always possible to replace SQL with NoSQL and vice versa, which is implied
by the di�erent concepts lying in their basement coupled with consideration
and adjustments in design. The decision to go either with SQL or NoSQL
should be made based on a detailed analysis of the application architecture
and its purposes along with use cases and possible limitations.

1.1.3 Big data architecture and workflow
As big data appears to be di�erent from common one, its processing requires
not only new technologies but also a special architectural design tailored to
its specifics.

Each of big data 3V is thus reflected in di�erent aspects of its processing.
High volume implies a necessity of enabling powerful batch processing mech-
anisms for dealing with larger amount of data that have previously been saved
to some storage and now need to be processed. For handling velocity data,
the system should be capable of executing interactive queries to give a result
based on all available information including the most recent pieces of it. Wide
variety of data sets requires having an extensible storage system along with
advanced techniques for accessing and then integrating them to the whole
processing pipeline.

Big data architecture is a model of how big data and other information
assets will be captured, stored, managed and made accessible to various user
groups and applications[8]. In other words, it describes the way big data
works as it flows through all components, from the raw data extracted from
the data sources to the insights derived by end users using various analytical
applications.

6

1.1. What is big data

Figure 1.2: High-level view on big data architecture stages; although this
schema includes Hadoop framework, the workflow would be similar for any
other components.

Big data architectural design is based on a simple idea of connecting ori-
ginal data sources and business intelligence applications through data ware-
houses and analytic platforms integrated all together into a single system.

Of course, creating an architectural solution for big data system from the
scratch is a task far from trivial. Nowadays, most of the models are built based
on the same set of consideration concepts with slight di�erences depending on
the technologies stack used for solving the particular task.

Any data analytics workflow is based on a simple sequence of actions done
to data which can be simplistically described as acquire – prepare – analyze
– report – act. Therefore, main components of analytical systems usually
include:

• storage system such as a database or a file system

• ETL engine for preparing the data for being analyzed

• SQL engine for executing queries giving desired information

• BI tools for reporting and visual representation of gained insights

Although such design might seem simple, building and orchestrating the
whole system brings certain challenges. First of all, it is essential to define
the scope of processing: to determine desired outcome, understand which
particular insights should be retrieved and find out which data should be
analyzed for achieving this. Next step is choosing of components performing
the best for defined goals. Nowadays market o�ers a wide variety of options

7

1. Theoretical part

when it comes to data analytics software; however, it does not make the choice
easier. At the same time, it is important to take into consideration not only
the functionality of separate components but also its ability to be integrated
with each other for creating a single pipeline. Also, the whole infrastructure
should be optimized and adaptable for possible future changes. The reason
is simple – if the current architecture will become insu�cient to solve new
problems in a short period of time, the only solution is to change it which
will necessarily entail multiple changes in the whole system. Needless to say,
it is very diï��cult (if not impossible) and expensive procedure, which should
be avoided at almost any cost. Needless to say, it is very di�cult (if not
impossible) and expensive procedure, which is worth avoiding at almost any
cost.

1.2 What is Data Analytics

1.2.1 Data vs. Knowledge
Of course, people were always interested in discovering what is hidden in their
data since raw data by itself can not answer any questions or give somewhat
useful insights. An idea of deriving meaningful information and its further us-
age is pictured by the DIKW (data, information, knowledge, wisdom) pyramid
which represents the information hierarchy model.

Figure 1.3: DIKW pyramid[10]

This model demonstrates the fact that any data gets its meaning after
processing with a purpose. Despite data is at the bottom of the pyramid,
it does not mean it is not important by itself. Data quality and accuracy
are important because it is impossible to get correct and useful results based

8

1.3. Big data analytics for business

on incomplete, inaccurate or imprecise data. Moreover, results obtained by
dealing with invalid data can be considered useless or even harmful.

1.2.2 Data Analytics in general
Data analytics is a process of inspecting, cleansing, transforming, and mod-
eling data with the goal of discovering useful information, suggesting conclu-
sions, and supporting decision-making[11]. In general, the idea of data analyt-
ics is to derive meaningful insights from that data and to convert knowledge
into action[12].

Data analytics includes a wide range of applications: from business in-
telligence (BI), reporting and online analytical processing (OLAP) to various
forms of advanced analytics[13]. It is important to note that these applications
do not only serve the purpose of direct data analysis, but also solve various
tasks such as collecting, integrating and preparing the data. At the same time,
they deal with development, testing and revising analytical models.

It would be a mistake to consider the whole data analytic field applicable
only for big data; it is a general term for any type of processing that looks at
historical data over time[14]. Today, data analytics is tightly coupled with the
term big data mainly because it has evolved to being capable of working with
data that can be considered ”big” (according to the definition given before).
This evolution, in turn, was caused by growing market demand for systems
that tolerate intense requirements of big data.

1.3 Big data analytics for business
As data analytics is used for solving many various tasks, it is often divided
into four categories:

• prescriptive

• predictive

• diagnostic

• descriptive[15]

Each of these answers certain questions, and together they deliver complete
insight helping to make more accurate business decisions.

Big data analytics plays a very important role for the business where it
is implemented. By itself it is only able to provide with certain insights and
forecasts derived from the raw data. When it comes directly to the decision-
making process, there is a need of using some additional tools, which are
usually covered by an umbrella term of business intelligence (often referred
as BI). Since most of businesses nowadays want to have implemented both

9

1. Theoretical part

data analytics and business intelligence (in order to get the most precise over-
view possible) and the market reacts to these needs, these two terms became
interchangeable.

The main reason why BI tools are not coupled with data analytics technolo-
gies into the single term and framework is that the whole process of harnessing
data is executed by users with di�erent scope of knowledge required in their
job positions. Wayne Eckerson in his report ”Big Data Analytics: Profiling
the Use of Analytical Platforms in User Organizations” defines two groups of
users:

• casual users (executives, managers, front-line workers) who primarily
use reports and dashboards that deliver answers to predefined questions

• power users (business analysts, analytical modelers and data scientists)
who perform ad hoc queries against a variety of sources

BI tools are therefore designed primarily for casual users, providing inter-
faces for indirect work with data based on extracted insight. Data analytics
tools are used by power users and give them more freedom in interacting with
raw data and accessing all platform components from the inside. These tools
are not interchangeable since they interact with data in di�erent manners and
are insu�cient for solving each other’s problems.

Natural evolution of BI tools gave birth to its new generation called self-
service BI. The main feature of self-service BI tools is that they can be used
by users with limited technical skillset. Together with the ability to provide
access to the information stored anywhere it brings a significant value to the
business by accelerated acting based on new insights. It also allows new users
to start working with the information as soon as possible, without a need
to study the tools by itself or getting familiar with the whole data analytics
infrastructure. Another important point is that self-service BI tool decreases
the IT departments workload – casual users don’t need to ask them about
providing data access/permissions/technologies etc.

As the self-service BI appearance puts a human face on a data analysis
usage, more and more companies tend to transform itself into more data-
driven by adopting a data analytics culture. It would be a mistake to consider
such transformation e�cient only for bigger companies like corporations and
enterprises, about which Forbes claims that ”data analytics is no longer a
nice option – it’s the core of the enterprise”[16]. Implemented correctly, data
analytics integration brings same benefits to all companies regardless of its
size. Of course, it is not a silver bullet and requires certain resources but
taking into consideration the trend of being data-driven can become a must
in the following years.

10

Chapter 2
Practical part

The previous chapter describes the general concept of big data, its influence
on data analytics and their role in a business field; it is mostly focused on
reviewing existing approaches and architectural patterns.

The practical part of this work includes several points. First of all, it
describes chosen SQL engines used in big data analytics based on its docu-
mentation and best practices. Then it defines criteria that should be taken
into consideration while choosing a particular engine to use within an ana-
lytic system. Using these criteria, the engines are compared which allows to
determine the best use cases for each of them.

2.1 List of engines to compare
Nowadays, there are dozens of engines available on the market. At first glance
most of them may seem very similar which definitely does not make a choice
easier. Picking up the right technology is extremely important as it defines not
only the result achieved by its adoption but also the amount of e�ort putted
in both setting the whole thing up and then maintaining it.

I have chosen the following engines for consideration within this work:

• Apache Hive

• Apache Impala

• Apache Drill

• Presto

This choice is based on an aspiration to review the most well-known tech-
nologies (though it is a debatable aspect) which are widely adopted by various
organizations of di�erent scale. Prevalence of these technologies also indicates

11

2. Practical part

that they are mature enough to be considered stable and trustworthy which
ensures they will not become outdated anytime soon.

All of the engines reviewed within this research are open-source projects
which might seem insu�cient as there are a lot of commercial solutions provided
by such well-known companies as Teradata, HP, Microsoft etc. The reason
is that this paper is supposed to help with choosing a particular SQL engine
for designing a new custom data analytics infrastructure or to integrate it
into an already existing one while commercial solutions are mostly sold as a
whole and do not allow using its particular components separately. Those
solutions are more suitable for enterprise-like organizations as a vendor takes
care about designing, setting up and maintaining the platform according to
specific customer needs; however, purchasing it is usually quite expensive so
it is not a�ordable for smaller businesses. Also, such preconfigured solutions
cannot be modified easily and usually require consulting from vendor side.

2.2 Overview of separate engines

2.2.1 Apache Hive
2.2.1.1 Overview

The Apache Hive data warehouse software facilitates reading, writing, and
managing large datasets residing in distributed storage using SQL [17]. tom-
morow

2.2.1.2 HiveQL

For quering data Hive uses HiveQL – an SQL dialect supporting both DDL
and DML statements[29]. HiveQL DDL statements allow users to define vari-
ous data units standard for Hive such as database, table, partition or bucket
and thereby create a schema structure. In addition, HiveQL DDL includes
statements for using SerDes[30] (see section 2.2.1.4) for creating schemas while
reading the data instead of doing it manually and then reformatting the data to
fit it. HiveQL DML statements then allow to fill schemas with data by loading
them from files or even intermediate queries results, access and modify data in
tables, write query results into filesystem directories and merging tables[32].

HiveQL has some subtle functionality di�erences from classic SQL and
does not fully meet the SQL-92 standard, but at the same time provides addi-
tional extensions. One of them is support of CREATE TABLE AS SELECT
(CTAS) statement helping quickly derive Hive tables from other tables[31].
Another useful feature is Multi Table Insert – statement for inserting data
into multiple tables within a single operation[32]. The main benefit here is
that using this statement Hive scans data and applies query operators on them
only once which makes execution faster than sequential execution of inserting
data into tables with the traditional INSERT statement.

12

2.2. Overview of separate engines

Probably one of the most powerful HiveQL features is support of user
defined functions (UDF). It allows using functions written in Java or Scala
inside of HiveQL statements. Main benefits of using UDF are:

• any function needed for specific part of work can be implemented

• easy to share, reusable code

• easy refactoring

• make statements more readable

Using UDF is very simple. For doing this, it is needed to build function
source code, add the resulting jarfile into Hive and then create temporary
function by running homonymous Hive command and specifying the function
name as it will be used in HiveQL statements and a fully qualified package
name.

On the other hand, as any other language HiveQL has certain limitations
and disadvantages; nevertheless, most of them are caused only by currently
immature support of specific aspects (not by the technical impracticability)
and will be possibly fixed in future releases.

To name a few, Hive generally supports subqueries only in the FROM
clause (and some types of them in the WHERE clause, but not in all cases)[33].
Also, Hive provides quite limited support of transactions. First of all, enabling
transactions support requires certain configuration of both client and server
sides. Second, executing transaction is only possible for data stored in ORC
file format. Finally, all language operations are auto-commit – BEGIN, COM-
MIT, and ROLLBACK are not yet supported[34].

2.2.1.3 Architecture

The figure 2.2.1.3 illustrates Hive architecture.
The block called Driver represents the query engine which is responsible

for running HiveQL queries. Queries then are converted into MapReduce, Tez
or Spark jobs and then the platform is referred accordingly as a ”classic” Hive
(running MapReduce jobs), Hive on Spark or Hive on Tez. MapReduce, Tez
and Spark are frameworks for processing data based on di�erent programming
paradigms. All of them have been built with di�erent purposes and therefore
provide various features improving user experience for di�erent use cases. Any
of these frameworks can be choosen for running jobs which gives high flexibility
and allows to tune the whole tool according to specific needs.

Thrift server (also referenced as HiveServer2 or HS2) is a server interface
based on Thrift RPC that enables remote clients to execute queries against
Hive[26]. Among others, it supports JDBC and ODBC APIs allowing con-
necting a wide range of applications and tools to Hive and leverage the whole
platform even more e�ciently.

13

2. Practical part

Figure 2.1: Hive architecture[35]

Next component, metastore, is in charge of storing all metadata neces-
sary for manipulating with data. This includes information about tables and
partitions structure (column names, data types etc.), serdes used for reaid-
ing and writing particular data, HDFS files where data are stored and so on.
Metadata are obtained in the moment of table creation and then used every
time its data are accessed.

Speaking about datasources Hive is able to work with, it is necessary to
take into consideration the fact that it is built on top of Apache Hadoop –
framework that allows for the distributed processing of large data sets across
clusters of computers using simple programming models [18]. Hadoop includes
its own file system called HDFS (Hadoop Distributed File System) and that
is the only data source Hive works with. It might be a problem if the data
for processing are stored at some di�erent storage – in order to make Hive
process them, it would be necessary to transfer them to a HDFS cluster first
in this case.

2.2.1.4 Key features

One of Hive’s greatest assets is its ability to interpret unstructured or semi-
structured data by transforming them into Hive tables. Using the schema-
on-read concept allows avoiding setting up ETL tools and workflows, which is
usually not only di�cult and costly, but also makes the whole data processing
pipeline slower and more cumbersome.

14

2.2. Overview of separate engines

Inside the Hive platform, this concept is implemented with a component
called SerDe (which stands for Serializer and Deserializer) – interface that tells
Hive how it should translate the data into something that Hive can process[27],
e.g. to Hive tables. In other words, SerDe helps Hive to interpret loaded data
and makes it able to query them. Now there are a lot of SerDes for hand-
ling all kinds of data. Out of box Hive has several built-in SerDes for such
popular data formats as CSV, JSON, Avro, Parquet etc. What is probably
more important is the possibility of creating custom SerDe for any other data
format as any SerDe is basically just a Java class implementing the general
interface[28]. Besides, there are a lot of SerDes written by third-party de-
velopers and available as open-source projects, so in many cases it is enough
to simply find a suitable one and leverage it.

In addition to UDF (see section 2.2.1.2), Hive allows creating even more
flexible and robust statements with a tool called HPL/SQL – Hive Hybrid
Procedural SQL On Hadoop[36]. This tool implements PL/SQL – procedural
extension for SQL created by Oracle and allows writing HiveQL statements
using procedural language elements (such as variables, loops, conditions etc.).

As mentioned at section 2.2.1.3, Hive can on multiple backend platforms,
such as MapReduce, Tez and Spark. But what is the di�erence and why it is
beneficial for the whole product?

Initially Hive was running using MapReduce as at that time it was the
most suitable options for fulfilling Hive needs. But as technologies have been
developing, various data processing frameworks were evolving as well. One
of them was Tez which appeared to be more e�ective, powerful and flexible
than MapReduce, so it was decided to support it as an alternative backend
platform in order to increase overall performance of Hive. Another popular
cluster-computing framework, Spark, was adopted primarily because of its
popularity among users. It allows more organizations using Hive without
need to change their existing infrastructure.

Whilst Hive have been integrating new backend platforms, it still supports
all three at the same time, so users can choose which one suits the most for
their needs. It helps to increase Hive’s adoption among a wide variety of
di�erent companies which is also beneficial for the platform itself as it is
open-source and bigger number of users means bigger number of potential
contributors.

2.2.2 Apache Impala

2.2.2.1 Overview

Apache Impala is the open source, native analytic database for Apache Ha-
doop, providing low latency and high concurrency for BI and analytic queries
(not delivered by batch frameworks such as Apache Hive)[19]. Currently Im-
pala is an Apache Software Foundation project and is available under Apache

15

2. Practical part

licence version 2.0. Also, Impala is now available as a part of CDH – advanced
system provided by Cloudera built from open source components enabling per-
forming end-to-end Big Data workflows in enterprises.

Impala fully supports ANSI SQL and is compatible with a lot of popular
BI tools (as it was originally targeted), which ensures seamless integration
into already existing data analytics infrastructure. As noticed in Cloudera
Engineering Blog, Impala has unlocked the ability to use business intelligence
(BI) applications on Hadoop[20].

2.2.2.2 Architecture

Impala’s distributed architecture is based on daemons processes responsible
for all steps of query execution, such as accepting queries from client processes,
orchestrating their execution across the cluster, and for executing individual
query fragments[21][22]. Impala runs on multiple machines in Hadoop clusters:
each demon process is represented by the impalad process running on each of
cluster’s nodes. Incoming queries can be sent by impala-shell command, Hue,
JDBC, or ODBC.

All Impala daemons are able to execute any of operations (e.g. they are
not separated by functionality), which ensures fault-tolerance and provides
load-balancing. When one or more hosts are down, Impala reroutes future
queries to only use the available hosts, and Impala detects when the hosts
come back up and begins using them again[37]. However, Impala does not
provide any mechanism for assuring query fault tolerance. As intermediate
data are kept only in the memory and are not written on a disk, in the case
of failure at any execution point the whole query will fail. To get a result,
the failed queries should be retrieved manually as Impala does not provide
monitoring allowing to detect failed quires and rerun them automatically.

For storing metadata (information about schema objects) Impala uses Hive
metastore which implies the necessity of installing and configuring it along
with Impala itself[38]. Essentially, it is a simple MySQL or PostgreSQL data-
base with a corresponding service running for connections handling. Also,
part of metadata is kept in the node cache providing faster access to those
related to the most recently used objects.

2.2.2.3 Key features

Impala’s distributed architecture brings several important benefits. Probably
one of the most significant characteristics of Impala is its performance. The
reason is that using daemons allows to bypass converting incoming queries
to MapReduce jobs which makes its execution much faster. Moreover, as
daemons are running directly on data nodes, data can be accessed with a
lightning speed. Multiple tests performed by Cloudera in 2016 and 2017 show
that Impala achieved better results

16

2.2. Overview of separate engines

Figure 2.2: Impala architecture[39]

• compared to batch and procedural development engines (such as Hive-
on-Tez and Spark SQL 1.5)[23]

• compared to analytic databases (Greenplum) and SQL-on-Hadoop en-
gines (Spark SQL 2.1, Presto 0.160, and Hive 2.1 with LLAP from HDP
2.5)[24]

Tests were performed with using TPC-DS – performance benchmark provid-
ing representative evaluation of performance as a general purpose decision
support system[25] which ensures trustworthiness of obtained results (though
tests organizer was Cloudera who can be called ”patron” of Impala). Also,
Impala can be tuned for achieving even better performance with using more
advanced methods such as specific data partitioning, optimizing queries itself
and gathering schema statistics.

Another benefit of distributing queries across a cluster of computing nodes
is the possibility to scale the whole system easily just by putting new nodes
into rotation. The simple concept of horizontal scaling works pretty well
with Impala – if disk throughput is insu�cient or memory limits a�ect the
execution speed, then it is enough to add more machines into the cluster
and run a daemon on it to solve the problem. Also, this approach is really
cost-e�ective when it comes to hardware resources usage as a cluster usually
consists from relatively cheap units. The whole system then could be scaled
up without buying any very expensive appliances or scaled down by removing
machines from it to spend less on its maintenance.

But as an amount of memory is physically limited for each node, memory-
intensive operations can run out of this limit failing the whole operation.

17

2. Practical part

However, Impala is still able to successfully execute such queries with setting
up disk spilling. This principle allows writing intermediate data on the disk
instead of keeping them in memory. Anyways, this option should be used only
in particular cases where a query cannot be optimized to fit the limit or the
limit can not be extended. The reason is that spilling on disk significantly
slows processing down due to constant writing to and reading from a disk.

To optimize memory usage, Impala also features HDFS caching – techno-
logy allowing to define which tables or partitions should be kept in memory
no matter if they are currently processed or not. This technique is especially
useful for smaller, frequently accessed data.

Impala is capable to access data stored on HDFS, Amazon S3 and HBase.
HDFS is a primary data storage medium used by Impala. By default,

all the data files for a database, table, or partition are located within nested
folders within the HDFS file system[40]. An important benefit of using HDFS
is that it provides data redundancy protecting the system from hardware and
network problems causing unavailability of certain nodes. Furthermore, using
HDFS is practical because in this case there is no need of transforming or
moving the data as queries are executed directly on datanodes.

Amazon S3 is almost fully supported by Impala starting from version 2.6.
Impala supports both queries and DML for data residing on Amazon S3 but it
can not be used as the only filesystem in the cluster, because Impala requires
that the default filesystem for the cluster be HDFS[41]. Also, as noticed in
the documentation, queries against S3 data are less performant, so S3 is more
suitable for keeping the data which are queried occasionally rather than those
actively used which are supposed to be kept in default HDFS.

Unlike HDFS and S3, HBase is typically used for more specific use cases
rather than simple storing common data. It is mostly used as an additional
storage to the default Impala HDFS or for storing data which are specific at
some way and are handled by HBase more e�ectively because of its design (for
example, tables with many – hundreds to thousands – columns representing
subject’s attributes or data which changes very quickly, such as counters).

Impala was initially designed to work with HDFS therefore it obviously
supports designated Hadoop file formats: Avro, RCFile, SequenceFile, Par-
quet and plain text; it can proceed compressed data as well. However, even
after the list of supported data platforms was extended, Impala still is not
capable of working with further file formats.

In order to query data, Impala needs to have some predefined model de-
scribing them; it ususally consist of such schema objects as databases, tables
and partitions. As Impala was initially designed to work with HDFS, the
folder structure of HDFS was taken as a concept for creating a data model.
Database is a logical container for a group of tables and each one is physically
represented by a directory in HDFS[42]. Tables contain the actual data writ-
ten into classic row and column structure. Each table has an associated file
format. If the table uses HDFS, it is associated with a particular directory

18

2.2. Overview of separate engines

and contains all data underneath that directory[43]. In general, there is no
need in complex schema modeling; nevertheless, some optimization can be
achieved with subtle changes in the data model.

2.2.3 Apache Drill

2.2.3.1 Overview

Drill is an Apache open-source SQL query engine for Big Data exploration[44].
It was primarily designed for high performance on large datasets along with
ability to query it on a high speed necessary for integration with BI environments[45].
Drill is often referenced as an attempt to build an open source version of
Google Dremel[46] what was admitted in its proposal to Apache incubator[47].
From early on, Drill development was strongly impacted by its users and de-
velopers together with business community which had influenced many of its
facets. Jacques Nadeau, a leading architect of Drill, pointed out that one
reason Drill can manage this combination of flexibility and performance is
that it was designed from the start to have these capabilities[48].

2.2.3.2 Architecture

Drill features distributed execution environment[49] capable of scaling from a
single node to thousands of servers. The whole engine consist of multiple in-
stances of service called Drillbit responsible for accepting requests from the cli-
ent, processing the queries, and returning results to the client[49]. All Drillbits
are equal, there is no master-slave concept – every node is self-su�cient and is
able to accept and run queries obtained from a client. Drill can be installed on
any distributed cluster environment; the only pre-requirement for running it is
to have installed Zookeeper. ZooKeeper is a centralized service for maintain-
ing configuration information and providing distributed synchronization[50].
Inside a Drill cluster, Zookeeper is used for monitoring the cluster status
and discovering available Drillbits before submitting queries[51]. Even though
clients can communicate with a specific Drillbit directly, it is not recommen-
ded; Zookeeper is integrated into the system to simplify the load distribution
between nodes and prevent clients of having troubles while connecting to nodes
directly.

Under a Drillbit hood are hidden its three main components:

• RPC endpoint

• SQL parser

• storage plugin interface.

RPC endpoint serves to communicate with clients using remote procedure
call protocol. It allows to execute a procedure or a function on a machine

19

2. Practical part

di�erent from the one it was called from without explicit specifying of call
details (e.g. in the same way as if the procedure is called on the same machine).

For parsing incoming SQL queries Drillbits have integrated Apache Calcite
– open-source SQL parser and validator[51].

Storage plugins are connectors used by Drillbits to access data which
should be queried. Di�erent plugins can connect to various data sources,
such as a database, a file on a local or distributed file system, or a Hive
metastore[52]. They allow Drillbits to execute read and write operations and
provides access to source metadata. They are highly configurable and easy to
use: multiple plugins can be installed at the same time, enabled or disabled
and configured separately. Information about any plugin updates is broadcas-
ted to all Drill nodes, so there is no need to restart any of cluster nodes after
making any changes.

Figure 2.3: Drill query flow[45]

Drill’s architecture is based on massive parallel processing concept where
a large amount of separate computers works in parallel. It can also be de-
scribed as i.e. shared-nothing architecture[55] which means that every node
is independent from others and is able to work by its own; none of resources
(such as RAM, disk space etc.) are shared between nodes in a cluster. At
the same time Drill has one component common for all nodes – distributed
metadata cache. It is an auxiliary component used for managing metadata
and configuration information across various nodes[45] thus increasing overall
engine performance.

All operations are executed in node memory and none of intermediate
results are not written into disk. It helps to reduce overall execution time and
disk load, but on the other hand requires more memory to successfully execute

20

2.2. Overview of separate engines

all incoming queries. The only case when Drill persists data to disk is when
a memory limit is exceeded and some resources must be freed immediately to
allow the engine continue working.

2.2.3.3 Key features

Probably the most significant feature of Drill is that it does not required
any data pre-processing such as ETL operations and creating schemas for
querying them. It makes using Drill easier (especially for business users) by
several reasons:

• no need to structure data before querying

• no need to create and manage metadata repository

• historical data can be queried in the same way as actual one

Raw plain text files can be processed without converting them to any specified
format or putting its content into tables or structures. Drill does not need
to know data structure before starting processing it as it is able to discover a
data schema on-the-fly regardless of an input format. A query is automatically
compiled and re-compiled during the execution phase, based on the actual
data flowing through the system[53]. Due to this mechanism Drill can process
even data with evolving schema or schema-less data (such as MongoDB or
raw files). However, Drill is not about denying data schemas at all – when it
comes to handling data with known predefined schema (for example, NoSQL
database tables, Avro, Parquet etc.), it is leveraged during a querying process.

Drill features a JSON data model[54] which allows querying both fixed-
schema and schema-free data formats at the same time. Inside of the engine,
all input data regardless of its format are transformed to a JSON structure
which standartizes the following process of querying them. It distinguishes
Drill from most of traditional query engines on the market relying on a rigid
relational data models. The main benefit of this approach is that it allows the
engine to process both schema-fixed and schema-free formats and does not
make any di�erence between processing flat and nested records.

Because of Drill’s distributed architecture, Drillbits can be run on any
machine in a cluster – including those storing the data. It allows leveraging
i.e. data locality – ability to process the data directly where it resides without
moving it over the network. It significantly reduces latency and the risk of
data loss thus improving engine’s reliability and end user experience.

Drill adopts an optimistic execution model to process queries[45]. Queries
execution is meant to be lightweight and fast process with as few obstacles
and dependencies as possible: in-memory execution eliminates errors while
accessing the disk, data locality prevents issues with transporting the data
over the network etc. Therefore, Drill considers failures appearance to be

21

2. Practical part

highly unlikely. However, on the node level Drill is able to handle failures and
rerun the failed query.

2.2.4 Presto

2.2.4.1 Overview

Presto is an open source distributed SQL query engine for running interactive
analytic queries against data sources of all sizes[56]. The idea behind is to
allow quick, high-performance processing of data no matter where they are
stored and at the same time avoid complex ETL operations before. This
engine was designed for ad-hoc quering data in real time, so typically a query
is executed in a range of minutes.

Developed by Facebook, Presto was successfully adopted in many compan-
ies and received many positive references. In 2015, Teradata started actively
contributing to Presto and later became the first commercial vendor to o�er
enterprise support for it[57]. This has a�ected Presto a lot as more and more
organizations (including bigger ones) started using, and, consequently, con-
tributing by either fixing the most obstructing bugs or implementing missing
features. Needless to say, di�erent organizations bring up changes which are
the most relevant for them developing Presto in various ways. But altogether
all these changes allow the whole project to evolve, grow and become more
mature.

2.2.4.2 Architecture

Figure 2.2.4.2 describes a basic idea of Presto architecture.

Figure 2.4: Presto architecture[58]

The concept of Presto as a distributed query engine is to assign di�er-
ent types of work to di�erent nodes – single instances of Presto installed on

22

2.2. Overview of separate engines

machines. There are two types of nodes: a coordinator and workers. Coordin-
ator can be considered as a control center of the whole engine: it parses query
statements, plans the query running and manages workers. To plan queries,
coordinator creates a logical model and translates it into separate tasks which
are then transmitted to workers. Workers, in turn, execute tasks obtained
from the coordinator and process data accordingly by fetching it from con-
nectors and exchange intermediate data with each other[59]. The coordinator
is also responsible for all communication between the engine and the client in
both ways: it obtains queries to execute and fetches the result from workers
to return it to the client.

Connector is another important part of Presto. In essence, it is an al-
ternative for database drivers (such as JDBC or ODBC) allowing Presto to
interact with a resource using a standard API[59]. Out-of-the-box, Presto
contains several basic connectors, but there are also plenty of third-party de-
velopers providing connectors for connecting to a broad variety of di�erent
datasources (such as Cassandra, Kafka, MongoDB, MySQL etc.).

Every connector is mounted in a separate catalog – a structure keeping
information about schemas and tables. Catalog references data sources via
connectors[59]. In order to query a table from a specified schema, both the
table and the schema should be defined in the corresponding catalog. Catalogs
are created by adding properties files into the specified system folder. Every
SQL statement is run against one or several catalogs allowing user to query
various data sources with a single SQL statement.

Another component essential for querying data is Hive metastore. Presto
uses it in the same way as Hive – for accessing metadata stores in separate
storage through a service exposed by Hive metastore.

Presto’s architecture can be described as in-memory which means that all
queries are executed in memory. It significantly increases execution speed as
intermediate results are not written on disk, so the engine does not spend
time on additional I/O operations during execution. On the other hand, it
a�ects engine’s ability to handle queries which need more memory than a node
has available. Such queries are usually killed by Presto with an appropriate
exception risen. Such approach enables more e�ective memory allocation for
a big number of smaller tasks but in order to allow execution of bigger ones it
is required to configure spilling to disk. It is an advanced technology allowing
to use a disk as storage for intermediate data to overcome the memory limit.
However, spill-to-disk is not a silver bullet: there is still a chance of failure
during dividing intermediate data or loading it from the disk; at the same
time, not all operations support spilling to disk, and each handles spilling
di�erently[61].

23

2. Practical part

2.2.4.3 Key features

Presto is able to run queries combining data from multiple di�erent data
storage at the same time. It only requires having corresponding connectors
configured for all data sources which should be queried and Presto will do
the rest. This allows running analytic processes across all data available, no
matter where and how they are stored which might be especially beneficial in
the case of multiple datastores used in the same organization.

Teradata was participating in Presto’s development not only by contribut-
ing to its codebase. In 2016, Teradata announced the certification of multiple
business intelligence (BI) and visualization solutions on the Teradata Dis-
tribution of Presto[62]. Practically it means that Presto can be seamlessly
integrated to various infrastructures which use these BI tools and thus lever-
aged in a di�erent data analytics pipelines. It implies the fact that more and
more companies are able to use Presto (or at least to give it a try) without
a need to rebuild already existing infrastructure. And same as for any open-
source project, growing community makes bigger impact and helps to develop
more mature and tuned product.

Presto queries are written in ANSI-compatible SQL. It ensures seamless
adopting Presto into already existing data analytic infrastructures as there is
no need to transform already existing queries. At the same time, it makes
Presto usage easier for analysts and developers as it does not require learning
any additional language or specific SQL dialect for working with it.

Presto supports multiple file formats, mostly Hadoop ones: plain text,
SequenceFile, RCFile, ORC and Parquet[63]. Also, Presto features supporting
multiple compression codecs such as Snappy, LZ4 and gzip.

The only thing needed for starting using Presto is to set up a cluster
and configure its nodes. The process is quite straightforward and does not
require any complex orchestration or multistage deployment – it it enough to
install Presto package on machines, modify the configuration files, and then
simply start Presto with a single command. At the same time, Presto is not
exacting when it comes to hardware requirements; a cluster may be built with
commodity servers or even in a virtualized environment. Another options
(which might be even more relevant nowadays) is to run a Presto in the cloud
using Amazon Web Services. Amazon EMR, a managed Hadoop framework
for processing data across dynamically scalable Amazon EC2 instances[64],
allows not to care about capacity stats, scaling, monitoring or securing a
cluster and can be set up swiftly.

Presto is highly configurable: the whole engine can be tuned to perform
its best even in cases of specific tasks or problems appearing. It is possible to
specify the amount of JVM memory reserved for accounting purposes, allow
memory spilling, set a number of threads used by exchange clients to fetch
data from other Presto nodes, select a library for regular expression functions
and many others[60]. Even greater flexibility is achieved by ability to configure

24

2.3. Final report

every node separately and independently from other nodes.
Speaking about fault tolerance, Presto sacrifices it to have faster query

processing as it was primarily designed for running short interactive queries.
Therefore, if a process fails while processing, the whole query must be re-
run which requires re-reading data from the data source and re-computing
all intermediate data. On the other hand, Presto’s execution speed is high
enough to allow re-running failed queries without any major decrease in overall
performance.

As regarding user interfaces, Presto can be controlled and operated via
either a command-line interface or some of GUI consoles (mostly web-based).
Presto CLI provides a terminal-based interactive shell for running queries[65].
If there is a need to have more user-friendly interface or to provide a wider or
more sophisticated functionality, it is worth considering deploying some web
console in addition to the built-it CLI. Presto has its own solution in a form
of web interface for monitoring and managing queries[66]. After spinning it
up on some HTTP port and opening the corresponding URL in a browser, the
console displays a list of queries with its basic information, such as ID, state,
percentage completed etc. A more detailed information about a single query
can be obtained by clicking on its ID, which leads to a page containing graph-
ical representation of various stages of the query and a list of tasks[66]. Also,
this page has a button for killing currently running query which is especially
useful for solving problems with blocked queries. In addition to the built-in
web console, there are several GUI components designed by third-party de-
velopers. They have very di�erent features (from advanced query editors to
proxy servers), which makes them a good alternative to the default one.

Another way or running queries is using Presto libraries for di�erent pro-
gramming languages. It allows to start query execution directly from the
source code and is used mostly in some automated scripts or more complic-
ated applications using Presto as one of its components. It gives a lot of
opportunities to harness Presto by integrating it in more complex data pro-
cessing workflows or to already existing infrastructures.

2.3 Final report

2.3.1 Comparison criteria

When choosing any software component, it is important to review and evaluate
di�erent aspects of all technologies to assess its capabilities and understand
whether it is suitable for a particular use case. At the same time, as SQL en-
gines are meant to be a part of a complex composite system, it is important to
take into account not only its own feature but also the way other infrastructure
components are implemented to avoid integration issues.

25

2. Practical part

2.3.1.1 Deployment options

Nowadays there are two main models for application deployment based on
di�erent computing solutions: on-premise and cloud.

On-premise means that the whole infrastructure is hosted and controlled
by an organization using it. It includes both setting up and maintaining hard-
ware appliance, infrastructure, network, operating system etc. This model
requires both material and time initial investments, as it is necessary not only
to purchase component itself but also spend some time and put an e�ort into
making all of them work together. At the same time, on-premise infrastructure
can be tailored to particular needs and gives total control over entire system;
moreover, separate parts of an already existed system can be modified with
changing requirements. However, the responsibility for seamless usage might
be challenging it is necessary to ensure that a system is stable and robust
enough to handle the load.

Cloud computing enables leveraging already existing system resources and
preconfigured services hosted by a third-party provider. Instead of setting
up own cluster and managing all the dependencies, users simply connect to
a cloud platform, request for creating new instances and within minutes have
them up and running and vice versa: if for some reasons too much resources
were acquired, unused instances can be e�ortlessly shut down. It is possible
to provision the exact amount of resources that is needed at the moment and
then scale up or down easily as needs are changing. Cloud computing helps
to optimize operational costs as it charges only for the resources which were
actually consumed. A service provider is also in charge of ensuring resources
availability and seamless user experience. Nevertheless, using cloud computing
services implies certain restrictions and has its drawbacks. As all resources
are fully owned and controlled by a provider, customization options are very
limited therefore configuration set by him cannot be modified significantly.
Another thing is that to be processed on a third-party provided appliance,
data must be accessible for him which can cause certain concerns when it
comes to sensitive or confidential information.

It’s also important to consider how the rest of infrastucture components
are deployed; if some of them is already running in the cloud it may make
sense to bring the rest to the cloud as well.

2.3.1.2 Support provided

Most of big data software products are supposed to be used and maintained by
persons having certain skillset and experience. It is caused not by its design,
but the overall complexity of tasks solved with them. Naturally any organ-
ization sooner or later runs across some problems while operating a system,
especially a complex one. Solving them is time-consuming and forces to switch
the focus to troubleshoot a system instead of actually leveraging it.

26

2.3. Final report

Companies selling commercial solutions usually provides support and helps
customer to deal with any issues occuring during the software exploitation.
However, when it comes to open-source products, the situation is di�erent: as
there is no single vendor supplying it, support can not be provided by the de-
veloper company (as there is not any). Nevertheless, open-source products can
be also supported but in a slightly di�erent manner. Some software companies
(for example, Cloudera and Hortonworks) o�er complex platforms consisted of
multiple open-source components with additional enhancements. These solu-
tions or its separate parts could be purchased for free; however, it is not about
them put to the market by itself but paid subscription for support provided
for them. Moreover, such solutions are mostly e.g. enterprise-ready which
means they are suitable for being used in larger organizations and fully meet
their needs.

Getting professional support from third party vendors allows companies
avoid wasting human resources on operating and troubleshooting infrastruc-
ture and focus on leveraging it instead. It makes perfect sense, especially for
more complex and intricate systems where issues naturally occur oftentimes,
can be di�cult to solve and require a certain level of skills and experience
from specialists working on them. After all, tools should serve people’s needs
and if it requires inexpedient amount of e�ort put to make it work it probably
does not worth it and alternative options for implementing an infrastructure
should be considered.

2.3.1.3 Supported data sources and file formats

Engine’s capability of accessing and processing data stored in a certain way is
one of the most important consideration in the designing a data analytics in-
frastructure. Every engine is optimized for processing particular data formats
and able to access particular data storages.

Probably the key factor determining a list of engines to choose from is a
kind of data needs to be analyzed. Is it some already existing, historical data
or a workflow will start processing only new data coming once the whole thing
is set? Most of SQL engines are optimized to perform the best working with
certain file formats and are able to access specific datastores. For historical
data it should be decided either to search for an engine capable of working
e�ciently with existing data storage set-up or consider transforming it in a
way allowing data to be processed by a particular suitable engine. If currently
there are multiple di�erent datastores used it might be reasonable to stand-
ardize and centralize them either by moving all data to a single storage or
with implementing data staging. Although it would require some additional
work (amount of which may vary depending on solution complexity), it allows
leveraging more engines, not only those capable of querying multiple resources
at the same time.

27

2. Practical part

However, if a pipeline is being implemented from the scratch and there
are no prerequisites given by existing datasets, an engine can be chosen based
foremost on its performance and features provided and then set a data storage
infrastructure accordingly; the same idea applies for data formats.

In the end it is about tailoring the infrastructure for data or vice versa, so
trade-o�s are inevitable.

2.3.1.4 System requirements

As any other software, SQL engines have specific hardware and software re-
quirements. Although most of them are more like a guideline rather than
necessity, fulfilling them helps to operate the entire infrastructure in a more
e�ective way and optimize cooperative usage of hardware and software.

Hardware requirements usually specify such system parameters as CPU
performance, amount of RAM available, and storage capacity. Software re-
quirements define an operating system and necessary software components
installed, such as particular runtimes, drivers etc.

Unlike hardware requirements, software ones are mostly absolutely neces-
sary to fulfill as without it an engine will not be able to run at all while
unsuitable hardware would most probably just make it work unstably. At
the same time, it is easier to tailor a system to have software requirements
fulfilled as it can be done by installing missing components (which is usually a
trivial task) but changing hardware configuration is more complex operation.
At some cases system requirements, especially hardware ones can be satisfied
only with on-premise deployment as not all cloud resources can be tailored
according to them.

2.3.1.5 Customization options

SQL engines are meant to solve a wide variety of tasks; however, it is not
always possible to do it leveraging only out-of-the-box features. For handling
more sophisticated use cases some engines provide various possibilities for
enhancing or expanding its functionality. The most common customization
aspect is file formats or data storages that can be queried with this engine.
For additional file formats support there is an option to implement custom
SerDe (serializator/deserializator) telling an engine how the particular format
should be read and parsed. Likewise, custom or third-party storage connectors
or database drivers can be used to expand data storage connectivity.

Another option for engine enhancement is extending SQL (or its dialect)
functionality via user defined functions (UDF). The point of UDF is trans-
forming complex composite queries into reusable functions. Once a function
is implemented in some programming language, compiled to a library and de-
ployed alongside an engine, it can be called and used as any standard SQL

28

2.3. Final report

function. Using UDF makes it easier to operate with complex calculations,
nested aggregations and sophisticated requests.

Without doubts, engine customization may be very handy; on the other
hand, it requires certain skills to implement them and ensure that it works
correctly in all cases. Also, not all engines provide customization capabilities
and it should be taken into consideration, especially when it is known from
the beginning that needs might require some more specific functionality.

2.3.1.6 Data model required

In order to process the data, an engine needs to know its structure to be able
to parse them and get actual information from it. These metadata can be
either given to an engine directly or derived by it during reading. In the first
case information about data structure and type can be define in a storage
layer (for example, HDFS folder structure) or a self-describing file format
(such as Parquet). But necessity of explicitly defining and providing this
information might be inconvenient when it comes to work with unstructured
data or multiple di�erent data storages at the same time. For handling these
cases it is practical to use engines implementing i.e. schema on read concept
when data are translated into some standartized structure during reading
them regardless of its input format.

Thereby, a choice of an SQL engine may depend on a way metadata are
handled. If data to process are unstructured or non-uniform and an organ-
ization wants to avoid setting up an ETL process to enrich or unify them,
then an engine featuring schema on read should be used; although they are
usually slower and exacting when it comes to system resources, it still might
be more feasible than putting an e�ort into data preprocessing. On the other
hand, metadata may be already provided by the data layout and especially
when performance matters, it worth leverage them with an engine optimized
to work with it.

2.3.2 Comparison table
The following table sums up an overview of key aspects of all engine studied
in this thesis.

29

2. Practical part

Figure 2.5: Table comparing chosen engines

30

2.4. Use case examples

2.4 Use case examples

2.4.1 Apache Hive

Presume having various log about all kinds of activity users perform working
with an application. It can be timestamps, location codes, items they search
for, devices used etc. For a service provider it would be really useful to have
resources to discover patterns in users’ actions, track down their preferences,
determine the most popular items in order to know what exactly is happening
inside, how people are using the product, what they are interested in – and
Hive can help to do it.

Possible scenario here is to store all log files on HDFS and periodically
run analytical jobs either on all existing data or only on separate partitions;
Hive is able to consume and process any data which needs to be analyzed
regardless of its format. Output of these jobs can be used for creating vari-
ous reports summing up multidimensional parameters; integrating Hive with
business intelligence tools can make this process even easier. As this type
of data analytics does not required to have job results immediately, longer
execution time does not matter here. Jobs execution can be scheduled and
synchronized, for example, with regular data updates when batches of latest
records are added either to existing datasets or uploaded to new partitions.

Hive is a powerful tool helping to answer big questions about trends, dy-
namics, resources usage and other high-level aspects of any activity; it is per-
fect for batch processing with high throughput and ETL workloads. There-
fore, typical use case for it is comprehensive analytics on larger heterogeneous
datasets. Hive is capable of aggregating and processing enormous data sets as
all queries are converted to separate jobs executed via optimized computing
frameworks. Although it makes processing significantly slower, obtained res-
ults juxtapose all desired aspects and provides all information which can be
extracted from the data.

2.4.2 Apache Impala

Big data analytics technologies unlock new opportunities in the retail sec-
tor; probably the most significant of them is predictive analytics on sales
data. Findings based on consumers behavior help understand their needs
and therefore better meet demand, optimize costs and tailor a product range
accordingly. For getting these insights, business users need to have an infra-
structure for accessing, exploring and analyzing all sales data which requires
robust data analytics platform capable of low-latency processing records from
di�erent sources.

When it comes to larger, enterprise-like organizations, Hadoop ecosystem
is one of the most popular options for building big data infrastructure. It
provides components for data storing, integration, aggregation, task schedul-

31

2. Practical part

ing, service orchestration and resource management. Once data located in
Hadoop need to be processed for getting actual insight, Impala can help with
interactive exploratory analytics using classic SQL. It has flawless integration
with the whole ecosystem and is optimized to share data with other Hadoop
components which eliminates latency as there is no need to move data across
a cluster. Impala enables harnessing data with running ad hoc queries in real
time when results are returned in a matter of minutes or even seconds while
multi-user concurrency ensures smooth operating even for bigger number of
users. Moreover, full support for Impala is provided by Cloudera, one of the
main Apache Hadoop vendors; purchasing this option can help organizations
to focus on actual leveraging tools for using data instead of spending time
maintaining and troubleshooting it.

2.4.3 Apache Drill

Various Internet of Things (IoT) platforms have been around for several years
already implemented in di�erent organizations. In recent times ideas of coup-
ling them with big data have been becoming more and more popular as IoT
systems provide a lot of data and metrics naturally and utilizing it with data
analytics techniques can unlock new opportunities for leveraging obtained in-
formation in a beneficial way.

Consider, for example, data-gathering sensors installed on vehicles used
for particular operations. Depending on a vehicle type, they can measure and
monitor such parameters as fuel consumption, speed, mileage, idling time,
routes taken etc. Gathering and analyzing this information can help to find
patterns, correlations, deviations and based on it make predictions about com-
ponents’ state in the near future or find how to optimize the way systems are
operating. For example,

• determine when a preventive maintenance should be performed for a
particular engine

• find an optimal route to reduce fuel consumption

• rebalance load to avoid some machines being idle while other are over-
loaded

However, sensor data are often stored in specific formats which also can
evolve over time with changing physical appliance or its settings. Besides
that, new records are submitted regularly, usually with a high frequency and
need to be processed as soon as possible together with those submitted before.
Apache Drill suits well to these requirements and therefore can be leveraged
e�ectively in data analytics infrastructures integrated with IoT platforms. It
does not require any data preprocessing and is able to query structured and
schema-free data. Data structure is discovered right in the moment of reading,

32

2.4. Use case examples

so even input with evolving schema can be processed. Drill is fast and can be
used for interactive investigative analytics as well as for operational reporting
with leveraging both historical and recently added data at the same time.

2.4.4 Presto
Nowadays decision-making processes are becoming more data driven as an
amount of available information to take into account is increasing. Consider,
for example, online shopping. Each user opening web pages of online shop is
tracked with cookies files storing data about pages he has visited, actions he
has performed there, time spent etc. These data are propagated to a database
on a backend and can be used for various marketing purposes. For example,
if it is not the first time the particular user is browsing through the shop,
a special algorithm can propose him similar items he may be interested in
or those related to already viewed ones. For choosing them it runs queries
against the database to find out what has user been searching before, what
he was interested in the most, what are his preferences etc. and based on this
information selects items to suggest; it can also search for users with similar
preferences and recommend items they have viewed or bought. The same
principle works for advertisement shown to a user based on his search queries
and pages viewed.

Such tasks require tools for getting quick insights and ad hoc querying
capable of running short interactive queries with low latency. In a big data
world Presto is a perfect choice for these purposes. It can query various data
sources at the same time and provide insights within minutes. Besides its
performance, Presto is relatively user-friendly and provides multiple options
for managing and using it which makes it accessible not only for data analytics
specialists but also for business user.

In general, Presto is good for OLAP type workloads when data need to
be analyzed from multiple perspectives and interactive data exploration when
users need to answer some specific questions about data quickly. At the same
time, it does not require to have all data located at some specific storage which
makes it especially useful for running analytics on already existing heterogen-
eous data.

33

Conclusion

Constantly growing value of information compels organizations to manage
and use data they have to get or keep competitive advantage and adapt to
the environment. The only way to transform data into usable insights is
to harness them with data analytics which requires leveraging corresponding
infrastructure.

Big data concept has become really important since it was a completely
new approach bringing number of opportunities, problems to solve and busi-
ness growth to cover. That therefore led to the emergence of many solutions
for implementing big data principles.

Market research has shown that there are dozens of options for building
analytical platforms today and it thus might be quite challenging to choose
the most suitable components.

The key to establish an e�ective data processing workflow is to thoroughly
define tasks and approaches to their solving along with desired system capab-
ilities. As a central operational element, an SQL engine should be optimized
and suitable for given type of workload to provide end users with exact results
in an appropriate manner. Naturally, all components have di�erent system
requirements which together with requirements to the entire system lead to
inevitability of trade-o�s. E�cient infrastructure thus requires proper general
design to avoid complex orchestration and performance issues.

According to the thesis objectives, several SQL engines have been reviewed
and analyzed; based on these findings, a summarizing report comparing them
has been created. To define comparison criteria, such aspects of big data
analytics systems as design, workflows, patterns and best practices have been
studied.

However, it is impossible to predict exact behavior of the entire system
without actually using it in production environment. Infrastructure may re-
quire partial or complete redesign at any stage of implementation or exploit-
ation as technologies evolve and needs change. Nevertheless, basic principles
for choosing technologies remain the same and can be used regardless of or-

35

Conclusion

ganization type where a resulting system is deployed.
Of course, the analytical platform by itself is not a silver bullet and cannot

give answers to all of the questions; it is just a tool giving specialists an ability
to inspect data in detail. If being used correctly, then they can make a huge
impact on a business.

As big data sphere constantly develops, new software products are being
implemented and appear on the market; they implement more sophisticated
solutions, are faster and more robust than their predecessors. Approaches
and techniques evolve covering more of use cases and solving wider variety
of tasks. Analytical systems will be most likely implemented in the future
everywhere where there is enough data to process possibly making big data
one of IT industry standards.

Every software ever developed was created to solve a specific problem.
However, big data opens the door to entirely new discipline of preventing
problems and that might be the most significant asset of every single emerging
tool at the moment.

36

Bibliography

[1] Reinsel, D; Gantz, J.; Rydning, J.: Data Age 2025: The Evolution of
Data to Life-Critical. 2017. Available from:
https://www.seagate.com/files/www-content/our-story/trends/

files/Seagate-WP-DataAge2025-March-2017.pdf

Last accessed on 2017-10-28

[2] Marr, B.: A brief history of big data everyone should read. 2015. Available
from:
https://www.weforum.org/agenda/2015/02/a-brief-history-of-

big-data-everyone-should-read/

Last accessed on 2017-10-28

[3] CAP theorem – Wikipedia
https://en.wikipedia.org/wiki/CAP_theorem

Last accessed on 2017-11-20

[4] Consistency (database systems) – Wikipedia
https://en.wikipedia.org/wiki/Consistency_(database_systems)

Last accessed on 2017-11-20

[5] Lipcon, T.: Design Patterns for Distributed Non-Relational Databases.
Available from: http://cloudera-todd.s3.amazonaws.com/nosql.pdf

Last accessed on 2017-11-28

[6] Brewer, E.: CAP Twelve Years Later: How the ”Rules” Have Changed
https://www.infoq.com/articles/cap-twelve-years-later-how-

the-rules-have-changed

Last accessed on 2017-11-29

[7] Pritchett, D.: BASE: An Acid Alternative. ACM Queue, Volume 6 Issue
3, 2008: p.48-55

37

https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.weforum.org/agenda/2015/02/a-brief-history-of-big-data-everyone-should-read/
https://www.weforum.org/agenda/2015/02/a-brief-history-of-big-data-everyone-should-read/
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Consistency_(database_systems)
http://cloudera-todd.s3.amazonaws.com/nosql.pdf
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Bibliography

[8] Big data architecture
http://bigdata.teradata.com/US/Big-Ideas/Big-Data-

Architecture/

Last accessed on 2018-4-2

[9] George, L.: Getting Started with Big Data Architecture. 2014. Available
from http://blog.cloudera.com/blog/2014/09/getting-started-

with-big-data-architecture/

Last accessed on 2018-5-9

[10] DIKW pyramid – Wikipedia. Available from: https:

//en.wikipedia.org/wiki/DIKW_pyramid#/media/File:DIKW_

Pyramid.svg

Last accessed on 2017-12-20

[11] Data analysis – Wikipedia
https://en.wikipedia.org/wiki/Data_analysis

Last accessed on 2017-12-5

[12] How companies are using big data and analytics
https://www.mckinsey.com/business-functions/mckinsey-

analytics/our-insights/how-companies-are-using-big-data-

and-analytics

Last accessed on 2017-12-5

[13] What is data analytics (DA)?
http://searchdatamanagement.techtarget.com/definition/data-

analytics

Last accessed on 2017-12-5

[14] What is Data Analytics: Definition – Informatica US
https://www.informatica.com/services-and-training/glossary-

of-terms/data-analytics-definition.html

Last accessed on 2017-12-5

[15] Four Types of Big Data Analytics and Examples of Their Use
http://www.ingrammicroadvisor.com/data-center/four-types-of-

big-data-analytics-and-examples-of-their-use

Last accessed on 2017-12-5

[16] Moreno, H.: Data Analytics Is No Longer A Nice Option – It’s The Core
Of The Enterprise. 2017.
https://www.forbes.com/sites/forbesinsights/2017/06/12/data-

analytics-is-no-longer-a-nice-option-its-the-core-of-the-

enterprise

Last accessed on 2017-12-11

38

http://bigdata.teradata.com/US/Big-Ideas/Big-Data-Architecture/
http://bigdata.teradata.com/US/Big-Ideas/Big-Data-Architecture/
http://blog.cloudera.com/blog/2014/09/getting-started-with-big-data-architecture/
http://blog.cloudera.com/blog/2014/09/getting-started-with-big-data-architecture/
https://en.wikipedia.org/wiki/DIKW_pyramid#/media/File:DIKW_Pyramid.svg
https://en.wikipedia.org/wiki/DIKW_pyramid#/media/File:DIKW_Pyramid.svg
https://en.wikipedia.org/wiki/DIKW_pyramid#/media/File:DIKW_Pyramid.svg
https://en.wikipedia.org/wiki/Data_analysis
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/how-companies-are-using-big-data-and-analytics
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/how-companies-are-using-big-data-and-analytics
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/how-companies-are-using-big-data-and-analytics
http://searchdatamanagement.techtarget.com/definition/data-analytics
http://searchdatamanagement.techtarget.com/definition/data-analytics
https://www.informatica.com/services-and-training/glossary-of-terms/data-analytics-definition.html
https://www.informatica.com/services-and-training/glossary-of-terms/data-analytics-definition.html
http://www.ingrammicroadvisor.com/data-center/four-types-of-big-data-analytics-and-examples-of-their-use
http://www.ingrammicroadvisor.com/data-center/four-types-of-big-data-analytics-and-examples-of-their-use
https://www.forbes.com/sites/forbesinsights/2017/06/12/data-analytics-is-no-longer-a-nice-option-its-the-core-of-the-enterprise
https://www.forbes.com/sites/forbesinsights/2017/06/12/data-analytics-is-no-longer-a-nice-option-its-the-core-of-the-enterprise
https://www.forbes.com/sites/forbesinsights/2017/06/12/data-analytics-is-no-longer-a-nice-option-its-the-core-of-the-enterprise

Bibliography

[17] Apache HiveTM

https://hive.apache.org/

Last accessed on 2017-12-9

[18] ApacheTM Hadoop R•o�cial website
http://hadoop.apache.org/

Last accessed on 2017-12-9

[19] Apache Impala o�cial website
https://impala.apache.org

Last accessed on 2017-12-10

[20] Chen, Y. et al.: How Impala Scales for Business Intelligence: New Test
Results. 2015.
http://blog.cloudera.com/blog/2015/09/how-impala-scales-for-

business-intelligence-new-test-results/

Last accessed on 2018-2-7

[21] Impala Overview
https://www.tutorialspoint.com/impala/impala_overview.htm

Last accessed on 2017-12-10

[22] Kornacker, M. et al.: Impala: A Modern, Open-Source SQL Engine
for Hadoop. CIDR 2015. Available from: http://cidrdb.org/cidr2015/

Papers/CIDR15_Paper28.pdf

Last accessed on 2017-12-13

[23] Ghat, D.; Rorke, D.; Kumar, D.: New SQL Benchmarks: Apache Impala
(incubating) Uniquely Delivers Analytic Database Performance. 2016.
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-

apache-impala-incubating-2-3-uniquely-delivers-analytic-

database-performance/

Last accessed on 2017-12-9

[24] Rahn, G.; Mokhtar, M.: Apache Impala Leads Traditional Analytic
Database. 2017.
https://blog.cloudera.com/blog/2017/04/apache-impala-leads-

traditional-analytic-database/

Last accessed on 2017-12-9

[25] TPC-DS – Homepage
http://www.tpc.org/tpcds/

Last accessed on 2017-12-9

[26] Setting Up HiveServer2
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+

HiveServer2

Last accessed on 2018-1-30

39

https://hive.apache.org/
http://hadoop.apache.org/
https://impala.apache.org
http://blog.cloudera.com/blog/2015/09/how-impala-scales-for-business-intelligence-new-test-results/
http://blog.cloudera.com/blog/2015/09/how-impala-scales-for-business-intelligence-new-test-results/
https://www.tutorialspoint.com/impala/impala_overview.htm
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
https://blog.cloudera.com/blog/2017/04/apache-impala-leads-traditional-analytic-database/
https://blog.cloudera.com/blog/2017/04/apache-impala-leads-traditional-analytic-database/
http://www.tpc.org/tpcds/
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2

Bibliography

[27] Natkins, J.: How-to: Analyze Twitter Data with Apache Hadoop. 2012.
http://blog.cloudera.com/blog/2012/09/analyzing-twitter-data-

with-hadoop/

Last accessed on 2018-1-25

[28] Interface SerDe
https://hive.apache.org/javadocs/r1.2.2/api/org/apache/hadoop/

hive/serde2/SerDe.html

Last accessed on 2018-1-25

[29] Hive Language Manual
https://cwiki.apache.org/confluence/display/Hive/

LanguageManual

Last accessed on 2018-1-26

[30] Hive Data Definition Language
https://cwiki.apache.org/confluence/display/Hive/

LanguageManual+DDL

Last accessed on 2018-1-26

[31] deRoos, D.: Hadoop For Dummies. IDG Books, 2014. ISBN 978-
1118607558

[32] Hive Data Manipulation Language
https://cwiki.apache.org/confluence/display/Hive/

LanguageManual+DML

Last accessed on 2018-1-26

[33] LanguageManual SubQueries
https://cwiki.apache.org/confluence/display/Hive/

LanguageManual+SubQueries

Last accessed on 2018-1-26

[34] Hive Transactions
https://cwiki.apache.org/confluence/display/Hive/Hive+

Transactions

Last accessed on 2018-1-26

[35] Apache Hive – Wikipedia. Available from: https://en.wikipedia.org/

wiki/File:Hive_architecture.png

Last accessed on 2018-1-27

[36] Hive HPL/SQL
https://cwiki.apache.org/confluence/pages/

viewpage.action?pageId=59690156

Last accessed on 2018-1-28

40

http://blog.cloudera.com/blog/2012/09/analyzing-twitter-data-with-hadoop/
http://blog.cloudera.com/blog/2012/09/analyzing-twitter-data-with-hadoop/
https://hive.apache.org/javadocs/r1.2.2/api/org/apache/hadoop/hive/serde2/SerDe.html
https://hive.apache.org/javadocs/r1.2.2/api/org/apache/hadoop/hive/serde2/SerDe.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SubQueries
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SubQueries
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
https://en.wikipedia.org/wiki/File:Hive_architecture.png
https://en.wikipedia.org/wiki/File:Hive_architecture.png
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=59690156
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=59690156

Bibliography

[37] Impala Frequently Asked Questions
https://www.cloudera.com/documentation/enterprise/5-9-x/

topics/impala_faq.html

Last accessed on 2018-2-6

[38] Impala Requirements
https://impala.apache.org/docs/build/html/topics/impala_

prereqs.html

Last accessed on 2018-2-5

[39] Apache Impala – Overview. Available from https://impala.apache.org/

overview.html

Last accessed on 2018-5-9

[40] Impala Schema Objects and Object Name
https://www.cloudera.com/documentation/enterprise/5-4-x/

topics/impala_schema_objects.html

Last accessed on 2017-12-10

[41] Using Impala with the Amazon S3 Filesystem https://

impala.apache.org/docs/build/html/topics/impala_s3.html

Last accessed on 2017-12-10

[42] Overview of Impala Databases
https://www.cloudera.com/documentation/enterprise/5-4-x/

topics/impala_databases.html

Last accessed on 2018-2-6

[43] Overview of Impala Tables
https://www.cloudera.com/documentation/enterprise/5-4-x/

topics/impala_tables.html

Last accessed on 2018-2-6

[44] Drill Introduction
https://drill.apache.org/docs/drill-introduction/

Last accessed on 2018-1-10

[45] Architecture – Apache Drill
https://drill.apache.org/architecture/

Last accessed on 2018-1-11

[46] Finley, K.: Google’s Real Time Big Data Tool Cloned By Apache Drill.
2012.
https://techcrunch.com/2012/08/17/googles-real-time-big-data-

tool-cloned-by-apache-drill/

Last accessed on 2018-1-11

41

https://www.cloudera.com/documentation/enterprise/5-9-x/topics/impala_faq.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/impala_faq.html
https://impala.apache.org/docs/build/html/topics/impala_prereqs.html
https://impala.apache.org/docs/build/html/topics/impala_prereqs.html
https://impala.apache.org/overview.html
https://impala.apache.org/overview.html
https://www.cloudera.com/documentation/enterprise/5-4-x/topics/impala_schema_objects.html
https://www.cloudera.com/documentation/enterprise/5-4-x/topics/impala_schema_objects.html
https://impala.apache.org/docs/build/html/topics/impala_s3.html
https://impala.apache.org/docs/build/html/topics/impala_s3.html
https://www.cloudera.com/documentation/enterprise/5-4-x/topics/impala_databases.html
https://www.cloudera.com/documentation/enterprise/5-4-x/topics/impala_databases.html
https://www.cloudera.com/documentation/enterprise/5-4-x/topics/impala_tables.html
https://www.cloudera.com/documentation/enterprise/5-4-x/topics/impala_tables.html
https://drill.apache.org/docs/drill-introduction/
https://drill.apache.org/architecture/
https://techcrunch.com/2012/08/17/googles-real-time-big-data-tool-cloned-by-apache-drill/
https://techcrunch.com/2012/08/17/googles-real-time-big-data-tool-cloned-by-apache-drill/

Bibliography

[47] Drill Proposal
https://wiki.apache.org/incubator/DrillProposal

Last accessed on 2018-1-11

[48] Friedman, E.:Apache Drill: Tracking its history as an open source
community. 2015.
http://radar.oreilly.com/2015/09/apache-drill-tracking-its-

history-as-an-open-source-community.html

Last accessed on 2018-3-22

[49] Architecture Introduction – Apache Drill https://drill.apache.org/

docs/architecture-introduction/

Last accessed on 2018-3-22

[50] Apache Zookeeper
https://zookeeper.apache.org/

Last accessed on 2018-2-7

[51] Core Modules – Apache Drill
https://drill.apache.org/docs/core-modules/

Last accessed on 2018-2-7

[52] Connect a Data Source Introduction
https://drill.apache.org/docs/connect-a-data-source-

introduction/

Last accessed on 2018-3-19

[53] Frequently Asked Questions – Apache Drill
https://drill.apache.org/faq/

Last accessed on 2018-1-11

[54] Apache Drill – Schema-free SQL Query Engine for Hadoop, NoSQL and
Cloud Storage
https://drill.apache.org/

Last accessed on 2018-1-11

[55] Apache Drill
https://mapr.com/products/apache-drill/

Last accessed on 2018-1-11

[56] Presto — Distributed SQL Query Engine for Big Data
https://prestodb.io/

Last accessed on 2017-12-29

[57] Open Source Presto: Now Ready for the Enterprise
http://assets.teradata.com/resourceCenter/downloads/

Datasheets/EB8901.pdf

Last accessed on 2018-3-11

42

https://wiki.apache.org/incubator/DrillProposal
http://radar.oreilly.com/2015/09/apache-drill-tracking-its-history-as-an-open-source-community.html
http://radar.oreilly.com/2015/09/apache-drill-tracking-its-history-as-an-open-source-community.html
https://drill.apache.org/docs/architecture-introduction/
https://drill.apache.org/docs/architecture-introduction/
https://zookeeper.apache.org/
https://drill.apache.org/docs/core-modules/
https://drill.apache.org/docs/connect-a-data-source-introduction/
https://drill.apache.org/docs/connect-a-data-source-introduction/
https://drill.apache.org/faq/
https://drill.apache.org/
https://mapr.com/products/apache-drill/
https://prestodb.io/
http://assets.teradata.com/resourceCenter/downloads/Datasheets/EB8901.pdf
http://assets.teradata.com/resourceCenter/downloads/Datasheets/EB8901.pdf

Bibliography

[58] Presto (SQL query engine) – Wikipedia. Available from: https:

//en.wikipedia.org/wiki/Presto_(SQL_query_engine)#/media/File:

Wiki_arch.png

Last accessed on 2018-5-9

[59] 1.2. Presto Concepts – Presto 0.200 Documentation
https://prestodb.io/docs/current/overview/concepts.html

Last accessed on 2018-5-9

[60] 4.3. Properties Reference – Presto 0.200 Documentation
https://prestodb.io/docs/current/admin/properties.html

Last accessed on 2017-12-30

[61] 4.4. Spill to Disk – Presto 0.200 Documentation
https://prestodb.io/docs/current/admin/spill.html

Last accessed on 2017-12-29

[62] Business Intelligence Leaders Join with Teradata to Enhance Presto for
the Enterprise
https://www.prnewswire.com/news-releases/business-

intelligence-leaders-join-with-teradata-to-enhance-presto-

for-the-enterprise-300290497.html

Last accessed on 2018-3-18

[63] Presto — Overview
https://prestodb.io/overview.html

Last accessed on 2018-3-4

[64] Amazon EMR – Amazon Web Services
https://aws.amazon.com/emr/

Last accessed on 2018-3-7

[65] 2.2. Command Line Interface – Presto 0.200 Documentation
https://prestodb.io/docs/current/installation/cli.html

Last accessed on 2018-1-2

[66] 4.1. Web Interface – Presto 0.200 Documentation
https://prestodb.io/docs/current/admin/web-interface.html

Last accessed on 2018-1-2

43

https://en.wikipedia.org/wiki/Presto_(SQL_query_engine)#/media/File:Wiki_arch.png
https://en.wikipedia.org/wiki/Presto_(SQL_query_engine)#/media/File:Wiki_arch.png
https://en.wikipedia.org/wiki/Presto_(SQL_query_engine)#/media/File:Wiki_arch.png
https://prestodb.io/docs/current/overview/concepts.html
https://prestodb.io/docs/current/admin/properties.html
https://prestodb.io/docs/current/admin/spill.html
https://www.prnewswire.com/news-releases/business-intelligence-leaders-join-with-teradata-to-enhance-presto-for-the-enterprise-300290497.html
https://www.prnewswire.com/news-releases/business-intelligence-leaders-join-with-teradata-to-enhance-presto-for-the-enterprise-300290497.html
https://www.prnewswire.com/news-releases/business-intelligence-leaders-join-with-teradata-to-enhance-presto-for-the-enterprise-300290497.html
https://prestodb.io/overview.html
https://aws.amazon.com/emr/
https://prestodb.io/docs/current/installation/cli.html
https://prestodb.io/docs/current/admin/web-interface.html

Appendix A
Acronyms

ANSI American National Standards Institute

API Application programming interface

BI Business intelligence

CLI Command-line interface

DML Data modification language

ETL Extract, transform, load

HDFS Hadoop distributed file system

HTTP Hypertext Transfer Protocol

IT Information technology

JDBC Java Database Connectivity

JVM Java virtual machine

ODBC Open Database Connectivity

PL/SQL Procedural Language/Structured Query Language

RDBMS Relational database management system

RPC Remote procedure call

SQL Structed query language

URL Uniform Resource Locator

45

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
table.pdf the comparison table in PDF format

47

	Introduction
	Theoretical part
	What is big data
	What is Data Analytics
	Big data analytics for business

	Practical part
	List of engines to compare
	Overview of separate engines
	Final report
	Use case examples

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

