
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434653Osobní číslo:HerbertJméno:UllrichPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové systémyStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Uživatelsky rozšiřovatelná grafová databáze

Název bakalářské práce anglicky:

User Extensible Graph Database

Pokyny pro vypracování:
Design and implement an application capable of adding into a graph database such graphs which are not structural
duplicates of any other graph in the database. The problem of duplicates is equivalent to the problem of graph isomorpism
which is not theoretically solved yet. Examine and evaluate available SW tools which can be used for practical isomorphism
verification in a large collection containing at least tens of millions of graphs. Select an appropriate tool and demonstrate
its range of applicability in database graphs.felk.cvut.cz.
Design and at least partially implement a system capable of maintaining in the database an information whether various
important classes of graphs are completely stored in the database. Typically, such classes are characterized by a
combination of a few graph properties, like order, size, regularity, connectivity, etc. The functionality of the system might
not be entirely automated, an occasional intervention of graph expert would be an acceptable feature of the system.
Your applications are to be accessible through the web interface created by other authors. Provide an appropriate
programmer documentation of your project.

Seznam doporučené literatury:
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms, 3rd ed., MIT Press, 2009
[2] J. Matoušek, J. Nešetřil: Kapitoly z diskrétní matematiky, Karolinum, 2010
[3] R. Sedgewick: Algorithms in C Part 5: Graph Algorithms (3rd Edition), Addison-Wesley Professional, 2002
[4] J. Demel: Grafy a jejich aplikace, Praha, Academia, 2002

Jméno a pracoviště vedoucí(ho) bakalářské práce:

RNDr. Marko Genyk-Berezovskyj, katedra kybernetiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 25.05.2018Datum zadání bakalářské práce: 31.01.2018

Platnost zadání bakalářské práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryRNDr. Marko Genyk-Berezovskyj

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

User extensible graph database
Preventing duplicates and deciding class completeness

over a large set of graphs

Herbert Ullrich
Open informatics - Software Engineering

May 2018
http://graphs.felk.cvut.cz
Supervisor: RNDr. Marko Genyk-Berezovskyj

http://graphs.felk.cvut.cz

Acknowledgement / Declaration

I would like to thank to:
RNDr. Marko Genyk-Berezovskyj for

all the good advice and optimism he
gave me.

My girlfriend, Elena Lecce, for main-
taining patience with me throughout the
writing process.

Petr Olšák for the CTUstyle2 template
and to the developers of GraphViz graph
visualisation, that greatly improved the
aesthetic look of the thesis.

I declare that I have written the
bachelor thesis completely by myself
and that all sources and means are
properly cited.

In Prague, May 25th, 2018

. .

iii

Abstrakt / Abstract

Tento dokument zkoumá dostupné al-
goritmy a software použitelný pro za-
bránění výskytu isomorfů (strukturních
duplikátů) v početné a dále rozšiřitelné
množině grafů a pro rozhodování, zda
je specifická třída grafů v databázi pří-
tomna kompletně.

Pro tyto problémy navrhuje dvě prak-
tická řešení – kanonické značení grafů v
databázi pomocí nauty a ad-hoc algo-
ritmus “count all – find superclass” pro
poloautomatické rozhodování. Obě im-
plementuje v podobě příspěvku do pro-
jektu Web Graph Service na graphs.
felk.cvut.cz

Klíčová slova: grafy; isomorfismus
grafů; nauty; kanonické značení; třídy
grafů; kompletnost dat

This document investigates specific
algorithms and software available, that
could be used for maintaining a large
and extensible set of graphs without
isomorphs (structural duplicates) and
for deciding whether it contains some
specific classes of graphs in their en-
tirety.

Furthermore, it suggests two practi-
cal solutions for these problems – nauty
canonical labeling of the database and
a “count all – find superclass” semiau-
tomated decisioning ad hoc algorithm,
both of which were contributed to the
project of the Web Graph Service on
graphs.felk.cvut.cz

Keywords: graphs; graph isomor-
phism; nauty; canonical labeling, graph
classes; data completeness

iv

graphs.felk.cvut.cz
graphs.felk.cvut.cz
graphs.felk.cvut.cz

Contents /

1 Introduction .1
1.1 Graph database1
1.2 Examples of graph databases. . . .1
1.3 Web Graph Service2
1.4 Motivation .2

2 Graph isomorphism4
2.1 Isomorphism detection.4
2.2 Isomorphisms in a graph

database .4
2.2.1 On-insert isomorphism

check .5
2.2.2 Available software for

isomorphism check6
3 Graph canonization7
3.1 Software for graph canoniza-

tion .7
3.2 graph6 format .8

3.2.1 Format description.8
3.2.2 Representing a graph

using a graph6 format8
3.2.3 Parsing graph6 format.9

3.3 Canonized graph database.9
3.3.1 Benchmarks 10

4 Class completeness 11
4.1 Loose formal definition of

the problem . 11
4.2 List of possible approaches 11
4.3 Relaxations to the counting

approach . 12
4.3.1 Simulating the oracle

access . 12
4.4 Count all – Find superclass

algorithm . 13
4.4.1 Subclass – superclass

principles 13
4.4.2 Count all 13
4.4.3 Find superclass 14

5 Implementations 16
5.1 Compute properties and in-

sert graph . 16
5.2 “Count all – Find super-

class” graph counter 18
5.2.1 Configuring the class

inclusion rules through
the Python API 19

5.2.2 Count all — no NULLS
heuristics 20

6.3 Recommendations. 22
References . 24

A Data used for visualisations 27
A.1 Batch canonical labeling

with nauty and Traces 27
A.2 Adding heuristics to the

“count all” procedure 28
B Contents of the attached CD 29
C Glossary . 30

v

Tables / Figures

3.1. Examples of graph6 graph
representation .9

4.1. Sizes of graph classes on n
vertices . 13

2.1. Three drawings of graph K3,3 . . .4
3.1. Canonical labeling of a single

graph benchmarks.7
3.2. Example of conversion to

graph6 .8
3.3. Comparison of nauty and

Traces . 10
5.1. Entity diagram of graph WGS

counter. 18
5.2. Count all — “No NULLS”

heuristics performance impact . 21

vi

Chapter 1
Introduction

There are many collections of graphs available on-line, some of which contain as much
as hundreds of millions of them, such as [1] and [2].

Large sets of graphs could be used for various academic purposes, such as finding a
challenge for graph algorithms, counting or even enumerating all the graphs of given
class. Their use is, however, limited by their unsortedness. One can not easily query
graphs matching a specific conditions without having to parse the graph files progra-
matically as they are typically not in a human-readable format.

1.1 Graph database
Construction 1.1. graph database1 Let’s have a quadruple D = (G, f, R,m) where
m ∈ Z, G is a finite set of simple graphs, f = (f1, . . . , fm) is an m-tuple of functions,
R = (R1, . . . , Rm) is an m-tuple of sets and fi : G 7→ Ri for i ∈ {1, . . . ,m}. We call D
a graph database if:

1. There exists a function query from set of all possible m-tuples v = (v1, . . . , vm), vi ∈
Ri to the set of all subsets of G, such that for every graph G ∈ G:

G ∈ query(v1, . . . , vm)⇐⇒ ∀i ∈ {1, . . . ,m} : vi = fi(G)

2. For anyG ∈ G values f1(G), . . . , fm(G) can be enumerated in Θ(m|G|) or Θ(m·log|G|)
i. e. all the values are precomputed and stored in a (possibly ordered) tabular structure
having one line for every G ∈ G

We then introduce the terms width of the database, denoted as w(D) = m and size
of the database, denoted |D| = |G|

1.2 Examples of graph databases
All the following statements on the size, width and other properties of the databases are
actual to the date May 20. 2018

House of Graphs [4] lists 13,343 graphs it claims to be interesting. There are 33
graph properties (invariants) listed for every graph, that are not always fully computed.
Graphs are identified by their adjacency matrix and — in a user-friendly manner —
a picture. This, however, makes it hard for the database to be accessed programatically
(taking in account, that the adjacency matrices exceeding certain dimension are not
being displayed in its interface).

1 We use the term of graph database in the sense of “database that contains graphs”. In other literature
graph database can also mean a database engine that “stores the data in a graph structures”, such as
neo4j [3]. This kind of graph databases is nowhere else referred to, throughout the thesis, to avoid the
possible misinterpretation.

1

Introduction . 1.3 Web Graph Service

Encyclopedia of Graphs [5] offers 23 collections of a combined size of 2, 949, 675
graphs1. Note that the collections overlap (e. g. every strongly regular graph is also a
regular graph), hence the actual size of the database is smaller. The visualisations of
the graphs are generated from their sparse6 encoding, that is stored on its server. The
user interface emphasizes browsing a single collection of graphs having some common
properties, not giving user the access to the entire data. The data is exportable in CSV
format, however, the graphs can not be easily parsed from it, as they are, on output,
represented by an identifier rather than a graph encoding.

ToTo Tree Width Webservice [6] is a graph database with a narrow focus on the tree
width graph property, which can be used to decide other graph properties in a fast
manner. It implements several interesting ideas, such as distributing the workload of
the tree width computation to its clients. The database is accessible through an open
API and contains the graph6 encodings of the graph. The size of the database is not
public, its width is limited to 7 properties related to tree width.

1.3 Web Graph Service
The idea behind the project is to build a database bigger and wider that any of the
previously mentioned. A database to contain at least tens of millions of graphs, with an
emphasis on the completeness of the graph classes stored in it. Generally speaking, it
could provide a supportive environment for the novel algorithms, matching them against
the complete sets of possible input and enable the quantitative research approach over
its giant data set, which could be then used as a kind of a graph corpus.

The Web Graph Service (hereinafter referred to as WGS), strives to be the biggest
open graph database offering millions of graphs queriable by their properties, such as a
specific order or chromatic number, through an easy-to-use webpage and an API.

The project was assembled with a size of ∼ 19·106 graphs and introduced in June 2017
by the author of this thesis, Herbert Ullrich and RNDr. Marko Genyk-Berezovskyj. The
source and look of WGS and its maintenance tools preceding this thesis (and the ones
of Tomáš Roun [7] and Sergej Kurbanov [8]), was preserved on [9] and [10] respectively.

The ongoing further research is desirable, as (of June 2017):. more graph properties could be supported. user experience could be enhanced by replacing the plain HTML user interface with a
more aesthetical one. maintenance tools written in Java perform well, but do not integrate a third party
software that would make computing the graph properties easy for the administration. user is a mere consumer of the data, who can not participate in collecting it. there is not a clear statement on the class completeness of the database (like the one
on [5]), so the user can not easily know if the data returned to him is complete or
partial

1.4 Motivation
The possibility of users adding graphs into the database is very valuable way of involv-
ing the end user in any graph database. It can both provide an interesting data for the
database and prevent a possible user’s frustration over a missing data.
1 As the database does not make an explicit statement on its size, this number was mined using a

JavaScript snippet browsing through the pages of http://atlas.gregas.eu/collections

2

http://atlas.gregas.eu/collections

Introduction . 1.4 Motivation

However, in order to maintain the integrity of the database and to prevent abuse,
several problems have to be dealt with, the hardest of them being the graph isomor-
phism problem (GI). Graph database, that would prevent the user from inserting any
graph that is isomorphic to any graph already in the database, would keep its space
complexity reasonable over time and ensure never listing the same graph twice.

Maintaining an information on whether the queried graph classes are completely
stored in the database would raise its sovereignty, by having means to show the user if
the data output to him is complete. If it is, the user would have to search no more and
go straight to utilizing the queried data for his or her purpose. As we are practically
talking about classes of graphs given by ∼ 40 properties, each having at least two
possible values, the full manual configuration is not an option. The reasoning should
therefore be semiautomated.

The following chapters aim to give practical solutions for the both aformentioned
problems and to explain their theoretical background. Both the solutions were already
contributed to the project of WGS and are to be seen working live on http://graphs.
felk.cvut.cz (as of May 2018)

3

http://graphs.felk.cvut.cz
http://graphs.felk.cvut.cz

Chapter 2
Graph isomorphism

Definition 2.1. An isomorphism of graphs G1 and G2 is a bijection between the vertex
sets of G1 and G2

f : V (G1) 7→ V (G2)

such that any two vertices u and v of G1 are adjacent if and only if f(u) and f(v)
are adjacent in G2. If an isomorphism exists between two graphs, then the graphs are
called isomorphic and denoted as G1 ' G2. In the case when the function is a mapping
of a graph onto itself, i.e., when G1 and G2 are one and the same graph, the function
is called an automorphism of G2 [11].

1

4 5 6

2 3

G1: G2: G3:

³

°

¯

®

²

±

f
c

b

a

e

d

Figure 2.1. Three drawings of graph K3,3. Every function f : V (Gx) 7→ V (Gy) mapping
a vertex of Gx to a vertex of Gy with the same color is an isomorphism of Gx and Gy.

(x, y ∈ {1, 2, 3})

2.1 Isomorphism detection
Isomorphism detection is an example of a problem with an unknown complexity [12],
as there are many algorithms known efficient for a specific graph classes, but there is
no general polynomial time algorithm discovered yet. In his recent paper, László Babai
claimed the graph isomorphism problem to be quasipolynomial time complex [13]. The
claim has been first withdrawn, then restored in January 2017 [14] as a mistake was
found in the analysis and as it was modified.

2.2 Isomorphisms in a graph database
There are several ways of handling isomorphisms in a graph database D

. Storing every graph in its every structural rotation would, to put it bluntly, bloat
the database through the roof. It would suddenly become very difficult to store and
maintain a complete collection of graphs in all their isomorphs even on a small graph

4

Graph isomorphism 2.2 Isomorphisms in a graph database

order. For example, there are 268,435,456 labeled graphs having an order of 8 [15].
Knowing that there are only 12,346 unlabeled graphs of the order 8 [16], we are
dealing with an overhead of 268,423,110 graphs sharing all the attributes with some
other graph in D.. Relying on the isomorphic graphs not being inserted is highly risky. A Graph
database, once populated, might become a rich source of information providing e.g.
a count of graphs having specific attributes or a complete list of them.

Whereas the sequences counting labeled graphs satisfying a certain condition on
n nodes can often be expressed through combinatorics the problem of expressing the
number of unlabeled graphs on n nodes typically requires building all the graphs
matching and counting them. Therefore a database containing a complete collection
of graphs of a given order would carry valuable data useful to enumerate and verify
these sequences.

Having a single isomorph inserted in the database by accident or a malicious user
would corrupt this entire data.. Asserting the non-isomorphism of the stored graphs could be very expensive, as
it could require lengthy attribute checks to determine if the graph being inserted
is not present in the database yet, in any possible structural rotation. Even with
the possibility of performance impact, asserting the non-isomorphism of all graphs
in database is still the most efficient way of minimizing its space complexity and
maximizing its informational value.

2.2.1 On-insert isomorphism check
Theorem 2.1. Let G1 = (VG1 , EG1) and G2 = (VG2 , EG2) be isomorphic graphs. Then
they have the same number of vertices and the same number of edges [17]
Theorem 2.2. Let f : G1 → G2 be a graph isomorphism and let v ∈ VG1 . Then
deg(f(v)) = deg(v) [17]
Corollary 2.3. Let G1 and G2 be isomorphic graphs. Then they have the same degree
sequence. [17]

From that, we can easily design an algorithm like the one loosely outlined in 2.2.1
(note that it can be easily expanded for the general case of D with m columns, possibly
containing NULL property values, by querying them aswell).

The time complexity of algorithm 2.2.1 is proportional to O(|D|) · T (G ' H), as it
iterates through O(|D|) graphs and checks the isomorphism against each. (T (G ' H)
denotes the complexity of deciding the graph isomorphism between G and H.)

Note that this differs from the näıve approach only by filtering out the unnecessary
checks against graphs that were precomputed with at least one different significant
attribute (f1, . . . , f4).

Performance for inserting multiple graphs could be enhanced e. g. by querying all
the suspected graphs in the database at once and then sorting them (and the input) by
their properties. Therefore, the query for every one of them would be saved, while still
matching every input against the same, correct, number of graphs.

Advantages of this approach are that it assumes nothing about the format of graphs
stored in D and that the assertion of equal significant properties usually filters out
the vast majority of graphs in D, making the running time feasible. Having a D
populated only with graphs that passed the check in 2.2.1 would ensure the absence of
isomorphisms in D.

Disadvantage of this approach is the performance in the worst case (e. g. groups
of strongly regular graphs sharing all the significant properties). Also making O(|D|)

5

Graph isomorphism 2.2 Isomorphisms in a graph database

Input:

1. Graph database D = (G, f, R,m) such that m = 4 and ∀G ∈ G, G =
(V,E):

(a) f1(G) = |V |
(b) f2(G) = |E|
(c) f3(G) =“degree sequence of G”

(d) f4(G) = |“connected components of G”|

i. e. a database table of five columns including the graph representation,
with all the values necessarily precomputed

2. Graph H = (VH , EH)

3. Function query as from construction 1.1 (invariant 1 holds ∀G ∈ G)

Output true if H is isomorphic to any graph in G, false otherwise

1: procedure ShouldBeInserted
2: h← (|VH |, |EH |, |“degree sequence of H”|,|“ con. components of H”|)
3: H← query(h1, h2, h3, h4)
4: for all G ∈ H do
5: if G ' H then
6: return true
7: return false

1

Algorithm 2.2.1. On-insert isomorphism check

isomorphism evaluations on every insert makes it not suitable to perform a batch in-
sertion.

2.2.2 Available software for isomorphism check
Even though the graph isomorphism problem (GI) is being argued to be solvable in
a quasipolynomial time exp((log n)O(1)) [13], the exponential worst-case complexity
software is still being used as the most common practice.

However the algorithms listed below tend to detect the isomorphism in a very fast
manner with their worst cases being rare. All the competitive algorithms listed below
are based on building a search tree of graph colourings.

. nauty created by Brendan D. McKay [18] [19] with a key concept of partition (colour-
ing) refinement, decides the isomorphism by searching for the graph’s automorphism
group or canonical labeling building a search tree of its possible colourings (with an
empty colouring being its root) depth-first, keeping its lexicographically smallest leaf
and pruning wherever possible [20]. It is still being likely the most used and one of
the fastest competitive programs for deciding the GI problem (since its introduction
in 1981).. Traces by Adolfo Piperno [19] introduces a different order of building the tree, as a
variant of breadth-first order [20]. With the breadth-first order’s obvious disadvan-
tage in not knowing the leaves, that would enable the pruning, in time, it first builds
an “experimental path” for every node in the graph in order to find some.. saucy by Paul T. Darga and others [21] reimplemented the original nauty algorithm
from [18] with several new ideas, running very fast on large and sparse graphs.. Bliss by Tommi Juntilla and Petteri Kaski [22] also based around the original nauty
idea, leading it to a fast sollution for some originally difficult graphs.

6

Chapter 3
Graph canonization

Definition 3.1. a canonical form (also referred to as a canonical labeling) of graph G
is a labeled graph Canon(G) that is isomorphic to G, such that every graph that is
isomorphic with G has the same canonical form as G [23]

Canonical labeling thus enables an efficient test of graph isomorphism, as it is easier
to check the equality of two graphs than their isomorphism.

3.1 Software for graph canonization
Of the programs listed in 2.2.2, nauty, Traces and Bliss implement the graph canoniza-
tion. Numerous experiments on them were arranged and published by Adolfo Piperno
on [24]. Let us therefore reprint the ones we consider interesting.

Random strongly regular graph

Vertex-transitive graph (tran family)

Random graph (edge probability=.5)

Latin square graph

Figure 3.1. Canonical labeling of a single graph benchmarks. Figure reprinted from [24].

7

Graph canonization . 3.2 graph6 format

Now, before applying the principles of canonical labeling to solve our concrete prob-
lem, let us examine the data format used in WGS (of May 2018) for the graph repre-
sentation.

3.2 graph6 format
Quoting the documentation on [25]: “graph6 and sparse6 are formats for storing graphs
in a compact manner, using only printable ASCII characters. Files in these formats have
text type and contain one line per graph”.

This section will be rather detailed, so that it could be republished to introduce the
users of WGS to the form of data they are facing.

3.2.1 Format description
Simply put, for n < 63, a graph6 string representation of a graph G, |G| = n can be
obtained as follows:

1. Make adjacency matrix M = (mi,j) of G. For a simple undirected graph it is sym-
metric and it only contains zeros and ones

2. Construct a bitstring s = (m1,2,m1,3,m2,3,m1,4,m2,4,m3,4, . . . ,mn−1,n), i. e. the
upper triangle of M without its main diagonal, read by columns

3. Pad s with zeros on the right to make its length a multiple of 6
4. Put byte b1 = ||n+ 63||2 (pad with zeros on left if necessary)
5. Partition s to m = |s|/6 partitions of length 6 s1, . . . , sm

6. Put byte bi = si−1 + ||63||2 for i ∈ {2, . . . ,m+ 1}
7. Output an ASCII interpreted string of bytes b1, . . . , bm+1

For 62 < n < 236 procedure works analogously, with the step 4 altered to spread n
over 4 (if n < 258, 047) or 8 bytes [26].

Space complexity of graph6 representation of graph G is therefore Θ(|G|2) where |G|
denotes the order of G. See table 3.1 for practical examples.

Knowing that the G is large and sparse (i. e. its adjacency matrix is very similar
to the zero matrix), sparse6 format can be used instead, in order to save space, as its
space complexity is incremental to the one of the edge list of G rather than its adjacency
matrix1 [26].

3.2.2 Representing a graph using a graph6 format

1 2

3

4

5

Figure 3.2. An instance graph G to be converted in graph6 format
Example 3.1. give a graph6 string representing graph G from figure 3.2 by following
the procedure from 3.2.1:
1 This behavior is not implemented in WGS (as of May 2018), henceforth in this thesis the sparse6 will

not be discussed as a mean of storing and comparing graphs, even though it well could be.

8

Graph canonization 3.3 Canonized graph database

1. Adjacency matrix of G is M =

0 1 1 1 1
1 0 0 0 1
1 0 0 0 0
1 0 0 0 0
1 1 0 0 0

2. Construct s = 1101001100
3. |s| = 10, therefore 2 zeros are appended. s = 110100110000
4. |G| = 5, b1 = ||68||2 = 01000100
5. Partition s to s1 = 110100 and s2 = 110000
6. Put b2 = 110100 + 111111 = 01110011, b3 = 110000 + 111111 = 01101111
7. Output string Dso (ASCII 01000100, 01110011, 01101111)

Result can be checked by e. g. using the compute & insert utility of WGS at http://
graphs.felk.cvut.cz/computer. In table 3.1, more examples of graphs and their
graph6 representations are given.

Graph G |G| Adj. matrix of G graph6 ASCII

1 1 0 @ 01000000

1
2 2 0 1

1 0 A 01000001
01011111

1 2

3

3
0 1 1
1 0 1
1 1 0

Bw 01000010
01110111

6

5
1

2

3

4

6

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
1 1 1 1 1 0

E?Bw

01000101
00111111
01000010
01110111

Table 3.1. Sample of simple graphs and their graph6 representation

3.2.3 Parsing graph6 format
Parsing graph6 string into a graph can be easily reverse engineered from the procedure
in 3.2.1, basically reversing the order of steps.

3.3 Canonized graph database
Claim 3.1. Two simple undirected graphs are the same if and only if their graph6
representation strings equal.
Corollary 3.2. Two graphs G1 and G2 are isomorphic if and only if the graph6 repre-
sentation of their canonical labels equal.

From that we can easily construct an algorithm asserting the absence of isomorphisms
in a graph databaseD, simply by performing string comparisons of the graph6 canonical

9

http://graphs.felk.cvut.cz/computer
http://graphs.felk.cvut.cz/computer

Graph canonization 3.3 Canonized graph database

labels stored in it. Such algorithm requires the entire database and the input to be
canonically labeled, but can perform as fast as in Θ(log|D|) with the same results as
the algorithm 2.2.1.

An algorithm for the graph insertion is rather trivial, utilising technologies such
as an SQL unique constraint, in PostgreSQL implemented via a B-tree structure [27]
sorting the graph6 strings lexicographically, ensuring the aformentioned performance
and taking up Θ(|D|) space [28]. Implementation given in 5.1.1.

3.3.1 Benchmarks
For a database as big as WGS we consider crucial its ability to label a big number of
graphs canonically in an efficient manner at once (as the populating of the database with
a new set of graphs could become a common scenario). Since the graph storage format
of the database is to be graph6 [7], bliss falls from consideration, as it works with the
DIMACS format with a single graph on input.

Canonical label of all graphs from 1 to 10 vertices

10-4

10-3

10-2

10-1

100

101

102

T
im

e
[s

]

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Set of graphs

nauty traces

Figure 3.3. Comparison of nauty and Traces canonical labeling algorithms. Gi denotes the
set of all graphs on i vertices (note that the |Gi| increases asymptotically in Ω(i!), see 4.1).

Full data in appendix A.1

The suggested approach to maintain a graph database D isomorphism-free is there-
fore by only storing canonical forms of the graphs, sorted (possibly by their graph6
string representation lexicographically) and protected from duplicates.

The canonical labeling algorithm chosen for the use in WGS is then nauty, since the
small graphs are the core topic of WGS (as of May 2018) and on the small graphs it
outperforms Traces as much as thrice (figure 3.3, table A.1). Also it stays feasible
for the most of the other cases, even though its theoretical worst-case complexity is
exponential.

10

Chapter 4
Class completeness

For a graph database as big as the WGS, there is a need to know which graph classes
(groups of graphs of specific order, size, . . .) are stored completely in it. It can then
inform its users whether the data returned to their query is complete, i. e. there exists
no graph that satisfies their query and misses in the database. It would also help its
propagation, giving a catalogue of the complete collections user can browse via WGS.

This chapter gives several suggestions on how to partially solve these tasks in a
practical instance and addresses their weaknesses, as the decisioning process is usually
vulnerable to a bad quality of data, in our case mainly NULL values where some graph
property is expected.

4.1 Loose formal definition of the problem
Convention 4.1. Let us relax the term graph property condition (hereinafter referred to
simply as a condition) a little. It will usually be mentioned in a relation to some graph
database D = (G, f, R,m), constraining some of the properties from f to yield a specific
functional value for the graphs satisfying the condition. As the functions in f typically
stand for some actual graph property (such as a graph order), term will be also used for
graphs not included in D, having this property. To avoid misinterpretation, conditions
will be always given in human language.
Convention 4.2. Let us call a set of all unlabeled (i. e. not containing an isomorphic
couple) simple undirected graphs satisfying every element of some set of conditions C a
graph class satisfying C. Graph classes are typically infinite, unless the conditions give
an upper bound for the order of graphs in it.
Problem 4.3. Given a set of conditions C and a graph database D = (G, f, R,m) that
does not contain an isomorphic couple of graphs output whether the classX satisfying C
is stored completely in the database D. We say that a graph class X is stored completely
in a graph database D = (G, f, R,m) if:

∀G ∈ X : G ∈ G

Solving problem 4.3 is trivial if X is infinite, as then there must always exist a graph
in X that is absent in G, which must be finite (see 1.1). Let us therefore focus just on
the case where the properties give an upper bound of the graph order.

4.2 List of possible approaches
Näıve approach would be enumerating every graph from class X satisfying C (using a
generator such as geng [29]) and checking its presence through querying it in D. That
would lead to a good solution, yet perform quite poorly. The complex task being not
only querying the database |X| times, but also extrapolating X from C.

11

Class completeness 4.3 Relaxations to the counting approach

Now, presume we have an access to an oracle Ω, that, given a set of conditions C,
outputs the size of X satisfying C in Θ(1):

Ω(C) = |X|

The counting approach would then be to compute the size of set XD = G ∩ X and
compare it with Ω(C). The result will be correct, as:

Ω(C) = |XD| ⇐⇒ |X| = |XD| ⇐⇒ |{G : G ∈ X}| = |{G : G ∈ X ∧G ∈ G}| ⇐⇒

⇐⇒ |{G : G ∈ X ∧G /∈ G}| = 0 ⇐⇒ ∀G ∈ X : G ∈ G (4.3)
Time complexity of this approach would therefore be Θ(1) + T (|XD|), where T (|XD|)
denotes the complexity of counting all the graphs from D satisfying C.

In our case, presuming that all the graph properties in D are fully computed (i. e.
no NULLs are present in D), the |XD| can be computed using a PostgreSQL COUNT query
which should perform in linear worst case complexity, with a further optimisation if an
index-restricted COUNT is performed [30].

4.3 Relaxations to the counting approach
As the counting approach was shown in previous section to give a correct solution in
reasonable time, it would be desirable to implement a solution based on it. However,
the approach relies on having an oracle access to the size of any graph class, which can
be as hard to compute as enumerating that entire class. It also presumes no empty
fields are present in the database which is very optimistic, as also graph properties can
be very hard to compute, and therefore left empty, until the solution is found.

In order to give a practical solution, relaxations need to be introduced, as the pre-
sumptions of the pure counting approach above are unrealistic.

4.3.1 Simulating the oracle access
The task to give a size of X that satisfies some conditions C is usually very complex.
With that being said, there are also many applications (e. g. in chemistry, cryptogra-
phy), that could benefit from the result being precomputed in a trustworthy manner.
To that end, several rigorous sources were founded for storing this data, in form of an
integer sequences.

The On-line Encyclopedia of Integer Sequences is the biggest rigorous source of pre-
computed values of integer sequences, 8, 981 of them matching the keyword “graphs”
(as of May 2018) [31]. The collection was started by N. J. A. Sloane in 1964 and contin-
ues to this day. There are numerous contributors expanding its content and verifying
it. And, as of March 6th 2018, there are already 6,358 works citing it [32]. This data
could possibly be repurposed for the use in WGS, if the results computed using it would
always be signed with a reference to the OEIS sequence they presume to be correct as
all the decisioning faults could then be traced back to their source.

For the specific problem 4.3, OEIS sequences that are applicable usually give a number
of all unlabeled graphs on n nodes having some property. I. e. |X| for class X that
satisfies {c, ∀G ∈ X : “G has n vertices”} for some condition c. See table 4.1 for
practical examples.

Hence, the oracle access can be simulated using OEIS for graph classes satisfying two
conditions, one of them asserting a specific order of graph, the other asserting some
other graph property. Size of graph classes satisfying more than these two conditions
remains unknown and requires a more sophisticated approach to be derived.

12

Class completeness 4.4 Count all – Find superclass algorithm

c [“∀G ∈ X : . . .”] |X| for n = 1, 2, 3, . . . OEIS ID

TRUE 1, 2, 4, 11, 34, 156, 1044, 1044, 12346, 274668, 12005168, . . . A000088

G is a tree 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, . . . A000055

G is a forest 1, 2, 3, 6, 10, 20, 37, 76, 153, 329, 710, 1601, 3658, 8599, . . . A005195

G is a cactus 1, 1, 2, 4, 9, 23, 63, 188, 596, 1979, 6804, 24118, 87379, . . . A000083

G is vertex-transitive 1, 2, 2, 4, 3, 8, 4, 14, 9, 22, 8, 74, 14, 56, 48, 286, 36, 380, 60, . . . A006799

G is circulant 1, 2, 2, 4, 3, 8, 4, 12, 8, 20, 8, 48, 14, 48, 44, 84, 36, 192, 60, . . . A049287

G is Hamiltonian 1, 0, 1, 3, 8, 48, 383, 6196, 177083, 9305118, 883156024, . . . A003216

χ(G) = 3 0, 0, 1, 3, 16, 84, 579, 5721, 87381, 2104349, 78315231, . . . A076279

ω(G) = 4 0, 0, 0, 1, 4, 30, 301, 4985, 142276, 7269487, 655015612, . . . A052452

Table 4.1. Size of graph class X satisfying C = {c, “∀G ∈ X : G has n vertices”} listed on
Online Encyclopedia of Integer Sequences. χ denotes chromatic number, ω denotes clique

number.

4.4 Count all – Find superclass algorithm

4.4.1 Subclass – superclass principles
Convention 4.4. Let us call class X̂ that contains every graph from class X a superclass
of X, denoted as X̂ ⊇ X or X ⊆ X̂.

∀G ∈ X : G ∈ X̂

Claim 4.5. For a class X satisfying set of conditions C, any class X̂ satisfying Ĉ ⊆ C
is its superclass.
Claim 4.6. If any class X̂ is stored completely in the graph database D, then also all
classes X such that X ⊆ X̂ are stored completely in D
Corollary 4.7. Problem 4.3 can be easily solved for set of conditions C if any class X̂
satisfying Ĉ ⊆ C is known to be stored completely in D

From that and from the table 4.1, we can already construct a simple two-phase
algorithm, that first builds the partial oracle simulation from the data available and then
substitutes the condition sets unknown by it with the others, satisfied by a superclass
of the original X.

4.4.2 Count all
Procedure, that outputs a function mapping the graph classes of a known size to the
boolean value that says whether the class is stored completely in D

13

https://oeis.org/A000088
https://oeis.org/A000055
https://oeis.org/A005195
https://oeis.org/A000083
https://oeis.org/A006799
https://oeis.org/A049287
https://oeis.org/A003216
https://oeis.org/A076279
https://oeis.org/A052452

Class completeness 4.4 Count all – Find superclass algorithm

Input:
1. A graph database D with all properties computed on every graph
2. n ∈ Z
3. Set C = {C1, . . . , Cn} where Ci is some set of conditions for i ∈ 1, . . . , n
4. Set Ω = {Ω1, . . . ,Ωn} where Ωi ∈ Z0 for i ∈ 1, . . . , n
Output a function mem: C 7→ {true, false} such that:

mem(Ci) = true iff Xi satisfying Ci is completely stored in D

1: procedure CountAll
2: i← 1
3: while i < n do
4: Compute |XDi

| ←“number of all graphs in D satisfying Ci”
5: if |XDi | = Ωi then
6: mi ← true
7: else
8: mi ← false

9: i← i + 1

10: return mem : Ci → mi for i ∈ {1, . . . , n}

1

Procedure count all 4.4.3, given sets {C1, . . . , Cn}, {Ω1, . . . ,Ωn} listing e. g. the
condition sets from 4.1 and their |X| values respectively outputs the class completeness
knowledge represented by mem. Note that the procedure time complexity is

O(n) · T (|XDi |) = O(|D| · n) using PostgreSQL
and that its output can change only if the D has been altered. Therefore, it can be
used as an installation script and called e. g. once a day.

4.4.3 Find superclass
Algorithm, that outputs whether a class of graphs X satisfying given C is known to be
completely stored in the given D

Input:
1. A function mem(Ĉ) = true iff X̂ satisfying Ĉ is completely stored in D

As from the count all algorithm
2. Function conditionsThatAreImpliedBy mapping a single condition to a

set of conditions.
3. n ∈ Z0

4. Set of conditions C = {c1, . . . , cn}
Output true if X that satisfies C is known to be stored completely in D,

false otherwise

1: procedure DoesCompletelyStoredSuperclassExist
2: i← 1
3: len← n
4: while i ≤ len do
5: for all c ∈ conditionsThatAreImpliedBy(ci) do
6: if c /∈ C then
7: len← len + 1
8: clen ← c
9: C ← {c1, . . . , clen}

10: for all Ĉ ⊆ C do
11: if mem(Ĉ) = true then return true

12: return false

1

Procedure find superclass, on the other hand, should be called on every user’s query
on D as if any well-populated (installed) function mem is available, it can translate
various condition sets to the ones that are in the domain of mem.

14

Class completeness 4.4 Count all – Find superclass algorithm

A supervisor (hereinafter referred to as a “graph expert”) can furthermore config-
ure the function conditionsThatAreImpliedBy to make the function try to substitute
irresolvable conditions for the ones that are known to be completely stored in D (for
example “if all bipartite graphs on n vertices are stored, then so are all the trees on n
vertices”). For that, a simplified program API would be desirable.

As menacingly as the steps 10–11 might look for the time complexity of the algorithm,
we show them to be resolvable with a single query to the mem (if it is represented by
an SQL table) in the documented code on the attached CD.

15

Chapter 5
Implementations

As the previous chapters deal with the the theoretical aspects of the problems researched
in this thesis, this chapter aims to show and explain their practical instances, on the
code contributed to Web Graph Service.

The code snippets in this chapter usually implement some algorithm designed in the
previous chapters and are live on http://graphs.felk.cvut.cz (as of May 2018). As
the URL and the user interaction triggering the snippet will always be given, reader can
see the real-case performance and the results himself.

5.1 Compute properties and insert graph
The implementation 5.1.1 parses the json GET parameter from the URL it has been
called upon, such as:

http://graphs.felk.cvut.cz/api/graph?json={"g6":"Dso","properties":[
"arc_transitive","asymmetric","bridges","cactus","edges","nodes"]}

and outputs the values of the requested properties for the given graph. Furthemore,
if graph is not in the database yet, it inserts it, with all the property values that have
been computed.

The program can be accessed through a user interface on http://graphs.felk.
cvut.cz/computer designed by Sergej Kurbanov [8].

The structure of program 5.1.1 is rather straightforward:

1. The core function, computeAndInsert [line 1], accepts the Express.js Request and
Response objects [33], function computeProperties that encapsulates an API of an
engine for computing the graph properties (SageMath supported as of 23rd May
2018) and an object db encapsulating the access to the PostgreSQL connection pool.

2. Properties to be computed and graph6 string g6 are parsed from the requested URL
3. g6 is then labeled canonically through a pipe to the configured canonical label

[lines 41-43] (nauty labelg in current practice)
4. g6 is then looked up in the database and its properties returned. Note that if the

database contains only canonically labeled graphs , then it must always find a stored
isomorph of the original g6 (query.selectGraph returns the parametrized SELECT and
prevents a possible SQL injection).

5. If an isomorph was found, its properties that are not NULL are tossed from the user’s
query, if no properties are then left to compute, the properties of isomorph are
responded [line 21]. Otherwise the properties left are asked from the computation
engine via computeProperties [line 23]

6. As the engine responds, its results are merged with the properties of isomorph and
returned to the user, user is further informed, if the graph requested by him was
already in the database and if yes, which values were computed on his demand (as
they were set to NULL previously) [line 27]. Asynchronously, the computed values are
stored in the db for further use [lines 26, 44-51].

16

http://graphs.felk.cvut.cz
http://graphs.felk.cvut.cz/computer
http://graphs.felk.cvut.cz/computer

Implementations 5.1 Compute properties and insert graph

1. function computeAndInsert(req, res, computeProperties, db) {
2. let params = JSON.parse(querystring.parse(url.parse(req.url, false).query).json)
3. params.g6 = canonicalLabel(params.g6)
4. if (params.g6.length === 0) {
5. return errorResponse(res, "Graph not readable by nauty.")
6. }
7. let select = query.selectGraph(params.g6, params.properties)
8. Promise.resolve(db.query(select.sql, select.values))
9. .then((isomorphs) => {
10. let inDb = isomorphs.rowCount === 1
11. let precomputedProperties = inDb ? isomorphs.rows[0] : {}
12. Object.keys(precomputedProperties).forEach(property => {
13. if (precomputedProperties[property] !== null) {
14. let i = params.properties.indexOf(property)
15. if (i > -1) {
16. params.properties.splice(i, 1)
17. }
18. }
19. })
20. if (params.properties.length === 0) {
21. return propertiesResponse(res, params.g6, precomputedProperties, {}, inDb)
22. } else {
23. return computeProperties(computePropertiesQuery(params.g6,params.properties),

config.timeLimit)
24. .then(([status, engineOutput]) => {
25. if (status === 200) {
26. storeGraph(params.g6, engineOutput, inDb, db)
27. return propertiesResponse(res,params.g6, precomputedProperties,

 engineOutput, inDb)
28. } else {
29. return res.status(status).json(engineOutput)
30. }
31. }).catch((err) => {
32. logger.info(`api/graph: ${err}`)
33. return errorResponse(res,"Error occurred while communicating with engine")
34. })
35. }
36. }).catch(err => {
37. logger.error(`DB error: ${err}`)
38. res.status(500).json({message: "Something broke in the DB"})
39. })
40. }
41. function canonicalLabel(g6) {
42. return (spawnSync(config.canonicalLabelSpawn,{ input:

(g6 + "\n")}).output[1] + "").split("\n")[0]
43. }
44. function storeGraph(g6, fields, inDb, db) {
45. let storeGraph = inDb ? query.updateGraph(g6, fields) : query.insertGraph(g6, fields)
46. db.query(storeGraph.sql, storeGraph.values, (err, data) => {
47. if (err) {
48. logger.warning(err)
49. }
50. })
51. }

Code snippet 5.1.1. Node.js server-side handler for the compute & insert section of WGS.
The full code can be found at the attached CD

17

Implementations 5.2 “Count all – Find superclass” graph counter

5.2 “Count all – Find superclass” graph counter
The counter and its precomputed results can be checked simply by making a query to
the graph database on WGS homepage by clicking fetch and in the section Complete
collections at http://graphs.felk.cvut.cz/complete respectively, the counter API
can be accessed on the following URL with conditions parameter like:

http://graphs.felk.cvut.cz/api/checkCompleteness?conditions=[{"column":
"nodes","operator":"=","value":"10"}]

As the problem of deciding the class completeness requires a more complex microsys-
tem, it was built as a standalone python package. As the COUNT queries over a large
data are costly in PostgreSQL [30], and so is fetching tens of sequences from OEIS, they
should not be performed on-demand.

For that use, another entity model, parallel to the table of graphs needs to be intro-
duced.

GraphCounter

id int

complete bool

count int

possible int

importance int

comparators key:value pairs

source Source

parent GraphCounter

children GraphCounter

property1 type(property1)

propertyn

Source

id int

references key:value pairs

graph counters GraphCounter

type(propertyn)

...
...

Figure 5.1. Entity diagram of WGS graph counter. Created with PonyORM Editor [34]

The fields property1, . . . , propertyn denote the property arguments of the conditions
supported by the counter (if propertyi = NULL, then the condition with such an argument
is satisfied by every graph). The creation of the tables is a part of the installation script,
so all it takes for the graph expert to introduce a new one is to create a class extending
Condition within the python package db_counter.conditions.

The key:value pairs data type (in PostgreSQL implemented by an extension
hstore) was preferred to introducing another entities, as in this case the performance
(suffering from a possible additional SQL JOIN) is superior to the design niceties.

Now, to enable profits from this architecture, two separate scripts were written:

. The “count all” installation script that queries all the configured sequences from
OEIS and matches their values against the numbers of graphs in database matching
a single condition and having a specific order. The “find superclass” lookup script that accepts a set of conditions C from the user
and, presuming the counter to be installed, outputs, whether the class of graphs X
satisfying C is known to be stored completely in the WGS or whether it is known not
to be stored completely.

Both the scripts were excluded from the text of thesis as they basically just follow
the algorithms 4.4.2 and 4.4.3 and as their logic is spread amongst multiple Python

18

http://graphs.felk.cvut.cz/complete

Implementations 5.2 “Count all – Find superclass” graph counter

classes. Their full code documented via Numpy style docstrings is appended instead.
See files install.py and check.py in the folder git/db counter of the attached CD.

5.2.1 Configuring the class inclusion rules through the Python API

A graph expert can alter the decisioning logic of the find superclass algorithm simply
by altering the contents of the python package db_counter.condition.

For that use, a simple Python API (applicable for classes extending the Condition
class) have been designed, to empower easy and clean maintenance of sophisticated
graph class inclusion rules, such as the ones listed on ISCGI [35]. Two examples from
the live program will follow.

1. class VertexTransitive(Condition):
2. """Condition wording: "G is (not) vertex transitive".
3. Adds up the logic: vertex_transitive => regular, irregular => not vertex transitive"""
4. implies = [Regular]
5. column = "vertex_transitive"
6. source = Oeis("A006799")
7. type = BOOLEAN
8.
9. class Tree(Condition):
10. """Condition wording: "G is (not) a tree".
11. Can be also used to extrapolate |G| if not constrained by user."""
12. implies = [Bipartite, Connected]
13. column = "tree"
14. source = Oeis("A000055")
15. type = BOOLEAN
16. def extrapolate_nodes(self, query):
17. edges = query.get(Edges)
18. if self.value and edges is not None:
19. return Nodes(edges.value + 1, edges.comparator)
20. return super().extrapolate_nodes(query)

Code snippet 5.2.2. Example usage of the suggested Python API for configuring the
subclass—superclass relations of BOOLEAN conditions (comments trimmed).

The code snippet 5.2.2 cofigures the graph classes vertex-transitive and tree, which
are trusted to be completely stored on n nodes if the count of graphs in the database
having n nodes and the property comply to the one listed in OEIS sequences A006799
and A000055 respectively.

The program will parse the following informations from the VertexTransitive class
variable implies:

1. If all regular graphs are known to be completely stored in the database, then also all
vertex-transitive graphs are known to be stored

2. If all not vertex-transitive graphs are known to be completely stored in the database,
then also all irregular graphs are known to be stored

3. Condition set containing {vertex-transitive,irregular} is unsatisfiable (0 graphs are in
the complete class)

Method extrapolate_nodes of class Tree will be called if present in the user’s query
and if the user did not explicitly bound the graph order and it will suggest, that the
bound of graph order is the bound of graph size - 1, if a bound for the graph size is

19

Implementations 5.2 “Count all – Find superclass” graph counter

1. class Edges(Condition):
2. """Condition wording: "G has m edges"
3. Adds up the logic: If G has less or equal to n vertices,
4. it can‘t have more than ((n-1)*n)/2 edges i.e. such a query would be UNSATISFIABLE"""
5. column = "edges"
6. source = Source("Gordon Royle''s small graphs",
7. "http://staffhome.ecm.uwa.edu.au/~00013890/remote/graphs/index.html#nums")
8. type = INTEGER
9. def contradicts(self, query):
10. if self.comparator in FLOORED and query.nodes.comparator in CEILED \
11. and self.value > query.nodes.value*(query.nodes.value - 1) / 2:
12. return True
13. return super().contradicts(query)

Code snippet 5.2.3. Example usage of the suggested Python API for configuring the rule
|V (G)| · (|V (G)| − 1) ≥ |E(G)|.

known. If an equality such as graph size=4 is given, then the graph order is also bound
to an equality (graph order = 3)

The code snippet 5.2.3 gives an instance of a more complicated condition, that is
constraining an integer property values. Note that the trusted data is not an one-
dimensional array as in the case of OEIS sequences, and so the value quantities have to
be hard-coded into the class method value_quantity (stripped from the thesis text,
to be found in class db_counter.condition.Edges)

The contradicts method will, in this case, make the find superclass algorithm iden-
tify a set of conditions containing a lower bound for edges higher than the n(n− 1)/2
on n vertices as unsatisfiable.

5.2.2 Count all — no NULLS heuristics

1. def install(self, superset_complete=False, nulls_count=None):
2. self.possible = self.last.value_quantity(self.last.value, self.nodes.value)
3. self.count = self.possible if superset_complete and nulls_count == 0 \
4. else SQLCounter.count_graphs(self)
5. self.complete = superset_complete or self.count == self.possible
6. if not self.complete and (
7. nulls_count is not None and self.count + nulls_count >= self.possible):
8. self.complete = None
9. self.source = self.refs(self.last.source.hstore(self.last.value))
10. self.importance = 4 - len(self.conditions)
11. SQLCounter.insert(self)
12. return self.complete

Code snippet 5.2.4. “No NULLS” heuristics from git/db counter/conditions/Query.py

As the count all procedure is costly to perform over a large graph database, a sim-
ple heuristics, presuming the database to be computed correctly (where not NULL) was
introduced [Line 3 of 5.2.4]. Before evaluating the completeness of any of the basic con-
ditions on n vertices, the NULL values in the database column related to that condition
are counted. Then, if all the graphs on n vertices are known to be stored in the database
and the count of NULLs in the significant column is 0, counting the graphs matching
conditions is skipped and presumed to be equal to its maximum value possible.

20

Implementations 5.2 “Count all – Find superclass” graph counter

Note that if no NULLs are present in the column, the column is fully computed and
if a superclass is known to be complete, the COUNT query must indeed output the same
value.

100

101

102

103

104
Install.py running time “No NULLs" pruning Without pruning

Graphs in the database

T
im

e
[s

]

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Figure 5.2. Count all — “No NULLS” heuristics performance impact Gi denotes the set
of all graphs on i vertices. Full data in appendix A.2

21

Chapter 5
Conclusions

Of several tested approaches to prevent isomorphism over the user extensible graph
database, the canonical labeling of the database which is then constrained on the graph
uniqueness was shown to be the best practice. The on-insert isomorphism checking
was rejected with a brief argumentation of its weaknesses.

For the problem of deciding the completeness of graph classes stored in graph
database, an ad-hoc algorithm called “count all – find superclass” was designed ex-
ploiting the introduced graph class inclusion principles and is yet to be challenged by
other researchers as the problem it is solving is rather unique.

Several metrics have been taken on it, to show its performance and its possible
enhacements achievable through a heuristic presuming the graph properties in database
to be correctly computed (or NULL).

The entire code and related research was contributed to the Web Graph Service on
http://graphs.felk.cvut.cz concurrently to the works described in [8] and [7]

For testing purposes WGS was populated with 12,293,475 non-isomorphic graphs,
making it, with a solid probability the biggest openly queriable graph database (relating
to the 1.2).

6.3 Recommendations
As an in-depth research of the problems of WGS and graph databases in general was
an inseparable part of the thesis, we would like to conlude with several recommenda-
tions and topics that would, in our humble opinion, be worth a further research or
consideration.

. If WGS is to also include large graphs, consider using sparse6 format, as the graph6
is easy to compute, but its size is incremental to the size of the graph’s adjacency
matrix. The size of sparse6 is, however, incremental to the length of the graph’s
edge list, hence it could reduce its space complexity drastically for the large sparse
graphs [26].. In fact, it should be considered, whether to use graph6 and sparse6 formats at all, as
they deal with the non-printable ASCII characters in a rather obscure way (see 3.2.1).
An initiative could be taken in offering a similar format, encoding the adjacency
matrix or the edge list serialized as in 3.2.1 through a Base64 encoding [36], that is
a more standardized solution of the given problem.. In the first generation of WGS, PostgreSQL was chosen as its database engine, favoured
by its developer. Yet it performs poorly when it comes to e. g. counting all the graphs
stored in it, as the visibility bit has to be checked for every row due to its transactional
approach [30]. Finding a way around that would be desirable, possibly by migrating
the WGS to another database engine (MySQL MyIsam coming to mind when relations
are not necessary).. Making the documentation of the WGS API, mostly developed in [7], public and well
accessible through the webpages (maybe even with a further propagation) could, as

22

http://graphs.felk.cvut.cz

Conclusions . 6.3 Recommendations

we believe, be a strategic thought on how to spread thought about it, as it offers a
great magnitude of an interesting data and is ready to let it be accessed programati-
cally.. The “find superclass” procedure can not extrapolate knowledge about the com-
pleteness of graph class matching an inequality condition (such as |G| ≤ 5) of the
completnesses of multiple classes matching some equality conditions (|G| = 0, |G| =
1, . . . , |G| = 5). The functionality would complicate the configuration of the system
from the side of a graph expert a little, but the new knowledge seems to be worth it.
Possibly, such a code will be contributed to WGS as an aftermath to this thesis.. An interesting concept introduced by ToTo Tree Width Webservice on http://
treedecompositions.com/#/twathomebatch is to employ the computing power
of the client devices to solve demanding computations of graph properties. It is
considerable to be integrated in WGS. However, a user base has to be assembled first
as no clients equal no results.. A generator such as geng [29] could be used on the client’s demand to generate
graphs that are absent in the database. I. e. when the user queries a class of graphs
that is not present in the database, generator tries to fix that “issue”. This could be
a major user delighter, giving an access to even more data than there actually are in
the database.

23

http://treedecompositions.com/#/twathomebatch
http://treedecompositions.com/#/twathomebatch

References
[1] Gordon Royle. Small graphs.

http://staffhome.ecm.uwa.edu.au/˜00013890/remote/graphs/index.html. [Online;
accessed May 16th 2018].

[2] Brendan McKay. Combinatorial data — Graphs.
http://users.cecs.anu.edu.au/˜bdm/data/graphs.html. [Online; accessed May
16th 2018].

[3] Neo4j, Inc. neo4j. 2018.
https://neo4j.com/. [Online; accessed May 17th 2018].

[4] G. Brinkmann, K. Coolsaet, J. Goedgebeur, H. Mélo. House of Graphs: a database
of interesting graphs, Discrete Applied Mathematics. 161:311-314, 2013.
https://hog.grinvin.org/. [Online; accessed May 16th 2018].

[5] Pisanski, T., Marušič, D., Potočnik, P., Orbanić, A., Horvat, B. & Lukšič, P.
Encyclopedia of graphs. 2012—2017.
http://atlas.gregas.eu. [Online; accessed May 16th 2018].

[6] Stevan Kelk, Rim van Wersch. ToTo: An open database for computation, storage
and retrieval of tree decompositions. 2016.
http://treedecompositions.com/#/databasequery. [Online; accessed May 16th

2018].
[7] Tomáš Roun. Graph Database Fundamental Services. Czech Technical University

in Prague, 2018. [CTU Bachelor thesis].
[8] Sergej Kurbanov. Graph Database User Interface. Czech Technical University in

Prague, 2018. [CTU Bachelor thesis].
[9] Herbert Ullrich & RNDr. Marko Genyk-Berezovskyj. 1st generation of WGS main-

tenance and population tools. 2017.
http://bertik.net/wgs_2017.php. [Redirect shortlink for CTU GitLab; accessed May
20th 2018].

[10] Herbert Ullrich. Graphs collection. 2017.
http://graphs.felk.cvut.cz:8765/db/. [Online; accessed May 24th 2018].

[11] Wikipedia contributors. Graph isomorphism — Wikipedia, The Free Encyclopedia.
2018.
https: / / en . wikipedia . org / w / index . php ? title = Graph_isomorphism & oldid =
837019374. [Online; accessed May 16th 2018].

[12] Robert Sedgewick. Algorithms in C . Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA ©1990, 1990. ISBN 0-201-51425-7.

[13] Laszló Babai. Graph isomorphism in quasipolynomial time. Cambridge, MA, USA,
2016. ISBN 978-1-4503-4132-5.

[14] László Babai. Graph Isomorphism. 2017.
http://people.cs.uchicago.edu/˜laci/update.html. [Online; accessed May 16th

2018].

24

http://staffhome.ecm.uwa.edu.au/~00013890/remote/graphs/index.html
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://neo4j.com/
https://hog.grinvin.org/
http://atlas.gregas.eu
http://treedecompositions.com/#/databasequery
http://bertik.net/wgs_2017.php
http://graphs.felk.cvut.cz:8765/db/
https://en.wikipedia.org/w/index.php?title=Graph_isomorphism&oldid=837019374
https://en.wikipedia.org/w/index.php?title=Graph_isomorphism&oldid=837019374
http://people.cs.uchicago.edu/~laci/update.html

. .
[15] Neil J. A. Sloane. A006125 . 2000.

http://oeis.org/A006125. [Online; accessed May 17th 2018].
[16] Neil J. A. Sloane. A000088 . 2000.

http://oeis.org/A000088. [Online; accessed May 17th 2018].
[17] Jonathan L. Gross, Jay Yellen. Graph Theory and its Applications. Edition 2 edi-

tion. Chapman & Hall/CRC, 2003. ISBN 978-158488-505-4.
[18] Brendan D. McKay. Practical Graph Isomorphism. 1981.
[19] Brendan D. McKay, and Adolfo Piperno. Practical graph isomorphism II. . Journal

of Symbolic Computation . 2014, 60 (0), 94 - 112. DOI 10.1016/j.jsc.2013.09.003.
[20] Brendan McKay, Adolfo Piperno. Search Tree — Nauty Traces. 2011-2018.

http://pallini.di.uniroma1.it/SearchTree.html. [Online; accessed May 22nd

2018].
[21] P. T. Darga, K. A. Sakallah, and I. L. Markov. Saucy3 . 2012.

http://vlsicad.eecs.umich.edu/BK/SAUCY/. [Online; accessed May 25th 2018].
[22] Tommi Junttila, and Petteri Kaski. Engineering an efficient canonical labeling

tool for large and sparse graphs. Proceedings of the Ninth Workshop on Algorithm
Engineering and Experiments (ALENEX07). 207, 135 - 149.

[23] Wikipedia contributors. Graph canonization — Wikipedia, The Free Encyclopedia.
2017.
https: / / en . wikipedia . org / w / index . php ? title = Graph_canonization & oldid =
815257797. [Online; accessed May 24th 2018].

[24] Brendan McKay, Adolfo Piperno. Nauty Traces. 2011-2018.
http://pallini.di.uniroma1.it/. [Online; accessed May 22nd 2018].

[25] Brendan McKay. Graph formats.
https://users.cecs.anu.edu.au/˜bdm/data/formats.html. [Online; accessed May
17th 2018].

[26] Brendan McKay. Formal definition of graph6 and sparse6 formats.
https://users.cecs.anu.edu.au/˜bdm/data/formats.txt. [Online; accessed May
19th 2018].

[27] PostgreSQL Contributors. PostgreSQL: Documentation 9.4: Constraints. 2017.
https: / / www . postgresql . org / docs / 9 . 4 / static / ddl-constraints . html#DDL-
CONSTRAINTS-UNIQUE-CONSTRAINTS. [Online; accessed May 18th 2018].

[28] Bayer, R.; McCreight, E. Organization and Maintenance of Large Ordered Indexes.
Acta Informatica. 1972, 173-189. [Published 1972 in Acta informatica, pages 173—
189].

[29] Brendan McKay, Adolfo Piperno. nauty and Traces User’s Guide (Version 2.6).
2016.
http://pallini.di.uniroma1.it/nug26.pdf. [Online; accessed May 19th 2018].

[30] PostgreSQL Wiki contributors. PostgreSQL Wiki — Slow Counting. 2015.
https://wiki.postgresql.org/index.php?title=Slow_Counting&oldid=26186. [On-
line; accessed May 20th 2018].

[31] N. J. A. Sloane, OEIS Contributors. Sequences matching “Graph” . 1964 — 2018.
https://oeis.org/search?q=graph. [Online; accessed May 20th 2018].

[32] OEIS Wiki Contributors. Works citing OEIS. 2018.
https://oeis.org/wiki/Works_Citing_OEIS. [Online; accessed May 20th 2018].

25

http://oeis.org/A006125
http://oeis.org/A000088
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://pallini.di.uniroma1.it/SearchTree.html
http://vlsicad.eecs.umich.edu/BK/SAUCY/
https://en.wikipedia.org/w/index.php?title=Graph_canonization&oldid=815257797
https://en.wikipedia.org/w/index.php?title=Graph_canonization&oldid=815257797
http://pallini.di.uniroma1.it/
https://users.cecs.anu.edu.au/~bdm/data/formats.html
https://users.cecs.anu.edu.au/~bdm/data/formats.txt
https://www.postgresql.org/docs/9.4/static/ddl-constraints.html#DDL-CONSTRAINTS-UNIQUE-CONSTRAINTS
https://www.postgresql.org/docs/9.4/static/ddl-constraints.html#DDL-CONSTRAINTS-UNIQUE-CONSTRAINTS
http://pallini.di.uniroma1.it/nug26.pdf
https://wiki.postgresql.org/index.php?title=Slow_Counting&oldid=26186
https://oeis.org/search?q=graph
https://oeis.org/wiki/Works_Citing_OEIS

. .
[33] Node.js foundation. Request, Response - Express.js documentation. 2018.

https://expressjs.com/en/api.html#req. [Online; accessed May 23rd 2018].
[34] LLC Pony ORM. PonyORM Editor . 2018.

https://editor.ponyorm.com/. [Online; accessed May 23rd 2018].
[35] H. N. de Riddler. Information System on Graph Classes and their Inclusions (IS-

GCI). 2001–2014.
http://www.graphclasses.org/. [Online; accessed May 25th 2018].

[36] Wikipedia contributors. Base64 Encoding — Wikipedia, The Free Encyclopedia.
2018.
https://en.wikipedia.org/w/index.php?title=Base64&oldid=842752537. [Online;
accessed May 25th 2018].

26

https://expressjs.com/en/api.html#req
https://editor.ponyorm.com/
http://www.graphclasses.org/
https://en.wikipedia.org/w/index.php?title=Base64&oldid=842752537

Appendix A
Data used for visualisations

All the experiments were run on the Acer 572G (Intel Core i7-4712MQ, Samsung 750
250GB bulk SSD drive)

A.1 Batch canonical labeling with nauty and Traces

Measurement on G0 was tossed as both the nauty and Traces exited with an error code.

set |set| nauty time [s] Traces time [s]

G0 1 0.1200251579284668 0.10639262199401855

G1 1 0.0011630058288574219 0.001079559326171875

G2 2 0.0008225440979003906 0.0008411407470703125

G3 4 0.0007429122924804688 0.0008189678192138672

G4 11 0.0008318424224853516 0.0009133815765380859

G5 34 0.0008931159973144531 0.00115966796875

G6 156 0.0012364387512207031 0.0021255016326904297

G7 1044 0.0028541088104248047 0.007835626602172852

G8 12346 0.02155613899230957 0.05855250358581543

G9 274668 0.3851897716522217 1.3019285202026367

G10 12005168 15.199398756027222 53.25687122344971

27

Data used for visualisations A.2 Adding heuristics to the “count all” procedure

A.2 Adding heuristics to the “count all” procedure
Note that the OEIS is being accessed through its API within an instance of the proce-
dure. That can bias the performance on small sizes of database seriously, but the main
discovery of saving ∼ 90% of running time on the large data sets remains intact.

set |set| time with no NULLS heuristics [s] time without heuristics [s]

G0 1 13.0464260578 17.0747244358

G1 1 13.6582443714 12.679202795

G2 2 14.1572663784 12.7338917255

G3 4 14.3151378632 13.1491267681

G4 11 15.7336368561 14.4216191769

G5 34 16.4903476238 13.687587738

G6 156 17.2389614582 13.2513206005

G7 1044 17.6984517574 12.6007626057

G8 12346 14.8418450356 13.4666466713

G9 274668 24.8132331371 24.6525268555

G10 12005168 163.5225532055 1507.3206417561

28

Appendix B
Contents of the attached CD

The root directory of the attached CD contains the following folders:

. git containing the current version of the git repository at https://gitlab.fel.
cvut.cz/graphs/development (as of 25th May 2018)
. db counter containing the authored scripts for the db counter implementing

“count all — find superclass” documented in a numpy standard

. thesis containing this thesis in a computer-readable (i. e. clickable) format and
Python scripts to perform the experiments. extras

. orig containing the original version of WGS that was designed in 2017 as the subject
of Herbert Ullrich’s Software–Research project

. on insert containing the rejected on-insert isomorphism check algorithm 2.2.1

. data containing testing sets of graphs up to 9 vertices. Also contains the SQL

29

https://gitlab.fel.cvut.cz/graphs/development
https://gitlab.fel.cvut.cz/graphs/development

Appendix C
Glossary

SRG . Strongly regular graph
API . Application programming interface
OEIS . On-line Encyclopedia of Integer Sequences (on https://oeis.org)
WGS . Web graph service (on http://graphs.felk.cvut.cz)

30

https://oeis.org
http://graphs.felk.cvut.cz

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Graph database
	Examples of graph databases
	Web Graph Service
	Motivation

	Graph isomorphism
	Isomorphism detection
	Isomorphisms in a graph database
	On-insert isomorphism check
	Available software for isomorphism check

	Graph canonization
	Software for graph canonization
	{	enss 	hefontscale [920]graph6} format
	Format description
	Representing a graph using a {	enss 	hefontscale [920]graph6} format
	Parsing {	enss 	hefontscale [920]graph6} format

	Canonized graph database
	Benchmarks

	Class completeness
	Loose formal definition of the problem
	List of possible approaches
	Relaxations to the counting approach
	Simulating the oracle access

	Count all -- Find superclass algorithm
	Subclass -- superclass principles
	Count all
	Find superclass

	Implementations
	Compute properties and insert graph
	``Count all -- Find superclass'' graph counter
	Configuring the class inclusion rules through the {	enss 	hefontscale [920]Python API}
	Count all --- no NULLS heuristics

	Recommendations

	References
	Data used for visualisations
	Batch canonical labeling with {	enss 	hefontscale [920]nauty} and {	enss 	hefontscale [920]Traces}
	Adding heuristics to the ``count all'' procedure

	Contents of the attached CD
	Glossary

