
Libor Bukata

Parallel Algorithms for
Op�miza�on of Produc�on Systems

CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering
Department of Control Engineering

April 2018

This thesis is focused on the op�miza�on of manufacturing
systems. Its main contribu�ons are as follows:

1. Designed and implemented novel algorithms that op�mize
the energy consump�on of robo�c cells without deteriora�on in
throughput.

2. A robo�c cell in Škoda Auto was modified to verify the results
of the algorithms. Measurements confirmed the energy saving
of 20 % only by changing robot speeds.

3. Proposed algorithms can op�mize robo�c cells with up to 12
robots compared to the exis�ng literature where only one to
four robots were considered. A high efficiency of the algorithms,
which are mul�threaded and cache-friendly, is achieved by the
u�liza�on of the problem structure.

4. The Resource Constrained Project Scheduling problem, which
is useful for the op�miza�on of produc�on, was solved on
graphics cards by using Tabu Search meta-heuris�c. The parallel
heuris�c outperformed exis�ng Tabu Search implementa�ons.

Parallel Algorithms for
Optimization of Production

Systems
by

Libor Bukata

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

Doctoral Thesis

Supervisor: Doc. Ing. Přemysl Š̊ucha, Ph.D.
Ph.D. programme: Electrical Engineering and Information Technology
Branch of study: Control Engineering and Robotics
Submission date: April 2018

Libor Bukata: Parallel Algorithms for Optimization of Pro-
duction Systems, Ph.D. Thesis, Czech Technical University
in Prague, Faculty of Electrical Engineering, Department of
Control Engineering, April 2018, Prague.

ii

Acknowledgement
I would like to express my deep gratitude to doc. Ing. Přemysl Š̊ucha,
Ph.D. for his invaluable advice and assistance during my doctoral studies.
I also thank Ing. Pavel Burget, Ph.D. and his team for their work on the
verification of optimization results in Škoda Auto company. I cannot forget
to give thanks to prof. Dr. Ing. Zdeněk Hanzálek who enabled me to work
on interesting topics, and my colleagues who created a pleasant and friendly
atmosphere. My special thanks belong to Ing. Antońın Novák for his advice
on using special Gurobi simplex method.

I highly appreciate the opportunity to study at the Department of Con-
trol Engineering, and I admire the Czech Technical University in Prague for
being a good alma mater. The results I achieved during my research would
not be possible without my family and girlfriend Bc. Hana Falberová, whose
never-ending support and patience I fully appreciate.

Finally, I acknowledge all the grants which funded the research presented
in this dissertation. Namely, the work was supported by the Grant Agency
of the Czech Republic under the projects GACR P103/12/1994 and FOR-
EST GACR P103-16-23509S, by the Ministry of Education of the Czech
Republic under the projects DEMANES 295372 and OK7X 295372, by the
Ministry of Industry and Trade of the Czech Republic under the project
FV10299, by the ARTEMIS initiative funded by the European Commis-
sion, and by the European Regional Development Fund under the project
AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466). I am also
grateful to NVIDIA Corporation for the donation of three Tesla K20 graph-
ics cards, and Škoda Auto for the cooperation and support through the
contract 830-8301343/13135.

Libor Bukata
Prague, April 2018

iii

Declaration
This doctoral thesis is submitted in partial fulfillment of the requirements
for the degree of doctor (Ph.D.). The work submitted in this dissertation is
the result of my own investigation, except where otherwise stated. I declare
that I worked out this thesis independently and I quoted all used sources of
information in accord with Methodical instructions about ethical principles
for writing academic thesis. Moreover I declare that it has not already been
accepted for any degree and is also not being concurrently submitted for
any other degree.

Libor Bukata
Prague, April 2018

v

Abstract
The industrial production involves complex processes that directly deter-
mine the throughput and manufacturing cost, therefore, it is not surprising
that there is a great demand for computer-aided optimization to improve
the profitability. Such optimization is, however, typically computationally
expensive, and therefore, it is very beneficial to use modern multi-core pro-
cessors or graphics cards, which can accelerate the optimization about one
to two orders of magnitude, in order to find better-optimized processes in
a limited time. The transition to the parallel optimization, however, often
requires the redesign of the algorithms and good knowledge of architecture.
For that reason, it cannot be taken as granted in Operations Research.

In this thesis, we propose novel parallel algorithms to solve two problems
that are important to optimize production processes. The first problem
is the energy optimization of robotic cells which goal is to minimize the
total energy consumption without any deterioration in the throughput. The
second problem is the Resource Constrained Project Scheduling Problem
that is a universal problem applicable in, e.g., the metallurgical industry
and assembly shop scheduling.

The performance of our algorithms was verified on benchmark datasets.
The experiments revealed that the Hybrid Heuristic and Branch & Bound
algorithm can optimize industrial-sized robotic cells with up to 12 robots,
compared to the existing works where 4 robots were considered at max-
imum. The Tabu Search algorithm, on the other hand, is designed for
graphics cards and its performance is superior to other existing Tabu Search
implementations.

Besides the benchmarks, the outcomes were also used to optimize an
existing robotic cell from Škoda Auto with the result of 20 % energy saving,
which indicates that if the optimization is widely used in industry, it will
improve the environmental and financial sustainability. The cooperation
with industrial partners (Blumenbecker, Škoda Auto) continues within the
eRobot project, which main goal is to integrate the proposed algorithms into
the digital factory software in order to make the optimization accessible to
designers of robotic cells.

Keywords: efficient manufacturing, optimization, parallel algorithms, en-
ergy, robotics, Resource Constrained Project Scheduling Problem, Hybrid
Heuristic, Branch & Bound, Tabu Search

vii

Abstrakt
Pr̊umyslová výroba je založena na složitých procesech, které př́ımo ovlivňuj́ı
výrobńı kapacitu a celkové náklady. Neńı proto divu, že je snaha využ́ıt
poč́ıtače k optimalizaci těchto proces̊u za účelem zlepšeńı rentability výroby.
Optimalizace výrobńıch proces̊u je ovšem typicky velmi náročná na výpočetńı
zdroje, a tak je velmi výhodné použ́ıt v́ıcejádrové procesory nebo grafické
karty, od kterých lze typicky očekávat urychleńı o jeden či dva řády, aby se
nalezly lépe optimalizované procesy v daném časovém horizontu. Přechod k
paralelńı optimalizaci nicméně často vyžaduje nový návrh algoritmů a velmi
dobrou znalost použité architektury. Z těchto d̊uvod̊u nejsou paralelńı al-
goritmy všeobecně použ́ıvány v oblasti operačńıho výzkumu.

Tato dizertačńı práce se zabývá návrhem nových paralelńıch algoritmů
pro řešeńı dvou problémů, které jsou d̊uležité pro optimalizaci výrobńıch
proces̊u. Prvńı problém se týká optimalizace spotřeby robotických buněk,
kde ćıl je minimalizovat celkovou spotřebu energie bez dopadu na kapa-
citu výroby. Druhý problém je rozvrhováńı s omezenými zdroji, což je
universálńı problém, jež najde uplatněńı např́ıklad v hutńım pr̊umyslu nebo
v rozvrhováńı montážńıch hal.

Výkonnost algoritmů byla ověřena na testovaćıch datech obsahuj́ıćıch
optimalizačńı problémy. Experimenty ukázaly výbornou škálovatelnost a pa-
měťovou efektivitu hybridńı heuristiky a metody větv́ı a meźı, které lze
použ́ıt pro optimalizaci robotických buněk až s 12 roboty. Pro porovnáńı
existuj́ıćı práce uvažovaly maximálně 4 roboty. Tabu Search algoritmus na-
proti tomu byl navržen pro grafické karty a jeho efektivita překonává ostatńı
existuj́ıćı implementace tohoto algoritmu.

Algoritmy byly také použity k optimalizaci existuj́ıćı robotické buňky
ve Škodě Auto. Změřená úspora 20 % energie naznačuje, že pokud by se
optimalizace běžně použ́ıvala v pr̊umyslu, tak pak by to mělo pozitivńı
dopad na prostřed́ı a ekonomiku. Tento výsledek podńıtil daľśı spolupráci
s pr̊umyslovými partnery (Blumenbecker, Škoda Auto), s kterými v rámci
projektu eRobot pracujeme na integraci navržených algoritmů do softwaru
pro virtuálńı zprovozněńı robotických buněk. Integrace umožńı snadné po-
užit́ı optimalizace širokému okruhu vývojář̊u robotických buněk.

Kĺıčová slova: efektivńı výroba, optimalizace, paralelńı algoritmy, energie,
robotika, rozvrhováńı s omezenými zdroji, hybridńı heuristika, metoda větv́ı
a meźı, Tabu Search

ix

Goals and Objectives
The thesis deals with the parallel optimization algorithms for the produc-
tion systems. Its main goals were determined as follows:

1. Study the existing literature related to the energy optimization of
robotic cells and identify possible improvements.

2. Devise a mathematical model that considers important optimization
aspects to minimize the energy consumption of industrial robots.

3. Propose heuristic and exact algorithms to solve industrial-sized robotic
cells. Both the algorithms should utilize the problem structure and
multi-core processors.

4. Design and implement a parallel Tabu Search algorithm to solve the
Resource Constrained Project Scheduling Problem on graphics cards.

5. Verify the proposed algorithms on benchmark instances and compare
them with the existing works.

xi

Contents
List of Acronyms 1

1 Introduction 3
1.1 Closest State-of-the-Art Work 5
1.2 Key Contributions . 6
1.3 Potential Impact . 7
1.4 Structure of the Thesis . 8

2 Energy Optimization of Robotic Cells 9
2.1 Related Work . 11
2.2 Contribution and Outline . 12
2.3 Problem Statement . 13

2.3.1 Example 1 . 15
2.3.2 Example 2 . 16

2.4 Mixed-Integer Linear Programming Model 18
2.5 Parallel Heuristic Algorithm 20

2.5.1 Generation of Alternatives 22
2.5.2 Generation of Tuples 22
2.5.3 Reduced Linear Programming Problem 23
2.5.4 Sub-heuristics . 25

2.6 Parallel Branch & Bound Algorithm Overview 26
2.7 Node Definition . 28
2.8 Branching . 28

2.8.1 Order Propagation . 29
2.8.2 Propagation of Locations 30
2.8.3 Propagation of Power Saving Modes 31
2.8.4 Fast Feasibility Checks 32

2.9 Energy Evaluator of Nodes 32
2.9.1 Composite Activities 32
2.9.2 Extra Activity Sets . 33
2.9.3 Convex Envelopes . 34
2.9.4 Lower Bound based on Convex Envelopes 36

2.10 Deep Jumping . 40
2.11 Parallelization . 42
2.12 Experimental Results . 45

2.12.1 Performance Experiments 45
2.12.2 Optimality Experiments 49
2.12.3 Quality Experiments 50

xiii

xiv CONTENTS

2.13 Case Study from Škoda Auto 54
2.14 Conclusion . 56

3 Project Scheduling on Graphics Cards 57
3.1 Related works . 58
3.2 Contribution and Outline of the Chapter 60
3.3 CUDA platform . 61
3.4 Problem Statement . 62

3.4.1 Mathematical Formulation 63
3.4.2 Instance Example . 64

3.5 Outline of the Tabu Search meta-heuristic 65
3.6 Exploration of the Solution Space 66

3.6.1 Creating Initial Activity Order 66
3.6.2 Move Transformation 66
3.6.3 Neighborhood Generation 67
3.6.4 Filtering Infeasible Moves 67
3.6.5 Simple Tabu List and Cache 68

3.7 Schedule Evaluation . 69
3.7.1 Capacity-Indexed Resources Evaluation 69
3.7.2 Time-Indexed Resources Evaluation 72
3.7.3 Schedule Evaluation Procedure 73
3.7.4 Heuristic Selection of Resources Evaluation Algorithms 73

3.8 Parallel Tabu Search for the CUDA platform 75
3.8.1 Block Cooperation and Distribution of Iterations . . . 77
3.8.2 Memory Model . 78

3.9 Experimental Results . 78
3.9.1 Evaluation of the Selection Heuristic 82
3.9.2 Demonstration of Convergence 83

3.10 Conclusion . 83

4 Conclusion and Future Work 85
4.1 Fulfillment of Goals . 85

Bibliography 93

A Nomenclature – Chapter 2 95

B Nomenclature – Chapter 3 99

C Curriculum Vitae 101

D List of Author’s Publications 103

List of Figures
1.1 Problems solved in this thesis with their applications. 3
1.2 Typical energy distribution for robotic cells in Škoda Auto. . 4

2.1 Robotic cell with two welding robots in digital factory software. 9
2.2 Robotic cell with two robots that perform welding operations. 15
2.3 An example of a robotic cell from automotive industry. 17
2.4 Flowchart of the parallel Hybrid Heuristic. 21
2.5 Block diagram of the Branch & Bound algorithm. 27
2.6 Example of the order propagation (two activities are selected). 30
2.7 Example of the propagation after selecting locations. 30
2.8 Illustration of the composite activity and its related sets. . . 32
2.9 Example of the construction of the convex envelope. 34
2.10 Example of Deep Jumping. 41
2.11 Parallel Branch & Bound algorithm. 43
2.12 Thread-safe storage of nodes. 43
2.13 Progress of the heuristic and MILP solver on M8 8 instance. . 46
2.14 Scalability graphs for S5, M8, and L12 datasets. 48
2.15 Robotic cell from Škoda Auto. 54

3.1 Integration of the heuristic into the optimization process. . . 57
3.2 Fermi architecture – memory diagram. 61
3.3 Graph of precedences for the example instance. 64
3.4 Utilization of resources for the example instance. 65
3.5 Example of the swap move. 67
3.6 An example of the resource state update. 71
3.7 Example of the decision tree. 74
3.8 Parallel Tabu Search for the CUDA platform. 76
3.9 Graph of convergence for the GPU version. 84

xv

List of Tables
2.1 Performance of LP solvers for the heuristic. 45
2.2 Performance metrics of the Branch & Bound algorithm. . . . 47
2.3 Time to optimality for S3 dataset. 49
2.4 Quality of solutions with tmax = 30 s for S5 dataset. 51
2.5 Quality of solutions with tmax = 1 h for S5 dataset. 51
2.6 Quality of solutions with tmax = 600 s for M8 dataset. 52
2.7 Quality of solutions with tmax = 1 h for M8 dataset. 52
2.8 Quality of solutions with tmax = 3 h for L12 dataset. 53
2.9 Comparison of lower bounds for M8 dataset. 53
2.10 Dependence of the quality of solutions on the cycle time. . . . 54

3.1 Data of an example instance. 64
3.2 Attributes used for learning. 74
3.3 PTSG parameters and datasets information. 78
3.4 Quality of solutions — J30. 79
3.5 Performance comparison — J30. 79
3.6 Quality of solutions — J60. 80
3.7 Performance comparison — J60. 80
3.8 Quality of solutions — J90. 81
3.9 Performance comparison — J90. 81
3.10 Quality of solutions — J120. 81
3.11 Performance comparison — J120. 81
3.12 Comparison with other heuristics. 82
3.13 Percentage of correctly classified problems for each dataset. . 83
3.14 Effect of the selection heuristic on the PTSG performance. . . 83

xvii

List of Algorithms
1 Removing infeasible moves from the reduced neighborhood. . 68
2 Check if a move is in the Simple Tabu List. 68
3 Add a move to the Simple Tabu List. 69
4 Method updates state of resources after adding activity i. . . 71
5 Algorithm calculates the earliest start time of activity i. . . . 72
6 Updating of resources after adding activity i. 73
7 Complete schedule evaluation. 73

xix

List of Acronyms
BaB Branch & Bound . 49
CF Convex Functions . 46
CPU Central Processing Unit . 58
CUDA Compute Unified Device Architecture . 61
FSP Flowshop Scheduling Problem . 59
GPU Graphics Processing Unit . 58
LB Lower Bound . 26
LP Linear Programming . 20
MILP Mixed Integer Linear Programming. .6
PH Parallel Heuristic . 50
PTSG Parallel Tabu Search for GPU. 75
RCPSP Resource Constrained Project Scheduling Problem.4
STL Simple Tabu List. .68
TC Tabu Cache . 68
TL Tabu List . 58
TS Tabu Search . 58
UB Upper Bound . 26

1

Chapter 1
Introduction

Manufacturing of goods involves complex processes that guarantee
the desired production rate with limited resources (e.g., robots, ma-

chines). Since these processes are extremely difficult to optimize by hand
(many variables and combinations), the use of optimization algorithms is
crucial to fully utilize machines, improve the throughput, or reduce costs.
However, the great complexity of manufacturing problems often makes the
finding of the optimal solution impossible even for the state-of-the-art al-
gorithms, therefore, the algorithm typically searches for the best feasible
solution in a given time horizon.

Much better solutions can be obtained if the algorithm is accelerated by
using modern parallel architectures such as multi-core processors or graphics
cards. A recipe for the high performance is to utilize many (slower) exe-
cution cores instead of one (fast) core since it is resulting in a significantly
better performance per watt. As a good example, consider battery-powered

Figure 1.1: Problems solved in this thesis with their applications.1

1Embedded photographs: ID1974,ruhmal,xieyuliang/Shutterstock.com

3

4 Introduction

smartphones that are usually equipped with multi-core processors. If the
algorithm is parallelized and executed on a powerful graphics card or multi-
core processor, speedups between one to two orders of magnitude are achiev-
able (see, e.g., [41, 58, 40]) depending on the experience of a programmer,
optimization problem, and hardware configuration. The effective paral-
lelization of optimization algorithms is, however, a difficult task that is un-
der the active research not only in Operations Research (see, e.g., [42, 19, 9]).

Gelatinization
20 %

Standby
9 %

Robot drives
51 %

Welding
14 %

Glue heating 1 %

Gluing 1 %

BMS technology 4 %

Figure 1.2: Typical energy distribution for robotic cells in Škoda Auto.

This thesis is dedicated to the design and implementation of parallel
optimization algorithms for production systems. The proposed algorithms
solve two combinatorial problems (see Figure 1.1) that are particularly use-
ful in the manufacturing industry. The first one is the problem of energy
optimization of robotic cells that attracted particular attention of indus-
trial partners (Škoda Auto, Blumenbecker) since the reduction of energy
consumption significantly decreases manufacturing costs, and robot drives,
based on measurements of a robotic cell with 6 robots in Škoda Auto, con-
sume about half of the total energy required by a typical robotic cell in
the automotive industry (see Figure 1.2). The second one is the Resource
Constrained Project Scheduling Problem (RCPSP) which is a well estab-
lished and versatile problem with many applications. Despite its name, it
can also be used to model manufacturing processes, for example, consider
Assembly Shop Scheduling and Rolling Ingots Production Scheduling (see,
e.g., [4, 43, 48]).

Introduction 5

To solve the aforementioned problems, we proposed and implemented
three parallel cutting-edge optimization algorithms. In case of the energy
optimization of robotic cells, the parallel Hybrid Heuristic and Branch &
Bound algorithms were proposed to minimize the energy consumption of
robots by changing their speeds, robotic paths, the order of operations, and
applying power saving modes such as brakes or bus-power-off. In case of the
RCPSP, the Tabu Search algorithm was designed to find a feasible schedule,
i.e., an order of activities, with the minimal completion time (the so-called
makespan). In general, all the algorithms utilize the problem structure and
the parallelization to find high-quality solutions fast. The Tabu Search algo-
rithm, moreover, uses the graphics card to accelerate the searching process
even more than it is possible by using conventional multi-core processors.

1.1 Closest State-of-the-Art Work

The closest works related to the proposed algorithms and solved problems
are briefly summarized in this section. Detailed literature reviews can be
found in Sections 2.1 and 3.1.

In general, there is a large body of research on the optimization in
robotics; however, only a small part is devoted to the energy optimiza-
tion of robotic cells. If it is the case, most of the works are dedicated to
the local optimization of individual trajectories (see, e.g., [47, 46], and [11])
compared to the holistic optimization that is considered in this dissertation
(see Chapter 2).

One exception is the pioneering work of Wigström and Lennartson [55],
where the authors optimized the energy consumption of robotic cells as a
whole by solving a nonlinear mathematical model. The optimal schedule
determines the timing of robots such that the synchronization constraints
are satisfied and the energy consumption is minimal for the fixed work cycle
time. Nevertheless, the approach was verified on the Job Shop scheduling
problem.

On the borderland between the local and holistic optimization, there is
the work of Meike et al. [39, 38], where the authors proposed to optimize
the last movement to the robot home position and the subsequent waiting
period to save energy. Compared with the previous study [55], the robot
brakes were considered at the robot home position. Although a very small
part of the robotic cell was taken into account, it was estimated that 7.3 %
of energy can be saved.

The optimization algorithms solving combinatorial problems are, in gen-
eral, computationally expensive; therefore, it is desirable to utilize modern
hardware like multi-core processors or graphics cards to accelerate compu-

6 Key Contributions

tations. The effect of the parallelization may be so significant that it enables
to find new best solutions, for example, consider works of Subramanian et
al. [50] and Jin et al. [30] where the Vehicle Routing Problem was solved
by parallel heuristics.

Recently, graphics cards are becoming popular to accelerate the opti-
mization algorithms because of their huge computational power compared
to conventional multi-core processors. However, the design of parallel algo-
rithms for graphics cards is a non-trivial task, for that reason, most of the
works up to that time solved rather simpler problems such as the Knapsack
(e.g., [8, 34]) or Quadratic Assignment Problem (e.g., [40, 44]).

Fortunately, the first works addressing complex problems are beginning
to appear. For example, Czapiński and Barnes [41] implemented the parallel
Tabu Search algorithm suitable for graphics cards to solve the Flowshop
Scheduling Problem, and Delévacq et al. [18] used the parallel Ant Colony
Optimization meta-heuristic to solve the Traveling Salesman Problem. And
finally, our work in Chapter 3 proposes the efficient Tabu Search algorithm
to deal with an inherently complex combinatorial problem, and compared
to work [41], the quality of solutions is investigated as well.

1.2 Key Contributions

The most important contributions of this thesis grouped according to the
topics are as follows:

1. Energy optimization of robotic cells (Chapter 2)
• Based on measurements of a small industrial robot (described

in [15]), we identified important aspects influencing the energy
consumption of industrial robots.

• The aspects were used to formulate a mathematical model that
minimizes the energy consumption for a fixed robot cycle time.

• Compared to the work of Wigström and Lennartson [55], our
model considers more optimization aspects such as alternative
robotic paths and application of power-saving modes of robots.
Moreover, our different definition of the cycle time enables higher
production throughput.

• To solve large robotic cells with up to 12 robots, which sometimes
occur in the manufacturing industry, the parallel Heuristic and
Branch & Bound algorithm were designed and implemented.

• The proposed algorithms utilize the problem structure and mod-
ern hardware to find energy-efficient solutions. The performance
is superior to the state-of-the-art Mixed Integer Linear Program-

Introduction 7

ming (MILP) solvers and existing works where robotic cells with
one to four robots were taken into account.

• In cooperation with Pavel Burget’s team, we verified the results
of the optimization on an existing robotic cell in Škoda Auto.
The measured energy savings achieved 20 %, which was close to
the estimation of algorithms; therefore, the approach was verified
in industry.

• The work attracted the attention of industrial partners such as
Škoda Auto and Blumenbecker, which resulted in the joined
project eRobot with Blumenbecker and Brno University of Tech-
nology. The goal of the project is to integrate our optimization
algorithms into digital factory software to enable user-friendly
optimization of robotic cells during the virtual commissioning.

2. Solving the RCPSP on graphics cards (Chapter 3)
• The Tabu Search algorithm was designed to solve the RCPSP

on graphics cards. It is the first known algorithm solving this
complex combinatorial problem on graphics cards.

• The performance achieved on the graphics card is superior to
the performance on the multi-core processor because of the ef-
fective schedule evaluation, optimized memory access, and ho-
mogeneous model. Moreover, the algorithm that evaluates the
schedule is dynamically selected based on the properties of the
current problem.

• The experiments confirmed that the algorithm finds better solu-
tions than other Tabu Search implementations in the literature.

1.3 Potential Impact

The potential impact of this thesis can be split into two parts. The first part
is the development of new methods, models, and approaches that contribute
to the current knowledge and may influence the future research directions.
The key findings were published in two impacted journals, and currently, one
extra journal paper is under the review. Besides the journal papers, there is
a book chapter, conference paper, and many contributions at international
conferences.

The second part, which concerns the energy optimization of robotic cells,
is the potential environmental and economic impact if the results of the
algorithms are widely used in the industry. The measurements and experi-
ments indicate that the optimization can significantly reduce the energy
consumption of robots, and as a result, relax the requirements placed on

8 Structure of the Thesis

energy sources and improve the profitability. The common usage, however,
requires that the algorithms are integrated into digital factory software in
order to make the optimization accessible to designers of robotic cells. The
project eRobot, which I also participate in, will remove this barrier by inte-
grating the optimization algorithms into Siemens Process Simulate (popular
in the automotive industry).

1.4 Structure of the Thesis

The rest of the thesis is divided into the chapters as follows. Chapter 2 is
dedicated to the energy optimization of robotic cells. The MILP formula-
tion, heuristic, and Branch & Bound algorithm are proposed and verified
on benchmark instances and the existing robotic cell from Škoda Auto.

Chapter 3 describes the design and implementation of the parallel Tabu
Search algorithm for graphics cards that solves the RCPSP. The core parts
of the algorithm such as the schedule evaluation and generation of a neigh-
borhood are presented in details as well as the memory model and optimized
data structures. The algorithm is compared with other existing works on
benchmark instances.

Since chapters 2 and 3 address different problems, each of them can be
read separately in a similar way as a research paper with nomenclatures
included in appendices A and B, respectively. The dissertation concludes
with Chapter 4, where the achieved results are summarized, fulfillment of
goals is evaluated, and future work is discussed.

Chapter 2
Energy Optimization of Robotic Cells

Robotic cell is a highly complex system (see Figure 2.1), which is
mainly used in industry to increase the productivity and repeatability

of the manufacturing process. Compared to human beings, industrial robots
can work in dangerous environments with a higher precision, therefore, they
are invaluable for heavy industry (e.g., automotive). On the other hand,
a high energy consumption may limit a further extension of the robotic
production. First of all, the power grid capacity can be insufficient to supply
new robots since they are usually programmed to run at the maximal speed
to meet the desired production rate. Such performance leads to a power
profile that sharply fluctuates during production; for instance, a regular
6-axis industrial robot with a 200 kg payload requires between 0.5 and 20 kW
of power (Meike and Ribickis [37]). Even if the capacity is sufficient, the
increasing costs of electricity may constitute a deterrent. Besides physical
and economical aspects, European Union (see report [1]) and ecological
groups put pressure on factories to be more environment-friendly. As a
result, there is a great demand for energy-efficient robotic cells.

Figure 2.1: Robotic cell with two welding robots in digital factory software.

9

10 Energy Optimization of Robotic Cells

Robots support power-saving modes to reduce energy consumption. For
example, if the robot is stationary, its brakes can slightly alleviate the energy
burden if they are released early because the motors do not consume energy
in holding the robot in a certain position, and the power needed to keep
the brakes open does not apply to the released brakes. On one hand, the
frequent use of brakes could result in significant energy savings; on the
other hand, caution must be exercised because the number of brake cycles
is limited to 5 million, and the expected lifetime of robots is about 15 years
(Meike et al. [39]). Some robots, such as those from KUKA, support the
PROFIenergy profile [2], which allows controlling the power consumption
by sending commands through a PROFINET network. This enables deeper
energy-saving modes for robots, such as bus power-off or hibernate. Several
experimental facilities were using PROFIenergy, such as the Mercedes-Benz
plant in Sindelfingen, in which various experiments were carried out [49].

Besides applying power-saving modes, it is also beneficial to reduce speed
of robots without deterioration in the production rate, e.g., avoid a fast
movement to a location if the robot waits for a signal after approching
it. Our case study (see Section 2.13) indicates that this approach may be
resulting in significant energy savings even for existing robotic cells, since the
energy consumption was decreased approximately by 20 % for the robotic
cell from Škoda Auto.

In this research, we proposed a novel mathematical model that minimizes
the energy consumption by changing robot speeds, considering various robot
positions (i.e., configurations), applying their power-saving modes (brakes,
bus power-off), and selecting an order of operations. The robot cycle time
is fixed and corresponds to the time interval (∼1/throughput) between two
outgoing workpieces after the start-up phase. The robot cycle time is typi-
cally shorter than the duration of the start-up phase; thus, there are usually
more unfinished workpieces in the robotic cell at a given time. Such paral-
lelism is analogous with the cyclic scheduling of the processor pipeline (see,
e.g., [5] and [54]). Note that the optimization is suitable not only for planned
robotic cells but also for the existing robotic cells since at least robot speeds
can be optimized without complex changes to the structure of the robotic
cell, as shown in our case study 2.13. Even in case of planned robotic cells,
it is unnecessary to consider all the optimization aspects, which were iden-
tified based on measurements on a small industrial KUKA robot, since a
designer may select only a subset of them to reduce time to deployment.

In order to optimize the robotic cells with up to 12 robots, we pro-
posed two tailor-made algorithms: a parallel Hybrid Heuristic, and parallel
Branch & Bound algorithm. The merits of these algorithms and their su-
perior performance compared to general MILP solvers will be discussed in
Section 2.2.

Energy Optimization of Robotic Cells 11

2.1 Related Work

In general, there is a large body of research on the optimization in robotics;
however, only a small part is devoted to the energy optimization since the
majority of work concentrates on increasing the throughput of the robotic
cells (see, e.g., Dawande et al. [17] for a survey). Meike and Ribickis [37]
summarize various methods how to reduce the energy consumption of in-
dustrial robots, and estimate their potential to save energy. One approach
is to optimize individual robot trajectories, as investigated in [47, 46], and
[11]. Another approach is to consider the robotic cell as a whole to reduce
the energy consumption. In the pioneering work of Wigström and Lennart-
son [55], the authors optimized the energy consumption of robotic cells as
a whole by solving a nonlinear mathematical model, a solution of which de-
termined an energy efficient timing of robots that satisfies synchronization
constraints. The approach was benchmarked on the Job Shop scheduling
problem.

In our research [14], we followed their work and proposed a more general
model, where robot positions and their power-saving modes are taken into
account. Moreover, our formulation enables to consider multiple workpieces
in the robotic cell at the same time. In order to optimize robotic cells with
up to 12 robots, a parallel Hybrid Heuristic was designed and compared
with the MILP solver on publicly available datasets. The algorithms were
used to optimize an existing robotic cell from Škoda Auto and achieved
results revealed energy savings of up to 20 %.

Gadaleta et al. [22] proposed a method that optimizes the placement
of robots for a given set of tasks. An energy model of robots was created
in Modelica and used to calculate time/energy maps (contour plots) that
indicate the working time of a robot and its consumption for a given place-
ment (base coordinates). The authors demonstrated their approach on two
robotic cells and concluded that up to 20 % of energy could be saved if their
tool is used to determine placements of robots.

In the work of Meike et al. [39, 38], the authors proposed to optimize the
last movement to the robot home position and the subsequent waiting period
to save energy. Compared with the work of Wigström and Lennartson [55],
in this study, the robot brakes were considered at the robot home position.
Although only a relatively small part of the robotic cell was considered, the
authors estimated that the energy savings for the robotic cell reached 7.3 %.

In the work of Mashaei and Lennartson [36], an energy model of a pallet-
constrained flow shop problem was formulated to find an optimal switching
control strategy for achieving the desired throughput and minimal energy
consumption. Idle states of machines were also taken into account to reduce
the energy consumption when the machine was not working. However, the

12 Contribution and Outline

model required a line with a particular structure, i.e., a closed-loop pallet
system; therefore, it was not generally applicable to robotic cells.

Since the optimization problems are often very difficult to solve, there is
an endeavor to accelerate algorithms by using multi-core processors or other
modern hardware. For example, Subramanian et al. [50] and Jin et al. [30]
proposed parallel heuristics for the Vehicle Routing Problem, and in both
the cases, the parallelization enabled them to find new best solutions. Boyer
et al. [8] proposed a parallel implementation of the dynamic programming
method for the Knapsack Problem, the results of which revealed significant
speedups. Our work proposes two parallel tailor-made algorithms for the en-
ergy optimization of robotic cells. The outcomes indicate (see Section 2.12)
a good scalability and performance. In general, the parallelization enables
to find better solutions within a given time limit.

2.2 Contribution and Outline

We cooperated with Škoda Auto to identify key optimization aspects, and
these aspects were verified by the measurements on a small KUKA robot.
Based on the analysis, the mathematical model was formulated. In contrast
to the existing works [55, 56, 57], this model supports the energy-saving
modes and alternative positions of robots. Moreover, compared to Wigström
and Lennartson [55], we do not limit the work parallelism by the assumption
that the whole robotic cell is dedicated to one workpiece during its entire
processing time. The validy of the model was verified on benchmark datasets
and the robotic cell from Škoda Auto, where the measurements confirmed
the potential to save about 20 % of energy for existing robotic cells.

Although the model is solvable by MILP solvers, their performance is
insufficient for large instances. Therefore, we implemented a parallel Hybrid
Heuristic and parallel Branch & Bound algorithm that utilize the problem
structure and provide an additional insight into the problem. The heuristic
is very efficient and fast, thanks to the application of a special Gurobi sim-
plex algorithm for piecewise linear convex functions and the parallelization
that enables the algorithm to exploit the power of all processor cores. The
parallel Branch & Bound algorithm, on the other hand, uses a tight lower
bound based on convex envelopes that can be efficiently solved by a special
Gurobi simplex algorithm for piecewise linear convex functions. Besides the
bounding, the algorithm is very efficient at finding feasible solutions since it
uses a Deep Jumping heuristic to guide the search to promising directions
in the Branch & Bound tree.

In summary, the key contributions are the mathematical model and effi-
cient algorithms that optimize robotic cells with up to 12 robots. Moreover,

Energy Optimization of Robotic Cells 13

the approach was verified on the existing robotic cell from Škoda Auto,
where the energy consumption was reduced approximately by 20 %. The
parallel heuristic and generator of problem instances are publicly available
as open-source software and can be downloaded from https://github.com/
CTU-IIG.

The rest of the chapter is structured as follows. The next section sets
out the formal specification of the problem. Two examples are provided to
illustrate mathematical formalism. Section 2.4 presents the MILP model,
and Section 2.5 introduces the parallel heuristic algorithm for solving the
problem. Section 2.6 presents an overview of the parallel Branch & Bound
algorithm, and the following sections describe its core parts such as the
branching, bounding, search strategy, and parallelization. The performance
of the proposed algorithms is tested on benchmark datasets in Section 2.12,
and the model is verified on a real-world problem from Škoda Auto in the
case study (see Section 2.13). Finally, the last section of this chapter con-
cludes the work and discusses the future directions. In order to simplify
reading of the dissertation, a nomenclature is in Appendix A.

2.3 Problem Statement

The energy optimization problem of the robotic cell can be defined as fol-
lows. There is a set of robots R = {r1, . . . , r|R|} and set of graphs G =
{Gr1 , . . . , Gr|R|}. The graph of robot r ∈ R is defined as Gr = (Ar

S , A
r
D),

where nodes Ar
S are static activities (e.g., waiting or welding), and edges

Ar
D are dynamic activities, which define the possible robot moves between

static activities. Let AS = ⋃
∀r∈R A

r
S , AD = ⋃

∀r∈R A
r
D, and Ar = Ar

S ∪Ar
D.

Each static activity v ∈ AS has assigned set Lv of possible robot po-
sitions, i.e., locations, in which the motionless robot either works or waits
for a signal. During this stationary phase, one of the robot power-saving
modes m ∈ M r, including a dummy power-saving mode for the robot held
by motors, can be applied if the activity duration dv ≥ dm, where dm is the
minimal time to switch the mode on. Furthermore, it has to be satisfied
that dv ≤ dv ≤ dv, ∀v ∈ AS , where dv and dv are duration limits required
by a manufacturing process. The energy consumption of activity v is then
fm

v,l(dv) = pm
v,ldv, where pm

v,l is the input power of robot r ∈ R at location
l ∈ Lv for mode m ∈M r.

The dynamic activity, i.e., edge e = (v1, v2) ∈ Ar
D, consists of the set of

trajectories Te between v1 and v2 ∈ Ar
S , where each trajectory t = (l1, l2) ∈

Te interconnects two locations l1 ∈ Lv1 and l2 ∈ Lv2 . The duration of the
robot movement along trajectory t ∈ Te is from dt

e to d
t
e. The duration

de of dynamic activity e ∈ AD, regardless of the selected trajectory, is

https://github.com/CTU-IIG
https://github.com/CTU-IIG

14 Problem Statement

limited to range < de, de > where de = min∀t∈Te d
t
e and de = max∀t∈Te d

t
e.

Energy consumption of activity e ∈ AD depends on the selected trajectory
t ∈ Te, duration de (dt

e ≤ de ≤ d
t
e), and convex function f t

e(de). Convex
function f t

e(de) maps duration de to energy consumption for ∀e ∈ AD, t ∈ Te.
The form of the function (see Vergnano et al. [53], p. 389, Eq. 12) is
f t

e(de) = ∑5
i=1 α

t
e,id

2−i
e , where αt

e,i are constants.
Let A = AS ∪AD be the set of all activities; then, Sa and Pa are the set

of successors and predecessors of activity a ∈ A, respectively. If |Sv| > 1 for
v ∈ AS , then the dynamic activities e ∈ Sv are optional because only one
trajectory t ∈ Te will be selected as the leaving one. The optional activities,
denoted as AO ⊆ AD, can model alternative orders of operations. Note that
|Se| = |Pe| = 1 for ∀e ∈ AD.

A closed path of robot r ∈ R, including the order of operations, can
be represented as a directed Hamiltonian circuit, HCr

loc = (l1, . . . , l|Ar
S |),

through the activity locations, where each v ∈ Ar
S is visited only once

during each cycle. The order of operations (activities), regardless of the
selected locations, can be expressed in the form of a directed Hamiltonian
circuit, HCr

act = (v1, . . . , v|Ar
S |), where the last activity v|Ar

S |, denoted as vr
h,

closes the cycle of robot r. The last activity vr
h, regardless of the work of

robot r, contains so-called home positions of robot r (i.e., Lvr
h
), where the

robot typically waits for its next cycle. Note that HCr
act can be derived

from HCr
loc; however, the converse is not true. The robot cycle time CT ,

i.e., the production cycle time of the robotic cell, has to be fulfilled; in other
words, ∑∀a∈Ar

HC
da = CT for ∀r ∈ R, where Ar

HC = Ar
S ∪ U r

D, U r
D ⊆ Ar

D,
and |U r

D| = |Ar
S |. Set U r

D contains dynamic activities on Hamiltonian circuit
HCr

act. Let AHC = ⋃
∀r∈R A

r
HC .

To guarantee that the robots cooperate with each other at the right time
and location, there are global constraints for time synchronization and so-
called spatial compatibility. Correct timing is ensured by inter-robot time
lags ETL, where each time lag (a1, a2) ∈ ETL has fixed length la1,a2 ∈ R
and height ha1,a2 ∈ Z. Length la1,a2 denotes a time shift between a1 ∈ Ari

and a2 ∈ Arj (ri 6= rj), and the height ha1,a2 enables addressing the current
and previous robot cycles. Both terms, which are well-known in cyclic
scheduling (see, e.g., [5, 54]), define the time relation as follows: sa2 ≥
sa1 + la1,a2 −CTha1,a2 , where sa1 and sa2 are the start times of activities a1
and a2, respectively.

To ensure that the workpiece is passed correctly from one robot to an-
other, i.e., that the workpiece is picked up from the same place where it was
put, it is necessary to define the spatial compatibility as follows. Let v1 and
v2 ∈ AS be two static activities in which an inter-robot handover is carried
out; then, the set of compatible location pairs is Qv1,v2 ⊆ Lv1 × Lv2 , and

Energy Optimization of Robotic Cells 15

Figure 2.2: Robotic cell with two robots that perform welding operations.

set Qli = {∀lj : (li, lj) ∈ Qv1,v2 or (lj , li) ∈ Qv1,v2} contains all the locations
(robot positions) compatible with location li. Finally, because the concur-
rent work of robots may result in collisions, time disjunctive combinations
of trajectories and locations are specified as quadruplets (a1, g1, a2, g2) ∈ K,
where gi ∈ Lai if ai ∈ AS or gi ∈ Tai if ai ∈ AD.

The goal of the optimization is to find closed paths of robots (i.e.,
HCr

loc for ∀r ∈ R), determine the timing of activities (i.e., the assign-
ment of sa and da for ∀a ∈ AHC), and decide which power-saving mode
of the robot to apply for each static activity v ∈ AS such that the global
constraints are satisfied, collisions are prevented, and energy consumption∑
∀(v,l,m)∈X1 f

m
v,l(dv) +∑

∀(e,t)∈X2 f
t
e(de) is minimized, where set X1 assigns

a location and power-saving mode for ∀v ∈ AS , and set X2 provides a se-
lected trajectory for ∀e ∈ AHC , e ∈ AD. MILP formulation of this problem
is presented in Section 2.4. In case you need to refresh the meaning of a
symbol, please refer to the nomenclature in Appendix A.

2.3.1 Example 1

Figure 2.2 shows a robotic cell consisting of two robots: r1 and r2 ∈ R.
Robot r1 takes the weldment, carries out two spot-welding operations, and
subsequently puts the weldment on a bench. Robot r2 takes the weld-
ment from the bench, carries out an additional spot-welding operation, and
puts the weldment on a conveyor. The process flow of each robot can be ex-
pressed as a graph Gr; such as Gr1 = (Ar1

S , A
r1
D), where Ar1

S = {v1, v2, v3, v4}
and Ar1

D = {e1,2, e1,3, e2,3, e2,4, e3,2, e3,4, e4,1}. Nodes v2, v3, v6 correspond to
spot-welding operations, whereas v1, v5 and v4, v7 are take and put opera-
tions, respectively. The edges define how to move from one operation to
another, and the edge style determines whether the move is mandatory

16 Problem Statement

(solid line), or optional (dashed line). The dashed edges, i.e., the optional
dynamic activities AO, enable modeling alternative orders of operations; in
this case, there are two possible orders: (v1, v2, v3, v4) and (v1, v3, v2, v4).
The graphs shown in Figure 2.2 have activity-level granularity because each
edge is a dynamic activity and each node is a static activity. However, a
lower-level of granularity is achievable because each node v has locations
Lv, and each edge e contains trajectories Te. Because the weldment has
to be passed at the right place at the right time, spatial and time syn-
chronization between robots is necessary. For example, if Lv4 = {l4,1, l4,2}
and Lv5 = {l5,1, l5,2}, i.e., v4 and v5 have 2 locations each, then the spatial
compatibility can be defined as Ql4,1 = {l5,2} and Ql4,2 = {l5,1}. To ensure
correct timing, two time lags need to be added: sv5 ≥ se4,1 + le4,1,v5 and
sv4 ≥ se5,6 + le5,6,v4 −CT . The first time lag ensures that robot r2 takes the
weldment from the bench after robot r1 has put it there. The second time
lag guarantees that robot r2 has left the bench before robot r1 puts another
weldment there. The lengths of the time lags are set to the required time
for a robot to safely leave the bench.

2.3.2 Example 2

Figure 2.3 shows a robotic cell where robots r1 and r2 ∈ R are welding
and gluing an automotive body. The process flow of each robot ri ∈ R,
including a conveyor belt that is simulated as a robot, is expressed as graph
Gri = (Ari

S , A
ri
D), where v1 ∈ Ar1

S , v8 ∈ Ar2
S , and v12 ∈ Ar3

S are the last
(home) activities vr1

h , vr2
h , and vr3

h , respectively, v2, v3, v4, v5 ∈ Ar1
S are spot-

welding operations, and v6, v7 ∈ Ar2
S are gluing operations. Graph edges Ari

D
determine allowed robot moves between static activities. Based on graph
Gr1 structure it is obvious that the welding can be divided into two working
groups: {v2, v3} and {v4, v5}, where the first group is finished before the sec-
ond one. Each group has undecided order of its spot-welding operations (two
alternatives), which is modeled by using optional dynamic activities e ∈ AO
(dashed edges); in this case AO = Ar1

D . In total, there are four orders of op-
erations for robot r1: (v1, v2, v3, v4, v5), (v1, v3, v2, v4, v5), (v1, v2, v3, v5, v4),
and (v1, v3, v2, v5, v4). Graphs Gri , ∀i ∈ {1, 2, 3}, have activity-level granu-
larity since each edge is a dynamic activity and each node is a static activity.
A lower-level of granularity is achievable (see, e.g., Figure 2.7) as each node
v has locations Lv, and each edge e contains trajectories Te.

Finally, time synchronization is needed to guarantee a correct coopera-
tion between the robots. Consider the following manufacturing process: 1)
automotive body gets on a conveyor belt, 2) it is transported to robots r1
and r2, 3) its front part is processed (activities v2, v3, v6), 4) the body is
moved forward, 5) its rear part is processed (activities v4, v5, v7), and 6) it

Energy Optimization of Robotic Cells 17

Figure 2.3: An example of a robotic cell from automotive industry.

is transported out of the robotic cell. It is obvious that the robots r1 and r2
have to be synchronized with the conveyor belt since the execution of weld-
ing and gluing operations depends on the position of the automotive body.
In a similar way, the conveyor belt is not allowed to move when some weld-
ing/gluing operations are in progress. Fortunately, the conveyor belt can be
simulated as an additional robot r3 with its graph Gr3 , where each static ac-
tivity v ∈ Ar3

S has zero power consumption (the belt is not moving) and one
location (|Lv| = 1), each dynamic activity e ∈ Ar3

D \ (v12, v9) has a constant
input power (the belt is moving) and its duration is equal to transportation
time, and dynamic activity (v12, v9) ∈ Ar3

D has zero duration and zero energy
consumption. Robots r1 and r2 ∈ R cannot start the work on the front part
of the automotive body until the body is transported to the robots from
v9 (i.e., ’in’) to v10 (i.e., ’pos1’), therefore activities v2, v3, v6 can start after
dynamic activity (v9, v10) ∈ Ar3

D is finished. It is resulting in 3 time lags:
svi ≥ sv10 + lv10,vi ∀i ∈ {2, 3, 6} where the length is an extra time required
by robots r1 and r2 to safely enter the working space. After the front part of
the body is processed, the belt can transport the body from v10 (i.e., ’pos1’)
to v11 (i.e., ’pos2’). It means that dynamic activity (v10, v11) ∈ Ar3

D can
start after the last activity v ∈ {v2, v3, v6}, therefore the following time lags
are added: se2 ≥ se1 + le1,e2 where e1 ∈ {Sv2 ∪Sv3 ∪Sv6} \{(v2, v3), (v3, v2)}
and e2 = (v10, v11). The lengths of the time lags correspond to an extra
time required by robots r1 and r2 to safely leave the working space. In a
similar way the work on the rear part of the body requires the following
time lags: svi ≥ sv11 + lv11,vi ∀i ∈ {4, 5, 7} and se2 ≥ se1 + le1,e2 where
e1 ∈ {(v4, v1), (v5, v1), (v7, v8)} and e2 = (v11, v12). Having the rear part

18 Mixed-Integer Linear Programming Model

of the body processed, the body is transported out of the robotic cell (i.e.,
v12 ∼ ’out’) and a new cycle starts. Note that both the robots and the
conveyor belt have the same production cycle time CT .

2.4 Mixed-Integer Linear Programming Model

The problem is intrinsically nonlinear due to f t
e being convex functions; nev-

ertheless, a MILP model can be formulated if the functions are piecewise
linearized. The piecewise linear functions f̂ t

e are propagated through con-
straints (2.3) to the criterion (2.1), where Wa is the energy consumption of
activity a ∈ A, W is an upper bound on energy consumption, yt

e is a binary
variable that determines whether or not the trajectory t ∈ Te is selected for
activity e ∈ AD, B is a set of indices, and kt

e,b, qt
e,b are coefficients of the b-th

linear function approximating f t
e. The number of segments |B| of each f̂ t

e

can be adjusted to meet the desired accuracy of the approximation. There
is no need to introduce binary variables for each segment of the function be-
cause functions f t

e are convex, and the criterion ensures that the right linear
function is active. The energy consumption of static activities is calculated
by constraints (2.2), where xl

v determines whether or not location l ∈ Lv is
selected for v ∈ AS , and zm

v is set to true if and only if mode m ∈ M r is
applied for activity v ∈ AS .

Min
∑
∀a∈A

Wa (2.1)

s.t. pm
v,ldv −W

(
2− zm

v − xl
v

)
≤Wv (2.2)

∀r ∈ R,∀v ∈ Ar
S , ∀l ∈ Lv, ∀m ∈M r

kt
e,bde + qt

e,b −W
(
1− yt

e

)
≤We (2.3)

∀e ∈ AD,∀t ∈ Te,∀b ∈ B

Assignment constraints (2.4), (2.5), and (2.6) ensure the correct selection
of locations, power saving modes, and trajectories for activities. Note that
optional activities AO are omitted in constraints (2.6) because they may or
may not be carried out. If an optional activity e ∈ AO is not performed,
then none of its trajectories is selected. Therefore, We is zero because all the
constraints (2.3) for activity e are deactivated, and criterion (2.1) pushes
We down to zero due to the minimization.∑

∀l∈Lv

xl
v = 1 ∀v ∈ AS (2.4)

∑
∀m∈Mr

zm
v = 1 ∀r ∈ R,∀v ∈ Ar

S (2.5)

Energy Optimization of Robotic Cells 19

∑
∀t∈Te

yt
e = 1 ∀e ∈ AD \AO (2.6)

Flow constraints (2.7) and (2.8) state that if the robot moves to location
l then it also has to move away from the same location.∑

∀e∈Pv

∑
∀t=(lfrom,l)∈Te

yt
e = xl

v ∀v ∈ AS ,∀l ∈ Lv (2.7)

∑
∀e∈Sv

∑
∀t=(l,lto)∈Te

yt
e = xl

v ∀v ∈ AS ,∀l ∈ Lv (2.8)

Constraints (2.9) to (2.13) enforce the time ordering of activities. Some
precedences of activities are mandatory (see constraints (2.9) and (2.10))
due to the structure of graph Gr = (Ar

S , A
r
D), whereas others are optional

(see constraints (2.11) to (2.13)) because some e ∈ AO do not have to be
carried out. The binary variables we,v determine whether or not activity
e ∈ AO is performed and which order of operations is selected.

sa2 = sa1 + da1 (2.9)
∀a1 ∈ A \AO, ∀a2 ∈ Sa1 ,@vr

h = a1

se = svr
h

+ dvr
h
− CT (2.10)

∀vr
h ∈ AS ,∀e ∈ Svr

h∑
∀t∈Te

yt
e = we,v ∀e ∈ AO, v ∈ Se (2.11)

sv + (1− we,v)CT ≥ se + de (2.12)
∀e ∈ AO, v ∈ Se

sv − (1− we,v)CT ≤ se + de (2.13)
∀e ∈ AO, v ∈ Se

Restrictions on the duration of static and dynamic activities are reflected
in constraints (2.14) and (2.15), respectively.

max(dv, d
m)zm

v ≤ dv ≤ dv (2.14)
∀r ∈ R,∀v ∈ Ar

S , ∀m ∈M r

dt
ey

t
e ≤ de ≤ d

t
e + CT

(
1− yt

e

)
(2.15)

∀e ∈ AD,∀t ∈ Te

The problem described by Equations (2.1) to (2.15) is robot independent;
i.e., the constraint matrix of the MILP formulation is block diagonal; thus,
each robot can be treated separately. In the following constraints, however,

20 Parallel Heuristic Algorithm

the robots are coupled together with regard to time synchronization and
spatial compatibility.

sa2 − sa1 ≥ la1,a2 − CTha1,a2 ∀(a1, a2) ∈ ETL (2.16)
xl1

v1 ≤
∑

∀l2∈Lv2 ,l2∈Ql1

xl2
v2 (2.17)

∀v1 ∈ AS , ∀l1 ∈ Lv1 , |Ql1 | > 0

Collisions between robots are resolved by constraints (2.18) and (2.19)
where ugi

ai
is either xgi

ai
or ygi

ai
depending on whether ai ∈ AS or ai ∈ AD, and

the binary variables cn
o determine the execution order of ai and aj for the

multiples of cycle time CT if the collision applies. As an example, consider
xg1

a1 and yg2
a2 to be a colliding pair for a multiple of cycle time n = 2. If

location g1 and movement g2 are selected, i.e., if the variables ug1
a1 and ug2

a2
are equal to one, then exactly one of constraints (2.18) and (2.19) is active for
this collision pair and multiple n = 2; therefore, either sa2 +2CT ≥ sa1 +da1

or sa1 ≥ sa2 + da2 + 2CT has to be satisfied. In case the collision does not
apply, i.e., if location g1 or movement g2 is not selected, then these two
equations remain inactive.

sa2 + nCT + 2 |R|CT (3− cn
o − ug1

a1 − u
g2
a2) ≥ sa1 + da1

∀o = (a1, g1, a2, g2) ∈ K,∀n ∈ {− |R| , . . . , |R|} (2.18)
sa1 + 2 |R|CT (2 + cn

o − ug1
a1 − u

g2
a2) ≥ sa2 + da2 + nCT

∀o = (a1, g1, a2, g2) ∈ K,∀n ∈ {− |R| , . . . , |R|} (2.19)

All the variables of the model are either nonnegative floats or binary
variables, as expressed in Equation (2.20).

Wa, sa, da ∈ R≥0 xl
v, z

m
v , y

t
e, c

n
o , we,v ∈ B (2.20)

2.5 Parallel Heuristic Algorithm

Motivated by the inability of MILP solvers to solve bigger instances, this
work proposes a parallel Hybrid Heuristic based on a Linear Program-
ming (LP) solver that iteratively solves partially fixed problems, called
tuples, for selected locations, power-saving modes, and alternative orders.
Although the application of an LP solver to partially fixed problems has
been previously studied (see, e.g., [32, 26], and [20]), the present work ac-
celerates the heuristic by using a tailor-made Gurobi simplex algorithm for
piecewise linear convex functions and the parallelization.

The flowchart of the heuristic, as shown in Figure 2.4, can be divided
into two parts: the control thread and worker threads. The control thread

Energy Optimization of Robotic Cells 21

start

generate HCr
act

launch worker
threads

wait for timer

join worker
threads

print best
solution

end

combine
elite solutions

timeout

otherwise

control thread

start

read next tuplegenerate tuples

end

change
locations

(de)select
power mode

change
path

solve reduced
LP problem

Φ = 0

Φ = Φ + 1

add
constraint

no tuple
available

timeout
otherwise

otherwise otherwise
read next

sub-heuristics

worker thread

elites

Figure 2.4: Flowchart of the parallel Hybrid Heuristic.

generates various alternative orders in the form of HCr
act, launches worker

threads, and occasionally combines elite solutions to create promising tu-
ples. After the specified time limit tmax, the control thread joins the worker
threads and prints the best solution if found. The process flow of the worker
thread consists of reading and generating tuples and then optimizing them
iteratively by alternating between solving a reduced LP problem and car-
rying out three sub-heuristics. In general, each sub-heuristic performs a
small modification of the tuple that may reduce the energy consumption,
and an LP solver evaluates a real impact of this modification. The iterative
optimization is stopped if there is no significant improvement after Φmin
iterations, in which case the next tuple is read, or if the time limit tmax is
exceeded, in which case the thread is terminated.

The heuristic (see Figure 2.4) is accelerated by using multiple worker
threads that independently process tuples one by one from a list. If the list
becomes empty, then new tuples are added to it, and the process continues.
Because the tuples, alternative orders HCr

act, and elite solutions are accessi-
ble from all the threads, it is necessary to use synchronization primitives to
guarantee consistent reads and writes. Fortunately, the introduced overhead
is negligible (see the experiments in Section 2.12) because the access time is
very short compared with the time needed to solve the reduced LP problem.
The key parts of the heuristic are detailed in the following subsections.

22 Parallel Heuristic Algorithm

2.5.1 Generation of Alternatives

The order of operations of robot r, i.e., an alternative, is encoded as a
Hamiltonian circuit HCr

act in graph Gr = (Ar
S , A

r
D). Because there can be

more alternative orders of operations (i.e., circuits), it is necessary to find
some of them. For this purpose, the finding of Hamiltonian circuits in graph
Gr = (Ar

S , A
r
D) is transformed into a search for Hamiltonian paths in graph

Gr ′ = (Ar
S
′, Ar
D
′) as follows. Nodes Ar

S
′ = Ar

S \vr
h∪{v→, v←}, where v→, v←

are the starting and ending nodes, respectively. The edges leaving vr
h are

modified such that they start from v→; similarly the edges entering vr
h are

changed such that they end in v←. Both the nodes and edges of Gr ′ are
weighted by the minimum possible duration da of the related activity; i.e.,
min∀t∈Te d

t
e for ∀e ∈ Ar

D
′ and max(dv,min∀m∈Mr dm) for ∀v ∈ Ar

S
′. The

goal is then to find random Hamiltonian paths from v→ to v← such that∑
∀a∈path da ≤ CT . To ensure effective pruning during an iterative random

tree search from node v→, the obviously infeasible or completely searched
sub-paths from v→ are detected and skipped. The sub-path (v→, . . . , ai)
is infeasible if there is an unvisited node au that cannot be reached or
|(v→, . . . , ai)| + C(ai, au) + C(au, v←) > CT , where the first term is the
sub-path length, and C(ai, aj) is the length of the shortest path from ai to
aj calculated by the Floyd-Warshall algorithm. If a Hamiltonian path is
found, its fastest sequence through the activity locations can be obtained
by applying a shortest path algorithm for directed acyclic graphs. If the
duration of this sequence is longer than the robot cycle time, then the related
Hamiltonian path is neglected because it cannot lead to a feasible solution
for the original problem. Note that the Hamiltonian path and its fastest
sequence through the locations can be easily transformed back to HCr

act
and HCr

loc, respectively. Because the algorithm is exact, i.e., it can prove
the nonexistence of a Hamiltonian circuit of a given length, it is possible
to detect the infeasibility of some instances. Moreover, the generation of
alternatives is robot independent; therefore, the work is distributed among
threads to accelerate the initialization of the heuristic.

2.5.2 Generation of Tuples

The generation of tuples, which are formally defined below, is crucial for
finding initial feasible solutions; therefore, the emphasis is placed on feasi-
bility rather than on energy optimality during the generation. At the be-
ginning of the generation, a random alternative HCr

act and its fastest closed
path HCr

loc through the locations (see Section 2.5.1) are assigned to each
robot r. Only the fastest power-saving mode of robot r is considered. The
closed paths are subsequently modified to meet the spatial compatibility as

Energy Optimization of Robotic Cells 23

follows. For each pair (vi, vj) with the violated spatial compatibility one
fixing pair q ∈ Qvi,vj is selected with respect to the prolongation of the re-
lated closed paths; i.e., the paths with a minimal duration close to the robot
cycle time are penalized. After the spatial compatibility is fixed, the tuple is
created as a triple T = (A ,P, α : AS →M), where A ,P are the selected
alternatives and their closed paths, respectively, and function α maps each
activity v ∈ AS to its power mode m ∈ M , where M = ⋃

∀r∈R M
r. The

process of tuple generation is applicable to two blocks shown in Figure 2.4:
generate tuples and combine elite solutions. However, in the second block,
only the alternatives HCr

act used in elite solutions are considered to intensify
the search process.

2.5.3 Reduced Linear Programming Problem

The timing of a partial problem, i.e. a tuple, is determined by the reduced
LP problem. If the resulting solution is feasible, then it is feasible for the
original problem and can be added to the list of elite solutions if it ranks
among the top solutions in terms of energy consumption. Otherwise, the
solution is infeasible, and one of two cases arises: the related tuple is not
modified by any sub-heuristics, in which case another tuple is read; or the
previous tuple resulting in a feasible solution is loaded, and the next sub-
heuristic is selected.

Before formally describing the reduced LP problem, it is necessary to
define some sets extracted from tuple T . SetAD(T) contains all the dynamic
activities in ∀HCr

act ∈ A , where each dynamic activity e has to be carried
out (is selected by T) and has assigned its fixed trajectory t ∈ Te as a pair
(e, t) ∈ F1(T); similarly, each static activity v ∈ AS is linked to its location
l ∈ Lv and power mode m ∈ M as a triple (v, l,m) ∈ F2(T). Then, the
reduced LP problem can be stated as follows.

Min
∑

∀(e,t)∈F1(T)
f̂ t

e(de) +
∑

∀(v,l,m)∈F2(T)
pm

v,ldv (2.21)

subject to: (2.9)*, (2.10)*, (2.14)*, (2.15)*, (2.16)*
sa2 + nCT ≥ sa1 + da1 ∀(a1, a2, n) ∈ D≥ (2.22)
sa2 + da2 + nCT ≤ sa1 ∀(a1, a2, n) ∈ D≤ (2.23)

Criterion (2.21) minimizes the sum of the piecewise linear convex func-
tions f̂ t

e passed to the Gurobi LP solver as a list of function points or alter-
natively expressed similarly to constraints (2.2) and (2.3) for other solvers.
The equations marked with an asterisk are the same as the original ones
(without the asterisk); however the sets from which the constraints are
generated are different. Constraints (2.9)*, (2.10)*, and (2.16)* establish

24 Parallel Heuristic Algorithm

precedences between activities A(T) = AS∪AD(T), and constraints (2.14)*
and (2.15)* transform into the domain specification of da variables.

All the aforementioned constraints are always present in the above for-
mulation; however, these alone may not ensure feasibility because some
collisions could occur. For this reason, additional constraints (2.22) and/or
(2.23) could be iteratively added to heuristically resolve active collisions.
Thus, if a solution is feasible with respect to the current constraints of the
reduced LP problem but is not feasible for the original problem due to some
active collisions, then the worst collision (formally defined later) is detected
and resolved by adding constraint (2.22) or (2.23). Afterward, the problem
is resolved, and the same procedure is repeated if collisions still occur (see
Figure 2.4).

To introduce the collision resolution more formally, constraints (2.22)
and (2.23) have to be shown as specialized forms of constraints (2.18) and
(2.19), respectively. First, the variables ugi

ai
in constraints (2.18) and (2.19)

are fixed for tuple T , i.e., ugi
ai

= 1 if (ai, gi) ∈ F1(T) or (ai, gi,mi) ∈
F2(T); otherwise, ugi

ai
= 0. Second, it is sufficient to consider set K(T) =

{∀(ai, aj) : ugi
ai

+ u
gj
aj = 2, (ai, gi, aj , gj) ∈ K, ai, aj ∈ A(T)} instead of K

because constraints (2.18) and (2.19) are neither binding nor violated for
unselected locations and movements of tuple T , and each activity ai ∈ A(T)
has an assigned movement or location. Note that if ugi

ai
+ u

gj
aj = 2, then

the variable cn
o makes only one constraint, either (2.18) or (2.19), active

(“big M method”) depending on the decision whether sa2 + nCT ≥ sa1 +
da1 or sa1 ≥ sa2 + da2 + nCT , which guarantees collision-free ordering.
However, these decisions correspond exactly to constraints (2.22) and (2.23),
in which the decision on ordering is given by adding a triple (ai, aj , n) to the
related set D≥ or D≤, respectively; i.e., a constraint is added to the problem.
The constraint added is not removed during the solving of the reduced LP
problem; therefore, this approach is heuristic. The key question is how to
select which constraint to add and how such constraint is related to the
worst collision. To find an answer, the maximal violation Γ of constraints
(2.18) and (2.19) for tuple T is calculated as follows.

υn
ai,aj

= sai + dai − saj − nCT (2.24)
µn

ai,aj
= saj + daj + nCT − sai (2.25)

Γ = max
∀(ai,aj)∈K(T)
∀n∈{−|R|,··· ,|R|}

min(υn
ai,aj

, µn
ai,aj

) (2.26)

Note that if Γ ≤ 0, then there are no active collisions, and no extra
constraints are needed; failing that, i.e., Γ > 0, means that there is a pair of
colliding activities that is not time disjunctive. In that case, let (a∗i , a∗j , n∗)
be an optimal argument of the max function in Equation (2.26) (replace

Energy Optimization of Robotic Cells 25

max with argmax). This triple defines the worst collision, i.e., the collision
with the biggest time intersection, occurring in a current solution. Whether
this collision should be resolved by adding a constraint of type (2.22) or
(2.23) is determined by the υ∗ = υn∗

a∗i ,a∗j
and µ∗ = µn∗

a∗i ,a∗j
values. If υ∗ ≤ µ∗

(µ∗ ≤ υ∗), then the worst collision is resolved by adding the triple to D≥
(D≤) because it may result in smaller changes in timing after the problem
is resolved with the added constraints.

2.5.4 Sub-heuristics

The aim of the sub-heuristics is to modify a given tuple T and its timing
calculated by the reduced LP problem such that the energy consumption
would be reduced in successive LP calls. Because the performed modifica-
tions can result in a violation of time lags or the occurrence of collisions,
a penalty based on the duration of breakage and average input power is
added to these modifications. If the modifications of an active sub-heuristic
do not lead to significant energy improvements, then the next sub-heuristic
is selected in round-robin order.

The goal of the (de)select power mode sub-heuristic, which focuses on
the application of the power-saving modes of robots, is to find and apply
an alternative power-saving mode for some activity v ∈ AS . To select a
suitable mode and activity, the energy consumption is estimated for all
applicable modes of each v ∈ AS as follows. If a different mode m ∈M r of
robot r ∈ R is applied for activity v′, then some activities v ∈ Ar

S \ v′ are
uniformly shortened/prolonged to meet the cycle time. After the timing is
modified, both the energy consumption and the above-mentioned penalty
are determined. Finally, the choice falls on mode m and activity v′ with
the lowest sum of the energy consumption and penalty. Note that the
sub-heuristic uses a Tabu list, i.e., a short-term memory with forbidden
modifications, to avoid cycling; therefore, some power-saving modes may
not be applicable for some activities.

The change locations sub-heuristic optimizes the closed paths of robots,
i.e., ∀HCr

loc ∈P, by modifying the go-through locations as follows. Let ‘99K
la

t1−→ lb
t2−→ lc 99K’ be a part of HCr

loc, where t1 and t2 are the movements
between the locations; then, the question arises as to whether the inner
part, i.e., ‘ t1−→ lb

t2−→’, can be replaced so as to achieve a reduction in energy
consumption. To find an answer, each viable substitution ‘la

t`−→ l◦
ta−→ lc’

has to be evaluated in terms of energy by solving the convex problem (2.27)
to (2.28), where t1, t` ∈ Te1 , t2, ta ∈ Te2 , e1, e2 ∈ AD(T), lb, l◦ ∈ Lvb

,
vb ∈ AS , and ξ = dLP

e1 + dLP
e2 and dLP

vb
are constants determined from the LP

solution. Because the problem is convex and one-dimensional, the golden

26 Parallel Branch & Bound Algorithm Overview

section search algorithm can be used to find the optimal solution. Then,
the most energy-friendly substitution not breaking the spatial compatibility
is applied, and the process is repeated for other sub-paths.

minimize f t`
e1 (de1) + f ta

e2 (ξ − de1) + pm
vb,l◦d

LP
vb

(2.27)

max(dt`
e1 , ξ − d

ta
e2) ≤ de1 ≤ min(dt`

e1 , ξ − d
ta
e2) (2.28)

The last sub-heuristic, called change path, diversify the search process
to allow exploring some otherwise unreachable HCr

loc. The sub-heuristic
selects one HCr

loc ∈P and randomly changes its go-through locations such
that spatial compatibility is achieved and the resulting closed path exists.

2.6 Parallel Branch & Bound Algorithm Overview

The Branch & Bound algorithm, as depicted in Figure 2.5, adopts the stan-
dard procedure but the key difference that makes the algorithm efficient
is the Node evaluator and Deep Jumping approach (described later). Fig-
ure 2.5 shows the basic functional blocks and process flow of the algorithm,
which are described as follows. At the beginning, an instance of the problem
is read, and the global Lower Bound (LB) and best Upper Bound (UB) are
initialized. The LB is the best currently known lower estimation of energy,
and UB is the energy required by the current best solution (the incumbent
solution). Afterwards, the root node of the Branch & Bound tree is cre-
ated and inserted to a node storage (see Section 2.11 for details), and the
searching process is started from the root node to explore the tree for the
best quality solutions.

Each node n obtained from the storage is tested whether its lower esti-
mation on energy LB(n) < UB; or in other words, whether node n might
be resulting in a better solution than the incumbent one. If it is not the
case, the node is pruned and another node is obtained. In case the storage
is empty or time limit tmax is exceeded, the algorithm stops the searching
process and prints the best solution if found; otherwise, node n is processed
based on its type: a leaf node or partial node. In the leaf node, the order,
locations, and power-saving modes are already decided, therefore no further
branching is required and the energy consumption is evaluated by solving a
MILP problem (see Section 2.9 for details). In case the energy consumption
UB(n) < UB, a new incumbent solution is found and UB = UB(n). Com-
pared to the leaf node, the partial node is not fully decided yet, therefore
new nodes are generated by branching on order, locations, or power-saving
modes (see Section 2.8 for details).

As it is obvious from Figure 2.5, there are two approaches how to gen-
erate new nodes. The first one, i.e., conventional branching, expands one

Energy Optimization of Robotic Cells 27

Storage of
nodes

Node evaluator

leaf node

Store a new
incumbent solution

UB(n) < UB

partial node

Add expanded
nodes

infeasible or
UB(n) >= UB

Create and add
the root node

Print the best
solution if found

Deep Jumping Conventional
branching

Node expansion(s)

 UB = UB(n)

Read a problem
instance

LB = 0, UB = +∞Obtain node nPrune node n

LB(n) >= UB empty storage or
time limit reached

LB(n) < UB

Figure 2.5: Block diagram of the Branch & Bound algorithm.

node and evaluates the generated nodes by using a tight relaxation based
on convex envelopes (see Section 2.9). The second one, i.e., Deep Jumping,
can be used if the order is not fully decided, and finding a feasible order
of activities is difficult due to the global constraints, especially time lags.
The main idea is to employ a heuristic to find a promising immersion in the
tree, which could be resulting in good solutions in subsequent expansions.
It is accomplished by solving a relaxed MILP problem with a time limit
and relative optimality gap, where the cycle time is minimized to make a
solution robust to time prolongations (see Section 2.10 for details). From a
feasible solution to the relaxed problem, an order of activities is determined
and used to create a subtree, where non-expanded nodes (not branched) are
evaluated using the tight relaxation (see Section 2.9). If there is a feasible
subtree node with the same order of activities as in the feasible solution
of the relaxed MILP problem, then this node is preferred for the next ex-
pansion (higher priority). The procedure is named Deep Jumping since it
transfers the searching process to higher levels of the tree. Regardless of
how the nodes are generated, non-expanded nodes are added to the storage.

28 Node Definition

After the node obtained from the storage is processed, the searching process
continues with another node in the same way.

The following sections provide a mathematical background and details
related to the basic blocks of the algorithm. To be more particular, the node
is defined in the next section, the branching and propagations are described
in Section 2.8, the energy evaluator of nodes is presented in Section 2.9, the
Deep Jumping approach is proposed in Section 2.10, and the acceleration
of the algorithm by using multiple threads and efficient data structures is
discussed in Section 2.11.

2.7 Node Definition

The node of the Branch & Bound tree can be defined as a triple

n = (P,L,M) (2.29)

where P is a set of subpaths in graphs G with the decided order of activities
(see, e.g., Figure 2.6b), L is a mapping from v ∈ AS to selectable locations
Lv(n), and M maps each v ∈ Ar

S to its applicable power-saving modes
M r

v (n). The definitions of L and M use a new notation, i.e., Lv(n) and
M r

v (n), to extract only selectable/applicable elements from a set for a given
node n. For example, Te(n) contains all trajectories t ∈ Te that are selected
or can be selected in a given (partial) solution determined by node n. The
node is called the leaf node if the order is fixed, i.e., |P| = |R|, and each
static activity v ∈ AS is assigned respectively unique location l ∈ Lv and
power-saving mode m ∈M r by L andM mappings; otherwise, it is a partial
node that can be branched to generate new nodes.

2.8 Branching

Every partial node can be branched on the order of activities, locations,
or power-saving modes. The highest priority is given to fixing an order
of activities since it makes the problem difficult with respect to time lags.
If the order is fixed, then the spatial compatibility is resolved by select-
ing locations for the static activities that are involved in inter-robot hand-
overs. Nodes detected to violate the spatial compatibility are pruned by
the branching. After the spatial compatibility is resolved, the remaining
locations and power-saving modes are assigned. The goal of these empirical
rules is to make difficult decisions in lower levels of the tree to increase the
likelihood of finding feasible solutions.

The following three subsections describe propagation techniques that are
subsequently carried out in expanded nodes to infer new decisions based on

Energy Optimization of Robotic Cells 29

a branching decision (a selected activity/location/mode). The propagation
techniques resemble the domain propagation in constraints programming.

2.8.1 Order Propagation

The primary goal of the order propagation is to determine, based on a
branching decision to select e ∈ AO, which additional optional activities
should be selected or removed from the consideration for expanded node
n. Since the optional activities determine the order of activities, the prop-
agation procedure, in fact, concatenates subpaths P of node n (see, e.g.,
Figure 2.6) until no more decisions can be inferred.

Order propagation procedure:
1. Let optional activity e ∈ Ar

O is selected by a branching decision.
2. Let ef = e, where ef is the activity to be fixed in the next two steps.
3. Find subpaths p1 ∈ Pr and p2 ∈ Pr of robot r that can be joined

by activity ef , i.e., ef ∈ next(p1,n) and ef ∈ prev(p2,n), where
next(pi,n) and prev(pi,n) are leaving and entering edges (⊆ Ar

O) of
subpath pi for node n, respectively.

4. Join subpaths p1 and p2 together by activity ef and create new sub-
path p12. Set Pr = Pr\{p1, p2}∪{p12}, and remove edges next(p1,n)∪
prev(p2,n) since they cannot be selected after the join.

5. If ∃pi ∈ Pr, e ∈ Ar
O such that e ∈ next(pi,n) and e ∈ prev(pi,n),

then remove activity e as it forms a loop on subpath pi and repeat
this step.

6. If |Pr| > 1 and ∃pi ∈ Pr such that |prev(pi,n)| = 0 or |next(pi,n)| =
0, then Hamiltonian circuit HCr

act cannot be closed, i.e., node n is
infeasible. Go to step 9.

7. If ∃pi ∈ Pr such that |prev(pi,n)| = 1, then infer the decision that
activity e ∈ prev(pi,n) is fixed, i.e., ef = e, and go to step 3.

8. If ∃pi ∈ Pr such that |next(pi,n)| = 1, then infer the decision that
activity e ∈ next(pi,n) is fixed, i.e., ef = e, and go to step 3.

9. The propagation is completed and subpaths Pr are updated if the
node is feasible. Notice that if an order of activities of robot r is fixed,
then |Pr| = 1 and |prev(pi)| = |next(pi)| = 0 for pi ∈ Pr.

A demonstration of the propagation on robot r1 from Figure 2.3 is pro-
vided in Figure 2.6, where two optional activities are successively selected
(branching decisions) to determine the order of activities of robot r1. After
optional activity (v2, v3) is selected (dashed in Figure 2.6a), the procedure
removes (crossed) and fixes (bold) some edges (see Figure 2.6a) and updates
subpaths Pr1 (see Figure 2.6b). Subsequently, another activity (v5, v4) is

30 Branching

(a) First call of the procedure. (b) Second call of the procedure.

(c) Final state.

Figure 2.6: Example of the order propagation (two activities are selected).

selected and the process is repeated. In the end, the final order of activities
(see Figure 2.6c) is used to construct HCr1

act.

2.8.2 Propagation of Locations

The propagation of locations is executed after a location is selected by a
branching decision. It removes trajectories that become unselectable due to
the decision and updates Lv(n) sets for ∀v ∈ Ar

S of robot r.

(a) Select l1 ∈ Lv6 , v6 ∈ Ar2
S . (b) Select l3 ∈ Lv8 , v8 ∈ Ar2

S .

(c) Final path of robot r2 ∈ R.

Figure 2.7: Example of the propagation after selecting locations.

Energy Optimization of Robotic Cells 31

Propagation of locations procedure:
1. Location lf ∈ Lv(n) is selected by a branching decision.
2. Let prev(li,n) and next(li,n) are entering and leaving trajectories

of location li for node n, respectively. Remove all trajectories t ∈
prev(li,n) ∪ next(li,n) such that li, lf ∈ Lv(n) and li 6= lf .

3. If ∃li ∈ Lv, v ∈ Ar
S such that |prev(li,n)| = 0 and |next(li,n)| > 0,

then remove all trajectories in next(li,n) and repeat this step.
4. If ∃li ∈ Lv, v ∈ Ar

S such that |prev(li,n)| > 0 and |next(li,n)| = 0,
then remove all trajectories in prev(li,n) and go to 3.

5. The propagation of locations finished, update L according to the re-
maining trajectories and check the feasibility by verifying the existence
of HCr

loc (see feasibility checks in Section 2.8.4).

The propagation is illustrated in Figure 2.7, where a path of robot r2
from Figure 2.3 is determined by selecting two locations. The first decision
(see Figure 2.7a) is to select location l1 ∈ Lv6 in activities v6 ∈ Ar2

S and v′6,
where v′6 is a ghost of activity v6 used to unwrap the cycle. As the other
locations of activity v6 cannot be selected, the propagation can remove the
crossed trajectories. Finally, after the second decision (see Figure 2.7b)
to select location l3 ∈ Lv8 is applied, the propagation stops with a fully
determined robotic path as shown in Figure 2.7c.

2.8.3 Propagation of Power Saving Modes

After the order of activities and locations are determined, it remains to
select power-saving modes. The propagation of power-saving modes updates
M r

v (n) sets based on a newly applied power-saving mode. Let say that static
activity v′ ∈ Ar

S is branched on its power-saving modes, then each applicable
mode m ∈M r

v′(n) has to satisfy the following equation

dm ≤ dv′ ≤ CT −
∑

∀v∈HCr
act\v′

v∈Ar
S

max(dv, min
∀m∈Mr

v (n)
dm)−

∑
∀e∈HCr

act
e∈Ar

D

min
∀t∈Te(n)

dt
e, (2.30)

where the right part bounds the maximal possible duration of activity v′. If
a decision to apply mode m ∈ M r

v′(n) is taken, i.e., |M r
v′(n)| = 1, then the

propagation can be accomplished by using Equation (2.30) as follows. For
each activity v′′ ∈ Ar

S \ v′ such that |M r
v′′(n)| > 1 filter out all the modes

m ∈M r that satisfy dm > dv′′ , where dv′′ is calculated as in Equation (2.30)
with v′ replaced by v′′. Modify M mapping according to the branching
decision and updated sets. Note that the propagation is usually stronger if a
deeper power-saving mode is applied since it reduces the maximal durations
of other activities through the constant cycle time, and as a result, deeper
power-saving modes may become inapplicable.

32 Energy Evaluator of Nodes

2.8.4 Fast Feasibility Checks

Since the evaluation of generated nodes is time-consuming (see Section 2.9
for details), an additional check is carried out to verify that cycle time CT

can be satisfied. In case the order of activities is not fully decided, the
following constraint has to be held for each robot r ∈ R.

CT ≥
∑
∀p∈Pr

∑
∀a∈p

da + max(
∑
∀p∈Pr

min
∀e∈prev(p,n)

de,
∑
∀p∈Pr

min
∀e∈next(p,n)

de) (2.31)

It states that the minimal length of subpaths Pr in terms of duration
plus the minimal duration of entering/leaving optional activities (one for
each subpath) cannot exceed the cycle time. After the order of activities is
decided, a tighter lower bound on cycle time Cr

T of robot r can be obtained
as a length of a shortest path in an acyclic location-level graph of robot r
(see, e.g., Figure 2.7), where each edge t ∈ Te(n) of activity e is weighted
by dt

e + max(dv,min∀m∈Mr
v (n) d

m) where v ∈ Pe. To be more particular, for
each location l ∈ Lv(n), the shortest path from l ∈ Lv(n) to l ∈ Lv′(n) with
length Cr,l

T is calculated (infinity if not exists), where v is the first activity
of subpath p ∈ Pr and v′ is its ghost in a similar way as in Figure 2.7.
The minimal length of a shortest path corresponds to the lower bound, i.e.,
Cr

T = min∀l∈Lv(n)C
r,l
T . Obviously, if max∀r∈R C

r
T > CT , then node n is

infeasible and can be discarded.

2.9 Energy Evaluator of Nodes

To formulate the tight lower bound on energy consumption, this section
introduces composite activities, extra activity sets, and convex envelopes.
Most of used symbols are listed in nomenclature in Appendix A.

2.9.1 Composite Activities

Figure 2.8: Illustration of the composite activity and its related sets.

Energy Optimization of Robotic Cells 33

In order to deal with an undecided order of activities, a new type of
activity, i.e., a composite activity, is introduced. The composite activity
encapsulates leaving edges next(p,n) of subpath p ∈ Pr (see, e.g., Fig-
ure 2.8), from which anyone but one edge e ∈ AO can be selected in any
solution derived from n. In other words, each subpath p ∈ Pr such that
|next(p,n)| > 1 is used to create composite activity c ∈ Ar

C(n), where Ar
C(n)

is a set of composite activities of robot r for a partial solution given by node
n. Notice that if an order is fully decided, then no composite activities are
needed, and set AC(n) = ⋃

∀r∈R A
r
C(n) is empty.

Let ADu(c) is a set of edges (activities) encapsulated by activity c ∈
AC(n), then duration limits of activity c ∈ AC(n) are determined as dc =
min∀e∈ADu (c) de and dc = max∀e∈ADu (c) de, respectively. The composite ac-
tivity has a unique predecessor determined as a shared predecessor of all the
encapsulated edges, i.e., Pc = ⋃

∀e∈ADu (c) Pe. In a similar way, successors of
the composite activity (at least two) are the successors of the encapsulated
edges, i.e., Sc = ⋃

∀e∈ADu (c) Se.

2.9.2 Extra Activity Sets

Extra activity sets, used in the MILP formulation of the node evaluator
(see Section 2.9.4) to calculate the lower bound, are defined in this sub-
section. Let divide the dynamic activities of robot r that are/can be
selected in node n into sets Ar

Df
(n)/Ar

Du
(n), respectively, where subsub-

script f/u means fixed/undecided. Fixed activities are selected in every
feasible solution resulting from node n, compared to undecided activities
from which only a subset is selected. Let ADf

(n) = ⋃
∀r∈R A

r
Df

(n) and
ADu(n) = ⋃

∀r∈R A
r
Du

(n), then AD(n) = ADf
(n) ∪ ADu(n) ⊆ AD and

ADu(n) ⊆ AO. Since every optional activity e ∈ ADu(n) (i.e., edge) is
in a composite activity, then ADu(n) = ⋃

∀c∈AC(n)ADu(c).

Ar
1(n) = Ar

S ∪Ar
Df

(n) ∪Ar
Du

(n) (2.32)

A1(n) =
⋃
∀r∈R

Ar
1(n) (2.33)

Ar
2(n) = Ar

S ∪Ar
Df

(n) ∪Ar
C(n) (2.34)

A2(n) =
⋃
∀r∈R

Ar
2(n) (2.35)

Equations (2.32) to (2.35) define sets that are used to select eligible
(fixed + undecided) activities for node n. Set A1(n) contains static and
eligible dynamic activities. Since some optional activities e ∈ AO may not
be selectable due to the branching decisions, it holds that A1(n) ⊆ A. Set

34 Energy Evaluator of Nodes

A2(n) is similar to set A1(n) but it uses composite activities to encapsulate
(undecided) optional activities ADu(n).

2.9.3 Convex Envelopes

Convex envelopes, used to calculate the valid lower bound of node n (see
Section 2.9.4), approximate the energy consumption of individual activities
based on their durations and a (partial) solution of node n, where an order
of activities, locations, and power-saving modes may not be fully decided. In
other words, each activity a ∈ A2(n) is assigned convex envelope fa(da) that
is defined as a function mapping duration da of activity a ∈ A2(n) to a lower
estimation of its energy consumption. The next three paragraphs describe
the creation of envelopes for static, dynamic, and composite activities.

In case of static activity v ∈ Ar
S , r ∈ R, convex envelope fv(dv) is a linear

function with a slope equal to min∀l∈Lv(n),∀m∈Mr
v (n) p

m
v,l and zero offset. The

slope is the least possible input power of activity v for node n.
In case of dynamic activity e ∈ ADf

(n), convex envelope fe(de) is cal-
culated from all functions f t

e(de) where t ∈ Te(n). If robotic paths are
determined, i.e., |Lv(n)| = 1 for ∀v ∈ AS and ADu(n) = ∅, then each
dynamic activity e ∈ ADf

(n) is assigned one trajectory t and its convex
envelope fe(de) is equivalent to energy function f t

e(de).

dt1e1 d
t1
e1

dt2e2 d
t2
e2 dc

f c
(d
c)

f t1e1

f t2e2

fc

Figure 2.9: Example of the construction of the convex envelope.

In case of composite activity c ∈ AC(n), convex envelope fc(dc) is cal-
culated from all functions f t

e(de) where e ∈ ADu(c) and t ∈ Te(n). Notice

Energy Optimization of Robotic Cells 35

that the construction of the envelope uses trajectories from two or more
activities in ADu(c) (⊆ AO), in comparison to dynamic activity e ∈ ADf

(n)
where only trajectories Te(n) are considered.

As an example consider the robotic cell in Figure 2.3 and robot r1 with
the undecided order of activities. One of five composite activities is c with
ADu(c) = {(v1, v2), (v1, v3)}, since it is not decided whether robot r1 will
move from v1 to v2 or to v3. Assume that |Lv| = 1 for ∀v ∈ Ar1

S , then it is not
clear whether to evaluate function f t1

e1 (de1) or f t2
e2 (de2), where e1 = (v1, v2),

t1 ∈ Te1 , e2 = (v1, v3), and t2 ∈ Te2 . For this reason, convex envelope fc(dc)
that provides a lower estimation on the energy consumption is constructed
as illustrated in Figure 2.9. In this case, the convex envelope (bold line) is a
function with domain [dt1

e1 , d
t2
e2] such that fc(dc) ≤ f t1

e1 (dc) for dc ∈ [dt1
e1 , d

t1
e1]

and fc(dc) ≤ f t2
e2 (dc) for dc ∈ [dt2

e2 , d
t2
e2].

Theorem 1. Convex envelope provides a valid lower estimation on energy.

Proof. In case of static activity v ∈ AS , it trivially follows since the slope of
convex envelope fv(dv) (linear function) is calculated as the minimal input
power for all selectable locations and power-saving modes.

The situation is much more complex for dynamic activities ADf
(n) and

composite activities AC(n). Although the composite activity is different
from the dynamic one since it encapsulates at least two dynamic activities,
both types have the common property that in an arbitrary feasible solution
just one trajectory, i.e., function f ti

a (da), is selected for each a ∈ ADf
(n) ∪

AC(n). As a result, the convex envelope is constructed in the same way and
it suffices to present one proof.

If activity a ∈ ADf
(n)∪AC(n) is assigned one energy function f t1

a (da) by
the branching, then convex envelope fa(da) is equal to f t1

a (da). Otherwise,
the proof by induction starts with two convex (energy) functions f t1

a (da)
and f t2

a (da), i.e., n = 2, from which just one function (trajectory) is se-
lected in any feasible solution with its associated duration. This is stated as
the following energy optimization subproblem, where y1 and y2 are binary
variables switching between energy functions, and d′a and d′′a are the related
durations.

min f t1
a (d′a)y1 + f t2

a (d′′a)y2 = γ1 (2.36)

s.t. y1 + y2 = 1 (2.37)

dt1
a ≤ d′a ≤ d

t1
a (2.38)

dt2
a ≤ d′′a ≤ d

t2
a (2.39)

y1, y2 ∈ B d′a, d
′′
a ∈ R≥0 (2.40)

36 Energy Evaluator of Nodes

If the integrality of y1 and y2 is relaxed and domains of two functions
are extended (defined on R>0), then a lower bound on the energy of the
subproblem can be obtained as follows.

min f t1
a (d′a)y1 + f t2

a (d′′a)y2 = γ2 (2.41)

s.t. y1 + y2 = 1 (2.42)

min(dt1
a , d

t2
a) ≤ d′a ≤ max(dt1

a , d
t2
a) (2.43)

min(dt1
a , d

t2
a) ≤ d′′a ≤ max(dt1

a , d
t2
a) (2.44)

y1, y2, d
′
a, d
′′
a ∈ R≥0 (2.45)

Observe that the criterion is determined by the convex combination of
two functions; therefore it forms a convex hull from which only a lower enve-
lope is required due to the minimization. As a result, the final formulation is

min fa(da) = γ3 (2.46)

s.t. da ≤ da ≤ da (2.47)
da ∈ R≥0 (2.48)

where fa(da) is a convex envelope of activity a ∈ ADf
(n) ∪AC(n), da =

min(dt1
a , d

t2
a), and da = max(dt1

a , d
t2
a). Due to the relaxations applied at each

step it holds that γ1 ≥ γ2 ≥ γ3, and therefore, the convex envelope fa(da)
provides a valid lower estimation of energy for da ≤ da ≤ da.

So far, it was shown that the relaxation is valid for two functions, i.e.
n = 2, in the remaining part, a generalization to arbitrarily many functions
is presented. Let say that convex envelope fa(da) is already created from
functions f ti

a (da) for ∀i ∈ {1, · · · , k}. The next step (n = k+1) is to extend
the convex envelope by adding function f

tk+1
a (da). Since convex envelope

fa(da) is also a convex function, then the same procedure can be repeated
on functions fa(da) and f

tk+1
a (da) and the result immediately follows.

2.9.4 Lower Bound based on Convex Envelopes

The energy evaluator of nodes is a part of the Branch & Bound algorithm
which primary purpose is to provide valid lower bounds for partial nodes.
The function of the node evaluator (see Figure 2.5) can be briefly described
as follows. First, the MILP formulation of the lower bound problem is
created based on node n. Subsequently, the MILP problem is solved to
obtain a lower bound on energy and the bound is assigned to partial node
n. In the remaining part of this section, the MILP formulation is described
in details.

Energy Optimization of Robotic Cells 37

Optimization criterion is to minimize the overall energy consumption as
expressed in Equation (2.49) where functions f̂a(da) are discretized convex
envelopes fa(da). Each discretized envelope f̂a(da) is a piece-wise linear
convex function approximating convex envelope fa(da) from below since the
lower bound cannot be overshot. As the criterion is a summation of piece-
wise linear convex functions, it is possible to use a special simplex method
in Gurobi solver to significantly accelerate the algorithm (see experiments
in Section 2.12).

min
∑

∀a∈A2(n)
f̂a(da) (2.49)

s.t.
∑

∀a∈Ar
2(n)
da = CT ∀r ∈ R (2.50)

Constraint (2.50) states that the total duration of activities in a robot
cycle is equal to cycle time CT , which is set to the desired value CT in
Equation 2.64. Two forms of the cycle time, i.e., a constant and variable,
are introduced to enable reuse of constraints for the Deep Jumping ap-
proach. If an order of activities is not fully decided, then the duration of
not yet selected (optional) activities can be replaced by the duration of the
related composite activities since exactly one optional activity e ∈ ADu(c)
is selected for each activity c ∈ AC(n), and each static activity v ∈ AS is
assigned just one successor e ∈ Sv in any feasible solution. Note that even
Equations (2.49) and (2.50) provide a very good relaxation of the problem
in terms of energy estimation, however, the efficient bounding requires that
the lower bound meets the upper bound in leaf nodes if the discretization
is neglected.

Auxiliary function H(v) is defined in Equation (2.51). Its purpose is to
indicate by a value whether static activity v ∈ Ar

S is the last activity in the
cycle of robot r, or in other words, whether activity v closes the cycle.

H(v) =
{

1 if ∃vr
h = v

0 otherwise
(2.51)

Constraints (2.52) to (2.55) determine the order of activities and their
timing. Each fixed activity e ∈ ADf

(n) adds two precedences: from its
predecessor to e (Equation (2.52)), and from e to its successor (Equation
(2.53)). Each composite activity c ∈ AC(n) has a unique predecessor, thus, a
precedence from its predecessor to c is added (Equation (2.54)). Composite
activity c has at least two possible successors, from which just one successor
can start without delay after activity c, therefore, constraints (2.55) select
one of many possible precedences to the successors of activity c. The se-
lection is accomplished by using binary variables xv1,v2 , where v1 ∈ Pc and

38 Energy Evaluator of Nodes

xv1,v2 is equal to one if precedence from c to v2 is selected; otherwise, the
precedence is not selected and the value is zero.

sv1 + dv1 − CTH(v1) = se (2.52)
∀e ∈ ADf

(n), v1 ∈ Pe

se + de = sv2 (2.53)
∀e ∈ ADf

(n), v2 ∈ Se

sv1 + dv1 − CTH(v1) = sc (2.54)
∀c ∈ AC(n), v1 ∈ Pc

sc + dc ≤ sv2 + CT (1− xv1,v2) (2.55)
∀c ∈ AC(n), v1 ∈ Pc, v2 ∈ Sc

Constraints (2.56) state that every composite activity has one successor
selected. In a similar way, constraints (2.57) ensure that each static activity
without a fixed predecessor e ∈ ADf

(n) is assigned one predecessor from
optional activities ADu(n). Constraints (2.56) and (2.57) state that each
static activity is entered/left just once, which together with the timing con-
straints (2.52) to (2.55) guarantees that Hamiltonian circuit HCr

act of each
robot r ∈ R is one graph component (no division to multiple circuits).∑

∀v2∈Sc

xv1,v2 = 1 (2.56)

∀c ∈ AC(n), v1 ∈ Pc∑
∀v1∈Bv2

xv1,v2 = 1 ∀v2 ∈ AS , |Bv2 | > 0 (2.57)

Bv2 = {∀v1 : (v1, v2) ∈ ADu(n)}

The time synchronization between robots is modeled by using time lags
as expressed by constraints (2.58). Time lag (a1, a2) ∈ ETL is active if
both activities a1 and a2 are selected, it means that each activity ai is
either fixed, i.e., ai ∈ AS ∪ ADf

(n), or is selected by xv1,v2 variable, i.e.,
ai ∈ ADu(n). Timing of optional dynamic activities ADu(n) is replaced by
timing of the related composite activities as it is indicated by setting a′i
values in Equation (2.58), and optional dynamic activities of the time lag
are stored in set J . If all activities e ∈ J are selected by xv1,v2 variables,
then the related constraint (2.58) is active; otherwise, it is disabled.

sa′2
− sa′1

+ |R|CT (|J | −
∑

∀(v1,v2)∈J

xv1,v2) ≥ la1,a2 − CTha1,a2 (2.58)

∀(a1, a2) ∈ ETL, a1 ∈ Ari
1 (n), a2 ∈ A

rj

1 (n), ri 6= rj

if ai 6∈ ADu(n) then a′i = ai else a′i = ci, ci ∈ AC(n), ai ∈ ADu(ci)

Energy Optimization of Robotic Cells 39

J = {∀e : e ∈ ADu(n), e = a1 or e = a2}

Constraints (2.59) and (2.60) are required to avoid possible collisions
between robots for a partial solution of node n. Collision (a1, g1, a2, g2) ∈ K
may happen if ai ∈ ADf

(n), gi ∈ Tai(n), |Tai(n)| = 1 or ai ∈ AS , gi ∈
Lai(n), |Lai(n)| = 1 for i ∈ {1, 2}. Set K(n) contains all collisions that
may happen in node n. Each collision (a1, g1, a2, g2) ∈ K(n) is resolved
by making activities a1 and a2 time disjunctive for multiples of cycle time
CT . In other words, for each multiple of the cycle time, binary variable
ki

o decides whether a1 precedes a2 or vice versa. The constraints are added
gradually as further trajectories and locations are fixed by propagations (see
Section 2.8).

sa2 + iCT + 2 |R|CT (1− ki
o) ≥ sa1 + da1 (2.59)

∀o = (a1, g1, a2, g2) ∈ K(n), ∀i ∈ {− |R| , . . . , |R|}
sa1 + 2 |R|CTk

i
o ≥ sa2 + da2 + iCT (2.60)

∀o = (a1, g1, a2, g2) ∈ K(n), ∀i ∈ {− |R| , . . . , |R|}

The duration of each activity e ∈ ADf
(n) is determined by its selectable

trajectories Te(n) as expressed in constraints (2.61). Similarly, constraints
(2.62) define the duration of each static activity v ∈ AS , where the duration
depends on the operation (e.g., spot-welding) and applicable power-saving
modes. Constraints (2.63) state that the duration of each composite activity
c ∈ AC(n) is linked with the duration of a selected activity e ∈ ADu(c), and
constraint (2.64) sets the cycle time according to the desired production
rate. To alleviate the computational effort, the integrality of the binary
variables xv1,v2 is relaxed to intervals between 0 and 1 as obvious from
Equations (2.65) and (2.66). The domains of other variables are shown in
Equation (2.66).

min
∀t∈Te(n)

dt
e ≤ de ≤ max

∀t∈Te(n)
d

t
e ∀e ∈ ADf

(n) (2.61)

max(dv,min
∀m∈Mr

v (n)
dm) ≤ dv ≤ dv ∀r ∈ R,∀v ∈ Ar

S (2.62)∑
∀e∈ADu (c)
e=(v1,v2)

dexv1,v2 ≤ dc ≤
∑

∀e∈ADu (c)
e=(v1,v2)

dexv1,v2 ∀c ∈ AC(n) (2.63)

CT = CT (2.64)
0 ≤ xv1,v2 ≤ 1 ∀(v1, v2) ∈ ADu(n) (2.65)
sa, da, CT , xv1,v2 ∈ R≥0 ki

o ∈ B (2.66)

It is interesting to see how the model changes if a) order of activities is
partially fixed, b) some locations are fixed, or c) some power-saving modes

40 Deep Jumping

are applied. In all the cases, convex envelopes f̂a(da) get tighter since they
are formed based on the branching decisions as described in previous Sec-
tion 2.9.3. Besides the modified criterion, in case a), the number of com-
posite activities and xv1,v2 variables decreases since fixing the order means
rejecting some optional activities from a partial solution. After the order is
fixed, constraints (2.54–2.57, 2.63) are removed and there are no composite
activities and variables xv1,v2 . In case b), new constraints (2.59) and (2.60)
are added if required to avoid collisions, and in case c), the minimal dura-
tion of the static activity can be increased due to its assigned power-saving
mode, see Equation (2.62).

Finally, two important properties of the model should be emphasized.
The first one is its abstraction with respect to the selection of locations and
trajectories. Only envelopes, activity domains, and set K(n) are influenced
and no other extra variables are required. The second one is its property
that a solution in a leaf node is also a solution to the original problem as
defined in the problem statement (see Section 2.3). The only difference is
that discretized envelopes f̂a(da) approximate convex envelopes fa(da) from
above to get a valid upper bound.

2.10 Deep Jumping

Deep Jumping is an approach that is useful if a feasible order of activities
is difficult to find due to time synchronization between robots and spatial
compatibility. Deep Jumping employes a heuristic that searches a promising
order of activities. This order is used to immerse into the Branch & Bound
tree to quickly find good feasible solutions by the subsequent fixing of loca-
tions and power-saving modes. The approach comprises of three parts: 1)
searching a promising order of activities, 2) construction of a subtree based
on the order, 3) immersion into the subtree and marking the node with the
fixed order as a preferred one for the subsequent branching.

In the first part, an order of activities is obtained by solving the following
MILP problem with a time limit and relative optimality gap.

min CT (2.67)

subject to: (2.50) to (2.63)
CT ≥ CT (2.68)
sa, da, CT ∈ R≥0 ki

o, xv1,v2 ∈ B (2.69)

Criterion (2.67) is to minimize the cycle time since it makes a solution
robust to time prolongations with respect to further fixing of locations and

Energy Optimization of Robotic Cells 41

Decide locations
and power modes.

order of all robots decided

infeasible*

solution guided immersion

Branch & Bound
tree The heuristic minimizes

the cycle time. Ordering
variables are not relaxed!

Evaluated by the energy
evaluator, but not added
to the storage.

Evaluated by the energy
evaluator and added to
the storage.

Evaluated by the energy
evaluator and added to
the storage. The node
has a high priority to be
processed.

* Infeasibility detected by the propagation.

Figure 2.10: Example of Deep Jumping.

power-saving modes. Constraint (2.68) renders solutions exceeding the de-
sired cycle time infeasible. Compared to the energy evaluation, ordering
variables xv1,v2 are not relaxed for ∀(v1, v2) ∈ ADu(n). If a feasible solution
is found, the second part uses these variables to construct a subtree from
node n; otherwise, node n is branched as described in Section 2.8.

Construction of the subtree:
1. Set current node n∗ to n.
2. Select an arbitrary composite activity c ∈ AC(n∗).
3. Determine its selected activity eu = (v1, v2) ∈ ADu(c) by searching a

variable xv1,v2 with the value equal to 1.
4. Branch node n∗ on optional activities ADu(c), i.e., on order of ac-

tivities, and evaluate the child nodes by the tight lower bound (see
Section 2.9.4).

5. Find a child node n′ such that eu ∈ ADf
(n′). If not exists (discussed

later), the subtree is not fully expanded and go to 7.
6. Set n∗ = n′, and go to step 2 if |AC(n′)| > 0.
7. A (partial) subtree has been created.

There are two remarkable facts about the method. The first one is
that the depth of the subtree can be less than |AC(n)| since the propaga-
tion on the order of activities (see Section 2.8) may infer another decisions.
The second one is that the subtree might not be fully expanded since colli-
sions with undecided activities ADu(n) (trajectories) are not resolved in the

42 Parallelization

subtree root, and newly considered collisions in descendant nodes (added
constraints (2.59) and (2.60)) may break the feasibility while the order is
being fixed.

In the third part, if the subtree is fully expanded, then the node with the
fixed promising order, i.e., node n∗ after the method finishes, is marked as a
preferred one for the subsequent branching. All feasible nodes with LB(n)
< UB that are not branched in the subtree are added to the storage. Note
that the optimality of the exact algorithm is preserved since Deep Jumping
does not ignore any nodes that could be resulting in an optimal solution.

Deep Jumping approach is illustrated (see Figure 2.10) on the robotic
cell from Figure 2.3. Let say that n is the root node of the Branch & Bound
tree, and the heuristic finds a feasible order (v1, v2, v3, v5, v4) for robot r1,
i.e., variables xv1,v2 , xv2,v3 , xv3,v5 , xv5,v4 , and xv4,v1 are set to one. In case
of robot r2, there is nothing to decide. For the sake of simplicity, consider
the same scheme as in Figure 2.6, that is optional activities (v2, v3) and
(v5, v4) are fixed in order. Node n∗ = n is expanded on optional activities
ADu(c) = {(v2, v3), (v2, v4), (v2, v5)}, where c ∈ AC(n∗) is the corresponding
composite activity. One of child nodes is infeasible, see Figure 2.10, since
the order propagation detected the infeasibility that circuit HCr1

act cannot
be closed. Based on the solution, node n∗ is updated to n′ such that
(v2, v3) ∈ ADf

(n′), and the process is repeated in a similar way for (v5, v4).
The final subtree and subpath ((v2, v3), (v5, v4)) determine the node with
high priority. Notice how the order propagation effectively reduced the
depth of the subtree to 2 compared to the initial number of composite
activities |AC(n)| = 5. Although the root node was used in the example, in
practice, it is desirable to have a minimal number of nodes in the storage
to guarantee a good scalability.

2.11 Parallelization

In order to find good solutions faster, the Branch & Bound algorithm was
parallelized to exploit the power of modern processors. The parallelization
scheme (see Figure 2.11) is based on the division of the work between worker
threads, where each worker thread searches a different part of the Branch
& Bound tree to accelerate the algorithm. A control thread manages the
data initialization, creation and destruction of worker threads, and prints a
result. Besides a thread-safe storage of nodes, there are two variables that
require atomic access: variable UB, and a stop flag. The stop flag is used
to terminate worker threads if a time limit tmax is reached or the tree has
been explored. The incumbent solution is protected by a lock to avoid race
conditions. Other blocks of the algorithm are the same as in Figure 2.5.

Energy Optimization of Robotic Cells 43

Thread-safe
storage
of nodes

Node evaluator

Get node n
LB(n) >= UB

leaf node

Store the
incumbent
solution.

UB(n) < UB

partial node

Add expanded
nodes

infeasible or
UB(n) >= UB

terminate
timeoutall nodes processed

Add root node

Start worker
threads

Join worker
threads

Print the best
solution if found

worker thread
Control thread

Start

Initial bounds:
LB = 0, UB = +∞

Deep jumping Conventional
branching

Node expansion(s)

 UB = UB(n)

Figure 2.11: Parallel Branch & Bound algorithm.

The thread-safe storage keeps unexplored nodes of the Branch & Bound
tree. Since the storage is accessed by many threads concurrently, it is de-
signed in a way that minimizes the thread contention. As a result, the
sharing of the nodes has a minimal impact on scalability, as shown by ex-
periments in Section 2.12. The structure of the storage, as depicted in
Figure 2.12, consists of a shared priority queue, which is protected by a
mutex, and a local stack for each worker thread.

local stack local stack

Shared priority queue

get node write nodes

remove
inferior
nodes

thread 0 thread N-1

Figure 2.12: Thread-safe storage of nodes.

The queue serves as a sorted pool of nodes that is accessed if: a) a
worker thread gets a new node to be explored, b) if a worker thread writes
partial nodes generated during the search, or c) if a new incumbent solution
is found. In case a), a worker thread gets exclusive access to the queue to get
(read and remove) unexplored node n with minimal LB(n). From this initial
node, a depth search with a limit on a number of expansions, empirically
set to 3× (maximal known depth of the tree + 1), is carried out. The depth

44 Parallelization

search is used, at a price of slower improvements of the global LB, instead
of the breadth search since it is more efficient at finding feasible solutions
and its memory footprint is smaller. The memory footprint is reduced even
more by using a copy-on-write technique, i.e., only data to be modified by
the branching are copied before their change. The worker thread maintains
the working set of nodes in its local stack until the limit on the number of
expansions is reached. Afterwards, i.e., case b), the unexplored nodes are
copied back to the queue (exclusive access) and the local stack is emptied. In
case c), a worker thread that found a new incumbent solution gets exclusive
access to the queue to remove all the nodes which lower bound is greater
or equal to a new best upper bound UB. Note that every worker thread
iteratively performs a) and b) until the stop flag is set.

The efficiency of the storage resides not only in the separated local stacks
but also in underlying data structures. The priority queue corresponds to
multimap<double, n> from C++11 standard library, and a local stack
is vector<n>. The multimap contains unexplored nodes sorted according
to their lower bounds. With respect to the time complexity of the queue
access, in case a), the first element (node) can be obtained in an amortized
constant time, in case b), the complexity is linear if elements in a local stack
are sorted according to lower bounds before their insertion, and in case c),
inferior nodes can be removed in a linear time. Obviously, the complexity
defined by C++11 standard is very favorable to alleviate the contention
between threads.

Finally, if the tree is completely searched, it is necessary to detect it
and set the stop flag. It is accomplished by counting the nodes that are in
the storage or in the process atomically. In particular, the counter is set
to 1 (a root node) before the worker threads start. Each working thread
modifies the counter according to the following rules. If a node is obtained
from the storage, the counter is not changed since one node is removed
and one extra node is in the process. When the node is processed, the
counter is increased by the number of generated nodes that are inserted, and
subsequently, the processed node is destroyed and the counter is decreased.
If a new incumbent solution is found, the counter is decreased by the number
of inferior nodes that are removed. If the counter hits zero, then a worker
thread sets the flag to signal that the tree was completely searched.

Note that it is desirable to avoid calling Deep Jumping until there are
enough nodes, e.g., two times the number of hardware threads, in the storage
since it may limit the scalability of the algorithm. Deep jumping, which is
called from time to time, can be considered to some extent as a depth search
with solution guided immersion, therefore no extra handling is required.

Energy Optimization of Robotic Cells 45

2.12 Experimental Results

To evaluate the effectiveness and performance of the proposed algorithms,
they were tested on benchmark instances with 3, 5, 8, and 12 robots and
compared with a parallel MILP solver. The experiments were carried out
on a Linux server with two Intel Xeon E5-2620 v2 2.10GHz processors (2 x 6
physical cores + hyper-threading) and 64 GB of DDR3 memory. Gurobi
6.0.4 (the heuristic and MILP solver) and Gurobi 7.0.2 (the Branch &
Bound) were installed to solve MILP problems. The performance of the
state-of-the-art MILP solvers was compared with lp solve 5.5.2.0, which is
an open-source MILP solver. The algorithms, written in C++11 and com-
piled by GCC 4.9.3, use OpenMP 4.0 library for the parallelization, and
their efficiency was verified on three groups of experiments. The first one
deals with the scalability and performance, the second one investigates the
ability of two exact algorithms to find optimal solutions, and the last one
measures the quality of solutions for bigger instances and compares the pro-
posed lower bound (see Section 2.9.4) with the LP relaxation of the MILP
formulation from Section 2.4.

2.12.1 Performance Experiments

The first experiments measure the effect of the parallelization and the special
simplex method on the performance of the Hybrid Heuristic and Branch &
Bound algorithm. For the purpose of experiments, the following publicly
available datasets from https://github.com/CTU-IIG were benchmarked:
S5 (small, 5 robots), M8 (medium, 8 robots), and L12 (large, 12 robots).
Each dataset contains 10 instances of the problem, from which an average
performance is calculated for each setting, i.e., for a given number of worker
threads and a used solver.

lp solve Gurobi Gurobi CF

S5 sequential 23.1 78.5 365
parallel 304 1111 4708

M8 sequential 7.9 44.2 170
parallel 93.4 488 2134

L12 sequential 3.3 30.8 97.9
parallel 42.6 371 1084

Table 2.1: Performance of LP solvers for the heuristic.

In case of the heuristic, a good indicator of the performance is the num-
ber of LP evaluations per second because more than 90 % of the compu-
tational time is consumed by LP evaluations, i.e., the building of the LP
problem, its optimization, and the extraction of a solution. Table 2.1 shows

https://github.com/CTU-IIG

46 Experimental Results

the average number of LP evaluations per second for each dataset, where
each energy function f t

e was approximated by 10 linear functions. The min-
imal number of optimization iterations per tuple Φmin was set to 100, 600,
and 1000 for the S5, M8, and L12 datasets, respectively, for all experi-
ments in Section 2.12. The figures indicate that the parallel heuristic is
about 12 times faster than the sequential one, and the specialized Gurobi
simplex method, denoted as ‘Gurobi CF’ (abbreviation for Gurobi Convex
Functions), accelerates the heuristic about 3 to 4 times compared with the
regular one; therefore, an overall speedup of about 36 to 48 can be expected
for the aforementioned configuration. Table 2.1 presents the corresponding
values for the lp solve open-source solver for comparison.

100 101 102 103 104 105

time [s]

75000

80000

85000

90000

95000

100000

en
er

gy
[J

]

sequential heuristic
parallel heuristic
parallel Gurobi ILP solver

Figure 2.13: Progress of the heuristic and MILP solver on M8 8 instance.

To show that a higher number of evaluated tuples also has a positive
impact on the quality of solutions, the dependence of the criterion value,
i.e., energy consumption, on the time limit was plotted in Figure 2.13. The
results on an instance with 8 robots revealed that the parallel heuristic with
24 threads (12 cores + hyper-threading) converged significantly faster than
the sequential version; therefore, a similar solution quality was achievable
in a fraction of the time. In comparison to the Gurobi MILP solver, the
heuristic seems to be stronger in finding feasible solutions, compare 1.5 h
with 3.1 s (5.3 s) required by the parallel (sequential) heuristic, and is more
suitable for a short-term (re)optimization. On the other hand, if the MILP
solver is given enough time, then better solutions may be found for the
medium instances (see Figure 2.13). The same experiment was repeated

Energy Optimization of Robotic Cells 47

on L12 9 instance with 12 robots. The parallel (sequential) heuristic found
the first feasible solution in 10 m (4 h) and the best criterion was 177276 J
(186855 J) after the 10-h time limit. The Gurobi MILP solver had run out
of memory (installed 64 GB of memory) in less than 4 hours without having
any feasible solution.

In case of the Branch & Bound algorithm, the performance is measured
in the number of evaluated nodes per second since it directly determines the
number of explored nodes for a given time limit. The results are shown in
scalability graphs in Figure 2.14. The convex envelopes were approximated
by 10 linear functions and Deep Jumping was disabled since it negatively in-
fluences the precision of results due to its indeterminism. In case of lp solve
and Gurobi (without ’CF’) solvers, the criterion was emulated by adding
extra constraints in a similar way as in Equations (2.1)–(2.3).

The results on S5 dataset (see Figure 2.14a) indicate a good scalability
for all solvers since the parallelization accelerated the algorithm about the
factor of 12.4/12.8/12.6 for lp solve/Gurobi/Gurobi CF, respectively. More-
over, Gurobi with the special simplex method enabled to evaluate 4.6 times
more nodes than a regular Gurobi simplex method. In total, the paralleliza-
tion and the simplex method increased the throughput from 24.6 to 1452.4
nodes/s for Gurobi solver. Similar results were obtained on dataset M8 (see
Figure 2.14b), that is speedups 12.4/10.8/13.5 for lp solve/Gurobi/Gurobi
CF, respectively, and the acceleration about the factor of 4.3 for the spe-
cial simplex method. The total throughput for Gurobi solver was increased
from 8.4 to 393 nodes/s. In case of the biggest dataset L12 the achieved
speedups were 13.2/13.3/13.9 for lp solve/Gurobi/Gurobi CF, respectively.
Nevertheless, as seen from Figure 2.14c, the impact of the special simplex
method is very limited and the acceleration is only about the factor 1.4. As
a result, a throughput increase from 1.44 to 27.5 nodes/s is less significant.

Instructions
per cycle

L1I miss
rate

L2 miss
rate

LLC miss
rate

Branch
rate

Misprediction
rate

S5 1.81 0.35 % 0.92 % 0.01 % 20.89 % 0.79 %
M8 1.88 0.24 % 1.00 % 0.01 % 20.57 % 0.71 %
L12 2.25 0.04 % 1.01 % 0.005 % 19.86 % 0.31 %

Table 2.2: Performance metrics of the Branch & Bound algorithm.

It remains to explain the lower efficiency of the special simplex method
for large instances. The first hypothesis is that the method started to use
the resources of the processors less efficiently, e.g., because of cache misses.
In order to support or reject the hypothesis, the performance counters have
been analyzed by likwid 4.2 [51], and the results are in Table 2.2. The
number of instructions per cycle per physical core is a key indicator showing

48 Experimental Results

1 2 4 6 12 24

number of threads

0

200

400

600

800

1000

1200

1400

no
de

s
p

er
se

co
nd

Gurobi 7.0.2 CF

Gurobi 7.0.2

lp solve 5.5.2.0

(a) Performance graphs for S5 dataset.

1 2 4 6 12 24

number of threads

0

50

100

150

200

250

300

350

400

no
de

s
p

er
se

co
nd

Gurobi 7.0.2 CF

Gurobi 7.0.2

lp solve 5.5.2.0

(b) Performance graphs for M8 dataset.

1 2 4 6 12 24

number of threads

0

5

10

15

20

25

no
de

s
p

er
se

co
nd

Gurobi 7.0.2 CF

Gurobi 7.0.2

lp solve 5.5.2.0

(c) Performance graphs for L12 dataset.

Figure 2.14: Scalability graphs for S5, M8, and L12 datasets.

Energy Optimization of Robotic Cells 49

utilization of the processor. The achieved value is about 2, which means
that the processor is utilized by roughly 50 %, which is a very good result.
The percentage of instructions that cause cache misses is also very low,
therefore, the cache is used efficiently. Although the code contains many
direct/indirect branch instructions (each fifth instruction, see ’Branch rate’
column), they are well predicted and the overhead is not significant. To
summarize, the first hypothesis is rejected since the analysis did not reveal
any deterioration of the processor utilization.

The other hypothesis is that the second (optimization) phase of the
simplex method takes significantly less time compared to the first phase
(finding a feasible solution) for L12 dataset. If it is the case, then the effect
of the special simplex method is limited since this method accelerates only
the second phase. A few experiments, where nodes were evaluated with and
without the criterion, confirmed that the fraction of time spent in the first
phase is significantly higher for large instances than for small and medium
ones. As a result, there is only a marginal effect of using a special simplex
method for L12 dataset and the hypothesis is supported.

2.12.2 Optimality Experiments

To analyze the Branch & Bound algorithm with respect to its ability to
find optimal solutions, experiments on new instances with 3 robots were
carried out, and the results were compared with the MILP solver. For the
purpose of the experiments, S3 dataset with 5 instances was generated and
uploaded to https://github.com/CTU-IIG, and each energy function was
approximated by 20 linear functions. The achieved results are summarized
in Table 2.3, where BaB and MILP are abbreviations for the Branch &
Bound algorithm and MILP solver, respectively, and each measured value
(average from 10 runs) is stated with the standard deviation in order to
indicate the error.

inst. opt. energy threads BaB runtime MILP runtime BaB eval. nodes

S3 0 16898.5 24 29.8 ± 1.29 s 59.3 ± 0.64 s 68114 ± 2837
1 371.8 ± 18.6 s 220 ± 0.4 s 66927 ± 3085

S3 1 16923.2 24 > 3600 s 162 ± 0.78 s 6367408 ± 25976
1 > 3600 s > 3600 s 497746 ± 3332

S3 2 14010.0 24 1.72 ± 0.23 s 2.3 ± 0.04 s 798 ± 288
1 1.98 ± 0.49 s 13.1 ± 0.01 s 507 ± 73

S3 3 19661.5 24 3.90 ± 0.75 s 31.2 ± 0.71 s 7310 ± 1383
1 34.9 ± 3.5 s 37.2 ± 0.1 s 5882 ± 542

S3 4 11081.9 24 0.63 ± 0.02 s 9.42 ± 0.12 s 1140 ± 134
1 2.46 ± 0.38 s 9.06 ± 0.02 s 698 ± 80

Table 2.3: Time to optimality for S3 dataset.

https://github.com/CTU-IIG

50 Experimental Results

In case of the Branch & Bound algorithm, the parallelization seems
to be more efficient for instances that generate a large number of nodes.
For example, the optimal solution was found 12.5 times faster for instance
S3 0 (more than 60 000 evaluated nodes) compared to instance S3 2 (more
than 400 evaluated nodes) where the speedup is only 1.15. Notice that
the bounding is also more efficient for larger instances since the number of
evaluated nodes of the parallel version is much closer to the sequential one.
As a result, it can be expected that the performance speedups in terms
of the number of evaluated nodes per second will be close to the quality
speedups (time to optimality) for instances with 5 or more robots. In case
of the MILP solver, the parallelization is advantageous for larger instances.

The parallel Branch & Bound algorithm outperformed the parallel MILP
solver in 4 of 5 cases. In case of instance S3 1, the algorithm was not able
to close the gap in one hour. One of the reasons may be the depth search
strategy that focuses on the feasibility and memory consumption rather
than the fast improvement in the lower bound. Nevertheless, the parallel
Branch & Bound algorithm found the optimal solution of instance S3 1 in
8 of 10 cases (without the optimality certificate) with the average proved
gap 2.2 %.

2.12.3 Quality Experiments

The following experiments investigate the quality of obtained solutions within
a given time limit for S5, M8, and L12 datasets. The quality of solutions,
i.e., energy consumption, was measured from 10 runs for each instance1of
S5 and M8 datasets, and the best, average, and the worst criterion values
are stated for the heuristic and Branch & Bound algorithm. The average
quality of solutions is compared with the results achieved by the parallel
Gurobi MILP solver, which surprisingly had a deterministic behavior and
thus provided the same quality of solutions for all runs. That is why only
the average is stated for the Gurobi MILP solver. The Parallel Heuristic is
abbreviated as PH in tables.

Since the biggest dataset L12 is too computationally demanding, only 3
measurements were carried out for each instance, and the criterion values
were stated explicitly. Energy functions in the criterion were approximated
by 10 linear functions each, and Deep Jumping is executed with 15 % prob-
ability in every viable node. Deep Jumping employs the MILP solver as a
heuristic where the gap from optimality is set to 1/3/5 % and the time limit
is 120/300/1200 s for the S5/M8/L12 dataset, respectively.

The results for S5 dataset in Table 2.4 indicate that the Branch & Bound
algorithm is comparable with the heuristic even if a short time limit (tmax

1Instance S5 2 is skipped in tables 2.4 and 2.5 since it was proved to be infeasible.

Energy Optimization of Robotic Cells 51

inst. best BaB avg BaB worst BaB best PH avg PH worst PH avg MILP
S5 0 40377.5 40559.2 40787.1 40654.8 40788.5 40936.2 42521.9
S5 1 30804.8 30899.8 31074.8 31195.1 31335.2 31479.2 34582.6
S5 3 47134.7 47997.1 50375.8 47482.8 47665.5 47861.6 –
S5 4 48298.4 50911.0 52641.8 47826.3 48039.4 48326.6 –
S5 5 41669.0 42245.3 43414.9 41692.0 41902.7 42081.2 –
S5 6 34928.7 35008.5 35068.7 34920.3 35043.7 35128.2 36315.6
S5 7 42482.5 42754.0 43126.2 42511.6 42821.7 42987.6 45670.2
S5 8 38751.1 39577.0 40725.8 39181.0 39423.6 39602.4 41440.2
S5 9 38495.1 38676.2 38853.1 38864.9 39067.6 39235.9 39721.5

Table 2.4: Quality of solutions with tmax = 30 s for S5 dataset.

inst. best BaB avg BaB worst BaB best PH avg PH worst PH avg MILP
S5 0 40200.1 40225.5 40268.7 40494.9 40637.9 40776.6 40272.8
S5 1 30607.0 30649.0 30717.3 31052.9 31111.8 31184.6 30623.3
S5 3 46873.4 46994.4 47091.8 47434.1 47483.3 47674.9 –
S5 4 46887.1 46928.6 46991.0 47541.1 47739.1 48067.6 –
S5 5 41394.3 41454.0 41541.3 41654.7 41700.0 41741.0 41498.8
S5 6 34655.4 34698.7 34726.3 34760.0 34856.4 34918.9 34720.9
S5 7 41992.4 42103.7 42297.3 42384.4 42515.8 42627.6 42033.0
S5 8 38394.1 38530.6 38643.6 39174.0 39301.4 39464.1 38364.8
S5 9 38201.0 38314.3 38350.2 38649.8 38840.3 38924.8 38283.8

Table 2.5: Quality of solutions with tmax = 1 h for S5 dataset.

= 30 s) is used. The MILP solver provided inferior solutions and failed to
solve 3 instances. If the time limit is increased to one hour (see Table 2.5),
the Branch & Bound algorithm finds significantly better solutions than the
heuristic and the achieved quality of solutions is comparable with the MILP
solver. On the one hand, the prolonged time limit enabled the MILP solver
to obtain higher quality solutions, on the other hand, the solver was un-
able to find a feasible solution in two cases. Note that the best solutions
found by the Branch & Bound algorithm were close to optimality since the
average optimality gap is about 1.5 % from the lower bounds calculated in
Bukata et al. [14].

Table 2.6 reveals the results for M8 dataset with the time limit of 10
minutes. The figures show that the Branch & Bound algorithm clearly out-
performs both the heuristic and the MILP solver since the heuristic found a
better solution only in one case and the MILP solver failed to find a feasible
solution for 5 instances. The Branch & Bound algorithm is very effective in
finding feasible solutions by virtue of the Deep Jumping approach. In case
of one-hour time limit (see Table 2.7), the Branch & Bound algorithm still
dominates with the exception of two instances where the MILP solver pro-
vided better solutions. The heuristic is strong in providing feasible solutions
compared to the MILP solver that failed in 4 cases.

52 Experimental Results

inst. best BaB avg BaB worst BaB best PH avg PH worst PH avg MILP
M8 0 85986.0 86824.4 87788.7 86831.6 90580.7 95333.8 –
M8 1 86641.0 86945.1 87226.0 88098.9 88491.5 88883.8 89297.4
M8 2 88946.6 89464.3 90480.4 90048.7 90668.0 91463.6 92991.0
M8 3 82444.6 82907.9 83383.2 83412.6 83948.5 84942.6 –
M8 4 75394.6 78412.9 80252.4 76914.7 77549.8 78191.6 82881.8
M8 5 88448.3 89133.2 89756.4 89239.4 90337.2 91486.0 –
M8 6 94706.8 95324.2 95975.4 95314.5 96021.3 96629.4 97875.4
M8 7 82186.9 83983.8 85230.9 83777.2 85218.1 86951.5 –
M8 8 77887.6 78744.7 80273.3 78514.4 79220.3 80530.7 –
M8 9 90488.9 91882.2 92763.4 92875.6 93309.6 93736.4 93951.9

Table 2.6: Quality of solutions with tmax = 600 s for M8 dataset.

inst. best BaB avg BaB worst BaB best PH avg PH worst PH avg MILP
M8 0 85444.0 85955.1 86378.4 87365.4 90258.8 94670.5 –
M8 1 86399.4 86704.5 86934.8 87999.7 88236.5 88488.0 89182.7
M8 2 88623.5 89130.5 89531.9 89939.7 90600.3 91804.2 89744.0
M8 3 82293.2 82401.4 82666.2 83224.7 83709.9 84741.3 83621.6
M8 4 76580.5 77103.6 77657.8 77058.9 77400.7 77723.0 76582.8
M8 5 87983.9 88554.0 89023.2 89369.4 89873.9 90545.3 –
M8 6 94382.3 94983.8 95248.7 95638.5 95836.3 96134.6 94918.1
M8 7 81745.9 82523.3 83301.7 83016.5 84881.7 86266.5 –
M8 8 77600.6 77939.1 78310.9 78465.8 78859.4 79342.4 –
M8 9 90531.8 91020.7 91755.9 91960.6 92942.0 93654.1 92521.9

Table 2.7: Quality of solutions with tmax = 1 h for M8 dataset.

In case of the robotic cells with 12 robots (see Table 2.8), the Branch
& Bound algorithm was able to find a feasible solution in 4 of 10 cases
compared to the heuristic that found a solution in 8 cases. As a result, the
heuristic seems to be slightly more powerful in providing feasible solutions.
The MILP solver, however, did not find any feasible solution for L12 dataset.

To show that the proposed lower bound based on convex envelopes is
very tight, it was compared with the bounds obtained by the MILP solver
that solved the formulation presented in Section 2.4. The results for M8
dataset are listed in Table 2.9 where the superscript of LB determines
whether it is a lower bound in the root node or the best proved lower bound
after one hour. Lower bound LBroot

MILP is obtained by solving the original
MILP problem with the relaxation on integrality. On the one hand, the
experiment revealed that even the initial bound of the Branch & Bound
algorithm is significantly better than the best proved lower bound of the
parallel MILP solver. On the other hand, the subsequent improvements
during the course of the algorithm are negligible due to the depth search
strategy and a relatively small optimality gap between the best solution and

Energy Optimization of Robotic Cells 53

inst. BaB PH
L12 0 –, –, – –, –, 204464
L12 1 172054, 170805, 171619 –, 177731, –
L12 2 –, –, – 211019, –, 211377
L12 3 –, 188905, 191238 –, –, 188527
L12 4 172193, 174205, 173080 187163, –, 171860
L12 5 –, –, – –, –, –
L12 6 –, –, – –, –, –
L12 7 –, –, – 190060, 202737, –
L12 8 –, 204405, – 218844, –, –
L12 9 –, –, – 173743, 176969, 176567

Table 2.8: Quality of solutions with tmax = 3 h for L12 dataset.

inst. LBroot
BaB LBbest

BaB LBroot
MILP LBbest

MILP
M8 0 75805.4 75925.3 4069.9 60950.0
M8 1 79115.4 79234.2 6155.8 67257.5
M8 2 82072.5 82162.1 6119.7 71255.0
M8 3 77268.8 77373.5 4095.5 66962.3
M8 4 70324.0 70450.5 2182.3 57265.8
M8 5 81477.6 81600.1 5155.5 71969.6
M8 6 86625.4 86706.5 9921.6 74089.5
M8 7 75140.7 75245.1 4161.1 63365.5
M8 8 71355.6 71453.6 3507.2 59463.3
M8 9 83673.6 83803.5 7931.1 71798.0

Table 2.9: Comparison of lower bounds for M8 dataset.

the lower bound. The results for S5 and L12 datasets yield similar findings,
therefore, they are not listed.

The last experiment shows how the robot cycle time, which was scaled
by 1.0, 1.1, and 1.2 factors, respectively, influences the performance of the
heuristic and MILP solver. The summary of results for the S5 dataset is
in Table 2.10, where each figure is the average criterion value from 10 runs
with tmax = 600 s. The outcomes indicate that the heuristic outperforms
the MILP solver if the cycle time is tight, i.e., a feasible solution is hard to
find due to the limited time for the movements and operations. However,
if the cycle time is prolonged, then the MILP solver gets ahead because its
ability to find optimal solutions by a systematic search becomes dominant
for the given time limit.

The approach proposed in this study cannot be directly compared with
existing works [57, 53, 56] since the robot cycle time is considered instead
of the work cycle time. However, bigger instances were solved compared
to the aforementioned works that considered one to four robots per robotic
cell. Besides, our approach deals with the additional optimization aspects,
such as the robot power-saving modes and locations (robot positions).

54 Case Study from Škoda Auto

CT 1.1 ∗ CT 1.2 ∗ CT

inst. PH MILP PH MILP PH MILP
S5 0 40717 40355 40435 40022 41381 40895
S5 1 31198 30812 29410 29269 29433 29239
S5 3 47579 – 44177 44338 43846 43284
S5 4 47749 – 43993 44233 43577 43400
S5 5 41730 – 38248 38227 37644 37566
S5 6 34880 34980 32359 32186 31744 31630
S5 7 42560 42619 42230 41867 42737 42571
S5 8 39360 38761 38407 38045 39051 38432
S5 9 38935 38412 38769 38233 39695 39302

Table 2.10: Dependence of the quality of solutions on the cycle time.

2.13 Case Study from Škoda Auto

This case study shows a potential impact of the optimization on the energy
consumption of existing robotic cells by considering a long-operating robotic
cell from Škoda Auto (see Figure 2.15 for a screenshot from the simulation),
in which a part of an automotive body is welded, glued, and assembled by
6 industrial robots with a robot cycle time of 56 seconds. The timing of
individual robotic operations was obtained from robotic programs.

Figure 2.15: Robotic cell from Škoda Auto.

An alternative way is to measure and subsequently identify the move-
ments. The optimized speed of movements can be easily entered into the
robotic programs. The energy function f t

e of a trajectory was fitted from the
points obtained from simulations in Siemens Tecnomatix Process Simulate

Energy Optimization of Robotic Cells 55

(digital factory software), in which the robot controller supported the cal-
culation of the energy consumption of movements according to the Realistic
Robot Simulation standard. It is also possible to carry out the measure-
ments with a physical robot to obtain the energy functions; however, this
is impractical in existing robotic cells. To ensure the repeatability of the
production process in terms of output quality, the welding, gluing, and as-
sembling operations remained the same, i.e., the fixed duration and energy
consumption were extracted from the measured power profiles. Only the
robot speeds and power saving-modes (at home position) were addressed
in the optimization because minimal intervention is desirable for existing
robotic cells. More information about the structure of the robotic cell,
the timing, and synchronizations can be obtained from instance files avail-
able on https://github.com/CTU-IIG/GeneratorOfRoboticCells/tree/
master/datasets.

Based on the results, it was estimated that the original energy con-
sumption of 500 kJ (maximal speeds, without power-saving modes) could
be decreased to 391 kJ (reduced speeds, with power-saving modes) per cy-
cle, resulting in about 20 % energy savings. The power-saving modes of
robots saved about 2.4 % of energy, whereas the remaining savings were at-
tributed to the optimization of speeds. If the cycle time is extended to 70 s
and 80 s, then the application of energy-saving modes would improve the
consumption by about 6.8 % and 12 %, respectively, compared with their
nonuse. This finding may be particularly useful during over production or
production cuts. Note that the inclusion of the bus power-off mode is not al-
ways straightforward because it requires interaction between the robot and
a superior controller, which may not be ready in existing cells. However,
the effort to implement such interaction is not high either.

The outcomes of the optimization were used to modify robot programs,
and the measurements of the robotic cell confirmed the saving of 20 % of
energy. This supports the claim that significant energy cuts are achievable
for existing robotic cells and that even more can be expected for planned
robotic cells that will fully utilize the potential of the optimization algo-
rithms.

https://github.com/CTU-IIG/GeneratorOfRoboticCells/tree/master/datasets
https://github.com/CTU-IIG/GeneratorOfRoboticCells/tree/master/datasets

56 Conclusion

2.14 Conclusion

Energy optimization is undoubtedly a current and important problem for
the industry since such optimization could lead to a significant decrease in
costs. Besides being able to save money, an involved company could also
improve its green credentials and become more competitive.

This chapter presents a holistic approach to the energy optimization of
robotic cells that considers many optimization aspects. A universal math-
ematical model for describing robotic cells is proposed, from which is derived
an MILP formulation that is directly solvable by MILP solvers. However,
these solvers can solve only small instances. Therefore, the parallel Hybrid
Heuristic and Branch & Bound algorithm are devised for instances with up
to 12 robots. Both approaches scale almost linearly up to 12 cores; thus, sig-
nificant acceleration is achievable on modern processors. Moreover, they use
a specialized Gurobi simplex method for piecewise linear convex functions
that is significantly faster than broadly used simplex methods.

The heuristic proved to be strong in finding feasible solutions since it
solved 8 of 10 instances with 12 robots (L12 dataset). In case of small
instances, the heuristic enables fast reoptimization since good feasible solu-
tions are found in a fraction of time compared to the MILP solver.

The Branch & Bound algorithm combines the benefits of the heuristic
and MILP solver, since it is very efficient in finding near-to-optimal solutions
in a short time. This is possible thanks to the tight lower bound based on
convex envelopes and the Deep Jumping approach that searches promising
immersions in the tree. The experimental results revealed that the algorithm
clearly outperforms the MILP solver and finds better solutions than the
heuristic if the time limit is one hour.

The proposed approach was used to optimize the existing robotic cell
from Škoda Auto, the measurements of which confirmed the energy savings
of up to 20 % merely by changing the robot speeds and applying power-
saving modes. In order to simplify optimization of other industrial robotic
cells, our algorithms are being integrated into the industrial software.

Chapter 3
Project Scheduling on Graphics Cards

Resource Constrained Project Scheduling Problem (RCPSP),
which has a wide range of applications in logistics, manufacturing and

project management [21], is a universal and well-known problem in the op-
erations research domain. The problem can be briefly described using a set
of activities and a set of precedence constraints describing the relationships
among activities. Each activity requires a defined amount of the resources
and every resource has a limited capacity. The objective is to find the best
feasible schedule according to a criterion. The RCPSP was proved to be
NP-hard in the strong sense when the criterion is the makespan [6]. For
that reason, only small instances (approximately up to 30 activities) can
be reliably solved by exact methods like Branch & Bound [16]; therefore a
heuristic or a meta-heuristic is required to solve the problem satisfactorily.
In this work, the parallel Tabu Search heuristic is designed and implemented
to solve the RCPSP on graphics cards.

The heuristic is the core part of a typical optimization process as il-
lustrated in Figure 3.1. It starts with the analysis of the manufacturing
process, from which the data are extracted and transformed to the desired
form such as a graph and table. The created optimization problem is solved
by the Tabu Search heuristic, and the resulting schedule is used to optimize
the production. The rest of the introduction presents the motivation for the
parallel computing on graphics cards.

Input data specifying
the optimization problem

Tabu Search
Optimization algorithm

High-quality schedule of
the production process

time

re
so
u
rc
e

u
ti
liz
a
ti
o
n

1

2

3

4

5
6

7
8

9

10

m
a

ke
sp

an

solution space

Resource Constrained Project Scheduling Problem

an
d

ot
he

rs
..

.

Industrial Applications

e
xt

ra
ct

 in
p

u
t

d
a

ta
fr

o
m

 t
h

e
 p

ro
d

u
ct

io
n

o
p

tim
iz

e
 t

h
e

 p
ro

d
u

ct
io

n
b

y
u

si
n

g
 t

h
e

 s
ch

e
d

u
le

Rolling Ingots Assembly Shop

Figure 3.1: Integration of the heuristic into the optimization process.1

1Embedded photographs: ruhmal/Shutterstock.com and ID1974/Shutterstock.com

57

58 Related works

In recent times, there is an increased interest in using graphics cards
to solve difficult combinatorial problems (e.g. [18, 40, 10]), since a mod-
ern graphics card is usually much more powerful than a current multi-core
Central Processing Unit (CPU). Although the graphics cards have some re-
strictions (e.g., high-latency global memory access), the new Graphics Pro-
cessing Unit (GPU) architectures like Kepler and Fermi can significantly
reduce these bottlenecks. As a consequence modern GPUs are applicable
to the problems which were solvable only on CPUs previously.

Not only the high computational power makes graphics cards attractive
to researchers and practitioners, but also the mature Nvidia CUDA frame-
work which enables us to create GPU programs in an effective and relatively
easy way since it extends standard languages like C/C++ by adding GPU
specific functions and language keywords. Nevertheless, the CUDA is only
designed for the Nvidia graphics cards.

From the implementation point of view, there are two models. The first
one is called a homogeneous model where all required data structures are
stored in a GPU at the beginning of an algorithm and the results are read at
the end of the algorithm. There is no communication between the CPU and
the GPU during the computations. The second approach is a heterogeneous
model. The main logic of an algorithm runs on the CPU and the GPU is used
only for the most computationally intensive tasks. The disadvantage of the
heterogeneous model is the frequent communication during computations,
therefore, the communication bandwidth can state a bottleneck. However,
the heterogeneous model is usually simpler to implement.

3.1 Related works

The Tabu Search (TS) meta-heuristic was proposed by Glover in 1986 [24].
Hundreds of publications have been written since that time. The basic
concept of the TS meta-heuristic is clarified in Gendreau [23]. The author
has described the basic terms of the TS, as a Tabu List (TL), aspiration
criteria, diversification, intensification, etc.

From the Tabu Search parallelization point of view, James et al. [29]
proposed a sophisticated solution. The authors use a circular buffer where
the size of the buffer is equivalent to the number of the started threads (often
the number of CPUs cores). Every location (i.e., an index of a thread) has
different parameters (a tabu tenure, stopping criteria). At the beginning
of the search, each thread initializes its location by a short TS operator,
i.e., a modified version of the Taillard’s robust tabu search. Then the asyn-
chronous parallel tabu search is started. Every thread independently reads
a solution and parameters from the location, possibly makes a diversifica-

Project Scheduling on Graphics Cards 59

tion, runs the TS operator on the solution, and writes back and sets an
UPDATE flag if an improving solution is found. Subsequently, the thread
location index is circularly incremented. Diversification takes place if the
read solution does not have the UPDATE flag set. Every best global solu-
tion is copied to half of the locations of the circular buffer to propagate elite
solutions. Since the circular buffer is shared by many threads, the access
has to be as short as possible and the locations have to be protected by
critical sections.

Relatively many authors tried to use a GPU for solving combinatorial
problems. For example, Czapiński and Barnes [41] implemented a GPU
version of TS to solve the Flowshop Scheduling Problem (FSP). The suc-
cess of the implementation illustrates an achieved speedup against the CPU
version. The GPU version was up to 89.01 times faster than the CPU (Intel
Xeon 3.0 GHz, 2 GB memory, Nvidia Tesla C1060 GPU). Nevertheless, the
quality of solutions was not investigated.

The FSP was also solved by Zaj́ıček and Š̊ucha [58]. The authors im-
plemented a GPU version of an island based genetic algorithm. Islands
are used for migration of individuals among sub-populations, where each
subpopulation is a subset of solutions and an individual corresponds to a
specific solution. Sub-population can be evaluated, mutated and crossed
over independently of other sub-populations, therefore, huge parallelization
can be achieved. It should be noted that a homogeneous model was used.
The maximal speedup against the CPU was 110 for 100 activities and 5
machines (AMD Phenom II X4 945 3.0 GHz, Nvidia Tesla C1060).

Czapiński [40] proposed a parallel Multi-start Tabu Search for the Quad-
ratic Assignment Problem. The main idea is to start several parallel Tabu
Search instances with different parameters and initial solutions. All Tabu
Search instances should terminate approximately at the same time since the
synchronization is required to get the most promising solutions. When a
stop criterion is met, the modified solutions are read back and the most
promising solutions are used as the initial solutions in the next run. The
Tabu Search instance runs entirely on the GPU, therefore communication
overheads are reduced to the minimum. The achieved results reveal the
effectiveness of the implementation since Nvidia GTX 480 is up to 70 times
faster than a six-core Intel Core i7-980x 3.33 GHz.

Delévacq et al. [18] used the parallel Ant Colony Optimization meta-
heuristic to solve the Traveling Salesman Problem. The authors imple-
mented the Max-Min Ant System algorithm combined with the 3-opt local
search using either parallel ants or multiple ant colonies parallel approach.
The experiments show that Ant Colony Optimization can be effectively im-
plemented on the GPU regarding the quality of solutions and performance.

Hofmann et al. [28] investigated the suitability of graphics cards for

60 Contribution and Outline of the Chapter

genetic algorithms. The authors selected two problems to solve, namely
the Weierstrass function minimization and the Traveling Salesman Prob-
lem. The first problem can be very effectively implemented on the GPU
since the Weierstrass function is comprised of floating-point operations and
trigonometric functions that are directly supported by the GPU hardware.
The Nvidia GTX 480 graphics card was up to 210 times faster than the
multi-core Intel Xeon X5650 processor. In contrast to the first problem, the
second problem was not tailor-made for the GPU, therefore, the multi-core
CPU was able to compete with the GPU. The authors suggest that all parts
of a genetic algorithm should be performed on the Fermi or newer GPUs
(i.e., homogeneous model).

Boyer et al. [8] used dynamic programming to solve the knapsack prob-
lem on a GPU. An effective data compression was proposed to reduce mem-
ory occupancy. The achieved results show that the Nvidia GTX 260 graphics
card was up to 26 faster than Intel Xeon 3.0 GHz. The same problem was
also solved by Mohamed et al. [34] on a GPU. The authors used a Branch
& Bound algorithm to find optimal solutions.

The above mentioned combinatorial problems have something in com-
mon. The solution evaluation is quite simple since it is usually a “simple
sum”. On the other hand, the RCPSP requires much more complicated
schedule evaluation methods and data structures.

3.2 Contribution and Outline of the Chapter

The proposed solution is the first known GPU algorithm for the RCPSP.
The performed experiments revealed that the GPU outperforms the CPU
version in both performance speedup and the quality of solutions. This is
possible thanks to an effective schedule evaluation and a GPU-optimized
Simple Tabu List. In addition, the required data transfers are reduced to
the minimum due to the homogeneous model. Our parallel Tabu Search is
able to outperform other Tabu Search implementations in the quality of the
resulting solutions.

The chapter is structured as follows: The following section briefly intro-
duces the CUDA platform and the architecture of Nvidia GPUs. Section 3.4
introduces the RCPSP mathematical formulation and notation. The Tabu
Search meta-heuristic is briefly described in Section 3.5. Our proposed par-
allel Tabu Search algorithm for the CUDA platform is described in detail
in Sections 3.6, 3.7, and 3.8. The performed experiments are located in
Section 3.9, and the last section concludes this work. To simplify reading,
a nomenclature is included in Appendix B.

Project Scheduling on Graphics Cards 61

3.3 CUDA platform

Compute Unified Device Architecture (CUDA) [45] is a general purpose
parallel computing architecture that was introduced by the Nvidia corpo-
ration in 2006 to support GPU computing. Since the CUDA is created and
maintained by Nvidia, only Nvidia GPUs are capable of running CUDA
programs.

Host computer

CPU

NorthBridge

Host memory

FSB

Device memory

GPU – Fermi architecture

Global memory

Local memory

Constants memory

Texture memory

Multiprocessor

Registers

Shared memory

Multiprocessor

Registers

Shared memory

L1 cache L1 cache

L2 cache

Figure 3.2: Fermi architecture – memory diagram.
Graphics cards, in general, are highly parallel devices capable of running

thousands of threads at once. On the other hand, in order to take control
of the high computational power of modern graphics cards, knowledge of
the GPU memory model and architecture is necessary. A typical graphics
card consists of a device memory and streaming multiprocessors (see Figure
3.2). The device memory is the only memory that can be used to exchange
data among CPUs and GPUs. It is the largest memory that a GPU can
offer since its size is usually several gigabytes but its latency is from 200 to
800 cycles, therefore effective access patterns have to be used. A streaming
multiprocessor is a computational unit that schedules, plans, and controls
thousands of lightweight threads, which are scheduled in groups of 32 threads
called warps. Warps are executed on streaming processors.

The CUDA divides the GPU device memory into the following special-
ized memory types – global memory, texture memory, local memory, and
constant memory. The global memory is a universal GPU memory which

62 Problem Statement

can be used efficiently if a coalescing technique is used. The technique is
based on combining multiple read or write accesses into one memory trans-
action if the coalescing requirements are met.

The texture memory is suitable for read-only data like textures and
images since it is optimized for a closed spatial access pattern. The access
to the memory is accelerated by a 6-8 kB cache; therefore, long read latencies
can be especially reduced if data fits into the cache.

The local memory stores thread local variables like arrays and structures
that are too big to fit in multiprocessor registers. It has similar character-
istics as the global memory but with different coalescing requirements. If
all threads in the warp access an array with the same relative index, then
coalescing takes place.

The constant memory is optimized for read-only program constants. In
contrast to the texture memory, the access is supposed to be random. To
achieve a decent memory bandwidth and latency, it is very desirable to fit
data into the 8 kB cache.

Since the device memory is slow, each multiprocessor is equipped with
registers and a shared memory. The registers are the fastest GPU memory
that is used for small local thread variables and constants. The number of
32-bit registers per multiprocessor depends on the CUDA capability, e.g.,
Kepler graphics cards have 65536 registers per multiprocessor.

The shared memory is usually used for data exchange among a group
of threads. To utilize the full bandwidth of the shared memory, the bank
conflicts have to be taken into account according to the CUDA programming
guide [45]. The shared memory is almost as fast as the registers if no bank
conflicts occur and its capacity is typically between 16 and 48 kB.

To saturate the graphics card, thousands of threads have to be divided
among multi-processors. In the CUDA framework, a block is an inseparable
group of threads that can communicate with each other through the shared
memory. Every thread in the block is identified by its X, Y, Z coordinates.
Blocks are placed into a multi-dimensional grid and loaded to the device
memory from which they are read to multiprocessors. According to the
thread coordinate in a block and block coordinate in a grid, calculations
are divided among threads. Generally, it is convenient to launch as many
threads as possible to partially hide the long latency of the device memory.
The latency is also reduced by the caches of the global and local memory.

3.4 Problem Statement

The classification for the RCPSP is PS|prec|Cmax [13] according to the
standard notation. A project can be described as follows: There is a set of

Project Scheduling on Graphics Cards 63

activities V = {0, . . . , N − 1} with durations D = {d0, . . . , dN−1} where N
is the number of activities. There are two dummy activities 0 and N − 1
such that d0 = dN−1 = 0. Activity 0 is a predecessor of all other activities
and activity N−1 is the end activity of a project. A schedule of the RCPSP
is represented as a vector of activities’ start times S = {s0, . . . , sN−1} where
si ∈ N. Alternatively, a schedule can be expressed as an order of activities
W = {w0, . . . , wN−1} ∈ W where wu is the u-th activity of the schedule and
W is a set of all feasible solutions.

The RCPSP can be represented as Direct Acyclic Graph G(V,E) where
nodes V are activities and edges E are precedence relations. If there is
edge (i, j) ∈ E then si + di ≤ sj since activity j has to be scheduled after
activity i.

Each activity requires some amount of renewable resources. The number
of project resources is denoted as M, and a set of resources capacities is
R = {R0, . . . , RM−1} where Rk ∈ N. Maximal resource capacity Rmax

is equal to maxM−1
k=0 Rk. Activity resource requirement ri,k ∈ N means that

activity i requires ri,k ≤ Rk resource units of resource k during its execution.
As si and di values are positive integers, the resulting schedule length Cmax

(i.e. the project makespan) will be an integer as well.
A lower bound of the project makespan can be found by neglecting

resources. For each activity i ∈ V , all outgoing edges (i, j) ∈ E are weighted
by its duration di. The longest path from 0 to N − 1 in graph G(V,E)
corresponds to the critical path. Its length is equal to the optimal project
makespan on the condition that all resources have an unlimited capacity.
All the symbols used in this chapter are listed in the nomenclature that
is located in Appendix B.

3.4.1 Mathematical Formulation

minimize Cmax (3.1)
s.t. Cmax = max

∀i∈V
(si + di) = sN−1 (3.2)

sj ≥ si + di ∀(i, j) ∈ E (3.3)

Cmaxmax
t=0

∑
i∈Ft

ri,k

 ≤ Rk ∀k ∈ {0, . . . ,M − 1} (3.4)

Ft = {i ∈ V |si ≤ t < si + di}

The objective of the RCPSP is to find a feasible schedule W with the
minimal schedule length Cmax. The schedule length is the latest finish time
of any activity (Equations (3.1) and (3.2)). Equation (3.3) ensures that all

64 Problem Statement

precedence relations are satisfied. A schedule is feasible if all precedence
relations are satisfied and the resources are not overloaded, i.e., the activ-
ities requirements do not exceed the capacity of any resource at any time
(Equation (3.4)).

3.4.2 Instance Example

The data of an example instance are shown in Table 3.1. In the project,
there are 10 non-dummy activities and 2 renewable resources with maxi-
mal capacity 6. The corresponding graph of precedences is shown in Fig-
ure 3.3. The critical path is highlighted by bold lines and its length is
16. One of the feasible solutions of the instance is the activity order
W = {0, 1, 2, 3, 4, 6, 5, 7, 9, 10, 8, 11} with Cmax = 22. The resource uti-
lization for this order is depicted in Figure 3.4.

Activity i di ri,0 ri,1 Successors
0 0 0 0 {1, 2}
1 4 5 3 {3, 6}
2 3 2 1 {4, 5}
3 5 3 2 {5, 10}
4 5 2 3 {7}
5 3 3 4 {8, 9}
6 2 4 1 {7, 9}
7 4 2 2 {8, 10}
8 2 4 5 {11}
9 3 1 2 {11}
10 4 2 2 {11}
11 0 0 0 {}

Table 3.1: Data of an example instance.

11

0

10

4

1

40

0

3

5

2

3 5

3

4

5

7

4

6

2

9

3

8

2

i

di

Figure 3.3: Graph of precedences for the example instance.

Project Scheduling on Graphics Cards 65

t [s]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

re
so
u
rc
e
u
ti
li
za
ti
on

0

1

2

3

4

5

6
R0

1

2

3

4

5
6

7

8
9

10

t [s]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

re
so
u
rc
e
u
ti
li
za
ti
on

0

1

2

3

4

5

6
R1

1

2

3

4
5

6
7

8
9

10

Figure 3.4: Utilization of resources for the example instance.

3.5 Outline of the Tabu Search meta-heuristic

To move through solution spaceW, a transformation of the current solution
to a neighborhood solution is required. This transformation is called a move
which can be seen as a light solution modification like a swap of two elements
in an order, etc.

The Tabu Search meta-heuristic was proposed by Glover [24] as an im-
provement of the local search technique [23]. A local search algorithm starts
with the initial solution and iteratively improves this solution by applying
the best neighborhood moves until a local optimum is reached, whereas
the Tabu Search introduces a short-term memory called Tabu List which
reduces the probability of getting stuck in a local optimum or plateau by
forbidding the previously visited solutions. As a consequence, not only im-
proving solutions are permitted and the search process can climb to the hills
in the search space W if it is necessary.

Due to efficiency, the Tabu List usually contains only parts of solutions
or several previously applied moves. As moves or parts of solutions do not
have to be unique, it is possible that a forbidden move leads to the best
solution. In this case, it is reasonable to permit the move since the resulting
solution was not visited before. In general, exceptions allowing forbidden

66 Exploration of the Solution Space

moves are called aspiration criteria [23].
The quality of the resulting solutions can be further improved by a suit-

able search strategy. For example, if a current location in the solution
space is promising, i.e., the best solution was found recently, then a more
thorough search is performed – intensification. It can be accomplished by
concentrating more computational power to this locality of the space. Op-
posite to that, if a current location is unpromising, i.e., only poor solutions
were found, then diversification is performed. The diversification moves
the current search location to another one where better solutions could be
found. It is often realized by applying a few random moves.

The Tabu Search process is stopped if a stop criterion is met. The stop
criterion can be the number of iterations, achieved quality of the best found
solution, the maximal number of iterations since the last best solution was
found, etc.

3.6 Exploration of the Solution Space

3.6.1 Creating Initial Activity Order

Our Tabu Search algorithm starts from initial feasible solution W init ∈ W
which is created in the following way: First of all, the longest paths in graph
G from the start activity 0 to all other activities are found. The weight of
each graph edge (i, j) ∈ E is set to 1. Activities with the same maximal dis-
tance from the start activity are grouped to levels. The level lk corresponds
to all activities with maximal distance k from the start activity, therefore,
activity 0 is at level l0 and activity N−1 is at level lmax where subscript max
corresponds with the last level number. The final feasible schedule can be
created from levels such that W = {{l0}, . . . , {lmax}}. Alternative feasible
schedules can be created by shuffling the activities on the same level.

3.6.2 Move Transformation

Schedule order W is changed in our Tabu Search algorithm by a swap move.
A simple example is illustrated in Figure 3.5. Two dummy activities (0 and
N − 1) cannot be swapped due to precedence constraints, therefore, the
activity at w0 is always 0 and the activity at wN−1 is always N − 1. The
swap move is defined as swap(u, v) where u and v are swapped indices. As
swap(u, v) modifies a schedule in the same way as swap(v, u) only swaps
with u < v are taken into account without loss of generality.

Let W ∈ W be a feasible activity order. A feasible order means that
there is not a violated precedence relation. A feasible move is a move which
does not violate any precedence relation, and therefore if this move is applied

Project Scheduling on Graphics Cards 67

0

0

3

3

7

7

1

4

2

2

8

8

4

1

6

6

5

5

9

9

swap(3, 6)

Figure 3.5: Example of the swap move.

to a feasible schedule, then the modified schedule will be feasible as well.
Move swap(u, v) is feasible if the following equations are satisfied.

(wu, wx) /∈ E ∀x ∈ {u+ 1, . . . , v} (3.5)
(wx, wv) /∈ E ∀x ∈ {u, . . . , v − 1} (3.6)

The First Equation (3.5) means that there are no edges from activity
wu to the activities at indices from u + 1 to v. If there is an edge, then
activity wu cannot be moved to position v without a precedence violation.
In a similar way, Equation (3.6) states that activity wv cannot be moved to
index u if there is a precedence relation that becomes violated.

3.6.3 Neighborhood Generation

Full neighborhood Nfull (W) ⊆ W of schedule W is a set of schedules ob-
tained by applying all feasible moves. Since the full neighborhood is usually
too large to be evaluated in a reasonable time only a subset of the neigh-
borhood is usually taken into account. Such a subset will be called as a
reduced neighborhood denoted Nreduced (W). In the reduced neighborhood,
moves are restricted to all swap(u, v), where u < v and |v − u| ≤ δ. Value
δ is the maximal distance between the swapped activities in order W . The
size of the neighborhood |Nreduced (W)| is parametrized by δ.

There are two reasons why only feasible moves are applied. The neigh-
borhood size is reduced without noticeable deterioration of the project
makespan, and there is no need to check the feasibility of schedules.

3.6.4 Filtering Infeasible Moves

In order to saturate a GPU, feasible schedules in Nreduced should be evalu-
ated in a parallel way by dividing the schedules equally among the threads.
Since the evaluation of a schedule is much more time-consuming than check-
ing whether a move is feasible, it is advantageous to filter out all infeasible

68 Exploration of the Solution Space

moves before the neighborhood evaluation. It reduces the branch diver-
gency of warps; hence the overall performance of the resources evaluation is
improved.

In Algorithm 1 is shown how infeasible moves are filtered out from the
neighborhood. The filter works in two phases since it was discovered that
it is more effective due to the lower branch divergency than to filter out all
the infeasible moves at once. In the end, only part of the array with feasible
moves is taken into account in the neighborhood evaluation.

Algorithm 1 Removing infeasible moves from the reduced neighborhood.
Require: Nreduced(W)
Ensure: It filters out infeasible moves from the reduced neighborhood.
1: Let MovesArray be an array with all potential swaps in Nreduced(W).
2: All moves not satisfying Equation (3.5) are removed, i.e., set empty.
3: Reorder MovesArray such that all empty moves are in the end.
4: Remove moves which do not satisfy Equation (3.6).
5: Move all feasible moves to the beginning of MovesArray.

3.6.5 Simple Tabu List and Cache

The tabu list in [41] is not suitable for a GPU since it is necessary to go
through all moves in the tabu list to decide whether a move is in the tabu list
or not. As a consequence, it places higher demands on the device memory
bandwidth. To avoid this a simple and efficient Simple Tabu List (STL)
with constant algorithmic complexity is proposed. Access to the STL is
performed like access to a circular buffer. Its size is fixed and is equal
to |tabuList|. In our case, the STL stores swap moves. Each swap(u, v) is
stored to the STL as a pair of swapped indices (u, v). A special value is used
for an empty move, e.g., swap(0, 0). At each iteration of the TS algorithm,
one move is added (see Algorithm 3) and the oldest one is removed if the
STL is full.

Algorithm 2 Check if a move is in the STL.
Require: tabuCache − STL cache.
Require: (u, v)− Swap move indices.
Ensure: It returns true if the move is in the STL, otherwise false.
1: return tabuCache[u, v]

The Tabu Cache (TC) was proposed for effective checking if the move
is in the STL. It is illustrated in Algorithm 2. Checking if a swap is in the
STL occurs much more often than adding a new move since a move is added
only once per iteration and check if the move is in the STL occurs for every
neighborhood schedule. The TC is implemented as a 2-dimensional N ×N

Project Scheduling on Graphics Cards 69

boolean array which is synchronized with the STL. A check if a move is in
the STL requires one read operation, thus, the required memory bandwidth
is very low. It is obvious that a check if the move is in the STL has O(1)
algorithmic complexity.

Algorithm 3 Add a move to the STL.
Require: tabuList − Fixed size array.
Require: tabuCache − STL cache.
Require: writeIndex − Current write position.
Require: (u, v)− Swap move indices.
Ensure: Add move to STL and update TC.
1: (uold, vold) = tabuList[writeIndex]
2: tabuCache[uold, vold] = false
3: tabuList[writeIndex]= (u, v)
4: tabuCache[u, v] = true
5: writeIndex = (writeIndex + 1) % |tabuList|

3.7 Schedule Evaluation

During the evaluation of W , precedence relations and resource constraints
have to be taken into account to calculate activities start times si and Cmax.
The precedence earliest start time esprec

i of activity i can be calculated as
max∀(j,i)∈E (sj + dj), where j are predecessors of activity i. The resources
earliest start time esres

i can be computed using either a time-indexed or
capacity-indexed resources evaluation algorithm. The capacity-indexed al-
gorithm is a completely new approach to the best of our knowledge, whereas
the time-indexed algorithm is well-known [31]. The names of the algo-
rithms were selected with respect to the indexed unit of a resource state
array. According to a heuristic, the probable faster resources evaluation
algorithm is selected in the schedule evaluation procedure. Having consid-
ered both precedence and resource constraints the final earliest start time
is esi = max(esprec

i , esres
i).

3.7.1 Capacity-Indexed Resources Evaluation

Required Data Structures

The most difficult part of the project makespan evaluation is the compu-
tation of the activities’ start times with respect to the resource capacities.
In our approach, the evaluation of resources requires one array ck with
length Rk per resource k. Value ck[Rk − ri,k] corresponds to the earliest
resource start time of activity i with resource requirement ri,k > 0 on re-
source k. At the start of the evaluation, all the resources arrays are set

70 Schedule Evaluation

to zeros. After that, activities are added one by one to a schedule ac-
cording to W and arrays are updated with respect to the activity require-
ments and precedences. The resources arrays are ordered descendly, i.e.,
ck[Rk − l] ≤ ck[Rk − l − 1] | ∀l ∈ {1, . . . , Rk − 1}. The state of resources is
represented as a set C = {c0, . . . , cM−1}.

The Earliest Resources Start Time

Resource earliest start time esres
i ∈ N of activity i with respect to an occu-

pation of resources can be calculated using Equation (3.7). It is guaranteed
that resources are not overloaded if activity i start time si ≥ esres

i . Final
activity start time si can be more delayed due to the precedence relations.

esres
i =

 max
k∈{0,...,M−1}: ri,k>0

ck[Rk − ri,k] ∃ri,k > 0

0 otherwise
(3.7)

Update of the Resources Arrays

If activity i is added to the schedule, resources arrays C have to be updated
by Algorithm 4. Each resource array ck is updated individually (line 1).
Value requiredEffort = ri,k · di will be called Required Resource Effort. Ac-
tivity i can be added to the schedule if and only if each resource can provide
its Required Resource Effort. In other words, variable requiredEffort has to
be decremented to zero (lines 2, 13, 19) for each resource k.

It is performed by setting ri,k elements of ck to the activity finish time
si+di after the last ck ≥ si+di. Until the variable requiredEffort is zero, the
shifted (right shift about ri,k) copy of the original resource array ck (original
values are stored in copy auxiliary variable) is made. The complexity of the
algorithm is O(M ·Rmax).

The algorithm is illustrated on an example in Figure 3.6. There is one
resource with maximal capacity 7. Added activity i requires 3 resource
units (i.e. ri,k = 3) and its duration di is 3. The activity was scheduled
at si = 5. The solid line corresponds to the original resource state ck =
{7, 7, 5, 5, 5, 5, 4} and the dotted line corresponds to the updated resource
c′k = {8, 8, 8, 7, 7, 5, 4}. The activity required effort is depicted by a square
with a dashed border. The positive numbers between solid and dotted lines
are effort contributions when old start time (solid line) will be changed to
the new start time (dotted line). It should be noticed, that the sum of all
contributions is the requiredEffort for a given activity.

Project Scheduling on Graphics Cards 71

Algorithm 4 Method updates state of resources after adding activity i.
Require: ri,k, di, C,R
Require: copy −Auxiliary array (the length of the array is Rmax).
Require: si − Scheduled start time of activity i.
Ensure: Update C - activity i is added.
1: for (k = 0; k < M ; ++k) do
2: requiredEffort = ri,k · di

3: if (requiredEffort > 0) then
4: resIdx = 0; copyIdx = 0
5: newTime = si + di

6: while (requiredEffort > 0 AND resIdx < Rk) do
7: if (ck[resIdx] < newTime) then
8: if (copyIdx ≥ ri,k) then
9: newTime = copy[copyIdx − ri,k]

10: end if
11: timeDiff = newTime −max(ck[resIdx], si)
12: if (requiredEffort − timeDiff > 0) then
13: requiredEffort -= timeDiff
14: copy[copyIdx++] = ck[resIdx]
15: ck[resIdx] = newTime
16: else
17: ck[resIdx] = max(ck[resIdx], si)
18: ck[resIdx] += requiredEffort
19: requiredEffort = 0
20: end if
21: end if
22: resIdx = resIdx + 1
23: end while
24: end if
25: end for

4 5 6 7 8 9 10

1

2

3

4

5

6

7

re
so

u
rc

e
av

ai
la

b
il
it

y
-
c k

resource earliest start time

activity
required

effort

9 units

+2

+2

+3

+1

+1

si si + di

Rmax

Figure 3.6: An example of the resource state update.

72 Schedule Evaluation

3.7.2 Time-Indexed Resources Evaluation

Required Data Structures

In the time-indexed evaluation algorithm, the state of each resource k is
stored in array τk. Each element τk[t] corresponds to the number of available
resource units that resource k can provide at time t ∈ {0, . . . ,UBCmax},
where UBCmax is the upper bound of the makespan which can be calculated
as, e.g., ∑∀i∈V di. Each τk array has initialized all its elements to the Rk

value before the start of the evaluation. The state of all resources will be
denoted as T = {τ0, . . . , τM−1}.

The Earliest Resources Start Time

The earliest start time of activity i can be calculated using Algorithm 5. In
the algorithm, the loadTime variable corresponds with the number of consec-
utive time units in which resources are able to meet resource requirements of
activity i. If loadTime = di then a time interval into which activity i can be
scheduled was found. Having considered variable t as a finish time of a can-
didate interval, the resulting interval is the first interval [t− loadTime, t)∩N
such that loadTime = di. The final earliest start time is the lower endpoint
of the interval.

Algorithm 5 Algorithm calculates the earliest start time of activity i.
Require: ri,k, di,R,UBCmax , T
Require: esprec

i − The precedence earliest start time.
Ensure: Calculate the earliest start time esi of activity i.
1: loadTime = 0;
2: for (t = esprec

i ; t < UBCmax AND loadTime < di; ++t) do
3: sufficientCapacity = true
4: for (k = 0; k < M ; ++k) do
5: if (τk[t] < ri,k) then
6: loadTime = 0
7: sufficientCapacity = false
8: end if
9: end for

10: if (sufficientCapacity == true) then
11: ++loadTime
12: end if
13: end for
14: return t− loadTime

Update of the Resources Arrays

The state of resources is updated as is shown in Algorithm 6. Having
scheduled activity i at si the τk arrays have to be updated in the [si, si +di)

Project Scheduling on Graphics Cards 73

interval. For each resource k, values in the interval are decreased by ri,k

units.

Algorithm 6 Updating of resources after adding activity i.
Require: di, T, ri,k

Require: si − Scheduled start time of activity i.
Ensure: It updates state of resources T .

for (k = 0; k < M ; ++k) do
for (t = si; t < si + di; ++t) do
τk[t] -= ri,k

end for
end for

3.7.3 Schedule Evaluation Procedure

The schedule evaluation procedure is shown in Algorithm 7. Activities are
read one by one from the activities order W . For each activity wu, all
its predecessors are found and the precedence relations are used to update
activity wu’s precedence earliest start time esprec

wu
∈ N (see lines 3–6). Then

the resources restrictions are checked and the start time is adjusted to swu =
max(esprec

wu
, esres

wu
). Project makespan Cmax is the finish time of activity

N−1. As only feasible moves are allowed, an infeasibility test of the resulting
schedules is not required.

Algorithm 7 Complete schedule evaluation.
Require: W,C, T,E
Ensure: Calculate Cmax and the activities’ start times.
1: Cmax = 0
2: for (u = 0; u < N ; ++u) do
3: esprec

wu
= 0

4: for all ((j, wu) ∈ E) do
5: esprec

wu
= max(esprec

wu
, sj + dj)

6: end for
7: esres

wu
= getEarliestResourcesTime(activity wu, es

prec
wu

)
8: swu = max(esprec

wu
, esres

wu
)

9: updateResources(activity wu, swu)
10: Mark current activity wu as scheduled.
11: Cmax = max(Cmax, swu + dwu)
12: end for
13: return Cmax

3.7.4 Heuristic Selection of Resources Evaluation Algorithms

Before the search is started on the GPU, the probable faster resources eval-
uation algorithm is heuristically selected by decision rules and the required

74 Schedule Evaluation

resources arrays are allocated. To create the rules, the JRip classifier from
the Weka data-mining tool [27] was learned using pre-calculated attributes
shown in Table 3.2.

Min. resource capacity: min
∀k∈{0,...,M−1}

Rk

Avg. resource capacity: 1
M

∑
∀k∈{0,...,M−1}

Rk

Max. resource capacity: max
∀k∈{0,...,M−1}

Rk

Avg. activity duration: 1
N

∑
∀i∈V

di

Avg. branch factor: |E|
N

Critical path length: see Section 3.4

Evaluation algorithm: CAPACITY/TIME

Table 3.2: Attributes used for learning.

Attribute “Evaluation algorithm” determines the class, i.e., the time-
indexed or capacity-indexed evaluation algorithm, to which the classifier
should classify. As the final class depends on the hardware and instance
parameters, it is necessary to determine the probable correct class by mea-
suring — each evaluation algorithm was selected for a small number of

Min. resource capacity ≥ 29

Avg. resource capacity ≥ 29
Avg. branch factor ≥ 2.1

Min. resource capacity ≥ 25
Max. resource capacity ≥ 42

TIME

TIME

TIME CAPACITY

true false

true false

true false

Figure 3.7: Example of the decision tree.

Project Scheduling on Graphics Cards 75

iterations and the faster one was selected as the desired one. The result-
ing rules heuristically decide which of the two algorithms should be more
effective for a given instance. The rules can be transformed into a decision
tree as is shown in Figure 3.7. Once the rules are created they can be ap-
plied to other similar instances without any measurable overhead as well.
To show the effectivity and usefulness of the heuristic the experiments were
performed in Section 3.9.

3.8 Parallel Tabu Search for the CUDA platform

Our Parallel Tabu Search for GPU (PTSG) is proposed with respect to
the maximal degree of parallelization since thousands of CUDA threads
are required to be fully loaded to exploit the graphics card power. In our
approach, the parallelization is carried out in two ways. The first one is
a parallelization performed within the scope of a block, for example, the
parallel filter (see Section 3.6.4), the parallel neighborhood evaluation, and
other parallel reductions. The second one is a parallelization introduced by
launching many blocks on the multi-processors simultaneously.

The basic steps of the PTSG are described in Figure 3.8. First of all,
an instance is read and the initial solutions are created in accordance with
Section 3.6.1. After that, every second solution is improved by using the
forward-backward improvement method. The method is iteratively shaking
a schedule from left to right in order to make a resource profile straight
as long as the schedule is getting shorter. To get more details about the
method, refer to the original article by Li and Willis [35]. The created
solutions are copied into a working set, i.e. a set of shared solutions. The
best solution in the working set will be called the global best solution and
its makespan will be denoted as C∗max. Furthermore, the block’s Tabu Lists
and Tabu Caches are initialized and auxiliary arrays such as τk, and ck are
allocated. Having had prepared required data structures, the host is ready
to launch the kernel.

In the GPU part, every block is an independent Tabu Search instance
communicating with the others through the global memory (see Section 3.8.1).
At the beginning, every block reads an initial solution from the working set.
After that, the search is started for a specified number of iterations of the
main loop. In the main loop, the neighborhood is generated, evaluated and
the best move m∗ is selected, applied and added into the STL. Move m∗
leads to the best criterion improvement or to the smallest criterion deteri-
oration. This move cannot be in the STL with one exception — the move
leads to the global best solution. At the end of an iteration, the solutions
are exchanged through the working set if the communication conditions are

76 Parallel Tabu Search for the CUDA platform

print the best GPU solution

stop condition?

cooperation
with other blocks

exchange data?

apply m∗ and add it to STL

evaluate the neighborhood
and select the best move m∗

generate Nreduced and filter
out all infeasible moves

read an initial solution

initialize and fill GPU structures

apply forward-backward improve-
ment method for every second solution

create initial solutions

load data to CPU

yes

yes

no

no

launch kernel

m
a
in

lo
o
p

CPU

GPU
(a block)

CPU

Figure 3.8: Parallel Tabu Search for the CUDA platform.

Project Scheduling on Graphics Cards 77

satisfied (see Section 3.8.1). The search is stopped if the specified number
of iterations was achieved or C∗max is equal to the length of a critical path.

After the termination of the kernel, the best global solution is copied
from the global memory to the host memory. The solution is printed and
all allocated data structures are freed.

3.8.1 Block Cooperation and Distribution of Iterations

To assure the high-quality solutions, the cooperation among Tabu Search
instances is accomplished by exchanging solutions through the working set
F that has a fixed number of solutions |F |. Each solution k ∈ F consists
of the order of activities W k, makespan Ck

max, the tabu list, and iterations
counter IC k. The solution exchange takes place if the last read solution
has not been improved for more than Iassigned iterations or the block found
an improvement of the last read solution. The block writes the best found
solution to F if it improves the last read solution and reads the next solution
from F . Since the working set could be accessed by many blocks at the
same time, it is necessary to use read/write locks in order to maintain data
integrity. The cooperation among Tabu Search instances was inspired by
James et al. [29].

After the block has read a solution from the working set, it is checked
whether the solution was not read more than Φmax times without being
improved. If it is the case, a small number Φsteps of random feasible swaps
is applied to randomize the read solution — diversification. After that, the
read solution k ∈ F has assigned the number of iterations Iassigned according
to the following equation.

Iassigned =
⌊ quantity︷ ︸︸ ︷

1
5
Iblock

Itotal

(quality︷ ︸︸ ︷
0.8e

−100
(

Ck
max

C∗max
−1
)

+

intactness︷ ︸︸ ︷
0.2e

−4
(

ICk

Iblock

))⌋
(3.8)

Iblock is the number of iterations assigned to each Tabu Search instance
and Itotal is the total number of iterations calculated as IblockB, where B is
the number of launched blocks. The part denoted as quantity corresponds
to the maximal number of iterations which can be assigned to read solution
k. It is ensured, that at least 5 solutions are read from the working set by
each block. The quality part takes into account the quality of read solution
k. It is obvious that the high-quality solutions are preferred to poor ones —
intensification. And the last part intactness guarantees that each solution
k ∈ F has been given some iterations to prove the quality.

78 Experimental Results

3.8.2 Memory Model

The placement of the data structures is a crucial task highly influencing the
effectiveness of the GPU program, therefore, each decision should be con-
sidered thoroughly with respect to the access pattern, required bandwidth
and data visibility (local or shared data). In the shared memory, current
block order Wblock, durations of activities D, and auxiliary arrays are stored.
Although D is a read-only array which could be located in the constants
memory, it was moved to the shared memory due to the higher bandwidth.
The texture memory is used for storing read-only data as ri,k values and
predecessors of the activities. In the local memory, private data structures
of each thread are located, i.e., resources arrays ck, τk, and start times of
activities S. The long latency of the memory is compensated by using a
partial coalescing since the arrays are often accessed at the same relative
indices as the majority of threads evaluate similar schedules (Wblock + swap
move). Finally, the global memory is employed to store the working set F .

3.9 Experimental Results

Experiments were performed on the AMD Phenom(tm) II X4 945 server (4
cores, 8 GB memory) equipped with a mid-range Nvidia Geforce GTX 650
Ti (1 GB, 768 CUDA cores, 4 multiprocessors) graphics card. The testing
environment was the Windows Server 2008 with an installed CUDA toolkit
(version 5.0.35) and Microsoft Visual Studio 2010.

The sequential CPU version of the algorithm corresponds to one Tabu
Search instance with the exception that solutions are not interchanged
(|F | = 1 and B = 1). Instead of using the selection heuristic (see Section
3.7.4) the faster evaluation algorithm was selected dynamically by periodic
measuring (once per 1000 iterations). The parallel CPU version differs
from the sequential version in the neighborhood evaluation. The feasible
schedules in the neighborhood are divided among CPU threads to reduce

J30 J60 J90 J120
N 30+2 60+2 90+2 120+2
M 4

|dataSet| 480 480 480 600
δ 30 60 60 60

|tabuList| 60 250 600 800
Φsteps 20
Φmax 3
|F | 16

Table 3.3: PTSG parameters and datasets information.

Project Scheduling on Graphics Cards 79

evaluation time. Both the CPU and GPU versions were fully optimized with
respect to memory access patterns and hardware architecture (cache sizes).
To fully saturate the GPU the maximal number of available registers per
CUDA thread was limited to 32 due to the possibility to launch 4 blocks
on a multiprocessor at once (altogether 16 blocks on the GPU), where each
block has 512 CUDA threads.

To evaluate the performance and the quality of resulting solutions, the
benchmark using the well-known J30, J60, J90 and J120 datasets was per-
formed. The number of instances in a dataset will be denoted as |dataSet|.
The selected PTSG parameters and datasets information are stated in Ta-
ble 3.3.

CPU GPU
Itotal CPM dev OPT dev Best sol CPM dev OPT dev Best sol
10000 13.43 0.04 471 13.41 0.02 473
20000 – – – 13.38 0.01 478

Table 3.4: Quality of solutions — J30.

Itotal Comp time Sched sec Speedup
CPU seq. 10000 1255 126400 1.00
CPU par. 10000 343 478300 3.65
GPU 10000 176 985543 7.12
GPU 20000 306 1120900 –

Table 3.5: Performance comparison — J30.

The results for the J30 dataset are shown in Tables 3.4 and 3.5. The
CPM dev and OPT dev values are the average percentage distance from the
critical path length and the average percentage distance from the optimal
makespan respectively. Best sol states the number of optimal solutions
which have been proved to be optimal according to the results in the PSPLIB
homepage — http://www.om-db.wi.tum.de/psplib/. The Comp time is
the total runtime stated in seconds and Sched sec is the number of evaluated
schedules per second. It is obvious that the GPU version is able to achieve a
similar quality of solutions in terms of CPM dev as the CPU version. Having
had Itotal doubled, the GPU version found 478 optimal solutions from the
480 solutions in the dataset. From the performance point of view, Table 3.5
reveals a significant improvement in computational time if parallelization is
performed. For example, the parallel CPU version is 3.65 times faster than
the sequential CPU version and the GPU is almost 2 times faster than the
parallel CPU version. If Itotal is increased to 20000, the GPU is still slightly
faster and achieves better quality solutions.

http://www.om-db.wi.tum.de/psplib/

80 Experimental Results

CPU GPU
Itotal CPM dev UB dev Best sol CPM dev UB dev Best sol
10000 11.13 0.51 380 11.22 0.57 375
20000 – – – 11.08 0.47 388
30000 – – – 10.99 0.41 394
50000 – – – 10.91 0.36 394

Table 3.6: Quality of solutions — J60.

Itotal Comp time Sched sec Speedup
CPU seq. 10000 7094 59700 1.00
CPU par. 10000 1732 248700 4.10
GPU 10000 257 1733800 27.60
GPU 20000 485 1818600 –
GPU 30000 709 1861900 –
GPU 50000 1164 1879400 –

Table 3.7: Performance comparison — J60.

For the J60 dataset, the results are shown in Tables 3.6 and 3.7, where
UB dev is the average percentage distance from the best currently known
upper bounds. The CPU version gives slightly better solutions for 10000
iterations, but on the other hand, if the GPU is given 20000 iterations the
quality of solutions is comparable with the CPU version and the GPU is
still 3.56 times faster than the parallel CPU version. The lower quality of
GPU solutions for the same Itotal is probably caused by wasting work when
many parallel Tabu Search instances have read the same solution from the
working set and only one writes the best improvement. It can be noted, that
the parallel CPU version is more than 4 times faster than the sequential one.
The reason of that is either better cache utilization or the AMD True Core
Scalability technology.

The results in Tables 3.8 and 3.9 for the J90 dataset show that the GPU
is better utilized for bigger instances and the GPU is more than 10 times
faster than the parallel CPU version for the same number of iterations. The
same quality of solutions is achieved 5.4 times faster on the GPU.

Results for the J120 dataset are shown in Tables 3.10 and 3.11. It can
be noted that the quality of GPU solutions is substantially lower for 10000
iterations. The GPU requires about 50000 iterations to achieve the quality
of the CPU solutions. On the other hand, the GPU can compete with
the CPU since 50000 iterations are performed 2.5 times faster than 10000
iterations for the parallel CPU version. The GPU evaluates more than
one million schedules per second, whereas the CPU evaluates one hundred
thousand.

Project Scheduling on Graphics Cards 81

CPU GPU
Itotal CPM dev UB dev Best sol CPM dev UB dev Best sol
10000 10.81 0.92 367 11.04 1.09 365
20000 – – – 10.82 0.93 371
30000 – – – 10.73 0.86 373
50000 – – – 10.56 0.74 375

Table 3.8: Quality of solutions — J90.

Itotal Comp time Sched sec Speedup
CPU seq. 10000 20294 36000 1.00
CPU par. 10000 5001 148300 4.06
GPU 10000 475 1599600 42.70
GPU 20000 923 1632000 –
GPU 30000 1348 1660700 –
GPU 50000 2221 1674000 –

Table 3.9: Performance comparison — J90.

CPU GPU
Itotal CPM dev UB dev Best sol CPM dev UB dev Best sol
10000 33.41 2.70 215 34.67 3.50 194
20000 – – – 34.04 3.11 208
30000 – – – 33.66 2.85 213
50000 – – – 33.54 2.76 222

Table 3.10: Quality of solutions — J120.

Itotal Comp time Sched sec Speedup
CPU seq. 10000 148170 25700 1.00
CPU par. 10000 35812 107200 4.14
GPU 10000 2938 1340400 50.40
GPU 20000 5742 1351900 –
GPU 30000 8513 1353300 –
GPU 50000 14160 1347800 –

Table 3.11: Performance comparison — J120.

82 Experimental Results

The quality of the solutions is compared with the existing solutions for
the RCPSP in Table 3.12. Our proposed PTSG outperforms other Tabu
Search implementations with respect to the quality of solutions. For exam-
ple, Artigues’ Tabu Search [3] has been given at least 11000 iterations for the
J120 dataset and achieves 36.16 % CPM dev. Having had 10000 iterations,
the proposed PTSG reaches 33.41 % and 34.67 % for the CPU and GPU
respectively. In addition, the proposed PTSG can be just as good as other
heuristic approaches like Ant Colony Optimization and Simulated Anneal-
ing. On the other hand, the state-of-the-art random-key genetic algorithms
give even better solutions than the PTSG.

CPM dev
Algorithm and reference J30 J60 J90 J120

Genetic Algorithm - Gonçalves et al. [25] 13.38 10.49 - 30.08
This work - Nvidia Geforce GTX 650 Ti 13.38 10.91 10.56 33.54
This work - AMD Phenom(tm) II X4 945 13.43 11.13 10.81 33.41
CARA algorithm - Valls et al. [52] 13.46 11.45 11.12 34.53
Ant Colony Optimization - Zhou et al. [59] - 11.42 - 35.11
Tabu Search - Artigues et al. [3] - 12.05 - 36.16
Simulated Annealing - Bouleimen and Lecocq [7] - 11.90 - 37.68

Table 3.12: Comparison with other heuristics.

From the performance point of view, it is difficult to compare since the
different algorithms and hardware architectures were used for experiments.
For example, Artigues’s Tabu Search requires 67 s per J120 instance on av-
erage. The testing configuration was not stated. The PTSG requires 4.9 s
(10000 iterations) on the mid-range GPU with the substantially higher qual-
ity of solutions. The genetic algorithm by Gonçalves et al. [25] takes 180 s
per J120 instance on average on the Intel Core 2 Duo 2.4 GHz processor.

3.9.1 Evaluation of the Selection Heuristic

The heuristic (see Section 3.7.4) is using the JRip classifier from the Weka
data mining tool [27] to decide which resources evaluation algorithm should
be faster. To get data for the learning, the Progen generator [33] was
used to generate 4 datasets with 30, 60, 90, and 120 activities respec-
tively. The parameters of the generated datasets were set the same as for
J30, J60, J90, and J120 datasets with the exception that different random
seeds were used. For each generated dataset the classifier was learned us-
ing weka.classifiers.rules.JRip -F 3 -N 2.0 -O 10 -S 0 command
and tested on the corresponding standard dataset with the same number
of activities. The achieved results in Table 3.13 reveal that the accuracy is

Project Scheduling on Graphics Cards 83

decreasing with the number of activities. The reason for this behavior can
be the smaller ratio of the resources evaluation time to the total runtime.

J30 J60 J90 J120
72.3 % 85.8 % 91.9 % 96.3 %

Table 3.13: Percentage of correctly classified problems for each dataset.
To prove that the proposed heuristic also improves the PTSG perfor-

mance the runtime was measured for each evaluation algorithm and nor-
malized with respect to the referenced runtime, i.e., the runtime achieved
by using the heuristic. The results in Table 3.14 show that the heuristic
accelerates the PTSG up to 2 times and its effect is decreasing as the eval-
uation of schedules becomes a less time-consuming part of the PTSG. The
time-indexed algorithm seems to be faster than the capacity-indexed algo-
rithm on the standard datasets. On the other hand, the achieved speedup
is dependent on the characteristics of instances and it cannot generally be
determined which evaluation algorithm is faster. The capacity-indexed eval-
uation algorithm is usually faster for long schedules with low resource ca-
pacities in contrast to the time-indexed algorithm which usually performs
better for short schedules with high resource capacities.

J30 J60 J90 J120
time-indexed 1.02 1.10 1.09 1.23
capacity-indexed 1.27 1.34 1.96 1.73
heuristic 1 1 1 1

Table 3.14: Effect of the selection heuristic on the PTSG performance.

3.9.2 Demonstration of Convergence

To demonstrate that cooperation among blocks is beneficial the graph of
convergency (in Figure 3.9) was created for j1206_4.sm instance. It can
be seen that the quality of solutions is getting better with the increasing
number of launched blocks, therefore, it is obvious that cooperation leads
to the better solutions. To ensure the smoothness of the graph each point
was averaged over 50 measurements.

3.10 Conclusion

The first known GPU algorithm dealing with the Resource Constrained
Project Scheduling Problem has been proposed. The performed experiments
on the standard benchmark instances reveal the merits of the proposed so-
lution. The achieved quality of solutions is very good and outperforms the

84 Conclusion

Figure 3.9: Graph of convergence for the GPU version.

other Tabu Search implementations to the best of our knowledge. In ad-
dition to this, the GPU algorithm design has proved to be very effective
since the mid-range GPU was substantially faster than the optimized paral-
lel CPU version. The Nvidia Geforce GTX 650 Ti GPU is able to evaluate
more than one million schedules per second for the J120 dataset on aver-
age. The achieved performance boost could not be reached without effective
structures and auxiliary algorithms. The Simple Tabu List implementation
is adapted to the features of the GPU, the capacity-indexed evaluation algo-
rithm was proposed, and many parallel reductions were applied. In addition
to this, the homogeneous model reduces the required communication band-
width between the CPU and GPU.

In spite of the fact that GPUs are not primarily designed for solving
combinatorial problems the rising interest in these solutions can be seen [12].
The reason for this is the high computational power of graphics cards and
the relatively user-friendly programming API that the CUDA offers. So
it can be expected that GPUs will be more and more used in operations
research in the future.

Chapter 4
Conclusion and Future Work

Thesis is dedicated to the design of novel optimization algorithms for
production systems. Two problems, i.e., the energy optimization of

robotic cells and RCPSP, were addressed and their fundamental proper-
ties were taken into account during the design of efficient algorithms. The
parallel algorithms are scalable, memory-friendly, and utilize advanced data
structures.

Besides the algorithms and related publications, the robotic cell in Škoda
Auto was optimized with the result of 20 % energy saving. The industrial
cooperation continues under the eRobot project, which main goal is to in-
tegrate the optimization algorithms into the digital factory software. In the
future, we believe that the optimization will be a part of the designing pro-
cess, and the increased efficiency of production will pay off time invested in
the optimization.

4.1 Fulfillment of Goals

1. Study the existing literature related to the energy optimization of
robotic cells and identify possible improvements.
⇒ The investigation of the literature in Section 2.1 revealed that only
a little research had been conducted regarding the energy optimiza-
tion of robotic cells. In the closest work of Wigström and Lennartson
[55], the non-linear optimization model was proposed to optimize the
robotic cells as a whole by changing speeds of robots and order of
operations. This pioneering work, however, does not consider other
optimization aspects such as alternative robotic paths or power-saving
modes, and the work cycle time makes parallel processing of more
workpieces impossible. Therefore, we decided to design novel opti-
mization algorithms that overcome these limitations.

2. Devise a mathematical model that considers important optimization
aspects to minimize the energy consumption of industrial robots.
⇒ Based on measurements of a small KUKA robot (described in [15]),
we identified important aspects influencing the energy consumption
of industrial robots. These aspects were used to formulate the math-
ematical model (see Sections 2.3 and 2.4) that minimizes the energy
consumption for a fixed robot cycle time. Compared to the state-of-
the-art works, more optimization aspects are considered and the robot
cycle time enables higher parallelism during the production.

85

86 Fulfillment of Goals

3. Propose heuristic and exact algorithms to solve industrial-sized robotic
cells. Both the algorithms should utilize the problem structure and
multi-core processors.
⇒ The parallel Hybrid Heuristic and Branch & Bound algorithm,
which optimize robotic cells with up to 12 robots, were proposed in
Chapter 2. The heuristic consists of subheuristics where each of them
optimizes a problem specific aspect and estimates the energy saving
of modifications. The exact algorithm, on the other hand, utilizes the
tight lower bound based on convex envelopes, and efficient propagation
and pruning techniques.

4. Design and implement a parallel Tabu Search algorithm to solve the
RCPSP on graphics cards.
⇒ Section 3 describes the design and implementation of the first Tabu
Search algorithm that solves the RCPSP on graphics cards. The high
performance of this algorithm lies in the effective schedule evalua-
tion, optimized memory access, and homogeneous model. Moreover,
the faster schedule evaluation algorithm, i.e., the time-indexed or
capacity-indexed evaluation algorithm, is dynamically selected based
on the properties of the current problem.

5. Verify the proposed algorithms on benchmark instances and compare
them with the existing works.
⇒ Experiments in Sections 2.12 and 3.9 confirmed that the proposed
algorithms are highly scalable and the resulting quality of solutions is
better or comparable with the existing works. To be more particular,
the algorithms that optimize the energy consumption of robotic cells
were tested on benchmark instances with 3 to 12 robots, compared
to the literature where 4 robots were considered at maximum with-
out consideration of additional optimization aspects. Moreover, the
existing robotic cell from Škoda Auto was optimized and the achieved
savings of 20 % met the expectations.

The Tabu Search algorithm, which solves the universal RCPSP,
was compared to the existing works in Section 3.9 (see Table 3.12).
The results on J30, J60, J90, and J120 datasets show that the algo-
rithm is competitive and its performance is superior to other Tabu
Search implementations.

Bibliography
[1] Energy Efficiency – European Commision. http://ec.europa.eu/

energy/en/topics/energy-efficiency. Accessed on: 9.11.2017.

[2] PROFIenergy homepage. http://www.profibus.com/technology/
profienergy/. Accessed on: 9.11.2017.

[3] Christian Artigues, Philippe Michelon, and Stéphane Reusser. Insertion
techniques for static and dynamic resource-constrained project schedul-
ing. European Journal of Operational Research, 149(2): 249–267, 2003.

[4] Christian Artigues, Sophie Demassey, and Emmanuel Néron. Resource-
Constrained Project Scheduling: Models, Algorithms, Extensions and
Applications. ISTE, 2007. ISBN 190520972X.

[5] Maria Ayala, Abir Benabid, Christian Artigues, and Claire Hanen.
The resource-constrained modulo scheduling problem: an experimental
study. Computational Optimization and Applications, 54(3): 645–673,
2013. ISSN 0926-6003. DOI: 10.1007/s10589-012-9499-2.

[6] J. Blazewicz, J. K. Lenstra, and A.H.G. Rinnooy Kan. Scheduling
subject to resource constraints: classification and complexity. Discrete
Applied Mathematics, 5(1): 11–24, 1983.

[7] K. Bouleimen and H. Lecocq. A new efficient simulated annealing
algorithm for the resource-constrained project scheduling problem and
its multiple mode version. European Journal of Operational Research,
149(2): 268–281, 2003.

[8] V. Boyer, D. El Baz, and M. Elkihel. Solving knapsack problems on
GPU. Computers & Operations Research, 39(1): 42 – 47, 2012. ISSN
0305-0548. DOI: 10.1016/j.cor.2011.03.014. Special Issue on Knapsack
Problems and Applications.

[9] V. Boyer, D. El Baz, and M. A. Salazar-Aguilar. Chapter 10 - GPU
computing applied to linear and mixed-integer programming. In Hamid
Sarbazi-Azad, editor, Advances in GPU Research and Practice, Emerg-
ing Trends in Computer Science and Applied Computing, pages 247 –
271. Morgan Kaufmann, Boston, 2017. ISBN 978-0-12-803738-6. DOI:
10.1016/B978-0-12-803738-6.00010-0.

87

http://ec.europa.eu/energy/en/topics/energy-efficiency
http://ec.europa.eu/energy/en/topics/energy-efficiency
http://www.profibus.com/technology/profienergy/
http://www.profibus.com/technology/profienergy/
http://dx.doi.org/10.1007/s10589-012-9499-2
http://dx.doi.org/10.1016/j.cor.2011.03.014
http://dx.doi.org/10.1016/B978-0-12-803738-6.00010-0

88 BIBLIOGRAPHY

[10] Wojciech Bożejko, Zdzis law Hejducki, Mariusz Uchroński, and
Mieczys law Wodecki. Solving the Flexible Job Shop Problem on Multi-
GPU. Proceedings of the International Conference on Computational
Science, ICCS 2012, 9(0): 2020–2023, 2012.

[11] Pavol Božek. Robot Path Optimization for Spot Welding Applications
in Automotive Industry. Tehnicki vjesnik / Technical Gazette, 20(5):
913 – 917, 2013. ISSN 13303651.

[12] André R. Brodtkorb, Trond R. Hagen, and Martin L. Sætra. Graph-
ics processing unit (GPU) programming strategies and trends in GPU
computing. Journal of Parallel and Distributed Computing, 73(1): 4–
13, 2013. ISSN 0743-7315.

[13] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann, and
Erwin Pesch. Resource-constrained project scheduling: Notation, clas-
sification, models, and methods. European Journal of Operational Re-
search, 112(1): 3–41, 1999. ISSN 0377-2217.

[14] L. Bukata, P. Š̊ucha, Z. Hanzálek, and P. Burget. Energy optimization
of robotic cells. IEEE Transactions on Industrial Informatics, 13(1):
92–102, Feb 2017. ISSN 1551-3203. DOI: 10.1109/TII.2016.2626472.

[15] Pavel Burget, Libor Bukata, Přemysl Š̊ucha, Martin Ron, and Zdeněk
Hanzálek. Optimisation of Power Consumption for Robotic Lines in
Automotive Industry. In L. Ghezzi, D. Hömberg, and C. Landry, edi-
tors, Math for the Digital Factory. Mathematics in Industry, volume 27,
chapter 7, pages 135–161. Springer, Cham, 2017. ISBN 978-3-319-
63955-0. DOI: 10.1007/978-3-319-63957-4 7.

[16] Ali Shirzadeh Chaleshtarti and Shahram Shadrokh. Branch and Bound
Algorithms for Resource Constrained Project Scheduling Problem Sub-
ject to Cumulative Resources. In Proceedings of the 2011 International
Conference on Information Management, Innovation Management and
Industrial Engineering - Volume 01, ICIII ’11, pages 147–152, Washing-
ton, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4523-3.

[17] Milind W. Dawande, H. Neil Geismar, Suresh P. Sethi, and Chelliah
Sriskandarajah. Throughput Optimization in Robotic Cells, volume 101
of International Series in Operations Research & Management Science.
Springer US, 1 edition, 2007. ISBN 978-0-387-70987-1. DOI: 10.1007/0-
387-70988-6.

http://dx.doi.org/10.1109/TII.2016.2626472
http://dx.doi.org/10.1007/978-3-319-63957-4_7
http://dx.doi.org/10.1007/0-387-70988-6
http://dx.doi.org/10.1007/0-387-70988-6

BIBLIOGRAPHY 89

[18] Audrey Delévacq, Pierre Delisle, Marc Gravel, and Michaël Krajecki.
Parallel Ant Colony Optimization on Graphics Processing Units. Jour-
nal of Parallel and Distributed Computing, 73(1): 52–61, 2013.

[19] Mokhtar Essaid, Lhassane Idoumghar, Julien Lepagnot, and Mathieu
Brévilliers. Gpu parallelization strategies for metaheuristics: a survey.
International Journal of Parallel, Emergent and Distributed Systems,
pages 1–26, 2018. DOI: 10.1080/17445760.2018.1428969.

[20] Alan P. French and John M. Wilson. An LP-Based Hybrid Heuris-
tic Procedure for the Generalized Assignment Problem with Special
Ordered Sets. In Maŕıa J. Blesa, Christian Blum, Andrea Roli, and
Michael Sampels, editors, Hybrid Metaheuristics, volume 3636 of Lec-
ture Notes in Computer Science, pages 12–20. Springer Berlin Heidel-
berg, 2005. ISBN 978-3-540-28535-9. DOI: 10.1007/11546245 2.

[21] Na Fu, Hoong Chuin Lau, Pradeep Varakantham, and Fei Xiao. Robust
Local Search for Solving RCPSP/max with Durational Uncertainty.
Journal of Artificial Intelligence Research, 43(1): 43–86, January 2012.
ISSN 1076-9757.

[22] Michele Gadaleta, Giovanni Berselli, and Marcello Pellicciari. Energy-
optimal layout design of robotic work cells: Potential assessment
on an industrial case study. Robotics and Computer-Integrated
Manufacturing, 47: 102 – 111, 2017. ISSN 0736-5845. DOI:
10.1016/j.rcim.2016.10.002.

[23] Michel Gendreau. An Introduction to Tabu Search. In Fred Glover and
Gary Kochenberger, editors, Handbook of Metaheuristics, volume 57 of
International Series in Operations Research & Management Science,
pages 37–54. Springer New York, 2003. ISBN 978-0-306-48056-0.

[24] Fred Glover. Future Paths for Integer Programming and Links to Ar-
tificial Intelligence. Computers & Operations Research, 13(5): 533–549,
May 1986. ISSN 0305-0548.

[25] José Fernando Gonçalves, Mauricio G.C. Resende, and Jorge J.M.
Mendes. A Biased Random-Key Genetic Algorithm with Forward-
Backward Improvement for the Resource Constrained Project Schedul-
ing Problem. Journal of Heuristics, 17(5): 467–486, 2011.

[26] Boukthir Haddar, Mahdi Khemakhem, Säıd Hanafi, and Christophe
Wilbaut. A hybrid heuristic for the 0-1 Knapsack Sharing Problem.
Expert Systems with Applications, 42(10): 4653 – 4666, 2015. ISSN
0957-4174. DOI: 10.1016/j.eswa.2015.01.049.

http://dx.doi.org/10.1080/17445760.2018.1428969
http://dx.doi.org/10.1007/11546245_2
http://dx.doi.org/10.1016/j.rcim.2016.10.002
http://dx.doi.org/10.1016/j.eswa.2015.01.049

90 BIBLIOGRAPHY

[27] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA Data Mining Software:
An Update. SIGKDD Explor. Newsl., 11(1): 10–18, November 2009.
ISSN 1931-0145.

[28] Johannes Hofmann, Steffen Limmer, and Dietmar Fey. Performance
investigations of genetic algorithms on graphics cards. Swarm and Evo-
lutionary Computation (2013). ISSN 2210-6502.

[29] Tabitha James, Cesar Rego, and Fred Glover. A cooperative parallel
tabu search algorithm for the quadratic assignment problem. European
Journal of Operational Research, 195(3): 810–826, 2009.

[30] Jianyong Jin, Teodor Gabriel Crainic, and Arne Løkketangen. A coop-
erative parallel metaheuristic for the capacitated vehicle routing prob-
lem. Computers & Operations Research, 44: 33 – 41, 2014. ISSN 0305-
0548. DOI: 10.1016/j.cor.2013.10.004.

[31] J. E. Kelley. 1963. The critical-path method: Resources planning
and scheduling. In: Muth, J. F., Thompson, G. L. (Eds.), Industrial
Scheduling. Prentice-Hall, Englewood Cliffs, NJ, pp. 347–365.

[32] Daecheol Kim and Hyun Joon Shin. A hybrid heuristic approach for
production planning in supply chain networks. The International Jour-
nal of Advanced Manufacturing Technology, 78(1-4): 395–406, 2015.
ISSN 0268-3768. DOI: 10.1007/s00170-014-6599-4.

[33] Rainer Kolisch, Christoph Schwindt, and Arno Sprecher. Benchmark
Instances for Project Scheduling Problems. In Handbook on Recent
Advances in Project Scheduling, pages 197–212. Kluwer, 1998.

[34] M. E. Lalami and D. El-Baz. GPU Implementation of the Branch and
Bound Method for Knapsack Problems. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE
26th International, pages 1769–1777, 2012.

[35] K. Y. Li and R. J. Willis. An iterative scheduling technique for resource-
constrained project scheduling. European Journal of Operational Re-
search, 56(3): 370–379, 1992. ISSN 0377-2217.

[36] M. Mashaei and B. Lennartson. Energy Reduction in a Pallet-
Constrained Flow Shop Through On–Off Control of Idle Machines.
IEEE Transactions on Automation Science and Engineering, 10(1): 45–
56, Jan 2013. ISSN 1545-5955.

http://dx.doi.org/10.1016/j.cor.2013.10.004
http://dx.doi.org/10.1007/s00170-014-6599-4

BIBLIOGRAPHY 91

[37] D. Meike and L. Ribickis. Energy Efficient Use of Robotics in
the Automobile Industry. In 2011 15th International Conference
on Advanced Robotics (ICAR), pages 507–511, June 2011. DOI:
10.1109/ICAR.2011.6088567.

[38] D. Meike, M. Pellicciari, G. Berselli, A. Vergnano, and L. Ribickis.
Increasing the energy efficiency of multi-robot production lines in the
automotive industry. In 2012 IEEE International Conference on Au-
tomation Science and Engineering (CASE), pages 700–705, Aug 2012.
DOI: 10.1109/CoASE.2012.6386391.

[39] D. Meike, M. Pellicciari, and G. Berselli. Energy Efficient Use of Multi-
robot Production Lines in the Automotive Industry: Detailed System
Modeling and Optimization. IEEE Transactions on Automation Sci-
ence and Engineering, 11(3): 798–809, July 2014. ISSN 1545-5955.
DOI: 10.1109/TASE.2013.2285813.

[40] Micha l Czapiński. An effective Parallel Multistart Tabu Search for
Quadratic Assignment Problem on CUDA platform. Journal of Parallel
and Distributed Computing (2012). ISSN 0743-7315.

[41] Micha l Czapiński and Stuart Barnes. Tabu Search with two approaches
to parallel flowshop evaluation on CUDA platform. Journal of Parallel
and Distributed Computing, 71: 802–811, June 2011.

[42] A. Migdalas, Panos M. Pardalos, and Sverre Story. Parallel Comput-
ing in Optimization. Springer Publishing Company, Incorporated, 1st
edition, 2012. ISBN 1461334020, 9781461334026.

[43] T. Miyamoto, K. Mori, S. Kitamura, and Y. Izui. A Study of Resource
Constraint Project Scheduling Problem for Energy Saving. In 2014
IEEE International Conference on System Science and Engineering
(ICSSE), pages 23–26, July 2014. DOI: 10.1109/ICSSE.2014.6887897.

[44] J. Mohammadi, K. Mirzaie, and V. Derhami. Parallel genetic al-
gorithm based on GPU for solving quadratic assignment problem.
In 2015 2nd International Conference on Knowledge-Based Engi-
neering and Innovation (KBEI), pages 569–572, Nov 2015. DOI:
10.1109/KBEI.2015.7436107.

[45] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, 2012.
https://developer.download.nvidia.com/compute/DevZone/
docs/html/C/doc/CUDA_C_Programming_Guide.pdf. Accessed on:
9.11.2017.

http://dx.doi.org/10.1109/ICAR.2011.6088567
http://dx.doi.org/10.1109/CoASE.2012.6386391
http://dx.doi.org/10.1109/TASE.2013.2285813
http://dx.doi.org/10.1109/ICSSE.2014.6887897
http://dx.doi.org/10.1109/KBEI.2015.7436107
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

92 BIBLIOGRAPHY

[46] Koen Paes, Wim Dewulf, Karel Vander Elst, Karel Kellens, and
Peter Slaets. Energy Efficient Trajectories for an Industrial ABB
Robot. Procedia CIRP, 15(0): 105 – 110, 2014. ISSN 2212-8271. DOI:
10.1016/j.procir.2014.06.043. 21st CIRP Conference on Life Cycle En-
gineering.

[47] M. Pellicciari, G. Berselli, F. Leali, and A. Vergnano. A Minimal Touch
Approach for Optimizing Energy Efficiency in Pick-and-Place Manip-
ulators. In 2011 15th International Conference on Advanced Robotics
(ICAR), pages 100–105, June 2011. DOI: 10.1109/ICAR.2011.6088620.

[48] Tetsuo Samukawa and Haruhiko Suwa. An Optimization of Energy-
Efficiency in Machining Manufacturing Systems Based on a Framework
of Multi-Mode RCPSP. International Journal of Automation Technol-
ogy, 10(6): 985–992, nov 2016. ISSN 1881-7629.

[49] Ursula Schnabl. Auch Roboter können jetzt abschalten.
https://www.bbheute.de/nachrichten/auch-roboter-koennen-
jetzt-abschalten-29-10-2010/. Accessed on: 13.3.2018.

[50] A. Subramanian, L.M.A. Drummond, C. Bentes, L.S. Ochi, and
R. Farias. A parallel heuristic for the Vehicle Routing Prob-
lem with Simultaneous Pickup and Delivery. Computers & Opera-
tions Research, 37(11): 1899 – 1911, 2010. ISSN 0305-0548. DOI:
10.1016/j.cor.2009.10.011. Metaheuristics for Logistics and Vehicle
Routing.

[51] J. Treibig, G. Hager, and G. Wellein. LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments. In
Proceedings of PSTI2010, the First International Workshop on Paral-
lel Software Tools and Tool Infrastructures, San Diego CA, 2010.

[52] Vicente Valls, Sacramento Quintanilla, and Francisco Ballest́ın.
Resource-constrained project scheduling: A critical activity reordering
heuristic. European Journal of Operational Research, 149(2): 282–301,
2003.

[53] A. Vergnano, C. Thorstensson, B. Lennartson, P. Falkman, M. Pellic-
ciari, Chengyin Yuan, S. Biller, and F. Leali. Embedding detailed robot
energy optimization into high-level scheduling. In 2010 IEEE Confer-
ence on Automation Science and Engineering (CASE), pages 386–392,
Aug 2010. DOI: 10.1109/COASE.2010.5584686.

[54] Přemysl Š̊ucha and Zdeněk Hanzálek. A cyclic scheduling problem
with an undetermined number of parallel identical processors. Com-

http://dx.doi.org/10.1016/j.procir.2014.06.043
http://dx.doi.org/10.1109/ICAR.2011.6088620
https://www.bbheute.de/nachrichten/auch-roboter-koennen-jetzt-abschalten-29-10-2010/
https://www.bbheute.de/nachrichten/auch-roboter-koennen-jetzt-abschalten-29-10-2010/
http://dx.doi.org/10.1016/j.cor.2009.10.011
http://dx.doi.org/10.1109/COASE.2010.5584686

BIBLIOGRAPHY 93

putational Optimization and Applications, 48(1): 71–90, 2011. ISSN
0926-6003. DOI: 10.1007/s10589-009-9239-4.

[55] O. Wigstrom and B. Lennartson. Integrated OR/CP optimization for
Discrete Event Systems with nonlinear cost. In 2013 IEEE 52nd An-
nual Conference on Decision and Control (CDC), pages 7627–7633,
Dec 2013.

[56] O. Wigstrom and B. Lennartson. Sustainable Production Automation
- Energy Optimization of Robot Cells. In 2013 IEEE International
Conference on Robotics and Automation (ICRA), pages 252–257, May
2013. DOI: 10.1109/ICRA.2013.6630584.

[57] O. Wigstrom, B. Lennartson, A. Vergnano, and C. Breitholtz. High-
Level Scheduling of Energy Optimal Trajectories. IEEE Transactions
on Automation Science and Engineering, 10(1): 57–64, Jan 2013. ISSN
1545-5955.

[58] T. Zaj́ıček and P. Š̊ucha. Accelerating a Flow Shop Scheduling Algo-
rithm on the GPU. Workshop on Models and Algorithms for Planning
and Scheduling Problems (MAPSP), 2011.

[59] Li Zhou, Dong Wang, and Wuliang Peng. An ACO for Solving RCPSP.
In Computer Science and Computational Technology, 2008. ISCSCT
’08. International Symposium on, volume 2, pages 250–253, dec. 2008.

http://dx.doi.org/10.1007/s10589-009-9239-4
http://dx.doi.org/10.1109/ICRA.2013.6630584

Appendix A
Nomenclature – Chapter 2

Problem Statement Symbols

a Static, dynamic, or composite activity.

v Static activity (robot operation).

e Dynamic activity (set of trajectories).

vr
h Home activity of robot r that closes the cycle.

l Location of static activity.

t Trajectory of dynamic activity.

r Industrial robot from set R.

m Power-saving mode of a robot.

A All activities of a problem instance, i.e., A = AS ∪AD.

AS Set of static activities.

Lv Set of locations of activity v ∈ AS .

AD Set of dynamic activities.

Te Set of trajectories of activity e ∈ AD.

AO Set of optional dynamic activities.

Sa Set of successors of activity a.

Pa Set of predecessors of activity a.

R Set of industrial robots.

G Set of robot graphs.

HCr
act Hamiltonian circuit through activities in a graph of robot r.

HCr
loc Hamiltonian circuit through locations in a graph of robot r.

sa Start time of activity a.

da Duration of activity a.

da Minimal duration of activity a.

da Maximal duration of activity a.

dt
e Duration of the fastest robot movement for trajectory t ∈ Te.

95

96 Nomenclature – Chapter 2

d
t
e Duration of the slowest robot movement for trajectory t ∈ Te.
CT The desired cycle time of the robotic cell.
M r Set of available power-saving modes for robot r ∈ R.
dm Minimal time required by stationary robot r ∈ R to apply power-

saving mode m ∈M r.
fm

v,l(dv) Energy function of static activity.

f t
e(de) Energy function of dynamic activity.
ETL Set of inter-robot time lags.
lai,aj Length of the time lag from activity ai to activity aj .
hai,aj Height of time lag, i.e., time offset in multiples of CT .
tmax The maximal execution time of the heuristic, Branch & Bound

algorithm, or the Mixed Integer Linear Programming solver.

Symbols Related to the Heuristic

Φmin Minimal number of optimization iterations for a given tuple T .
T Tuple, defined as triple T = (A ,P, α : AS → M), is a partial

solution which timing is determined by the Linear Programming
solver, see Section 2.5 for more information.

A Defines the order of activities. Set A contains one HCr
act for each

robot r ∈ R.
P Set contains one closed robotic path (i.e., HCr

loc) through selected
locations for each robot r ∈ R.

α Function mapping each static activity v ∈ AS to its assigned
power-saving mode m ∈M .

AD(T) Dynamic activities selected in the partial solution given by tuple T .
F1(T) Set contains assigned trajectory t ∈ Te for each dynamic activity

e ∈ AD(T) in the form of pair (e, t).
F2(T) Set contains assigned location l ∈ Lv and power-saving mode m ∈

M for each static activity v ∈ AS in the form of triple (v, l,m).
K(T) Possible collisions between robots that may occur in a partial so-

lution given by tuple T .
D≥,D≤ These sets are used to generate collision-avoidance constraints as

described in Section 2.5.3.

Nomenclature – Chapter 2 97

Symbols Related to Branch & Bound Algorithm

c Composite activity, defined in Section 2.9.1.

n Node of the Branch & Bound tree that is defined as triple (P,L,M).
See Section 2.7 for more information.

p Subpath with the fixed order of activities for node n.

P Set of subpaths with the fixed activity order for node n.

L Maps each static activity v to selectable locations Lv(n).

Lv(n) Selectable locations of activity v for node n.

Te(n) Selectable trajectories of activity e for node n.

M Maps each static activity v to applicable power-saving modesM r
v (n).

M r
v (n) Power-saving modes of robot r applicable in activity v for node n.

next(p,n) Leaving edges (⊆ AO) from subpath p for node n.

prev(p,n) Entering edges (⊆ AO) to subpath p for node n.

next(l,n) Leaving trajectories from location l for node n.

prev(l,n) Entering trajectories to location l for node n.

AD(n) Set of viable dynamic activities for node n whereAD(n) = ADf
(n)∪

ADu(n). See Section 2.9.2 for more information.

ADf
(n) Set of selected dynamic activities for node n.

ADu(n) Set of dynamic activities selectable in descendant nodes of node n.

ADu(c) Set of optional dynamic activities encapsulated by composite ac-
tivity c, see Section 2.9.1.

AC(n) Set of composite activities for node n, see Sections 2.9.1 and 2.9.2.

A1(n) Set of activities considered in node n, i.e., A1(n) = AS ∪ AD(n).
Refer to Section 2.9.2 for the definition.

A2(n) Set of activities considered in node n, i.e., A2(n) = AS ∪ADf
(n)∪

AC(n). Compared to A1(n), selectable dynamic activities are en-
capsulated by composite ones, see Section 2.9.2 for more informa-
tion.

K(n) Set specifying pairs of time disjunctive activities for node n. The
set is used in the MILP formulation of the lower bound (see Sec-
tion 2.9.4).

98 Nomenclature – Chapter 2

CT Robot cycle time as a variable, compared to constant CT . Used
in the node evaluator and Deep Jumping that are described in
Sections 2.9.4 and 2.10, respectively.

Appendix B
Nomenclature – Chapter 3

Problem Statement Symbols

V Set of activities in the project.

E Precedences between activities, e.g., if (i, j) ∈ E, i, j ∈ V , then
activity j starts after activity i, i.e., sj ≥ si + di.

G Directed Acyclic Graph G(V,E) where nodes are activities and
edges are precedences.

N Number of activities, i.e., |V |.

S Set of start time values, i.e., S = {s0, . . . , sN−1}.

si Start time of activity i ∈ V .

D Set of activity durations, i.e., D = {d0, . . . , dN−1}.

di Duration of activity i ∈ V .

W Order of activities for a feasible solution, i.e., W = {w0, . . . , wN−1}
where wu is u-th activity in the schedule.

W Set of all feasible solutions for a given instance.

M Number of resources considered in the project.

R Set of resources R = {R0, . . . , RM−1} used for the activities.

Rk Capacity of the k-th resource in R.

Rmax Maximal capacity of a resource, i.e., Rmax = maxM−1
k=0 Rk.

ri,k Activity i ∈ V requires ri,k units of resource k ∈ R.

Cmax Project makespan, i.e., the time needed to execute the schedule.

Symbols Related to Tabu Search

lk Denotes k-th level in graph G(V,E). Level lk contains all the ac-
tivities which longest path from dummy activity 0 (edges weighted
by 1) is equal to k. See Section 3.6.1 for more information.

lmax Last level in graph G(V,E), i.e., level lk with the highest k value.

Nfull(W) Full neighborhood generated by applying all feasible swap moves.

99

100 Nomenclature – Chapter 3

Nreduced(W) Reduced neighborhood, i.e., a subset of Nfull(W), where only
the swap moves satisfying δ parameter are applied, see Section 3.6.3.

δ Maximal distance between two swapped activities in order W .

esprec
i Earliest start time of activity i ∈ V if the precedences are only

considered.

esres
i Earliest start time of activity i ∈ V if the resources are only consid-

ered. The value is determined by a resource evaluation algorithm,
see Section 3.7 for more information.

esi Earliest start time of activity i ∈ V if the precedences and resources
are considered.

C State of resources for the capacity-indexed evaluation algorithm,
i.e., C = {c0, . . . , cM−1}.

ck State of resource Rk, i.e., an array where ck[Rk − ri,k] is equal to
the earliest time when resource Rk is capable of providing ri,k units
for activity i.

T State of resources for the time-indexed evaluation algorithm, i.e.,
T = {τ0, . . . , τM−1}.

τk State of resource Rk, i.e., an array where τk[t] is equal to the
number of available resource units of Rk at time t.

UBCmax Upper bound on the project makespan.

F Set of solutions in the working set, see Section 3.8. Each solution
k ∈ F consists of the makespan Ck

max, order of activities W k, Tabu
List, and iteration counter IC k.

B Number of CUDA blocks used for the execution of the parallel
Tabu Search algorithm.

Iblock Number of iterations assigned to each CUDA block, i.e., to each
instance of the Tabu Search algorithm.

Itotal Total number of Tabu Search iterations, i.e., Itotal = IblockB.

Iassigned Number of Tabu Search iterations assigned to loaded solution k ∈ F .
The value is determined by Equation (3.8) in Section 3.8.1.

Φmax Value determines how many times a solution can be read from the
working set without being improved. If the value is exceeded, the
solution is diversified by random swap moves.

Φsteps Number of random swap moves applied during the diversification
of a solution.

Appendix C
Curriculum Vitae

Libor Bukata received his bachelor’s degree in Cybernetics and mea-
surements from the Czech Technical University in Prague in 2010. He

continued at the same university to study Open Informatics programme
with the branch specialization in Software Engineering, where he completed
his master degree with honors in 2012. Subsequently, he started his Ph.D.
career at the Department of Control Engineering on the topic of parallel op-
timization algorithms for production systems. During his research work, he
has published two papers in impacted international journals (IEEE Trans-
actions on Industrial Informatics and Journal of Parallel and Distributed
Computing), and another one which is currently under the review in Com-
puters & Operations Research. Besides the journal papers, he is a coauthor
of a book chapter (Math for the Digital Factory) and the results of his
research have been presented in more than three international conferences
(e.g., PDP 2013, SCOR 2014, ECCO 2014, MISTA 2015).

With respect to teaching activities, he led lab exercises of Combinatorial
Optimization and Parallel Algorithms courses and helped with the prepa-
ration of the educational material. He also supervised two master students,
namely Tomaš Poledný and Jan Kůrka, who successfully defended their
master theses. He was an opponent of two other students.

Besides the scientific value, many outcomes of his research are applicable
in the manufacturing industry. For example, the energy consumption of a
robotic cell in Škoda Auto was reduced by 20 % without any deterioration
in the throughput after using the results of the proposed optimization algo-
rithms, and these algorithms are being integrated into the Siemens Process
Simulate software to enable an easy optimization and verification before the
deployment. Škoda Auto and Blumenbecker showed interest in our solutions
and assisted with the verification of the technology. In general, his research
and engineering work reflects his passion for scheduling, combinatorial op-
timization, and parallel and distributed systems.

Libor Bukata
Prague, April 2018

101

Appendix D
List of Author’s Publications

List of publications and technical reports related to this thesis is included
in this appendix. Besides the scientific contributions, the energy opti-

mization of robotic cells is a verified technology that was tested at Škoda
Auto in cooperation with Pavel Burget’s team.

Publications in Journals with Impact Factor

Libor Bukata, Přemysl Š̊ucha, and Zdeněk Hanzálek. Solving the Re-
source Constrained Project Scheduling Problem using the parallel Tabu
Search designed for the CUDA platform. Journal of Parallel and Dis-
tributed Computing, 77(0): 58 – 68, 2015. ISSN 0743-7315. DOI:
10.1016/j.jpdc.2014.11.005. Coauthorship 45 %, indexed in Web of
Science, 12 citations (6 of them in WoS).

Libor Bukata, Přemysl Š̊ucha, and Zdeněk Hanzálek. Optimizing Energy
Consumption of Robotic Cells by a Branch & Bound Algorithm. Com-
puters & Operations Research, November 2017. Under the review, the
decision will be known soon.

Libor Bukata, Přemysl Š̊ucha, Zdeněk Hanzálek, and Pavel Burget. Energy
optimization of robotic cells. IEEE Transactions on Industrial Informatics,
13(1): 92–102, Feb 2017. ISSN 1551-3203. DOI: 10.1109/TII.2016.2626472.
Coauthorship 40 %, indexed in Web of Science, 5 citations.

Book Chapters

Pavel Burget, Libor Bukata, Přemysl Š̊ucha, Martin Ron, and Zdeněk
Hanzálek. Optimisation of Power Consumption for Robotic Lines in Auto-
motive Industry. In L. Ghezzi, D. Hömberg, and C. Landry, editors, Math
for the Digital Factory. Mathematics in Industry, volume 27, chapter 7,
pages 135–161. Springer, Cham, 2017. ISBN 978-3-319-63955-0. DOI:
10.1007/978-3-319-63957-4 7. Coauthorship 20 %.

103

http://dx.doi.org/10.1016/j.jpdc.2014.11.005
http://dx.doi.org/10.1109/TII.2016.2626472
http://dx.doi.org/10.1007/978-3-319-63957-4_7

104 List of Author’s Publications

International Conferences and Workshops

Libor Bukata and Přemysl Š̊ucha. A GPU Algorithm Design for Resource
Constrained Project Scheduling Problem. In 2013 21st Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing,
pages 367–374, Feb 2013. DOI: 10.1109/PDP.2013.59. Coauthorship
50 %, indexed in Web of Science, 5 citations.

Libor Bukata and Přemysl Š̊ucha. High-level Optimisation of Energy Con-
sumption of the Robotic Line with Respect to Production Cycle Time
using Integer Linear Programming and Lagrangian Relaxation. In SCOR
2014 - 4th Student Conference on Operational Research. Nottingham: Uni-
versity of Nottingham, Northern Ireland, page 35, May 2014. Coauthor-
ship 50 %.

Libor Bukata and Přemysl Š̊ucha. High-level Optimisation of Robotic
Lines with Respect to Power Consumption and Given Production Cycle
Time. In ECCO 2014 – the 27-th Conference of the European Chapter on
Combinatorial Optimization, München: Technische Universität München,
Germany, page 49, May 2014. Coauthorship 50 %.

Libor Bukata, Přemysl Š̊ucha, and Zdeněk Hanzálek. A new lower bound
for optimisation of energy consumption of robotic cells. In Z. Hanzálek,
G. Kendall, B. McCollum, and P. Š̊ucha, editors, Proceedings of the 7th
Multidisciplinary International Conference on Scheduling : Theory and
Applications (MISTA 2015), Prague, Czech Republic, pages 662–665, Au-
gust 2015. Coauthorship 40 %.

Libor Bukata, Přemysl Š̊ucha, and Zdeněk Hanzálek. A tight relaxation of
the energy optimization problem. In ISCO 2016 - 4th International Sym-
posium on Combinatorial Optimization, Vietri sul Mare (Salerno), Italy,
pages 114–115, May 2016. Coauthorship 33.3 %.

Přemysl Š̊ucha, Libor Bukata, and Zdeněk Hanzálek. Algorithms for Op-
timizing Energy Consumption of Robotic Cells. In Workshop Math for the
Digital Factory, Limerick: University of Limerick, Ireland, March 2018.
Coauthorship 33.3 %.

http://dx.doi.org/10.1109/PDP.2013.59

List of Author’s Publications 105

Other Publications and Technical Reports

Libor Bukata. Preliminary doctoral thesis: Design and application of novel
parallel algorithms addressing challenging combinatorial problems. Techni-
cal report, Department of Control Engineering, Czech Technical University
in Prague, 2014. Coauthorship 100 %.

Pavel Burget, Martin Ron, Libor Bukata, Přemysl Š̊ucha, and Ondřej Fi-
ala. Optimalizace spotřeby elektrické energie na lince Př́ıčńık zadńı pod-
lahy v hale m12. Research report, Department of Control Engineering,
Czech Technical University in Prague, 2014. Coauthorship 20 %.

Přemysl Š̊ucha and Libor Bukata. Specifikace rozš́ı̌reńı nástroje Process
Simulate o plugin pro optimalizaci robotických buněk. Software specifi-
cation, Czech Institute of Informatics, Robotics, and Cybernetics, 2017.
Coauthorship 50 %.

Přemysl Š̊ucha, Libor Bukata, and Zdeněk Hanzálek. Specifications exten-
sion tools Process Simulate on plugins to optimize robotic lines. Research
report, Department of Control Engineering, Czech Technical University in
Prague, 2016. Coauthorship 33.3 %.

Libor Bukata
Prague, April 2018

Libor Bukata

Parallel Algorithms for
Op�miza�on of Produc�on Systems

CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering
Department of Control Engineering

April 2018

This thesis is focused on the op�miza�on of manufacturing
systems. Its main contribu�ons are as follows:

1. Designed and implemented novel algorithms that op�mize
the energy consump�on of robo�c cells without deteriora�on in
throughput.

2. A robo�c cell in Škoda Auto was modified to verify the results
of the algorithms. Measurements confirmed the energy saving
of 20 % only by changing robot speeds.

3. Proposed algorithms can op�mize robo�c cells with up to 12
robots compared to the exis�ng literature where only one to
four robots were considered. A high efficiency of the algorithms,
which are mul�threaded and cache-friendly, is achieved by the
u�liza�on of the problem structure.

4. The Resource Constrained Project Scheduling problem, which
is useful for the op�miza�on of produc�on, was solved on
graphics cards by using Tabu Search meta-heuris�c. The parallel
heuris�c outperformed exis�ng Tabu Search implementa�ons.

	List of Acronyms
	Introduction
	Closest State-of-the-Art Work
	Key Contributions
	Potential Impact
	Structure of the Thesis

	Energy Optimization of Robotic Cells
	Related Work
	Contribution and Outline
	Problem Statement
	Example 1
	Example 2

	Mixed-Integer Linear Programming Model
	Parallel Heuristic Algorithm
	Generation of Alternatives
	Generation of Tuples
	Reduced Linear Programming Problem
	Sub-heuristics

	Parallel Branch & Bound Algorithm Overview
	Node Definition
	Branching
	Order Propagation
	Propagation of Locations
	Propagation of Power Saving Modes
	Fast Feasibility Checks

	Energy Evaluator of Nodes
	Composite Activities
	Extra Activity Sets
	Convex Envelopes
	Lower Bound based on Convex Envelopes

	Deep Jumping
	Parallelization
	Experimental Results
	Performance Experiments
	Optimality Experiments
	Quality Experiments

	Case Study from Škoda Auto
	Conclusion

	Project Scheduling on Graphics Cards
	Related works
	Contribution and Outline of the Chapter
	CUDA platform
	Problem Statement
	Mathematical Formulation
	Instance Example

	Outline of the Tabu Search meta-heuristic
	Exploration of the Solution Space
	Creating Initial Activity Order
	Move Transformation
	Neighborhood Generation
	Filtering Infeasible Moves
	Simple Tabu List and Cache

	Schedule Evaluation
	Capacity-Indexed Resources Evaluation
	Time-Indexed Resources Evaluation
	Schedule Evaluation Procedure
	Heuristic Selection of Resources Evaluation Algorithms

	Parallel Tabu Search for the CUDA platform
	Block Cooperation and Distribution of Iterations
	Memory Model

	Experimental Results
	Evaluation of the Selection Heuristic
	Demonstration of Convergence

	Conclusion

	Conclusion and Future Work
	Fulfillment of Goals

	Bibliography
	Nomenclature – Chapter 2
	Nomenclature – Chapter 3
	Curriculum Vitae
	List of Author's Publications

