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Department of Computer Science
Supervisor: Ing. Ondřej Hubáček
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Abstrakt

Ćılem naš́ı práce bylo naj́ıt optimálńı investičńı strategii a ověřit jej́ı funkčnost
na vhodné doméně sportovńıho sázeńı. Zjistili jsme, že pravidlo maximálńıho
geometrického pr̊uměru (tzv. “Kellyho kritérium”) je takovou obecně op-
timálńı strategíı, a v práci ji analyzujeme jak v matematické tak experi-
mentálńı rovině. Byť matematicky optimálńı, jej́ı předpoklady jsou jen zř́ıdka
splněny, což v praxi vytvář́ı četné problémy plynoućı z nejistoty v odhadech
pravděpodobnost́ı a výpočetńı složitosti při řešeńı pro množinu souběžných
her. V práci představujeme nejr̊uzněǰśı návrhy řešeńı všech takových omezeńı,
se kterými jsme se setkali při reálných aplikaćıch této strategie ve sportovńım
sázeńı. Nav́ıc představujeme framework pro zátěžové testováńı sázećıch srategíı,
který umožňuje experimentálńı analýzu r̊uzných sázećıch scénář̊u. Nakonec
naše zjǐstěńı ověřujeme na reálných datech ze třech r̊uzných domén sportovńıho
sázeńı: dostihy, basketbal a fotbal.

Kĺıčová slova sázkařské trhy, sportovńı analýza, dostihy, basketbal, fotbal,
Kellyho kritérium
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Abstract

The goal of our work was to find an optimal wealth allocation policy and to
verify its functionality on a suitable sports betting domain. We found that
the geometric mean policy (“Kelly Criterion”) is a generally optimal strat-
egy and we discuss its optimality both mathematically and experimentally.
While mathematically optimal, its assumptions are rarely fully met which
presents a set of challenges such as how to deal with errors stemming from
innacurate probability estimates and computational difficulty of solving many
simultaneous games. We present solution proposals to all the limitations we
encountered in applications of the geometric mean policy to sports betting.
Moreover, we introduce a stress testing framework for betting strategies which
allows for testing of various sports betting scenarios. Finally, we verify our
findings on real data from three different domains of sports betting: horse
racing, basketball and football.

Keywords betting markets, sports analytics, horse racing, basketball, fut-
bal, Kelly criterion
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Introduction

From the ancient times, gambling has always been part of society. While word
gambling is often said with a negative connotation, it can hardly be argued
against that games of chance sparked some of greatest discoveries ever made.

The old ones say we Spartans are descended from Hercules him-
self...

Similarly, the old ones say that probability theory descended from gambling
itself. History of gambling tells a fascinating story of games motivating the
greatest mathematicians, engineers, that put their minds together to “beat”
those games. Using the first US telephone line not to call their mothers, but to
hear results of horse races before the bookies. To bring first pocket computer
to Las Vegas casino and calculate how “tilted” the roulette is. To withhold
the broadcast of a football match by a few seconds and use the information
of a possible scored goal to bet before the bookies know it.

What these stories have in common is that great thinkers put their minds
together to gain some kind of advantage over the casino, over the bookie. In
this text we will investigate what it means to have an advantage and what is
the best course of action to take when we have that advantage.

We will start from the most simple and progress to the more advanced defi-
nitions. The text is divided into four chapters. In chapter 1 we will assume
player knows the true probability of the game, (blackjack, coin toss etc.). In
this chapter we will introduce the optimal strategy and prove it’s optimality
both mathematically and experimentally. In chapter 2 we will discuss the case
when player has an estimation of the true game probability (football, horse
racing), whether the accuracy of estimation is important and if so how im-
portant. How much the randomness of the real world affects the optimality
of our strategy and whether such randomness can be at least partially tamed.
In chapter 3 we will look into a case of multiple simultaneous games and the
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Introduction

challenges it presents. Finally, in chapter 4 we present experiments on mul-
tiple datasets of multiple essentially different games where randomness of the
real world may have the last word. Buckle up and enjoy the ride.
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Chapter 1
Fortune’s Formula

In this chapter we will introduce the world’s most famous betting paradigm,
Kelly criterion, often dubbed as the fortune’s formula. Initially used to exploit
roulette game, later blackjack, then horse racing and finally stock market.

1.1 Coin toss

Assume a simple coin toss game. We win if the coin comes up heads, if it
is tails we lose. If we win, we receive og times the amount that we bet in
addition to our original bet money. The definitions are:

• p winning probability.

• q loosing probability.

• w number of wins.

• l number of loses.

• t = w + l number of all trials.

• o odds, sometimes also called dividends.

• og odds gain. Payoff from the winning bet in addition to the original
amount.

• b is the fraction of our wealth that we decide to bet.

• W0 is our starting wealth

• Wt is our final wealth after t trials

3



1. Fortune’s Formula

Next please assume we play a slightly profitable game of coin toss. Prob-
ability of winning the game is p = 0.4. Odds are o = 3.0, hence our odds gain
is og = o − 1 = 2.0. We start with initial bank W0 of 100,- CZK and we bet
b = 0.05 , 5 percent fraction of our bank every time. We play this game t = 3
times, we win some w = 2 and we lose some l = 1. Our final wealth W3 can
hence be calculated as follows:

W3 = (1 + 2 · 0.05)2 · (1− 0.05)1 · 100 (1.1)

We make a gain of 2.0 times our decided “bank” fraction 0.05 twice and we
loose 0.05 of our bank once.

W3 = 114.95 (1.2)

What should be noted is that the order of our wins and losses does not matter
as long as the respective counts of winning w and loosing games l follows the
problem definition.

1.1.1 Growth rate

The example from 1.1 can be generalized in the following definition of wealth
after t trials.

Wt = (1 + og · b)w · (1− b)l ·W0 (1.3)

Next we will define the average growth rate with given fraction b over t trials
to be g(b):

g(b) = 1
t
· Wt

W0
= 1
t
· (1 + og · b)w · (1− b)l (1.4)

Clearly any racional player wishes for his final bank to be as large as possible.
He should therefore wish for his wealth to grow as quickly as possible. What
we will next refer to as the optimal strategy is a strategy that maximizes the
growth rate defined in 1.4.

1.2 Search For Optimality

Maximization of the average growth rate can be expressed as optimization
problem.

maximize
b

g(b) = 1
t
· (1 + og · b)w · (1− b)l

We differentiate g(b) with respect to b

∂g

∂b
= ogw(1− b)l · (bog + 1)w−1

t
− l(1− b)l−1 · (bog + 1)w

t
(1.5)

4



1.3. Utility

We set the derivative equal to zero and solve for b.

b? such that
ogw(1− b)l · (bog + 1)w−1

t
− l(1− b)

l−1 · (bog + 1)w

t
= 0 (1.6)

The only root that makes sense in our context is

b? = 1 (1.7)

And it is indeed a maximum as proved by Edward Thorp in Thorp, 2008

To maximize the growth rate, player should be betting the whole bank in
every single trial. Would that be rational way of bank management? We can
easily see where the problem lies.

P (ruin) = 1− pt (1.8)

lim
t→∞

(1− pt) = 1 (1.9)

where ruin is a state where player’s wealth reaches zero. Wi = 0 for some i.

Clearly, player would surely come to ruin with such strategy. It would only
take a single lost game for it to happen.

A different approach would be to define the above problem as a minimization
of risk. In that case however the optimal strategy would be to withhold all the
money and never bet or to make minimum allowed bets as shown in Feller,
1968, unless the winning probability is p = 1.0, which would mean that player
is not playing a game anymore, but receiving free money. Therefore even
though such strategy minimizes risk, it unfortunately minimizes growth as
well.

We conclude this section with a statement that both strategies are infeasible
for us. There is however a perfect way to balance both growth rate and risk
in a single strategy.

1.3 Utility

A completely different idea is to value money using utility functions. In the
problem from the previous section. 1.2 we used linear utility function U .
Simply:

U(W ) = W (1.10)

We have shown that it is insufficient for our purpose of wealth allocation. The
idea of many great thinkers such as Danielle Bernoulli in Exposition of a new
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1. Fortune’s Formula

theory on the measurement of risk Bernoulli, 2011 is to use logarithmic utility
function to value our money.

U(W ) = log(W ) (1.11)

Intuitively, it makes perfect sense. For a player who re-invests his money in ev-
ery single game, who’s wealth is compounding, reaching a ruin situation means
complete stop to his operation. Hence it should be penalized accordingly.

lim
W→0+

log(W ) = −∞ (1.12)

Is there a situation where using linear utility function would be sensible?
(Kelly Jr, 2011) Provides a great example.

Suppose the situation were different; for example, suppose the
gambler’s wife allowed him to bet one dollar each week but not
to reinvest his winnings. He should then maximize his expecta-
tion (expected value of capital) on each bet. He would bet all
his available capital (one dollar) on the event yielding the highest
expectation. With probability one he would get ahead of anyone
dividing his money differently.

Such player should therefore forget about the Kelly criterion. The reason
is that his winnings do not compound, they simply accumulate (Poundstone,
2010).

1.4 Kelly Criterion

The fortune’s formula is based on the of idea evaluating the growth rate using
logarithmic utility function.

G(b) = 1
t

log(Wt

W0
)) (1.13)

G(b) = log[(Wt

W0
)

1
t ] (1.14)

G(b) = log[((1 + og · b)w · (1− b)l ·W0
W0

)
1
t ] (1.15)

= log[(1 + og · b)
w
t · (1− b)

l
t ] (1.16)

G(b) = w

t
log(1 + og · b) + l

t
log(1− b) (1.17)

6



1.4. Kelly Criterion

w
t and l

t stand for our probabilities of winning p and loosing q. Therefore our
final formula for average logarithmic growth rate looks as follows:

E[G(b)] = p log(1 + og · b) + q log(1− b)) (1.18)

We now repeat the same process as in 1.2

maximize
b

E[G(b)] = p log(1 + og · b) + q log(1− b)

This time differentiation should yield a very different result.

∂ E[G(b)]
∂b

= p · og
1 + og · b

− q

1− b (1.19)

b? such that
p · og

1 + og · b
− q

1− b = 0 (1.20)

We follow through with the calculation.
p · og

1 + og · b
= q

1− b (1.21)

p · og(1− b) = q(1 + og · b) (1.22)

pog − q = ogb(p+ q) (1.23)

Where p+ q = 1 and our optimal strategy is hence defined as:

b? = pog − q
og

(1.24)

It is indeed a maximum as shown in Latane, 2011. It is also a well known
formula sometimes written as

edge

odds
(1.25)

or using different notation where b stands for og = odds− 1

pb− q
b

(1.26)

What happens if we choose optimal fraction b? according to 1.24 in our original
problem 1.1

b? = pog − q
og

= 0.4 · 2− 0.6
2 = 0.1 (1.27)

7



1. Fortune’s Formula

The following experiment provides an illustration why it is not reasonable
to bet higher than the Kelly optimal fraction b?.

Assume we play the game 1.1 t = 30000 times, b1 = 0.05, our initial guess is
the green player, b? = 0.1, the optimal Kelly fraction is the blue player. Red
player is betting bh = 0.25.

0 5000 10000 15000 20000 25000 30000
Repetitions t

10 36

10 10

1016

1042

1068

1094

10120

10146

W
ea

lth
 W

t

Kelly b
Initial Guess b1
2.5 x Kelly bh

Figure 1.1: Mean trajectories of 1000 parallel histories for b?, b1, bh

Note that the red trajectory bh does indeed “beat” Kelly on the first 500 or
so trials, but eventually it leads to ruin and the red player leaving the casino
in tears.

Both blue and green player would go home smiling with blue player being the
richer of the two.

The important conclusion is that Kelly fraction b? acts like the upper bound
of the achievable wealth growth. Betting anything less than b? leads to sub-
optimal final wealth. Betting anything higher lowers returns and increases
risk.

For true long-term investors, the Kelly criterion is the boundary
between aggressive and insane risk-taking. Like most boundaries,
it is an invisible line. You can be standing right on it, and you

8



1.5. Exclusive Games

won’t see a neat dotted line painted on the ground. Nothing dra-
matic happens when you cross the line. Yet the situation on the
ground is treacherous because the risk-taker, though heading for
doom, is liable to find things getting better before they get worse.
(Poundstone, 2010)

We close this section with a statement that b? = p·og−q
og

is the optimal
strategy for binary game such as coin toss. What can we do when the game
is more complex remains to be answered.

1.5 Exclusive Games

In our first game 1.1, we discussed a situation where player has a binary choice
of betting fraction of his wealth on a single outcome and the other option of
leaving some of the money aside.

Next we assume a game with K outcomes that are exclusive, e.g. horse race
where only a single horse can win.

1.5.1 Growth Rate

We have already discussed how Kelly criterion uses the idea of evaluating
our money with logarithmic utility function. Given fractional strategy b and
probability p the Kelly criterion is usually expressed as follows from (Cover
et al., 2012).

W (b,p) = E[log(bTo)] (1.28)

It again restates the expected logarithm of growth rate. This time however it
is for general K exclusive outcome game.

W (b, p) =
K∑
i=1

pi log(bi · oi) (1.29)

Please note that 1 + og · b transformed into bi · oi, because o stands for odds
o = og + 1 as defined, hence it already includes the original bet amount.

1.5.2 Kelly Proof

In the previous section we defined Kelly criterion for exclusive games with K
outcomes.

The maximization of the above defined growth rate 1.29 looks as follows from

9



1. Fortune’s Formula

(Cover et al., 2012).

maximize
b

K∑
i=1

pi log(bi · oi)

subject to
K∑
i=1

bi = 1.0

bi ≥ 0

Using the method of lagrange multipliers we expand the above problem into

`(b) =
K∑
i=1

pi log(bi · oi) + λ ·
K∑
i=1

bi (1.30)

We differentiate with respect to b

∂`

∂b
=

K∑
i=1

pi
bi · oi

+ λ (1.31)

Bookie’s estimated probability distribution sums up to 1.0.

K∑
i=1

1
oi

= 1.0 (1.32)

We simplify our derivation into

∂`

∂b
= pi
bi

+ λ i = 1, 2, ...,K (1.33)

To find the optimum of bi we set the above equation equal to 0

bi = −pi
λ

(1.34)

Now we substitue back into the constraint
∑K
i=1 bi = 1.0 we find that

λ = −1 b?i = pi (1.35)

This only tells us that the bi = pi is only a stationary point. In the next
section we will prove that it is indeed a maximum.

1.5.3 Maximum

We will prove that probability proportional strategy bi = pi is the maximum
of the above defined problem. Before we proceed, a few additional definitions
are necessary.

10



1.5. Exclusive Games

First we recall the formula for entropy:

H(P ) = −
n∑
i=1

pi log(pi) (1.36)

Next we define Kullback–Leibler divergence from definition:

D(P ||Q) = −
n∑
i=0

pi log qi
pi

(1.37)

We start with a standard formula for growth rate.

W (b, p) =
K∑
i=1

pi log(bi · oi) (1.38)

In this step we use a convenient trick from (Cover et al., 2012).

W (b, p) =
K∑
i=1

pi log( bi
pi
pi · oi) (1.39)

W (b, p) =
K∑
i=1

pi log( bi
pi

) +
K∑
i=1

pi log(pi) +
K∑
i=1

pi log(oi) (1.40)

We can now transform our formula into:

W (b, p) = −D(p||b)−H(p) +
K∑
i=1

pi log(oi) (1.41)

KL-divergence being non negative we can safely conclude:

W (b, p) ≤ −H(p) +
K∑
i=1

pi log(oi) (1.42)

And we can only achieve equality,(maximum growth rate) if distance,(“KL-
divergence”) is 0.

D(p||b) = 0 (1.43)
that holds for:

b? = p (1.44)
Probability proportional gambling achieves maximum growth rate when bookie’s
probabilities 1

oi
sum up to 1.0.

Interesting finding is that in such a case, odds are completely ignored by the
growth optimal strategy. All that matters is the probability. In other texts
this strategy is often referred to as “betting your beliefs”.

What should be noted from this section is that Kelly growth optimal betting
is closely linked to Kullback–Leibler divergence, which is a fact we will later
investigate in chapter 2.

11



1. Fortune’s Formula

1.5.4 Dividends

In the previous section we proved that probability proportional strategy is
optimal when bookie’s probabilities sum up to 1. This happens only if the
dividends are fair. From the perspective of dividends,(“odds”) we can dis-
tinguish three cases. Fair odds, super-fair and sub-fair odds, (Cover et al.,
2012).

1.5.4.1 Fair

The dividend implied probabilities 1
oi

sum up to 1.0

K∑
i=1

1
oi

= 1.0 (1.45)

Optimal strategy is probability proportional. Intuitively, if odds are fair, they
do not provide any more information.

1.5.4.2 Super-Fair

In this case odds are even better than fair. It is an arbitrage situation, that
in real life happens very rarely, if so, it is only by a mistake of bookie.

K∑
i=1

1
oi
≤ 1.0 (1.46)

1.5.4.3 Sub-Fair

This is the case we will be investigating in this text. It represents most of the
betting situations in real life. Subfair odds usually lowered by some margin
or “track-take”.

(1− tt) · oi tt ∈ (0, 1) (1.47)

where tt stands for track-take. Hence
K∑
i=1

1
oi
≥ 1.0 (1.48)

probability proportional gambling is no longer growth optimal. For answer we
will have to look into Kelly Jr, 2011 and the legendary problem of a Gambler
with a private wire.

In (Kelly Jr, 2011) story begins with a gambler who owns a “private-wire”,
through which he receives insider tips on which horse will win the race. Re-
ceived tips are not 100% reliable, though gambler always knows how “unreli-
able” the tips are. He knows the true probability distribution.

12



1.5. Exclusive Games

1.5.5 Life Is Not Fair

What can we do if odds are not fair? It is the most common real life situation,
when the odds implied probabilities sum up to over 1.0.

K∑
i=1

1
oi
≥ 1.0 (1.49)

Clearly, probability proportional strategy is no longer optimal. Because of
the existing “track-take”, betting on all the horses (outcomes) is no longer
sensible.

Thankfully, in Kelly Jr, 2011 a waterfall algorithm is presented for such a case.
It is later rediscovered in Smoczynski et al., 2010.

Algorithm 1 Kelly exclusive algorithm
1: procedure Kelly-exclusive(i,p,o)
2: chosen = [ ]
3: fractions = [0, 0, ..., 0]
4: R = 1.0
5: ev = p · o
6: (̃i, p̃, õ) = order descending((i,p,o), by=ev)
7: for (i, pi, oi) in (̃i, p̃, õ) do
8: if pi · oi > R then
9: chosen.add((i, pi, oi))

10: R = 1−sum(chosen.p)
1−sum( 1

chosen.o
)

11: end if
12: end for
13:
14: for (i, pi, oi) in chosen do
15: fractions[i] = pi − R

oi

16: end for
17:
18: return fractions
19: end procedure

Where R stands for reserved rate. i is the vector of event identifiers p
is the vector of probabilities, o is the vector of odds. In simple terms, the
algorithm can be explained as:

1. Order all of the possible bets from most to least profitable (highest to
lowest ev).

2. For each event, see if the ev for that event exceeds the “reserve rate” for
your existing set of bets, (The reserve rate is initially 1.0 when your set

13



1. Fortune’s Formula

of planned bets is empty). If the ev is higher, then add that bet to your
chosen set of bets.

3. After each addition of a bet, update the reserved rate according to. R =
(1 – (sum of each probability bet on)) / (1 – (sum of each odds implied
probabilities))

4. Once the optimal set of outcomes is discovered. The fractions are cal-
culated as

b?i = pi −
R

oi
(1.50)

Next we define the expected gain to be.

µ = p · o− 1 = ev − 1 (1.51)

The important finding, that can be looked at as counter intuitive is that
Kelly may decide to bet on an outcome with negative expected gain µ if
certain conditions are met. The reason behind this is that such diversified
betting portfolio has higher geometric mean return than non diversified.

Assume a horse race of 3 horse with the following definitions.

p = [0.08, 0.5, 0.42] (1.52)

o = [19, 1.99, 1.3] (1.53)

Hence, µ from definition:

µ = [0.52,−0.005,−0.454] (1.54)

Using Kelly exclusive algorithm on this problem yields the following optimal
fractions b?

b? = [0.03030916, 0.0255648, 0.0] (1.55)

The second horse,(betting opportunity) is of interest to us. Clearly it has
negative expected gain µ, why exactly did Kelly exclusive algorithm decided
to bet on this outcome?

The following experiment gives a clear answer. Blue player plays according
to Kelly suggested strategy, red player decided to bet according to Kelly but
only where he can expect positive gain. Very sound decision, one could say.
We repeat the game 10000 times for 10000 parallel histories and we take the
mean history for each one.

14
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Figure 1.2: Blue-Kelly player, Red-Positive µ Kelly player, mean trajectory
of 10000 parallel histories over 10000 games

The important idea to remember from this section is that it sometimes
pays to bet on negative expectation bets in combination with other positive
expectation ones. The second important thing is that modifying Kelly frac-
tions in any way results in somewhat sub-optimal strategy.

1.6 K-outcome Games

Question that we also need to answer is: What can we do if the game is non-
exclusive? A game where multiple bets pay off after a single outcome. Assume
football outcome 5:1 for team A, then bets defined as: team A will score over
2 goals, team A will score over 4 goals, both pay off.

To be able to proceed with a solution, first we need be able to formulate
such games. Taking inspiration from (Busseti et al., 2016) we define a return
matrix R such that columns represent different assets available to us and rows
represent different probabilities of our world. Each “box” hence represents a
single payoff from a single asset.

We include additional asset to our representation. The risk-free cash asset
which allows our strategy to put money aside. In addition it also allows us to
model that leaving a large money aside can cost us small amounts of money

15



1. Fortune’s Formula

in every betting turn (“inflation”) or possibility to keep our “cash” in a bank
with some interest rate.

All in all, our model allocates wealth among n + 1 assets, n risky assets and
1 risk-free cash asset. Our “world” has K possible probabilistic outcomes.

R =
[
a1 a2 ... an−1 c

]
(1.56)

ri,j stands for a single return in our matrix R. Each asset column vector ai
is defined as follows.

ai =


ri,1
ri,2
...
ri,K

 (1.57)

b stands for chosen bet fractions.

b =


b1
b2
...
bn−1
bc

 (1.58)

and of course probability vector p

p =
[
p1 p2 ... pK

]
(1.59)

1.6.1 2-asset game

The most basic case of a game we divide our bank between a single asset and
cash. We redefine our previously used example of a fair coin toss that either
pays off o = 3.0 or nothing.

R =
[
3.0 1.0
0.0 1.0

]
(1.60)

p =
[
0.4 0.6

]
(1.61)

1.6.2 3-asset game

A great example is basketball, because interstingly basketball has no draw
state. For two teams A,B our 3 assets are WINA, WINB, CASH. Assume
a slightly less profitable game where probability of winning for team A is
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1.6. K-outcome Games

pA = 0.6 and payoff is oa = 1.8, probability of winning for team B is pb = 0.4
and payoff is ob = 2.01.

R =
[
1.8 0.0 1.0
0.0 2.1 1.0

]
(1.62)

p =
[
0.6 0.4

]
(1.63)

This format allows us to formulate a much more complex game. Imagine
you are faced with a choice of allocating your money between 3 wheel’s of
fortune. Taken from (Poundstone, 2010).

Figure 1.3: 3 wheels of fortune

We can easily represent such problem using our matrix R.

R =



1 3 1
2

1 0 1
2

2 2 3
2 2 3
1 1 1

2
2 2 3


(1.64)

Note that in this particular problem we are not using cash asset.

p =
[

1
6

1
6 ... 1

6

]
(1.65)

1.6.3 N-asset game

Assume horse race with 16 running horses. Bet type quinella denotedQNL(i, j)
pays off if pair of horses (i, j) win the race. Order does not matter. There

17



1. Fortune’s Formula

are hence 120 different pairs, 121 different assets including cash asset and 120
probabilities in the vector p. oi,j denotes posted odds for given QNL(i, j).

R =


o1,1 0 0 ... 1
0 o1,2 0 ... 1
0 0 o1,3 ... 1
... ... ... ... 1

 (1.66)

This is a bet on an exclusive outcome, hence R matrix is almost completely
made up of zeros and odds diagonally.

p =
[
p1,1, p1,2, ..., p15,16

]
(1.67)

One may argue that it would be wiser to solve such problem using Kelly
exclusive algorithm and he would be correct. This example is here to display
that using our R matrix in combination with probability vector p, we are able
to express any real world complex game.

1.6.4 General definition

Taking the matrix R and probability distribution p. We proceed with general
definition of the Kelly strategy.

maximize
b

E[U(R · b)]

subject to
K∑
i=1

bi = 1.0, bi ≥ 0

where U is general non-decreasing utility function(more money is always
at least as good as less money). In this text we will focus on the logarithmic
utility function. Mainly for it’s mathematical properties which we discussed
above.

U(W ) = log(W ) (1.68)

1.7 Modern Portfolio Theory

The idea behind Modern Portfolio Theory is that portfolio b1 is superior to
b2 if the expected gain E[b] is at least as great.

E[b1] ≥ E[b2] (1.69)

and the risk, here general risk measure denoted r is no greater, (Markowitz,
1952).

r(b1) ≤ r(b2) (1.70)
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1.7. Modern Portfolio Theory

This creates a partial ordering on the set of all available portfolios. Taking
the portfolios that no portfolio is superior gives us the set of efficient portfolios
Θ.

Markowitz, 1952 proposes measures of dispersion,(risk measures) that can
possibly be used such as variance V ar, standard deviation σ and “coefficient
of variation“ CV .

V ar[b] (1.71)

σ(b) =
√
V ar[b] (1.72)

CV (b) = σ(b)
E[b] (1.73)

In our case, portfolio b is actually a wealth allocation across different
betting opportunities.

1.7.1 Definition

MPT can be expressed as a maximization problem:

maximize
b

µTb− γbTΣb

subject to
K∑
i=1

bi = 1.0, bi ≥ 0

where b is fraction vector, γ is risk aversion parameter and µ is the expected
values vector of offered opportunities. In layman terms we maximize the
following:

return− γ · risk (1.74)

In the most general set up risk is defined as variance Σ.

1.7.2 MPT and Kelly

To understand the difference between MPT and Kelly, please recall our ex-
ample of the three fortune wheels in 1.3. We had three wheels a1,a2,a3 with
uniform probability distribution and the following returns.

aT1 =
[
1.0 1.0 2.0 2.0 1.0 2.0

]
(1.75)

aT2 =
[
3.0 0.0 2.0 2.0 1.0 2.0

]
(1.76)

aT3 =
[
0.5 0.5 3.0 3.0 0.5 3.0

]
(1.77)

19



1. Fortune’s Formula

p =
[

1
6

1
6

1
6

1
6

1
6

1
6

]
(1.78)

Assume that we are faced with a decision of choosing a single wheel and letting
all of our wealth run on a chosen wheel, instead of allocating across all three
as we did in 1.3. Which wheel should we choose, which one should we choose
according to the Kelly criterion and which one according to the MPT?

Additional information includes arithmetic mean for each:

A(a1) = 1.50 A(a2) = 1.67 A(a3) = 1.75 (1.79)

and geometric mean for each:

GM(a1) = 1.41 GM(a2) = 0.00 GM(a3) = 1.22 (1.80)

Kelly criterion says we should never choose wheel a2 for such an investment.
Because running all of our money through such a wheel, we would definitely be
loosing everything in the long run, Poundstone, 2010. According to the Kelly
strategy we should choose a1, the wheel with the highest geometric mean.
This wheel would yield us the maximum compound return.

MPT on the other hand would resort from choosing a specific wheel. All three
wheels are valid choices for different risk parameter γ. Using variance as a risk
measure, asset a1 is perfect for people with low risk preference, a3 for people
with desire for high returns and a2 for people somewhere in the middle.

Interestingly wheel a2 has lower risk than a3 even though there is a chance
of loosing everything. Which hints at the imperfection of variance as a risk
measure Poundstone, 2010. On the other hand, goal of the Kelly strategy is
to avoid the chance of ruin, however small it is.

Obviously, this is quite a specific example. However, more complex definitions
and such wheels can easily represents assets on the stock market.

MPT can be understood as a framework. Note that the following idea is very
modular:

Maximize return− risk parameter ∗ risk (1.81)

It is exactly this modularity that we will find useful in the next chapters.

We conclude this section with a statement that MPT is one of the frameworks
we will be using in the next chapters. We will show a direct connection between
MPT and the Kelly strategy in 3.1.
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1.8. The Flat Stake

1.8 The Flat Stake

In this section we will define the flat strategy and compare it to the reinvest-
ment startegy using the wheels example, (Poundstone, 2010).

Assume a player who bets using flat strategy meaning that for a year he gets
$1 every week from his wife. He would do best by choosing the wheel with
the highest arithmetic mean a3. After 52 weeks his expected earnings look as
follows:

52 · 1.75 = 87 (1.82)

Next assume a player who starts with $1 and reinvests his winnings every
week. Here’s a comparison of how he would fare choosing each wheel.

52 weeks using Kelly advised wheel a1.

1.4152 = 67, 108, 864 (1.83)

Now for the second wheel a2
052 = 0 (1.84)

and finally for the third wheel a3

1.2252 = 37, 877 (1.85)

In case of reinvestment we see a big difference between Kelly suggested wheel
and any other wheel when player reinvests his winnings.

We conclude this chapter with a few key notes. Kelly criterion is nothing
more than an upper bound of how much of gambler’s wealth are the presented
betting opportunities worth.

Latane, 2011 used the name “geometric mean policy” instead. In short, ge-
ometric mean policy assumes gambler can not predict what the future will
bring and the best thing for him to do “right-now” is to choose a portfolio
with the highest geometric mean.
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Chapter 2
Uncertainty

The compounding nature of the reinvestment strategies can often be a double
edge sword. Kelly is the most aggresive form of reinvestment strategy that is
still sane. Hence clearly, when Kelly wins, it wins big, when it looses, it is
also in a big way.

In this chapter, things get a lot more serious as our estimate of probability
becomes inaccurate. Not only our estimate, but the estimate of bookie, our
adversary, as well. How inaccurate and most importantly what do we mean
by inaccurate?

First we present an intuitive way to grasp the uncertainty and explain how it
connects to the world of betting. Second we define statistical measures used
in the context of uncertainty. Third we present ways of what we previously
referred to as “taming” the uncertainty, multiple modifications that make our
decision more robust to error of overbetting.

Systematic overbetting hurts any betting strategy and is fatal in case of Kelly.
Our ultimate goal is therefore to avoid over-valuing the betting opportunities
presented to us, while still maintaining as much growth as possible. We shall
see whether our proposed strategies will reign supreme or the uncertain game
will void all of our assumptions.

2.1 Kullback-Leibler Divergence

We recall the proof from section 1.5.3 where we show that maximum growth
rate in a fair odds game is achieved if we “bet our beliefs”, we bet according
to the probability paradoxically ignoring published odds. Expressed in the
language of Kullback-Leibler divergence, (KL-divergence):

D(p||b) = 0 (2.1)
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2. Uncertainty

Holds for.
b? = p (2.2)

We redefine KL-divergence without the minus sign as in 1.5.3:

D(P ||Q) =
n∑
i=0

pi log pi
qi

(2.3)

This is the first connection of KL-divergence to fractional betting.

2.1.1 KL-Advantage

In this section we show the second, most important connection of KL-divergence
to fractional betting. Citing the great (Cover et al., 2012) we once again write
down the formula for growth rate as follows.

W (b, p) =
K∑
i=1

pi log(bi · oi) (2.4)

This time we employ a slighlty different trick than in the “Maximum” proof.
We define bookie’s dividend implied probabilities. di = 1

oi

W (b, p) =
K∑
i=1

pi log( bi
pi
· pi
di

) (2.5)

W (b, p) =
K∑
i=1

pi log( bi
pi

) +
K∑
i=1

pi log(pi
di

) (2.6)

From definition of KL-divergence we simplify as follows.

W (b, p) = −D(p||b) +D(p||d) (2.7)

Or better.
W (b, p) = D(p||d)−D(p||b) (2.8)

Here p denotes real probability distribution b denotes bettor’s estimate, d de-
notes dividend implied probabilities, hence bookie’s estimate. What follows is
that Kelly fractional bettor has positive growth rate if and only if his estimate
is better than the dividend implied one.

Note of importance is that here we are speaking about a single game. If such a
game were repeated indefinitely, fractional player has to have such an avantage
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2.1. Kullback-Leibler Divergence

or “edge” if he is to have a positive growth rate. As we will experimentally
show in 4.1.

In real life it becomes almost impossible to have a consistent edge on every sin-
gle game. Even in his black-jack system, Thorp, 1966 had to place “waiting”
bets in disadvantageous plays. Hence over multiple games it is not required
to have the edge every single time or on every single bet. The options are
numerous: To have a big advantage sometimes, (often enough) and small dis-
advantage otherwise. To know where our edge is on the subset of bets and
do a pre-selection of such subset and many other methods. One thing is for
certain however, if there is no edge anywhere, Kelly strategy will be very dif-
ficult to implement successfully.

After all, the Kelly strategy as known by practicioners has always been the
following.

edge

odds
(2.9)

The only way to beat the market (of stocks or horse wagers) is by knowing
something of significance that other people do not. A gambler who wants to
beat the market must have an edge, a more accurate view of what bets are
really worth, (Poundstone, 2010).

This is the important connection between fractional betting and KL-divergence
that we spoke about. Kelly betting bounds the highest achievable growth rate
using fractional strategy, KL-advantage bounds Kelly betting. Such duality
of problems between maximization of logarithmic utility and minimization of
KL-divergence has been investigated in depth by Nau et al., 2009. Logically
we decided to use these ideas in our analysis.

The previous notation might be slightly confusing. We will clear up any pos-
sible confusion and set the following notation for the rest of the thesis.

• PR real probability

• PB bookie’s estimated probability, (dividend implied)

• PM model estimated probability, (gambler’s estimate)

We proceed with the definition of KL-advantage.

AKL = D(PR||PB)−D(PR||PM ) (2.10)
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2. Uncertainty

2.1.2 KL-Divergence Upper Bound

In gambling context, it is clear that the KL-divergence strongly depends on
the number of states our game has. In the case K = 3, game has 3 possible
outcomes a D(PR||PM ) = 0.9 is quite “far” from the true probability distri-
bution. In the case of K = 220, e.g. triplets in a horse race D(PR||PM ) = 0.9
is a very good estimate. Thankfully, Cover et al., 2012 also provides us with
upper bound of this distance measure.

D(PR||
1
K

) = log(K)−H(P ) (2.11)

Where did it come from? First lets consider a formula for entropy

H(P ) = −
K∑
i=1

pi log(pi) (2.12)

Next we consider KL-divergence between PR and uniform distribution, (ran-
dom guessing estimate).

D(PR||
1
K

) =
K∑
i

pi log( pi1
K

) =
K∑
i

pi log(pi)−
K∑
i

pi log( 1
K

) (2.13)

D(PR||
1
K

) = −H(PR) + log(K) (2.14)

At worst, our probability estimation should be a random guess. Hence log(K)−
H(P ), where K is the number of outcomes is our worst case distance. Con-
sidering any distance that is greater than that makes no sense in the gambling
context.

2.1.3 KL Random Spill Algorithm

In this section we present an algorithm to distance player’s estimate from
the real probability, or in general to generate probability distribution Q from
given distribution P such that D(P ||Q) = d.

To the best of author’s knowledge, there is no such algorithm published in the
existing literature. We hence first present intuitive idea behind the algorithm,
second we present mathematical background, third we present pseudo-code.
Finally in chapter A we present a real implementation.

2.1.3.1 Intuition

The main idea behind the algorithm comes as the name suggests from “ran-
domly spilling” the distance d across the probability distribution P .
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2.1. Kullback-Leibler Divergence

Figure 2.1: Randomly “spilling“ the distance across the distribution P

Intuitively we randomly divide distance d into pieces d1, d2.... We non-
repetively generate random pairs (pi, pj) from probability distribution P . If
the number of states n is an odd number, a single state, single probability
is left out and has no pair. Finally we randomly “spill”, add these pieces of
KL-divergence across generated pairs to generate Q such that D(P ||Q) = d
and also that Q stays a probability distribution

∑K
i=1 qi = 1.

2.1.3.2 Principle

Assume we have chosen one of the random pairs (pi, pj), to which we have
attributed one of the chunks of the desired KL-divergence di. Our goal is to
generate modified pair of probabilities (p̃i, p̃j) such that the formula for KL
divergence between the pairs (pi, pj) and (p̃i, p̃j) equals the attributed distance
dk.

pi log(pi
p̃i

) + pj log(pj
p̃j

) = dk (2.15)

We express modified probabilities in the following way.

p̃i = pi · exp(δi) δi = log( p̃i
pi

) (2.16)

p̃j = pj · exp(δj) δj = log( p̃j
pj

) (2.17)

No loss of probability happens during our transformation.

pi + pj = p̃i + p̃j (2.18)
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We can hence modify the initial equation 2.15 as follows.

pi(−δi) + pj(−δj) = dk (2.19)

Our goal now is to express δj .

pj(−δj) = dk − pi(−δi) (2.20)

(−δj) = dk − pi(−δi)
pj

(2.21)

δj = −dk − piδi
pj

(2.22)

Please recall that.
pi + pj = p̃i + p̃j (2.23)

Therefore p̃j can be expressed as.

p̃j = pi + pj − p̃i (2.24)

p̃j = pj + pi − (pi · exp(δi)) (2.25)

p̃j = pj + pi(1− exp(δi)) (2.26)

p̃j = pj(1 + pi
pj

(1− exp(δi))) (2.27)

p̃j = pj(1−
pi
pj

(exp(δi)− 1)) (2.28)

p̃j = pj · exp(log(1− pi
pj

(exp(δi)− 1))) (2.29)

That of course looks a lot like one of our initial equations

p̃j = pj · exp(δj) (2.30)

It follows.
δj = log(1− pi

pj
(exp(δi)− 1)) (2.31)

We can now simplify our original equation.

pi(−δi) + pj(−δj) = dk (2.32)

Into:
pi(−δi) + pj(− log(1− pi

pj
(exp(δi)− 1))) = dk (2.33)
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2.1. Kullback-Leibler Divergence

−piδi − pj log(1− pi
pj

(exp(δi)− 1)) = dk (2.34)

Finally we can drop the index from δi as there is only a single δ now. We
define function f as follows.

f(pi, pj , δ, dk) = −piδ − pj log(1− pi
pj

(exp(δ)− 1))− dk (2.35)

For a specific pair of probabilities (pi, pj), distance dk, we are looking for a δ
such that

f(pi, pj , dk, δ) = 0 (2.36)

δ? such that − piδ − pj log(1− pi
pj

(exp(δ)− 1))− dk = 0 (2.37)

We then generate modified pair of probabilities (p̃i, p̃j) as follows

p̃i = pi · exp(δ?) (2.38)

From pi + pj = p̃i + p̃j we express p̃j .

p̃j = pi + pj − p̃i (2.39)

We repeat this procedure for every pair of probabilities (pi, pj) and every as-
signed distance dk to generate new pair (p̃i, p̃j). Please note that every prob-
ability pi exists in only a single pair, (they are paired with non-repetition). If
there is a single probability pk such that it has no pair, it is copied with no
modification.

This way we replace every single probability in the original probability distri-
bution P to generate a new distribution Q such that

D(P ||Q) =
c∑

k=1
dk = d (2.40)

Where c stands for number of pairs we can split probability distribution P
into.
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2.1.3.3 Pseudocode

Algorithm 2 KL random spill algorithm
1: procedure RandomSpill(P = [p1, p2, ..., pn], d)
2: pairs, qi = random pairs([p1, p2, ..., pn]) . randomly pair states of P
3:
4: distances = random split(d, count = length(pairs))
5: Q = [0, ..., 0] . initialize
6:
7: if qi then . If there is odd number of states
8: Q[i] = qi . The state with no pair is copied unmodified
9: end if

10:
11: assigned = random assign(pairs, distances)
12: for [(pi, pj), dk] in assigned do
13: Find δ? such that − piδ − pj log(1− pi

pj
(exp(δ)− 1))− dk = 0

14:
15: p̃i = pi · exp(δ?)
16: p̃j = pi + pj − p̃i
17: Q[i] = p̃i
18: Q[j] = p̃j
19: end for
20: return Q
21: end procedure

2.1.4 Divergence Spread

KL divergence is in it’s essence a very difficult measure to grasp. We hence
define the following for the two distances.

KLs = D(PR||PM )−D(PR||PB)
1
2(D(PR||PM ) +D(PR||PB))

(2.41)

intuitively it is

KLs = advantage

average
(2.42)

2.1.5 Market Efficiency

There are many definitions for market efficiency. We will use the following
inspired by (Cover et al., 2012).

EFF = 1− D(PR||PB)
log(K)−H(PR) (2.43)
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2.2. Statistical KL Measures

intuitively it is how much potential there is for growth in the given market.

EFF = 1− bookie′s KL distance

random guess
(2.44)

If bookie is random guessing, efficiency is zero. Market is very inefficient.
There is a lot of “inefficiency” to make money from. If bookie has his estimate
so accurate as it is equal to the real probability, EFF = 1, there is almost no
opportunity to make money systematically.

2.2 Statistical KL Measures

We have seen how we can calculate KL-advantage AKL given real probability
distribution PR, model probability PM and bookie’s odds implied probability
PB. Question that remains is how do we calculate our KL measures on real
data where PR is unknown? We do so statistically.

In real data our PR for given game comes in the form of vector consisting of
zeros and ones(a single one if the game is exclusive). Simple example of PR
for arbitrary exclusive game looks as follows.

PRi =
[
0 1 0 0 ... 0

]
(2.45)

Where 1 marks the outcomes that realized and 0 marks the outcomes that did
not realize. The zeros would lead to problems in our calculation.

D(PR||PM ) = 0 · log( 0
pM1

) + 1 · log( 1
pM2

) + ... (2.46)

We conveniently leave out the zeroed terms from our calculation. Then take
calculate the average distance from the dataset.

D(PR||PM )S =
∑game count
i=1 D(PRi ||PMi)

game count
(2.47)

2.2.1 Statistical KL-advantage

It follows that calculating the KL-advantage from the data, we will use the
previously defined statistical distance measures.

AKLS
= DS(PR||PB)−DS(PR||PM ) (2.48)

2.2.2 Statistical Efficiency

We calculate the previously defined market efficiency EFF from the data in
a similar manner. We only add minor fool proof modifications for when we
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2. Uncertainty

calculate from the data.

Our PR is now an identity vector, hence it’s entropy can be removed from our
efficiency formula.

H(PR) = 0 (2.49)

We also put a bound on the distance using minimum function. We do so
as there may be samples where the distance goes over our upper bound
log(K). We have mentioned, anything worse than the random guess distance
D(PR|| 1

K ) = log(K) makes no sense in the gambling context. Our average
statistical efficiency EFFS is hence a slightly transformed definition of the
standard efficiency EFF .

EFFS = 1− min(DS(PR||PB), log(K))
log(K) (2.50)

We can also transform into.

EFFS = 1−min(1, DS(PR||PB)
log(K) ) (2.51)

Note that it is required to take group games according to the number of
outcomes, calculate average and then divide by the upper bound. Bookie can
possibly be systematically more accurate in the race of 10 horses than in the
race of 16 horses. Hence resulting efficiency in each subset of races will differ.

Intuitively, bookie is at best, (from player’s perspective) making his odds up
randomly, his KL-distance from reality is then log(K), where K is the number
of outcomes the game has. Efficiency of the market is then 0. We can easily
make money.

At worst he is making his odds up according to the true probability in which
case DS(PR||PB) = 0 and hence EFFS = 1. Market is then fully efficient.

2.3 Fractional Kelly

The basic idea behind the fractional Kelly is that we bet only a fraction of
suggested Kelly optimal fractions. The most famous being “Half-Kelly“, where
as the name suggest we multiply optimal fractions b? by 1

2 .

We have seen that betting less than Kelly results in sub-optimal strategy 1.4
. Why exactly is it good idea to bet “Half-Kelly“ then?

Fractional Kelly allows us to trade the optimality of our strategy for more
security. When our model estimation PM is inaccurate, we must at all cost
avoid over betting the presented betting opportunities. We rather trade the
optimality of growth for security regarding our bank.
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2.4. Drawdown

We recall that betting more than Kelly, as we have seen in 1.4 results in ruin
Thorp, 1975.

The next picture taken from (Poundstone, 2010) provides a good overview of
what a different fraction means for Kelly.

Figure 2.2: Fractional Kelly

We define trade-off index λ and investment model M . Mk stands for Kelly
model and M0 is a model where the only investment is a risk-free, “cash“
investment. We will investigate all models generated by convex combinations.

M(λ) = λMk + (1− λ)M0 (2.52)

λ or trade-off index is now a lever between “growth“ and “security“ (MacLean
et al., 2011).

In the next section we will present a method of managing the bank with a
more elegant solution than the ad-hoc of Half-Kelly.

2.4 Drawdown

Assume that WMIN is the lowest our wealth goes. The drawdown is then
defined as follows from (Busseti et al., 2016).

1−WMIN = 0.3 (2.53)
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2. Uncertainty

Meaning our wealth dropped down by 30%. We can then define the risk of
drawdown as follows

P (WMIN < α) = β (2.54)

Probability of experiencing 1− α drawdown equals beta. For example:

P (WMIN < 0.7) = 0.1 (2.55)

is a probability of experiencing more than 30% drawdown is 0.1.

We then include this additional constraint in our model definition Busseti et
al., 2016.

maximize
b

E[U(R · b)]

subject to
K∑
i=1

bi = 1.0

bi ≥ 0
P (WMIN < α) < β, α, β ∈ (0, 1)

This constraint is very difficult to implement. It is far wiser to consider
an approximation.

P (WMIN < α) = β (2.56)

Can be approximated as Busseti et al., 2016

E[R · b]−λ ≤ 1 (2.57)

Where
λ = log(β)

log(α) (2.58)

We can say that if bet satisfies E[R · b]−λ ≤ 1 it’s drawdown risk satisfies
P (WMIN < α) = β.

Our drawdown constraint then becomes

E(R · b)−λ ≤ 1 (2.59)

Which we can reformat the following way.

log(
K∑
i=1

pi · (ri · bi)−λ) ≤ log(1) (2.60)

we know that
x = exp(log(x)) (2.61)

therefore we can further simplify into the following.

log(
K∑
i=1

exp(log(pi · (ri · bi)−λ))) ≤ 0 (2.62)

34



2.4. Drawdown

log(
K∑
i=1

exp(log(pi) + log(ri · bi)−λ)) ≤ 0 (2.63)

log(
K∑
i=1

exp(log(pi)− λ log(ri · bi))) ≤ 0 (2.64)

This log-sum-exp constraint is convex Busseti et al., 2016 and we will dis-
cuss it’s implementation in A. Our Kelly model now includes the drawdown
constraint.

maximize
b

K∑
i=1

pilog(ri · bi)

subject to
K∑
i=1

bi = 1.0

bi ≥ 0

log(
K∑
i=1

exp(log(pi)− λ log(ri · bi))) ≤ 0

where λ = log(β)
log(α) for some α, β ∈ (0, 1)

Both the fractional and the drawdown constraint can be used to gain more of
overall security in our selected portfolios.

In this chapter we successfully defined uncertainty in the context of gambling,
it’s upper bound and measures. The key notes from this chapter are that the
KL-advantage directly bounds the Kelly growth optimal strategy. We will
propose a testing framework based on this idea in the final chapter.

35





Chapter 3
Simultaneous Games

We would like to begin the chapter about simultaneous games with the fol-
lowing example. Please assume a game of football between Hrozenkov and
Drnovice with three available betting opportunities.

1. WIN Hrozenkov

2. WIN Drnovice

3. DRAW

Next please assume a quite realistic scenario that today there are 30 of such
football games. Hence there are 90 betting opportunities, an acceptable num-
ber. To express this problem in the language of Kelly gambling, all we need
now is to generate matrix R, where each row stands for each possible outcome
of our world. The number of possible outcomes is 330 and this is exactly where
our problem begins. If we have 330 possible outcomes and 90 betting oppor-
tunities + 1 cash asset. No more needs to be said about the size of matrix R.

This chapter is all about the realization that such large scale bet aggregations
are impossible to solve using the Kelly strategy. To be able to proceed, we
will once again be forced to trade optimality for reality. First the logarithm
in our model will be dealt with. In the second part, we will be forced to cut
the state space and finally in the third section we will discuss easier solutions
that are available under a very specific set of circumstances.

3.1 Quadratic Kelly

There are not too many solvers which can deal with logarithms both in prob-
lem definitions and also in constraints, (drawdown constraint). If they do,
they usually use quite a bit of computational power. Therefore if we want to
solve larger bet aggregation problems we have to deal with the logarithm first.
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3. Simultaneous Games

We do so by using the Taylor expansion. Let us first recall that.

log(1 + x) = x− x2

2 +O(x3) (3.1)

We define a modification of our matrix R to be ρ as follows.

R− 1 = ρ (3.2)

Next according to Busseti et al., 2016, we make assumption that R · b ≈ 1
and we express the logarithmic part of our Kelly problem as follows.

log(R · b) = log(1 + ρ · b) (3.3)

Our transformation can then proceed.

log(1 + ρ · b) = ρ · b− (ρ · b)2

2 + ... (3.4)

Taking only the first two terms, we arrive at our new problem definition.
We transform from the now well understood Kelly formula.

maximize
b

E[log(R · b)]

subject to
K∑
i=1

bi = 1.0

bi ≥ 0

Into a new formula.

maximize
b

E[ρ · b− (ρ · b)2

2 ]

subject to
K∑
i=1

bi = 1.0

bi ≥ 0

3.1.1 Quadratic Drawdown

Similarly we modify the drawdown constraint according to (Busseti et al.,
2016).

E[R · b] ≤ 1 (3.5)

(R · b)−λ = (1 + ρ · b)−λ (3.6)

First we recall the following.

(1 + x)a =
∞∑
n=0

(
a

n

)
xn (3.7)
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3.1. Quadratic Kelly

Next we follow through with the expansion according to the formula.

(1 + ρ · b)−λ = 1(ρ · b)0 − λ(ρ · b)1 − λ(−λ− 1)(ρ · b)2

2 (3.8)

If we take only first two terms, our quadratic approximation for drawdown
constraint is as follows.

1(ρ · b)0 − λ(ρ · b)1 − λ(−λ− 1)(ρ · b)2

2 ≤ 1 (3.9)

−λ(ρ · b)1 + λ(λ+ 1)(ρ · b)2

2 ≤ 0 (3.10)

λ(λ+ 1)(ρ · b)2

2 ≤ λ(ρ · b) (3.11)

Quadratic approximation of our Kelly model is as follows.

maximize
b

E[ρ · b]− 1
2 E[(ρ · b)2]

subject to
K∑
i=1

bi = 1.0

bi ≥ 0

λ(λ+ 1)(ρ · b)2

2 ≤ λ(ρ · b)

We note that our model now follows the MPT framework.

Maximize return− 1
2 ∗ risk (3.12)

Or as previously mentioned.

maximize
b

µTb− γbTΣb

subject to
K∑
i=1

bi = 1.0, bi ≥ 0

Where our E[ρ · b] is in the basic MPT definition defined as µTb or excess
return. E[(ρ · b)2] is the risk measure bTΣb (Variance). 1

2 = γ is the risk
aversion parameter.

Similarly to Markowitz, 1952 we arrive at the conclusion that geometric mean
is approximately the artihmetic mean minus 1

2 of variance.

What will be important in the following sections is that our covariance matrix
Σ is calculated as follows.

Σ = E[ρ · ρT ] (3.13)
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3. Simultaneous Games

Σ =
K∑
i=1

pi(ρi · ρTi ) (3.14)

Where K is the number of outcomes our world has and pi is from joint prob-
ability distribution.

It is hence still required to generate the joint probability distribution and a
modified matrix ρ of all the possible outcomes. Number of outcomes from
our initial example is K = 330. Clearly this is numerically quite difficult task
especially for subsequent simulation of parallel histories.

We conclude this section with a statement that quadratically approximating
the Kelly strategy is an absolute necessity when dealing with many simulta-
neous games as we will see in experiment 4.3.2.

3.2 State Space

Following our findings from the previous section. If we want to solve large bet
aggregations we will often be forced to somehow select the betting opportuni-
ties we are interested in from the ones that we can possibly ignore.

The first distinction that often comes to mind is the positive expected return.
As we have already seen in one of our examples in chapter 1. Removing the
negative expectation bets has an effect of a very small decrease in optimality.

In the next few subsections we will discuss bet selection criteria we experi-
mented with.

3.2.1 Expected Return

We select only the betting opportunities, where our expected return exceeds
some specified value. Often the most natural filter is to only include only the
positive expected value bets.

p · o ≥ 1.0 (3.15)

Or in alternative notation of excess return µ

µ ≥ 0 (3.16)

3.2.2 Sharpe Ratio

Sharpe ratio is also known as a “reward-to-variability“ ratio and the definition
is as follows.

µ− rf
σ

(3.17)
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3.3. Maximum Sharpe Ratio

Where µ stands for excess return of the bet, σ for it’s standard deviation and
rf is a risk free rate. In the case of betting we will always assume rf = 0.

In the next section we will look into a separate strategy based on maximizing
this value across the whole portfolio.

3.3 Maximum Sharpe Ratio

Our previous modifications grealty helped us. We no longer have to solve
the logarithm in our problem definition and constraints, we also reduced our
state space significantly, reducing every typical three state game(WIN, LOSS,
DRAW) into often two betting opportunities, sometimes into a single bet. We
can assume that the typical three state game will be reduced into two bets,
sometimes a single bet, hence 230. That is still a very respectable number of
elements in our joint probability distribution.

The idea is to select only a single bet in the entire game (or none). Obviously
this leads to a massive reduction of state space, however, there is one more
thing that can be safely assumed and that is independence of such selected
outcomes. With such assumption, we no longer need to generate the joint
probability distribution. Our covariance matrix now looks as follows. The
idea of opportunity preselection is taken from Hubáček, 2017.

Σ =


σ2

1 0 0 ... 0
0 σ2

2 0 ... 0
0 0 σ2

3 ... 0
... ... ... ... ...
0 0 0 ... σ2

n

 (3.18)

where σ2
i stands for variance of a single betting opportunity i. Covariance

matrix Σ is hence a diagonal matrix that is easily generated.

Variance of a single betting opportunity is calculated as follows.

σ2 = p(1− p) · o2 (3.19)

From the MPT definition we recall that accross the porfolio, σ is defined as
follows.

σ =
√
bΣb (3.20)

We can now define a separate strategy based on the maximum Sharpe selection
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criteria.
maximize

b

µb√
bΣb

subject to
K∑
i=1

bi = 1.0

bi ≥ 0

One might object that not all games can be simplified into a single outcome.
For instance combination bets in a horse race can go up to 220 different betting
opportunities per single race. If we were to always pick a single one, we might
not win once in a year.

We hence believe that there are games where aggregation is a great idea such as
basketball or football. Where we do not over simplify the games and generally,
the more we aggregate, the better. There are also games such as horse racing,
athletics, swimming where we should not over-simplify.

3.4 Parlays

We include this section only informatively because in a real world, bookie
often offers accumulator bets also referred to as “parlays” on some sports,
between some games.

Assume a perfect world that he indeed offers such bets and he does so on
every single sport and between all possible games. Additionaly assume that
all payoffs of such accumulator bets are no higher and especially no lower than
the product of single bet payoffs included in the accumulator bet.

o1,2,3 = o1 · o2 · o3 (3.21)

If all such requirements are met. According to Grant et al., 2008 only indi-
vidual games have to be considered. Overall optimal fractions come from the
products of the individual game fractions and their complements.

As an example we consider 2 game, 2 outcome scenario. b∗(1,1) optimal fractions
for individual game 1 outcome 1. b∗(2,1) respectively.

b(1,1)(2,1) = b∗(1,1) · c
∗
(2,1)

b(1,1) = b∗(1,1) · c
∗
2

b(2,1) = b∗(2,1) · c
∗
1

Where c∗1,c∗2 are resources left in the cash asset.
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Chapter 4
Experiments

In this chapter, we will finally put our findings to a test. First we will con-
duct a verification experiment using generated data. Then we will test defined
strategies on three different games intentionally selected to be from three dif-
ferent domains where each game presents a different set of challenges.

In the first section we will look at a hypothetical game and experiment with
three different scenarios. We will show the connection between KL-advantage,
Kelly strategy and compound growth rate.

The sections onward present real world experiments. We will first briefly in-
troduce the domain or the dataset available to us. In the second step we will
“map the territory” by measuring the KL measures across the dataset. This
will give us a first guess of what we can expect from the problem.

We will then proceed with simulation of appropriate strategies. The discussed
strategies will be Kelly, Quadratic Kelly (QKelly) and the Max-Sharpe strat-
egy (MSharpe). Finally in the third part, we will propose what we believe to
be the best solution for given problem. We will compare the markets according
to the following measures.

• m-acc model count accuracy.

• b-acc bookie count accuracy.

• n number of risky assets in a single game.

• odds odds range

• tt track take, (margin) taken by bookie.

• AKL/log(K) KL-advantage of our model over the upper bound.

• E KL-efficiency of the market.
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4.1 Generated Data

In this section we present a convenient testing framework which allows for sim-
ulations of arbitrary betting scenarios. Additionally, we will experimentally
verify the correctness of our previous definitions from chapter 2.

4.1.1 Betting Scenario

In a game withK outcomes we assume two entities. Bookie(B) and a gambler(M)
for “model”. Both bookie and gambler have their belief of probability distri-
bution. Our ultimate goal is to model the test as close to a real world as
possible. We hence further assume that both B and M are incorrect in their
respective assumptions at least to some degree. What it means is that B and
M are somewhat “KL-distanced” from the real probability distribution(R) of
the event.

Figure 4.1: Intuitive understanding of the betting scenario

4.1.2 Framework Definition

What follows is that we are going to be working with triplets.

(PR, PB, PM ) (4.1)

Where PR will be used to execute a game. PB will be transformed into odds
and together with PM it will then be used to make betting decisions. The
single game triplet generation process is as follows:

1. Generate PR for n outcome game from Dirichlet distribution

2. Generate PB such that D(PR||PB) = dB

3. Generate PM such that D(PR||PM ) = dM
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4.1. Generated Data

4. Generate fair odds O from bookie’s estimate PB such that oi = 1
pb,i

5. Introduce possible track-take, (margin) into the odds O and generate Õ

6. Combine the previous steps into triplet (PR, Õ, PM )

Choosing dB, dM will decide what kind of advantage or disadvantage gambler
is playing with. It can be a constant or it can come from arbitrary distribution,
allowing us to model situations of having e.g. big edge sometimes and a small
disadvantage otherwise.

4.1.2.1 Track Take

We introduce track take tt into the framework using simple formula.

õi = (1− tt) · oi (4.2)

Usually this makes the situation even harder for the player (M).

4.1.3 Experiment

Our experiment will feature a 4 outcome game with no track-take, hence
K = 4 and tt = 0.

We will generate and compare three different scenarios from the viewpoint of
KL-advantage. Gambler in advantage, no advantage, gambler in disadvantage.

The three scenarios are as follows.

1. Advantage: Bookie is on average less precise

dM ∼ N+(0.020, 0.0015)

dB ∼ N+(0.021, 0.0015)

2. Both are equally precise

dM ∼ N+(0.020, 0.0015)

dB ∼ N+(0.020, 0.0015)

3. Disadvantage: Model is less precise

dM ∼ N+(0.021, 0.0015)

dB ∼ N+(0.020, 0.0015)
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One might object that there is now a non-zero probability of having a
negative distance dM , dB, which would surely cause trouble in our subsequent
calculations. For simplicity sake we hence assure positivity of dM , dB by using
log-normal distribution and the following transformation

µ = log( E[X]2√
V ar[X] + E[X]2

) (4.3)

σ2 = log(1 + V ar[X]
E[X]2 ) (4.4)

N+ ∼ Lognormal(µ, σ2) (4.5)

Where as E[X] we input the required mean for our non-negative “normal”
distribution and V ar[X] the required variance. For simplicity sake please
assume all the “normal” distributed distances were generated in such a way
to be non-negative. We use the notation N+.

We generate 1000 parallel Kelly betting histories of 1000 games, take the mean
history for each scenario and the results are as shown in the following figure.

0 200 400 600 800 1000
Games t

0.000

1.000

2.000

2.842

W
ea

lth
 W

t

AKL = 0.001
AKL = 0
AKL = 0.001

Figure 4.2: Testing framework experiment. Blue - advantageous mean history,
Green - equal, Red - disadvantageous mean history.
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It is clear that the equal scenario(green) fluctuates around the intitial
wealth. The relatively small disadvantage produces clear loss and advantage
clear profit. The longer our generated histories, the smoother results we get.
In the picture 4.2 advantageous scenario clearly shows almost exponential
growth, equal scenario is close to being linear at the initial wealth.

4.1.4 KL-advantage

Next we will show a direct connection between KL-advantage and the com-
pound growth rate.

AKL = dB − dM (4.6)

AKL ≈ 0.001 (4.7)

CGR = ( end value

start value
)

1
#reinvestments − 1 (4.8)

We started on 1.0 and ended on approximately 3.0 after 1000 games where we
reinvested.

CGR = (2.842
1.0 )

1
1000 − 1 (4.9)

CGR ≈ 0.001 (4.10)

CGR ≈ AKL (4.11)

Compound growth rate is truly equal to the KL-advantage.

We conclude this experiment with a statement that the KL random spill al-
gorithm works correctly. Our testing framework is sufficient for our purpose
as it is now possible to model uncertainty in probability predictions and it’s
variance for both advantageous and disadvantageous scenarios in general K-
outcome games.

4.2 Horse Race

In South Korea, geographically there are three main cities. Seoul the capital,
the port city Busan and the capital of Jeju island, Jeju City. Every single one
of those cities organizes horse races. Interestingly, every one of those races
uses different kinds of horses. Especially in the case of Jeju, where they use
the traditional Jeju pony.

We collected relevant data from the Korean Racing Agency,(KRA) to build
a model using conditional logistic regression and provide approximately 2500
horse races of our model probability estimation PM , odds O transformed into
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bookie’s estimate PB and PR in the form of realized games, hence vectors of
zeros and ones. We will investigate Seoul, WIN pool. Meaning bets represent
horse winning the race.

4.2.1 Market

The Korean horse racing market has the following properties.

m-acc b-acc n odds tt AKL/log(n) E

≈ 0.537 ≈ 0.523 ∈ [6, 16] ∈ [1.0, 931.3] ≈ 0.2 0.0057 0.317

In horse racing and many other sports the market is pari-mutuel, meaning
that money is put into a shared pool from which a heavy track-take is usually
taken. “Bookie’s” estimate is hence made up entirely according to the public
opinion.

Public is well informed by the KRA website which provides predictions based
on a similar system like ours. However we believe that people’s thinking is
always somewhat biased.

The problem is therefore specific in a way that our model needs to beat a
much higher track take than in the case of bookie’s odds. On the other hand
our empirical evidence suggests that getting systematic KL-advantage against
public opinion will be easier.

What is important is that in the overall evaluation of the betting opportunities
our model is closer to estimating their true value as shown by the AKL/log(n)
value.

Another factor of specificity comes in the form of number of outcomes. Whereas
football game has 3, the WIN bet we will be looking at often up to 16 out-
comes. Higher number of outcomes leads to infrequent, often much higher
payoffs than a game with less outcomes.

4.2.2 Strategy

In a single exclusive game such as horse race, the optimal strategy for flat
staking as has been discussed by Kelly Jr, 2011, is simply choosing the highest
expected value bet in each race. We hence directly proceed with discussion
about the reinvestment strategies.

So far we always presented a mean trajectories of the Kelly strategy. Which
may give the impression that Kelly strategy is in general quite stable. In reality
however, unless risk constrained, it often produces trajectory that swings from
disaster into lottery winning. We present a single run of Kelly and QKelly to
show how it usually behaves on a real data.
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Figure 4.3: A single history for Kelly and QKelly on horse racing data

Kelly strategy is well known for it’s large deviations. Interestingly in this
particular dataset QKelly does better than Kelly. Additionally we observe,
that even though we posses a systematic KL advantage, a true “privilege” in
the world of betting, Kelly, being the growth optimal strategy is able to yield
very high returns on one side and dangerously low 1

10 of our bank on the other.
This brings us to a discussion of what makes a truly reasonable strategy.

Reasonable strategy can be loosely defined as a middle ground between one
risky strategy that is aiming to win a lottery and a second highly conservative
strategy that makes any returns impossible.

To propose a reasonable strategy we will always present a boxplot comparison
of strategy performance on the training dataset and testing dataset in addition
to a selection criterion.

4.2.2.1 Proposal

When a systematic KL-advantage is achieved, we do not need to overly con-
straint the Kelly strategy. Any additional constraints will make the strategy
more reasonable, but less optimal. Our risk constraint for a reasonable strat-
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egy is hence as follows.

P (WMIN < 0.4) = 0.1 (4.12)

Meaning that our wealth will go below 40% with only 10% probability.

The following boxplot is generated from 500 random iterations through both
training and testing dataset. The reinvestment trajectory reaches the same
wealth no matter the order of the games. To display the high variance of
returns in horse racing we shuffled the order of the races in both the training
and testing datasets. The wealth trajectory starts and ends at the same point
no matter the order of the races. The high variance may be surprising, but
such is the nature of horse racing where both model and bookie are quite “far”
from reality in their estimates and infrequent wins pay very high dividends.
Please recall that the odds range from 1.0 to 931.9 in our dataset.
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Figure 4.4: Proposed strategy performance on the training and testing dataset

We can now safely conclude this section. Kelly strategy is the optimal
strategy and for a more reasonable one we can add the risk constraint 4.12.

4.3 Basketball

The second domain we will discuss is the NBA. Dataset consists of close to
15000 games ranging from year 2000 all the way to 2014.
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4.3. Basketball

4.3.1 Market

The basketball market has the following properties.

m-acc b-acc n tt odds AKL/log(n) E

≈ 0.68 ≈ 0.7 2 ≈ 0.038 ∈ [1.01, 41.] −0.0146 0.58

We observe a significant KL disadvantage. It is hence guaranteed that we
would be overbetting the opportunities, shall we decide to use the Kelly strat-
egy as is. Which as we have seen guarantees ruin. It will be required to choose
our strategy far more wisely than in the previous section.

The specificity of this problem is exactly the measured disadvantage. It is
much harder to beat the bookie than it was to beat the public in our previ-
ous problem. Another factor of specificity comes in the form of simultaneous
games. There are often multiple basketball games played at once, which is
rarely the case in Korean horse racing.

In the reinvestment experiments, we assume a round of 10 games hapenning
in “parallel”. Mainly for the feasibility of calculating the many trajectories
required which we discuss in the next section.

4.3.2 Simultaneous Games

The necessity of quadratic approximation becomes apparent the moment we
try aggregating the basketball games. Calculating single sample round of 10
simultaneous basketball games takes 0.00028 seconds using QKelly, whereas
Kelly takes 223 seconds.

We split the dataset into testing and training datasets. To display the variance
of our dataset we simulate through randomly shuffled data in each set. The
result is different trajectories of many different 10 game rounds. There are
always 8 random games that do not fit into any 10-round. The 8 games are
always randomly selected and excluded from the respective dataset. To be
able to draw some conclusion from such a simulations we needed at least 100
of such independent trajectories through the datasets. Using QKelly instead
of Kelly is hence an absolute must.

4.3.3 Flat Stake

Our first experiment conducted is a flat staking simulation. Whereas in horse
racing, choosing highest expectation bet is the optimal strategy. In simulta-
neous games, things are not completely clear. We definitely should choose
the highest expectation bets. In this case however, the games are exclusive
on their own, grouped together they are not. We hence also need to compare
and evaluate them in relation to each other. In our experiments, the MSharpe
strategy proved to be the best solution.
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Figure 4.5: MSharpe flat trajectories, comparison of different round sizes.

4.3.4 Reinvestment

In this scenario, any reinvestment betting strategy will require a heavy risk
constraint. In case of fractional MSharpe we are looking for a fraction f? and
in case of QKelly, we are looking for values α and β in the dradown constraint.

P (WMIN < α) = β (4.13)

λ = log(α)
log(β) (4.14)

We are looking for such f? and λ, (or combinations of α, β) that satisfy
the following across all of our simulated trajectories.

maximize median(WF )
subject to Q5 > 0.95

We are hence looking for strategy that reached the maximum median final
wealth across all trajectories. The 5th percentile being the value below which
5% of all the wealth positions may be found. We select from all the strategies
that we simulated. For fractional MSharpe strategy it yields fraction f = 0.11.
For QKelly risk constraint it is λ = 21.3. Which represents approximately
α = 0.87 and β = 0.05.
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Figure 4.6: 1000 MSharpe trajectories across the testing and training datasets.
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Figure 4.7: 200 QKelly trajectories across the testing and training datasets.
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4. Experiments

The conclusions of the basketball experiment are as follows.

The round size indeed does matter. Suppose that there are too few games
taking place in a given day, (e.g. 5). It is so that the strategy has too
few opportunities to compare against each other which leads to overbetting
the ones presented. However, the more games we are able to aggregate, the
smaller the difference, which as a result leads to a higher stability of the
betting strategy.

Devising a reinvestment strategy in a disadvantageous scenario is a challenging
task. Both fractional MSharpe and QKelly reach very similar results over the
basketball dataset. Whereas MSharpe is much easier to calculate. Finally as
we discussed in our generated data experiment 4.1, any Kelly based strategy is
very sensitive to the KL advantage. In some cases it may be more appropriate
to use a flat strategy, which is unarguably more robust to error.

4.4 Football

The Football dataset consists of close to 30000 football games from all over
the world. It provides both the opening and closing odds offered by the
bookmaker.

4.4.1 Market

The football betting market has the following properties in relation to the
model prediction.

m-acc b-acc n tt odds AKLO
/log(n) AKLC

/log(n) EO
0.523 0.537 3 0.03 [1.03, 66] −0.012 −0.016 0.37

Where AKLO
stands for opening odds advantage and AKLC

for closing odds
advantage.

The important this is that the advantage is higher on the opening odds. We
should hence time our betting accordingly.

Out of all the three of our experiments on real data, this is somewhere in the
middle. There are three outcomes instead of two as was the case for basketball
which is still significantly less than 16 as in the horse race. Efficiency of the
market is higher than in horse racing experiment, but lower than the basketball
experiment. Which tells us that there is more opportunity for us to devise a
profitable reinvestment strategy.
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4.4. Football

4.4.2 Flat Stake

Just like in the previous case, we first conduct a flat staking experiment across
the data. The best solution again proved to be the MSharpe strategy both
from the perspective of profitability and the speed of calculation.
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Figure 4.8: MSharpe flat trajectories. Effect of the round size dissipates when
rounds consist of more games.

Round size 5 is not included in this case. We observe a much smaller
differences between the round sizes of 10, 20, 30 and onward. This hints that
if there are at least 10 games in a given day, our strategy has enough presented
opportunities and will not significantly overbet.

We hence decided to use the 10 games as a round size in our reinvestment
experiment.

4.4.3 Reinvestment

There are 3 outcomes to each game and 10 games in parallel. In a Kelly based
strategy, the solver will have to maximize the objective function of 310 terms
over 30 + 1 betting opportunities. This has to be done for close to 30 thou-
sand games, hence 3000 such 10-game rounds. To be able to conclude any
properties of our strategy we need at least 100, (possibly more) of shuffled
trajectories similar to the basketball experiment.

For the above mentioned reasons we decided to simplify every game with
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4. Experiments

Sharpe ratio pre-selection. For a Kelly based strategies, we hence always
choose the maximum Sharpe ratio bet in a given game and then also include
an ”inverse“ bet of the selected bet not happening, which we evaluate with
a zero payoff o = 0. This transforms the 3-outcome game into a 2-outcome
game very similar to the Basketball experiment.

In case of MSharpe strategy, the calculation is much faster and we can simu-
late close to 1000 trajectories.

We are once again looking for a reinvestment strategy that satisfies the fol-
lowing maximization problem across all the testing dataset trajectories.

maximize median(WF )
subject to Q5 > 0.95

For fractional MSharpe strategy it yields fraction f = 0.10. For risk con-
strained QKelly the parameter is λ = 9.4.
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Figure 4.9: 1000 MSharpe fractional reinvestment trajectories comparison on
training and testing datasets.
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4.4. Football
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Figure 4.10: 200 QKelly fractional reinvestment trajectories comparison on
the training and testing datasets

Results for both reinvestment strategies are again very similar, where
QKelly reaches slightly higher final wealth on average than MSharpe.

The important finding is that if expressed as a correct optimization prob-
lem, it is possible to find profitable reinvestment strategy even in generally
disadvantageous situation.
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Chapter 5
Conclusion

The real goal of our work was to answer the age old question of what is the
truly optimal betting strategy? The question is very simple yet the answer is
quite complex. In this thesis we aimed to answer this question both theoreti-
cally and practically.

Theoretically the question of the optimal strategy has already been answered
by many great thinkers. It is the Kelly criterion, also known as the geometric
mean policy. In practice however, the assumptions of Kelly criterion are rarely
met.

First practical challenge is that most existing literature focuses on simple
games that are two outcome, are exclusive or have other additional pre-
assumptions. We found an explanation and provide a simple way to express
any K-outcome game in the language of Kelly criterion.

Second and possibly the biggest problem of Kelly criterion is the assump-
tion of having a correct probability estimate. That is rarely the case. We
hence provide an intuitive framework to grasp the uncertainty in the context
of sports betting. The framework is based on our mathematical findings and
naturally connects to measures of econometrics. We have shown in one of our
experiments that together with the defined measures, it can be used to stress
test any arbitrary strategy under various conditions and under various levels
of uncertainty.

We provide a cython based version of the KL random spill algorithm. Al-
gorithm we devised to generate uncertain estimates for general K-outcome
games in our testing framework.

From the perspective of practical experiments we collected relevant data for
Korean horse racing and were provided data for football and basketball. For
all three different domains we conducted a separate experiment. All three
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5. Conclusion

domains showcased different techniques that were discussed and in every case
we were able to propose a profitable strategy.

In our experiments we show that it is indeed possible to find a profitable
reinvestment strategy even when player has significant disadvantage. Which
experimentally extends the findings of Hubáček, 2017 where in such a case,
they were able to devise a profitable flat based strategy.

Another interesting finding is that in simultaneous games it is generally good
idea to aggregate as many games as numerically possible. Too few games in
combination with uncertain estimates lead to significant overbetting in our
experiments.

5.1 Future Work

The topic provides numerous ideas for future work. We plan to extend our
testing framework with the ability to set the third distance between Bookie
and Model as well. This will allow us to investigate what kind of influence
does this third distance have on the overall profitability in a general case. For
instance what effect does the model decorrelation from bookies dividends have
on the overall KL measures of the scenario. Maybe even more appropriate
measures can be found with a more direct connection to profitability. We
hence plan to extend the system with additional distance measures such as
Jensen–Shannon divergence and others.

The main goal however is to devise what we call a “robust” Kelly strategy. A
betting strategy somewhere in between the flat strategies that are very robust
to error and the growth optimal but very error sensitive Kelly criterion.
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Appendix A
Implementation

In this section we present the implementation details and notes of concepts
that were discussed in the previous chapters.

A.1 Solvers

We have chosen the cvxpy by Diamond et al., 2016 as our main optimization
framework. There are numerous reasons, one of them being that it is a very
clear framework that results in good code readability.

A.1.1 Kelly

There really is no need to format any specific matrices, for instance the fol-
lowing:

goa l = cvx . Maximize (p ∗ cvx . l og (R ∗ b ) )
c o n s t r a i n t s = [ cvx . sum ent r i e s (b) == 1 ,

b >= 0 ]

problem = cvx . Problem ( goal , c o n s t r a i n t s )
problem . s o l v e ( )

is a representation of our Kelly problem on six lines of code.

The most important reason however is that it provides solvers that can solve
logarithms in both the problem definition and constraints. We first solve
given problem using Splitting Conic Solver(SCS) by O’Donoghue et al., 2016,
should a numerical problem arise we proceed with solving the problem using
Embedded Conic Solver (ECOS) by Domahidi et al., 2013.

The following is our Kelly drawdown constraint.

lambda r i sk = cvx . Parameter ( s i gn =’ p o s i t i v e ’ ,
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A. Implementation

value=l v a l )
cvx . log sum exp (
cvx . l og (p) − l ambda r i sk ∗ cvx . l og (R ∗ b)
) <= 0

A.1.2 Quadratic Kelly

Respectively our quadratic Kelly problem is expressed as follows.

growth = b .T ∗ mu
r i s k = cvx . quad form (b , Sigma )
goa l = cvx . Maximize ( growth − (1/2) ∗ r i s k )

c o n s t r a i n t s = [ cvx . sum ent r i e s (b) == 1 ,
b >= 0 ]

problem = cvx . Problem ( goal , c o n s t r a i n t s )
problem . s o l v e ( s o l v e r = ’SCS ’ )

A.2 KL Random Spill

When implementing the KL random spill algorithm, one needs to put a bound
on generated probabilities. Specifically for Python, where a very small prob-
ability will manifest itself to all numerical calculations. We solve it simply by
rejecting any sample(triplet) where any probability from Dirichlet generated
PR is lower than this specified bound.

64



Chapter 6
Acronyms

MPT Modern Portfolio Theory

NBA National Basketball Association

KRA Korean Racing Agency

QKelly Quadratic Kelly

MSharpe Maximum Sharpe
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Chapter 7
Contents of enclosed CD

src............................................ implementation sources
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.tex.........................the thesis text in LaTeX format
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