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Abstract

In this thesis we develop an optimized ver-
sion of digital signature algorithm based
on Schnorr’s algorithm using a Twisted
Edwards curve over a finite field that can
run on low-power and low-memory de-
vices. We use this implementation as a
basis for adding message authenticity fea-
ture to communication between sensor de-
vices and computer program in a wire-
less sensor network. The sensor devices
sign the message and the computer pro-
gram verifies the signature and recognizes
known devices by their public keys. For
demonstration purposes a simple graph-
ical user interface is presented to allow
visualizing the temperatures and signa-
ture verification results.

Keywords: IoT, ECC, msp430, message
autentication, low-power MCU, IoT
security, ECC-based data signatures
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Abstrakt

Tato prace se zabyva implementaci opti-
malizované verze digitalniho podpisu na
zékladé Schnorrova algoritmu za pouziti
eliptické krivky typu “Twisted Edwards
curves” nad prvociselnym koneénym té-
lesem, kterou je mozné vyuzit v mikro-
kontrolérech s malym vykonem a malou
velikosti paméti. Tato implementace je
nasledné pouzita pro pridani moznosti au-
tentizace zprav pri komunikaci senzoru
a pocitacového programu v bezdriatové
siti senzoru. Zarizeni se senzorem pode-
pisi zpravu s daty a pocitacovy program
nasledné tento podpis ovéri a rozpozna
registrovand zarizeni na zakladé jejich ve-
fejnych klict. Jako ukdzka pouziti této
funkcionality bylo realizovano jednoduché
grafické rozhrani, které zobrazuje teploty
a stavy ovéreni podpisu jednotlivych sen-
zoru.

Klicova slova: IoT, ECC, msp430,
autentizace zprav, nizko-energetické
MCU, IoT bezpecnost, podpisy dat
pomoci Kryptografie eliptickych krivek

Preklad nazvu: IoT zarfizeni pro
inteligentni budovy s digitalnimi podpisy
dat pomoci kryptografie eliptickych
krivek.
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Chapter 1

Introduction

The connection between Internet of Things (IoT) and Elliptic curve cryptog-
raphy (ECC), described in this thesis, should solve the lack of security in
smart devices. By security, we mean confidentiality and authentication. We
are tackling the authentication aspect of security by utilizing ECC signatures.
There are many definitions of Internet of Things (IoT), there is no formal
specification at this time. Historically, the concept of a IoT utilizing was firstly
discussed in 1982, with a modified vending machine known as “The "Only"
Coke Machine on the Internet”, at Carnegie Mellon University, becoming the
first Internet-connected application[d]. The Coke machine was able to report
the whole inventory and if the newly added drinks were cold. For our formal
definition of IoT, we rely on Network of "Things’ NIST specification [14].
IoT connects multiple technologies such as telecommunication, data mining,
machine learning, control systems, sensor networks and embedded systems.
When these technologies are together we are able to do incredible things such
as making our home smart. IoT applications are, in general, composed of:

® Sensors, devices mainly used for measuring properties of environment
® Aggregators, devices for data collection

#8 Communication channel, ensures data exchange between all the ele-
ments of network

eUtilities, external utility for data processing
8 Decision Trigger, makes decision based on collected data

The Smart homes concept is becoming very popular as a sense of sus-
tainability and eco-friendliness become more pervasive. People are more
interested in “saving” the planet by decreasing our energy consumption as
much as possible. In the future, we can expect to be living in smart cities,
full of smart buildings, cars, and more. In this thesis, we are building a small
Wireless Sensor Network (WSN) where sensors, referred to as End devices,
are transmitting data such as temperature, signal strength, and voltage to a
receiver known as an Access point. The Access point receives data from the
End devices and sends the data to the more powerful device for the further
processing.



1. Introduction

Building
management sysiem

Figure 1.1: Smart building.[7]

We deploy our End devices to the chosen positions in our smart house for
measuring temperature. Problems can occur when an intruder acquires the
End device and starts sending forged data. Then we cannot rely on sensors
anymore and the building becomes vulnerable especially fire or flooding
detection. We must ensure that the data is reliable, especially when making
critical decisions such as those based on fire detection.

Current wireless IoT protocols only use symmetric block ciphers. For
example, Zigbee uses Advanced encryption standard (AES) and SimpliciTI
uses Extended Tiny Encryption Algorithm (XTEA) [16]. We chose to use
SimpliciTT for its low size only around 4k bytes comparing to Zigbee around
40k bytes.

Because our WSN is constrained by memory and computational power in
all of its components and we want our End nodes to last as long as possible if
they are running on batteries, we decided to use ECC based digital signatures
for their energy-efficiency, [I8] high-speed, high security, small size [§]. We
will discuss examples of the most common hardware used in the Internet of
things later in this chapter.



1.1. Common hardware

. 1.1 Common hardware

Raspberry Pi is very popular and fairly cheap board used mostly for
experiments such as creating media centers or for educational purposes. It
is possible to extend this mini computer by adding kits and capes such as
a wireless card or touch display. It is possible to use precompiled images of
various Linux distributions like Raspbian which can be easily downloaded
and copied to SD card. There are lot of public open source implementations
of many IoT applications such as “Internet of things toilet” which can be
downloaded even by non-technical people, like hobbyists, without not any
further deep technical knowledge. The mentioned example attempts to lower
water consumption of the toilet and detects if we have run out of toilet paper
[19].

This application is a very simple implementation with only two sensors.
The first sensor is an aquarium liquid level floating switch which is used to
detect the toilet tank level and the second sensor is a photo cell located in
paper holder socket which checks when the spindle is removed. The data is
sent through the wireless protocol to the Raspberry Pi which contains the
Python API gspread, transmitting the data to a Google Drive spreadsheet.

Beaglebone is very similar to the Raspberry Pi, but is less popular
amongst non-technical people and is more often used for academic proofs of
concept. In our proof of concept, we also used the Beaglbone as a device
for visualization and aggregation of our data. We connected Access point to
the beaglebone for data processing and visualization using the BB-view cape
which contains a touchscreen display.

Figure 1.2: Beaglebone with BB view.[20]

Arduino is very popular and is widely used in home automation, as well as
in robotics. Early ATMega boards were not able to contain a normal operating
system, but these days we have Arduino boards with ARM competing with
Beaglebone and are able of containing full Linux installation. There are many
popular applications openly shared by users and can be used immediately. It
is also possible to buy full kits for various purposes.

3



1. Introduction

Wireless chips such as flutter or MSP430 are generally micro controllers
not capable of having a full operating system due to a significant lowering
power consumption to extend the life time of the batteries. Normally we
connect these chips to more powerful devices to be able to aggregate and
process data.

B2 Elliptic curve cryptography

The Elliptic curve cryptography (ECC) is asymmetric cryptography scheme
of public-key cryptography based on elliptic curves over the finite fields. In
general, asymmetric cryptography can be used for key exchange as well as
for digital signatures. Since purpose of this thesis is focusing on the lack of
authenticity in the IoT message exchange. This scheme is perfect, not only
because its high speed properties, but also the small size of the keys.

We are using implementation Curve25519 and Ed25519 for low-memory
systems [12]. “Curve25519 is a state-of-the-art Diffie-Hellman used for wide
variety applications” as stated in [I0] such as encrypting messages between two
users. For our purposes we are using Ed25519 which is public-key signature
system using elliptic-curve signatures [8] and with various useful features such
as:

B Fast single-signature verification.
® Even faster batch verification.
B Very fast signing.

B Fast key generation.

® High security level.

® Foolproof session keys.

® Collision resilience.

® No secret array indices.

® No secret branch conditions.
® Small signatures.

® Small keys.

For 128-bit security the size of the key is 32 bytes (256 bits) which compared
to the RSA algorithm, the equivalent would be RSA 3072-bit with a key size
384 bytes. As we can see, for IoT as well as general purpose low-memory
systems, RSA is not usable at all. Edwards-curve Digital Signature Algorithm
(EADSA) digital signature system based on on Twisted-Edwards curves using
Schnorr Algorithm for digital signatures. Schnorr’s signature algorithm is
based on an oracle model and it is efficient in generating short signatures.

4



1.2. Elliptic curve cryptography

Curve type 159 bit 191 bit 223 bit 255 bit
Montgomery (variable base) | 3.86-10° | 6.00-10° | 8.79-10° | 12.34 - 10°
Twisted Edwards (fixed base) | 1.92-10° | 3.01-10° | 4.45-10° | 6.29 - 10°

Table 1.1: Execution time (in clock cycles on an MSP430F1611) of variable-base
scalar multiplication on a Montgomery curve and fixed-base scalar multiplication
on a twisted Edwards curve over 159, 191, 223, and 255-bit fields. [I§]

We use a special implementation for Twisted Edwards curve Ed25519
algorithm. This pseudo-mersenne prime number 2255 — 19 allows us to do
fast modular arithmetic and as Table [1.1] shows, is significantly faster than

Montgomery curve on MSP430.






Chapter 2
MSP430 family

We are using MSP430 Wireless development Tool which has MSP430F2274
ultra-low-power MCU. The MSP430 is a low power micro controller with
16-bit CPU designed for low cost embedded applications. The MSP430 can
use six different low-power modes which include the ability to disable needed
CPU clocks. MSP430 can be woken up from the sleep mode very quickly,
around 1 microsecond, which minimize current consumption.

Our Wireless MSP430 also contains CC2500 chip has low power transceiver
and allows wireless communication on 2.4 GHz with ISM band multi channel.
Additionally, our MSP430 supports MSP430 Application UART, allowing
communication with the receiver and our PC through a USB serial connection.
Using this, we can connect our Receiver to the Beaglebone for data processing
and aggregation.

e7430-AF2500 i3 TEXAS
Wireless Development Toaol INSTRUMENTS

Figure 2.1: Wireless development eZ430-RF2500 Tool [22].
The specifics of this particular model are discussed in relevant sections

below. This micro controller unit is a typical example of what is used in a
WSN with battery-operated devices, as battery lifetime is an important issue.

. 2.1 eZ430-RF2500 Sensor Monitor Demo

Texas Instruments provides demonstrations on their pages for the eZ430 Kit
Sensor monitor demo of sample applications for these devices. We can choose

7



2. MSP430 family

an integrated development environment (IDE) of our choosing to work in,
however, Texas Instruments provides whole projects for IAR [4] and CCS [2].
Since the IAR studio is not free, we decided to use CCS.

We download the zip file from Texas Instruments web page and open it
in CCS studio as the project. We can choose from two implementations for
MSP430 one called “Access Point” and other called “End Device”. Every time
we make change to the code we just can compile it and see the compiled binary
in €Z430-RF2500 WSM/End Device/eZ430-RF2500 _ WSM.out depending if
it is the Access point code or End device one. For our purposes we had to edit
both source codes. We describe these changes in the protocol implementation,
in chapter 6.

ccs Edit X _ED.c - Code Compy o]

m |G CCs Edit| #; CCs Debug

= O Ocons.. [lProbl. { Advice® @script.. = O
5 3items
Description

» i Optimization Advice (3 items)

TI BE
R_INDIREC

ANY SPE
HOWE

LIABLE FOR
T DAMAGES,

> & Configuration

P End Device

> targetConfigs
% Ink_mspa3012274.cmd
B macros.ini_initial

p43012274.1d

£ Memory Allocation 3 @B N =08
Project 'eZ430-RF2500_WSM': Link success ful

PERIPHERALS_168IT 256
> RAM 770 (75%) | 1,024
> FLASH 18,307 (55%) | 32,734

& | witable Smartinsert  351:24

Figure 2.2: Sensor Monitor demo [21I] opened in CCS studio [2].

B 22 Memory configuration

We can see the memory configuration of our device in the map file eZ430-
RF2500  WSM.map during compilation the CCS studio which we are using
also show us the location map.

As we can see from the memory configuration there are parts of the FLASH
which are not used for example INFOC and INFOD. We can optimize ourkey
signing algorithms by storing the private and public keys in INFOD and the
expanded secret key in INFOC.

Further explanations of these optimizations follow in later chapters. To
be able to actually write to the flash, we have to acquire some of the knowl-
edge how to open the flash memory for writing. After studying the Texas
Instruments provided demo mentioned earlier in this chapter, we found when
the End device code is creating the random address to save it into FLASH

8



2.2. Memory configuration

name origin length used unused attr

SFR 00000000 | 00000010 | 00000000 | 00000010 | RWIX
PERIPHERALS 8BIT | 00000010 | 0000000 | 00000000 | 0000000 | RWIX
PERIPHERALS 16BIT | 00000100 | 00000100 | 00000000 | 00000100 | RWIX
RAM 00000200 | 00000400 | 00000302 | 000000fe | RWIX
INFOD 00001000 | 00000040 | 00000000 | 00000040 | RWIX
INFOC 00001040 | 00000040 | 00000000 | 00000040 | RWIX
INFOB 00001080 | 00000040 | 00000000 | 00000040 | RWIX
INFOA 000010c0 | 00000040 | 00000000 | 00000040 | RWIX
FLASH 00008000 | 00007fde | 00004783 | 0000385b | RWIX
INT00 0000ffe0 | 00000002 | 00000002 | 00000000 | RWIX
INTO1 0000ffe2 | 00000002 | 00000002 | 00000000 | RWIX
INTO2 0000ffe4 | 00000002 | 00000002 | 00000000 | RWIX
INTO3 0000ffe6 | 00000002 | 00000002 | 00000000 | RWIX
INT04 0000ffe8 | 00000002 | 00000002 | 00000000 | RWIX
INTO05 0000ffea | 00000002 | 00000002 | 00000000 | RWIX
INT06 0000ffec | 00000002 | 00000002 | 00000000 | RWIX
INTO07 0000ffee | 00000002 | 00000002 | 00000000 | RWIX
INTO8 0000£tf0 | 00000002 | 00000002 | 00000000 | RWIX
INT09 0000ftf2 | 00000002 | 00000002 | 00000000 | RWIX
INT10 0000ftf4 | 00000002 | 00000002 | 00000000 | RWIX
INT11 0000£tf6 | 00000002 | 00000002 | 00000000 | RWIX
INT12 0000£t8 | 00000002 | 00000002 | 00000000 | RWIX
INT13 0000ftfa | 00000002 | 00000002 | 00000000 | RWIX
INT14 0000ftfc | 00000002 | 00000002 | 00000000 | RWIX
RESET 0000ftfe | 00000002 | 00000002 | 00000000 | RWIX

Table 2.1: Memory configuration of MSP430.

memory they are using specific commands to open the FLASH memory for

writing.

The empty flash memory is always full of 1s after unlock we are able to flip
the individual bits down to the 0s but only once. Erasing the flash memory
can be done only by segments of size 64 bytes. Later in this thesis, we describe
erasing the segments by use of a small shell script while flashing code to the

devices.

void createRandomAddress ()
{

unsigned int rand, rand2;
do
{

rand = TI_getRandomIntegerFromVLO() ;
}

while( (rand & OxFF00)==0xFF00 || (rand & OxFF00)==0x0000 );

rand2 = TI_getRandomIntegerFromVLO();

BCSCTL1 = CALBC1_1MHZ;
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DCOCTL = CALDCO_1MHZ;

FCTL2 = FWKEY + FSSELO + FN1;
FCTL3 FWKEY + LOCKA;
FCTL1 FWKEY + WRT;

Flash_Addr [0]=(rand>>8) & OxFF;
Flash_Addr [1]=rand & OxFF;
Flash_Addr [2]=(rand2>>8) & OxFF;
Flash_Addr [3]=rand2 & OxFF;

FCTL1 = FWKEY;
FCTL3 = FWKEY + LOCKA + LOCK;

From this code, we are able to figure out how we should operate with the
FLASH memory and how to open it. We decided to store private public and
extended private key to the FLASH memory. As we learned from the Texas
instrument’s code before we write to the flash we have to set WRT bit for
write operation as following:

FCTL3 = FWKEY;
FCTL1 = FWKEY + WRT;

After we are done writing to the memory we have to lock it:

FCTL1 = FWKEY;
FCTL3 = FWKEY + LOCK;

This is very important finding for our optimizations later in this thesis
which will allow us to reach our goal. From this same code for creating the
random address for the End devices we later utilize this in creating a random
number generator for generating the private keys

10




Chapter 3
SimpliciTI

SimpliciTT is a low-power, radio frequency (RF) protocol aiming for simple
and small networks such as Wireless Sensor Networks in smart buildings. It
was mainly developed for building networks with Texas Instruments chips
such as MSP430 where the end devices are powered by battery.

This protocol was designed to minimize power consumption as much as
possible to extend the life time of batteries. In our application, the chip
supports 2.4GHz. The network device types are limited and one physical
device can be more than one logical device. Types of the logical devices:

8 Access point, functions are network address management and storing
or forwarding messages on behalf of the sleeping devices. Only 1 AP for
network is permitted and have to be always on.

® Range extender, re-transmits every frame thus extending the range of
the other node. Range extender has to be always on for not missing any
frames.

8 End device, transmits, receives the data or both. Depending on config-
uration can be always on or asleep.

This protocol is very widely used in Home automation for various applica-
tions such as garage door openers, light sensors, glass breakage detectors and
smoke detectors.

. 3.1 Architecture overview

Communication through the simpliciTI protocol is provided by a set of API
symbols for initialization, configuration, and reading or writing messages
through air. The SimpliciTI protocol supports 3 layers of the OSI model:

® Application layer, needs to be developed by the user. The simpliciTI
API is used for such an application to send or receive messages from
device to device.

® Network layer, handles message exchange between nodes based on
their 4 byte addresses.

11
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® Data link (PHY) layer, no formal PHY layer as in OSI Reference
model. The framed Data are received from the radio which performs
functions of formal PHY layer.

Join

‘ Cuslomer

. . Custormer
Pin, Link Fre
4 ‘ . | ‘ App App
. ~ A3 * P g
Application ~ ~ .
Port 0x01 Port 0x02 Port 0x03 Port 0x05 Port 0x20  Port 0x21
T~ A w Y ¥
Network NWK

Data Link/ YEE
PHY

Figure 3.1: SimpliciTI Architecture[17].

The SimpliciTI protocol supports different types of radios, but the basic
interface for the network layer is same for all of them. The Minimal Radio
frequency Interface (MRFT) shields the programmer from implementation spe-
cific details which might be slightly different in various protocol configurations
on different devices. Explicit routing is not supported.

The receiver devices receives data directly from the source or through
Range extender. Sleeping receivers can poll data from the AP or through
Range extender.

B 32 Topology

The example of topologies which SimpliciTI provides can be seen below in
the figures.

Logical path s e e e e e ==

Data path  e—

NWK
management

Figure 3.2: Legend[I7].

P N,
_I

ED 2 ED 1

Figure 3.3: Direct Peer-to-peer[17].

On the figure 3.3 we see Direct Peer to peer connection where the End
Device 1 (ED1) is sending data to the End Device 2 (ED2). This topology
can be useful in more complex networks (3.4l

12
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ED2

Figure 3.4: Store-and-forward and peer-to-peer through Access Point[17].

The next figure is an example of a more complex network where we use
the Peer to peer topology together with the Access Point. The data is sent
from ED1 to AP and then AP stores and manages the data on behalf of ED2
when it’s asleep3.4l

ED1

Figure 3.5: Direct peer-to-peer through Range Extender[I7].

We can also combine the Peer to peer with Range extender meaning if the
devices are not in range of each other we use extender which provides some
kind of middle hop between them and they can communicate through it |3.5.

Sleeping
ED2

Figure 3.6: Store-and-forward peer-to-peer through Range Extender and Access
Point[17].

Eventually we combine all discussed topologies to one as it can be seen on
the last figure|3.6. We are using there range extender to ensure communication
with the ED1 storing the data from the ED2 and polling to AP. The AP
manages the data from the sleeping devices.

13
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N 33 SimpliciTIl configuration

The configuration of SimpliciTI can be customized by the end user in the
smpl__nwk__config.dat. The build time options for custom configuration
can be seen bellow:

® Hops are jumps between the network devices.

# Max hop count to AP
--define=MAX_HOPS=3

# Max hops away from and AP. Keeps hop count and therefore
replay

# storms down for sending to and from polling End Devices.
Also used

# when joining since the EDs can not be more than 1 hop away

--define=MAX_HOPS_FROM_AP=1

® The payload are transmitted data. We have to change APP payload to
from 10 to 17 more in

# Maximum size of Network application payload. Do not change
unless
# protocol changes are reflected in different maximum
network
# application payload size.
--define=MAX_NWK_PAYLOAD=9

# Maximum size of application payload
--define=MAX_APP_PAYLOAD=17

B Set the default link and join token.

# Default Link token
--define=DEFAULT_LINK_TOKEN=0x01020304
# Default Join token
--define=DEFAULT_JOIN_TOKEN=0x05060708

® The ACK acknowledge of received message from the receiver sent to the
origin device.

# Remove ’#’ to enable Frequency Agility (frequency hopping
when acks not received)

# Requires APP_AUTO_ACK

#--define=FREQUENCY_AGILITY

14




3.4. Frame

--define=EXTENDED_API

® Security discussed later in this chapter in 3.5

8 Enables GET and SET support for NV objects.

® Enabling the SW timer.

--define=SW_TIMER

. 3.4 Frame

The SimpliciTI frame consists of 3 logical parts from which one of each one
serves to its layer.

[ PREAMBLE | SYNC | LENGHT | MISC | DSTADDR | SRCADDR [ PORT | DEVICE INFO | TRACITD | App payload | FSC |
| RD* | RD* | 1 | RD* | 4 | 4 | 1 ] 1 | 1 | n | RD* |

Table 3.1: SimpliciTI frame structure(disabled security)
RD*: Radio-dependent populated by MRFT or handled by the radio itself.

PREAMBLE and SY NC are for radio synchronization inserted by the
hardware radio. LENGTH is the length of the remaining packet in bytes
inserted by firmware on the transmitter and it can be partially filtered on
receiver. M 1SC' depends on the type of radio and can be missing. Destination
address (DSTADDR) and Source address (SRCADDR) are byte arrays
handled by MRFI for the address mapping based on configuration of network
and radio. PORT is holding the port number in bits from 0-5. The bit 6 is

15
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Bit 7 6 5-4 3 2-0
Description | Acknowledgement request | 00: Controlled listen | 00: End Device | Acknowledgement reply | Hop count
01: Sleeps/polls 01: Range Extender

10: Access Point
11: Reserved

Table 3.2: Device info bit values[17].

enabled when the encryption is requested. The bit 7 is telling us if the frame
was forwarded by the AP or not.

DEVICE INFO bit values can be seen in table [3.2l Transaction ID
(TRACTID) is used by NWK layer for example for matching the the replies
of messages or to help detect a duplicate frames. APP PAY LOAD reserved
for the application data we want to send. Finally Frame check sequence
(F'SC) depending on radio is some kind of CRC appended for the checking
the sequence.

B 35 eXtended Tiny Encryption Algorithm (XTEA)

The SimpliciTI protocol is using the modified counter mode (CTR mode).
The eXtended Tiny Encryption Algorithm (XTEA) is used for encryption
with a fixed number of rounds 32. XTEA is eXtended version of older
Tiny Encryption Algorithm which is trying to correct the weaknesses such
as vulnerability to “related-key attack” requiring 232 plain texts and time
complexity 232. It is a block cipher designed by David Wheeler and Roger
Needham from Cambridge Computer Laboratory is 64-bit Feistel cipher using
128-bit key.

The 64-bit block containing 32-bit Initialization vector and 32-bit counter
which is changed for each encryption. The change guarantees unique block
for encryption. On the figure 3.7 see the schematic of the XTEA encryption
in SimpliciTI. Between the 64-bits cipher block and the next 64-bits of plain
text it uses exclusive bitwise logical XOR. When the remaining plain text is
smaller than 64-bits it discards the extra cipher block. Otherwise, for the
remaining plain text it creates next cipher block by counter incrementation.
Each time application sends the frame the payload is encrypted before sending
and on the receiver the payload is decrypted before it is available to the
application.

The security of encryption is maintained by the 3 components:

® 128-bit key
® 32-bit Initialization Vector
® 32-bit counter

The key and the Initialization vector are fixed during the build time. The
starting value of the counter is exchanged during the link session between
application peers. These values are independent for the sending and the
receiving transmissions. The decryption is done by the same scheme as in
figure [3.7] but in the reverse order of the encryption one.
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3.5. eXtended Tiny Encryption Algorithm (XTEA)

Initialization Vector (32 bits)|Counter (32bits) Key (128 bits)

N

XTEA block cipher

64 bit cipher block Plain text (64 bits)

Cipher stream

Figure 3.7: SimpliciTI Encryption scheme[16].

The code of the XTEA security can be found in SimpliciTI components
part of the Texas Instruments provided demo[2I]. The file containing whole
security logic is nwk__security.c and this encryption can be enabled by
build time option SMPL__ SECURE in the smpl_nwk_ config.dat as
described previously in this chapter. The SimpliciTT security method contains

PREAMBLE | SYNC | LENGHT | MISC | DSTADDR | SRCADDR | PORT | DEVICE INFO | TRACITD Securit: A ayload| FSC
RD* RD* 1 RD* 4 4 1 1 1 CTR(1) MAC(2) n RD*
[ Network header App payload
[ MRFI header | MRFI payload
[ MRFI frame

SimpliciTl frame

Figure 3.8: SimpliciTI frame with encryption enabled.[I7]

minimal Authentication object (MAC). The MAC is a 2 byte object consisting
first byte containing fixed value and second byte representing a frame check
sequence (FSC). This helps defending against rogue and replayed frames.

Frame format has to be changed for the encryption support as it can be
seen on the figure 3.8l Firstly the encryption valid bit is set after frame
encryption and secondly another 3 bytes are added to the frame consist of
one byte counter hint and 2 byte MAC.

XTEA is for ensuring data confidentiality and should by no means be
considered a message authentication scheme. In this project, we opt not to
use it as this work is related on message authentication. It should be noted
that if the digital signatures developed as a part of this thesis are used in
XTEA-encrypted SimpliciTI network, many attacks on protocol messages
would be mitigated.
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Chapter 4

Protocol design

We need to design a protocol for sending not only the sensor data but also
the public key and cryptographic signature from End devices to Access Point.
The sensor data from ez430 demo is only 3 bytes large and for demonstration
purposes this is all we need to sign.

The original 3-byte message payload can be seen in table |4.1. This is the
message we need to sign in order to provide message authentication.

Field: | degC LB | degC UB | volt
Byte: 0 1 2

Table 4.1: Original 3-byte message payload containing the temperature in
little-endian two-byte format and single-byte voltage value.

Writing the payload byte-by-byte can be done as follows:

msg[1] = degC&OxFF;
msg[2] = (degC>>8)&0xFF;
msg[3] = volt;

The public key is 32 bytes long and signatures — regardless of the signed data
length — are 64 bytes long. That is total 99 bytes of data to be transferred.

However SimpliciTI does not allow us to send so much data in one packet.
The default packet size is 10 bytes and although it is possible to recompile
the wireless stack with larger packet size, the maximum recommended packet
size tops at 50 bytes.

Therefore we opt to use multiple SimpliciTI packets for sending all the
data we need to transfer.

Field: ‘ Counter ‘ Data
Size [B: | 1 | 16

Table 4.2: New protocol packed size.

As the nature of the data is easily aligned on 16 byte size, we configure the
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wireless stack to use 17 byte long packets with first byte representing packet
number within the message (a counter) and the rest 16 bytes are the actual
payload as seen in table 4.2,

Although we need to sign only 3 bytes of data, we reserve the space for
actual sensor data in our protocol to be also 16 bytes is that allows for simple
extension in the future and falls in line with the rest of the protocol.

The resulting packet descriptions comprising the whole message can be
seen in table [4.3l On packet of sensor data, two packets with the device
public key and four packets containing the signature of the sensor data by a
private key corresponding to the public key transferred earlier.

Number of message 16 bytes message
0 data 4+ nothing4.1
1-16 bytes of public key
16-32 bytes of public key
1-16 bytes of signature

16-32 bytes of signature

32-48 bytes of signature
48-64 bytes of signature

SO | W N

Table 4.3: Protocol design.

In order to transfer the whole message, the device first sends a packet
number 0 with the sensor data. Then it sends packets number 1 and 2 with
the public key. We define in advance, that this should happen immediately
after the measurement. After sending these three packets, the cryptographic
signature should be created. Creating this signature may take a long time
and only after it has been calculated, packets 3 to 6 should be sent.

One of the measurements in section [6.4.1] uses this delay to measure how
long does the creation of Ed25519 signatures take on the msp430 MCU.

Only after the access point receives all the messages, it should act upon the
data received. First it should verify the signature against provided public key
and if it is correct, it should look it up in the end devices database and mark
it as known or unknown. Should the signature verification fail, the software
should display it to the user accordingly.

B a1 Replay attack

A replay attack is a form of network attack where the original valid data
from the sender is spoofed and replayed to the receiver. In that case, the
receiver gets same messages with valid data signature and the key and does
not notice there is something wrong.

In way the attacker can send any time this data to the receiver and make
receiver think that it was sent from our original End device. In our case, it
can easily happen when for example there is fire in the room and temperature
rises, the attacker can easily send this old data to our receiver and pretend
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4.2. Ed25519

there is nothing wrong. For these cases, we left space in the first message

[l == ] OPrivate key

| Public key
CHE=S
@private key
{/ Public key o

Original connection

OPrlvate key
|/ Public key \nlﬁ-’ Replay

D Public keys table
Oanatekey Gy — > 0 0 0

 Public ke
' y R Attacker

Y\
o

Figure 4.1: Replay attack scheme.

number 0 as it can be seen in In the future we can, instead of “nothing”,
put some kind of counter changing every transmission and prevent replay
attack. Then, if the attacker tries to resend the messages, the receiver will
know it is an old message with obsolete counter number and reject the data.

Because it is out of the scope of this thesis, space was left in the initial
message for replay attack countermeasures.

B 3.2 Ed25519

We are using Ed25519 scheme which is using elliptic curve signatures providing
us very high speed without compromising security. Public keys in Ed25519
are 256-bit keys of size 32 bytes. For 32-byte key transmission, we just need
to send 16 bytes two times for the device identification in the network showed

on table

Field | Size
Sensor data | 3 (+13)
Public key | 32
Signature 64

Table 4.4: Splitting the ed25519 key and signature.

The signatures in this implementation are 512-bit which gives us the 64
bytes size of the whole signature. That is twice more larger than the public
key but we only need 4 transmissions for the sending the whole signature to
the Access point. That is convenient and not very problematic and does not
limit us at all.

The signed payload we are transmitting is 3 bytes consisted of the volt-
age and temperature. There is still 13 bytes left in the first transmission
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4. Protocol design

so the payload can be increased by the simple constant in the SimpliciTI
configuration file discussed in
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Chapter 5

Digital signatures

Digital signatures are used for authentication of messages or documents. In
our case, we wish to know if message was really send from End Device that
we set up, if is whole and there was any problem during the transmission. If
the digital signature is valid, the receiver can easily validate whenever the
sender is allowed to perform such a transmission and that the message was
not corrupted or tampered with[3].

To accomplish this, we use Public key cryptography, where we have pair of
keys private and public key. On each End device, we generate the private key
(ECC 32-byte key in our case) and send a corresponding public key to the
receiver so that it can check future message validity. After we have our pair
of keys generated on every device we make table public keys in our receiver of
“Trusted devices” where we put all the public keys as we can see in figure [5.1

Now we can finally send our message with the public key and signature and
the receiver can validate if the message was not corrupted and if the device’s
public key is in the table of “Trusted devices”. The ECC is not needed on
the Access point, data is passed to the application over USB serial for the
further processing.

GPrivate key

{ Public key
= —
aPrivate key
| Public key ~
VS
=
7\
@private key )
{/ Public key
o Public keys table
@private key 7T7°7°¢
{ Public key

Figure 5.1: Our small Wireless Sensor Network.
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5. Digital signatures
B 51 Porting Daniel Beer’'s implementation c25519

We are using the only known embedded implementation of Ed25519 Daniel
Beer’s “Curve25519 and Ed25519 for low-memory systems” [12]. As Daniel
Beer describes on his page the cost of the key functions on the stack usage
with our 1K byte of memory we supposed that it should work. Unfortunately,
during the implementation, we discovered that the values from the Table [5.1
are not correct and we have to optimize many key functions to even be able
to sign messages.

We discuss these optimizations later in this chapter. We rendered the
graph of function calls in figure [5.2] where we can see that path from
ed25519  smult to ed25519 double or ed25519  smult to ed25519__add
which is the longest path taking the most of time.

25519 _ackl

ed25519_ack

f25519_sub

ed25519_double

ec26519 copy | = | ed25519 smult 2d25519_double 26519_neg
>

ed25519_smult

{25519 select

Figure 5.2: The graph of function calls.

However, during the porting of the ¢25519, we ran into trouble. The genera-
tion of public key went fine, however when we tried to generate signatures for
our data, we were not able to do so. After investigating the main_ ED.asm
file, we created the table [5.2 where we can see that we actually do not
have enough memory to use function edsign__sign and create the desired
signature. This means that if we want to sign our data, we have to reduce

Func Cost | Frame | Height
edsign_ verify 1078 364 6
edsign_ sign 1050 336 6
edsign_sec_to_pub | 786 72 6
25519 smult 462 280 3

Table 5.1: Daniel Beer’s stack usage figures for key functions [12].

the stack usage as much as possible, otherwise, the stack gets corrupted and
our device is not usable anymore. We describe these optimizations later in
this chapter.
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5.2. Optimization

B 5.2 Optimization

We can find an approximate stack usage from main_ ED.asm and see which
function have memory allocations and how many bytes on the stack. Functions
allocating the most memory can be seen in the table [5.2. Our first small
optimization was to save expanded secret key the FLASH memory saving 64
bytes in the some of the key functions. Instead of expanding it every time
we expanded the secret key just once and then saved it to readable FLASH
memory INFOC, as described in [2.2.

This simple optimization saves the 64 bytes in edsign_ sec_ to_ pub which is
function where we generate public key from our private key and edsign_ sign.
We also saved some time during generation of the keys because we do not
have to use expand_ key function that many times.

Function Stack usage
edsign_ sign 192
ed25519 smult 256
ed25519 double 224
ed25519 add 256
shal2 block 238

Table 5.2: Not optimized stack usage of functions in ¢25519 [12].

The key optimizations as we can read from table [5.2| all other three func-
tions since they have the biggest usage on the stack. If we look at the
ed25519  smult function closely below.

#define F25519_SIZE 32

struct ed25519_pt {

uint8_t x[F25519_SIZE];
uint8_t y[F25519_SIZE];
uint8_t t[F25519_SIZE];
uint8_t z[F25519_SIZE];

};
void ed25519_smult(struct ed25519_pt *r_out, const struct
ed25519_pt *p,

const uint8_t xe)

struct ed25519_pt r;
int 1i;

ed25519_copy (&r, &ed25519_neutral);
for (i = 255; i >= 0; i--) {
const uint8_t bit = (el[i >> 3] >> (i & 7)) & 1;

struct ed25519_pt s;

ed25519_double (&r, &r);
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ed25519_add (&s, &r, p);

£f25519_select(r.x, r.x, s.x, bit);
£25519_select(r.y, r.y, s.y, bit);
£f25519_select(r.z, r.z, s.z, bit);
£f25519_select(r.t, r.t, s.t, bit);

}

ed25519_copy(r_out, &r);

We can see it allocates enormous number of bytes, 32 - 4, just to eventually
copy the data to the same struct ed25519_pt. We can easily just not use the
variable r at all and use just r__out, saving desired bytes on the stack, as
seen below.

void ed25519_smult(struct ed25519_pt *r_out, const struct
ed25519_pt *p,
const uint8_t *e)

{
int i;
ed25519_copy(r_out, &ed25519_neutral);
for (i = 255; i >= 0; i--) {
const uint8_t bit = (el[i >> 3] >> (i & 7)) & 1;
struct ed25519_pt s;
ed25519_double (&s, r_out);
ed25519_copy(r_out, &s);
ed25519_add (&s, r_out, p);
£25519_select (r_out->x, r_out->x, s.x, bit);
£25519_select (r_out->y, r_out->y, s.y, bit);
£25519_select (r_out->z, r_out->z, s.z, bit);
£25519_select (r_out->t, r_out->t, s.t, bit);
}
}

So far, we saved 64 + 32 - 4 bytes. Unfortunately, it is not enough, and we
have to find additional optimizations. The functions ed25519_double and
ed25519__add derive from the optimizations described in“Twisted Edwards
Curves Revisited” [13].

The functions ed25519_double and ed25519 add use, by default, very
inefficient allocation of local variables which make no use of the output
variables until the calculation is done.

If we slightly reorder the formulas used there, we can exploit the fact that
some variables used in the first half of the calculation are not used in the
second half. Another useful storage for temporary variables are the output
variables which are filled-in at the end of the calculation. We can use them
in the first half of the calculation.
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Function Stack usage
edsign_ sign 64
ed25519_ smult 134
ed25519 double 96
ed25519 add 96
shal2 block2 112

Table 5.3: Optimized stack usage of functions in ¢25519 [12].

From first glance, we see that it is again possible to use the output value “r”
instead of allocating all the points and dynamically #define and #undefine
these points during the calculations. From the table 5.3, we can see that by
this utilizing optimization, we saved in both functions more than half of the
remaining stack usage.

Using this technique, it was possible to reduce the stack usage of the
doubling and adding functions by 128 and 160 bytes respectively, down to 96
bytes each. Both functions have 4 32-byte output variables (contained in the
“struct edpoint” — x, y, z, t) and both need to allocate only 4 more 32-byte
variables to hold the intermediate values.

B 5.2.1 Verification of optimizations

We have to verify if we did not make a mistake during our optimizations.
Meaning the key generation and signature generation works properly otherwise
we would not be able to verify signed messages. For this purpose we use part
of the Daniel Beer’s tests which are part of his ¢25519 implementation [12].

We need to adapt the code for our purpose so it generates the public key
from the given private key and if the private key gets properly expanded. We
choose the test__c25519.c and simply just add functions expand__key and
edsign__sec_ to_ pub and print the results out. Such as that we generate
the private key and public key on our End Device and with our testing code.
We compare these two results and see if they are equal as they should be.
Our device generates following;:

Privkey:
d05189d1670c9fb4e0b73a3dfd173a0270cd8d3e47527d281db4c011020e3e40

Pubkey:
£21801453e50e5b447cc73bbcebae9f92159cd7e580c0191e888b7caead84736

Expandedkey: 103433d12171db0d0941478a7f7eb6c27336ec98be366dd6 ..

We take this private key and put it to our adapted script from Daniel
Beer’s implementation and get following:

T 1
| ./tests/c25519.test |
|Privkey: |
|d05189d1670C9fb4e0b73a3dfd173a0270cd8d3947527d281db4c01102063640|
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|Pubkey:
|f21801453e5095b447cc73b50ebae9f92159cd7e58000191e888b7caead84736|

|Expandedkey:103433d12171db0d0941478a7f7eb6c27336e698b6366dd6.. |

We clearly see that they are equal. We can now be sure that our optimiza-
tions of the key functions are correctly implemented.

B 53 Key Generation

As we described previous in this chapter, we are utilizing public key cryp-
tography to sign our messages and data. To accomplish this goal, we need
to generate private key which should be as random as possible. To gener-
ate the private key, we are using “Random Number Generation Using the
MSP430”[15], which is already used in our demo from Texas Instruments for
Address random generation.

The very low frequency oscillator (VLO) together with digitally controlled
oscillator (DCO) are used as the two clock independent systems. To generate
stream of random bits, we use the difference between these two clocks as we
can see on [n.Jl

ACLK
vLO Divider Capture

Timer_A CCR

SMCLK

’—I Clock
Dpco

BCSCTL1

LsB

1|2|3|4|5

BCSCTL1 Majority
+5

Bit0/1

CPU Register

.

The randomness of this method was tested with the tests described in
Federal Information Processing Standards (FIPS) with the fips_ tests.c source
code which implements FIPS 140-2 tests for randomness. The results can
be viewed with a debugger. These tests are only included for the statistical
information this application was not officially tested or certified by FIPS. For
the private key creation we add to the Texas Instruments demo [21] function
createPrivateKey():

Figure 5.3: MSP430 Random number generation.[I5]

I
| unsigned int rnm=TI_getRandomIntegerFromVLO() ;
| srand (rnm) ;
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int gen=1,1i;
for (i=0;1i<32;++1i) {
if (private_key[i]!=255)
gen=0;
}
if (gen) {

FCTL3 = FWKEY; FCTL1 = FWKEY + WRT;
private_key [0]=(rand () %256) &0xF8;
for (i=1;i<31;++i) {

private_key[i]l=(rand () %256) &0xFF;

private_key [31]=((rand () %256) &0x7F) |0x40;

As soon as we have our private key generated, we create a corresponding
public key using function “edsign_sec_to_pub” from ¢25519[12].

void edsign_sec_to_pub(uint8_t *pub, const uint8_t *secret){

expand_key (expanded, secret);
sm_pack (pub, expanded);}

These two keys are always generated during flashing if the address where we
store them is empty. If we want to force generation, even if we already have
to keys we just remove the corresponding segments of the FLASH memory.

For these purposes, we made simple bash scripts which are using Daniel
Beer’s MSPdebug [11]. By running following command:

sh flash.sh EDevice.out

As we can see in the code listing, we need to erase whole memory and
then also flash segments we are using to ensure there are no previous key left.
Then we program and load our code and run it.

(echo "erase"

echo "erase segment 4160"

echo "erase segment 4096"

echo "prog $1"

echo "load $1"

echo "run"

)| mspdebug rf2500 --fet-force-id MSP430F2274 -q

BIN=$1-‘date +%Y/m%d%H%M)S‘.bin

(

echo "save_raw 4096 64 $BIN"

)| mspdebug rf2500 --fet-force-id MSP430F2274 -q

privkey=‘dd if=$BIN bs=1c count=32 skip=32 | \
hexdump -v -e "1/1 \"%02x\""¢

publickey=‘dd if=$BIN bs=1c count=32 skip=0 | \
hexdump -v -e "1/1 \"%02x\""°¢
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|echo "Private key: $privkey"
|echo "Public key: $publickey"

We are using function save__raw to save the keys which we generated in
the file so we can print them afterwards. For our purposes, we had to also
save the expanded secret key to the FLASH because of not enough stack
space which we describe in the following chapter. During the flashing, we
wait until both led diodes are shining to know that we are done.

(mspdebug) save_raw 4096 64 Etest34.o0ut-20170507143550.bin

Done, 64 bytes total

(mspdebug)

Private key:
8888a8e6b3fddedc851fcb7d1ea884863271dcfcc978811dbdb2d608£196906Db

Public key:
dee82e9354cf01b6761bcfcdddf4b014745d6c56e67a2ee849b01d0£d877d2£f7

Here, we can see the example what our script prints when we are done.
When we have the keys we can finally create signature and send our messages.
Messages in our case are comprised of temperature and voltage data sent in
3 byte message.

Now, we have our pair of keys which are needed for Public key infrastructure
and also message we want to sign. We will just use the edsign__sign function,
which will create 64 bytes signature for us.

edsign_sign(sig,msg+1,3);

The “sig” is the created signature the “msg” is our message and 3 is the
length of the message.
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. 5.4 Verification

We also wrote a simple script in Ruby[5] using red25519 [6] to verify if the
public keys and signatures that we are generating are correct. That means
if there was a problem — such as not enough memory or any other coding
problem we could make — it would be spotted.

This small script has one parameter “-p” where we put private key and our
script generates public key using red25519.

ruby edtest.rb -p
d05189d1670c9fb4e0b73a3dfd173a0270cd8d3e47527d281db4c011020e3e40

SigningKey:
8888a8e6b3fddedc851fcb7d1ea884863271dcfcc978811dbdb2d608£196906b
VerifyKey:
dee82e9354cf01b6761bcfcdddf4b014745d6c56e67a2ee849b01d0£d877d2£7

We see that the public key we generated in previous section is identical
with the one which was generated by our small ruby script. We can now
know for sure that the public keys that we have generated on our devices are
correct.
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Chapter 6

Protocol implementation

As we described in Protocol design, chapter 4] we have to split messages into
more packets as SimpliciTI protocol requires this of us.

. 6.1 Communication between Access Point and
End Device

To be able to print received messages to serial port, we have to slightly
modify the Access point source code from e€Z430 Sensor monitor demo [21].
The desired function we want to edit is located in Code/Applications/vir-
tual_com__cmds.c and called transmitData(). This function, as we can see
below, takes address, rssi and msg delivered from End devices.

void transmitData(int addr, signed char rssi, char msgl[
MESSAGE_LENGTH] )

Then, it simply calls the function trasmitDataString(), which prints the
formatted data to the serial port. However, for our purpose, it is not enough
and we have to modify the trasmitData() to be able to print keys and
signatures to the serial port.

char txtmsg[]l] = {"\r\n00 000 #
00000000000000000000000000000000"};

txtmsg[2] = 0’+(((addr+1)/10)%10);
txtmsg [3] = ’0’+((addr+1)%10);
txtmsg [5] = ’0’+(rssi_int%10);
txtmsg[6] = ’0°+((rssi_int/10)%10);
txtmsg [7] = ’0°+((rssi_int/100)%10);
txtmsg [9] = ’0’+msg[0];

int 1i;

for (i=0;i<16;i++) {
txtmsg [11+i*2]=hexnum ((msg[i+1]>>4) &0xf) ;
txtmsg [11+i*2+1]=hexnum (msg[i+1]&0xf) ;

}
TXString (txtmsg, sizeof (txtmsg));
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We defined new message output which will be printed to the serial port.
First two numbers which can be seen are always address of the End device
responsible for the data. The next 3 packets are the Received Signal Strength
Indicator which we get from the Access point. Our ninth packet is the message
counter which increases until we send all the data we want. And the last
16 packets can be the public key, message or signature, depending on the
message counter.

The reason for this approach, modifying the string in place and transmitting
it as whole — is to avoid dependency on including the printf function with
the code as it would add unnecessary data and code to the resulting program
image. The printf function is too big to fit into our memory.

B 62 Protocol testing

Changing the payload to 17 in the smpl__nwk__config.dat.

--define=MAX_APP_PAYLOAD=17

Message number 16 bytes message
0 0b011lc + 9b93c4dbcbb6c59297d1809e01
1ddfb0493e0468ccdaf65fc58d5ad058
38flcd1lcabc2b81239d1e30165a85b85
3f096b2ef28445bdal6a588545¢17e37
5b73e6e122861a59b58211b2766a7e56
fd5974770df40f9694d9e1e0eededcct

9d85a144cc47f050db6cb8bfec7020db

SO | W N

Table 6.1: Protocol implementation example.

We can read from the table [6.1] that message we are signing, in our case
temperature and voltage, is “Ob011c”. In the messages 1-2 we can find our
public key and messages 3-6 contains 64 bytes signature of our “Temperature
message”.

. 6.3 Verification

To find out if our code and signatures works properly, we modified small ruby
script we described in previous chapter [5.4. We have to add signature and
message verification.

We have to add two more parameters “-m” for the message and “-s” for
the signature. For private key and signature:

34




6.4. Measurement

Private key:
1ddfb0493e0468ccdaf65fc58d5ad05838f1cdlcabc2b81239d1e30165a85b85
Signature: 3f096b2ef28445bd...

We use command:

ruby verify.rb -p $private_key -m ObOllc -s $signature

We can see from our printed output below the public key used for the purposes
of verification in the previous chapter, signatures generated and given one
and validation. In this case, the generated signature identical with the given
one and thus, validation is successful.

Pubkey:
1ddfb0493e0468ccdaf65fc58d5ad05838f1cdl1cab5c2b81239d1e30165a85b85
Message:"0ObO1l1lc"

Generated signature: "3f096b2ef28445bd..."

Given signature: "3f096b2ef28445bd..."

Valid:true

We can now confirm that our protocol implementation was successful. We
are able to sign messages and send them to the receiver.

. 6.4 Measurement

We implemented and verified that our protocol and key functions work. Now
we have to evaluate if it is usable for our application. We know that our
devices are low-power MCUs with low memory specially designed for low
power consumption — which means they are also much slower than usual
PC-class CPUs.

In this section we measure the duration of most computational-intensive
operations and perform a simple statistical analysis of the results to ensure
the measurements are consistent.

B 6.4.1 Key generation measurement

As we do not possess the required hardware for better debugging and therefore
interaction with the devices in question we devised a simple way of measuring
the most complex operations.

In the code for key generation we added a statement to enable the green
LED just before the key generation starts and another statement to turn it off
when the process successfully finishes. Then, with a stopwatch, we measured
the period between these two events manually and repeated the measurement
10x.

It should be noted that most of the time is spent in ed25519_ smult
function.
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6. Protocol implementation

Number 1 2 3 4 5 6 7 8 9 10
Time[s] | 148 | 148 | 155 | 146 | 149 | 147 | 149 | 148 | 148 | 148

Table 6.2: Key generation measurement.

Average running time is:

1 Mo
= g 2t~ 148,65
i=1
For this average time the standard deviation is:
10

o= | > (ti — 1)? ~ 2.2891046284519194
=1

Therefore we can state the running time is:

t=1486+2.29 s

B 6.4.2 Signature generation measurement

To generate the signature, we also have to use ed25519__smult which is

the slowest operation as we discussed earlier in section 5.1/ and visualized in
figurd5.2|

Number 1 2 3 4 5 6 7 8 9 10
Time[s|] | 157 | 156 | 158 | 156 | 156 | 158 | 158 | 157 | 155 | 155

Table 6.3: Signature generation measurement.

Average running time is:

1 10
t=-— t, ~156.6
10 ; i s

For this average time the standard deviation is:
10

o= | Y _(t; — t)? ~ 8.077128202523474
=1

Therefore we can state the running time is:

t=156.6£8.077 s
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6.4. Measurement

ed25519_prepare

shas12_get

storefd

expand_key shas12_final

sha512_block

hash_with_prefix

N

M i |
%
‘
<5

raw_try_sub fprime_select

4‘

A‘l-

fprime_copy [ 4_‘ fprime_mul " Mprime_from_by(es I—.-I min_int ‘
- >

fprime._normalize ‘

fprime_inv

N

¥

ed25519_unproject f25519_inv__distinct
]
oci25519_pack {26519_normalize
f25519_copy
125519 _select
ed25519_smult

T —
I / ed25519_acd H 125519_mul_distinct

I 25510 copy |+ ] ed25519 smult ‘
>

f25519_add

eci25519_adkl

25519 _double

[ ed25513_double }_.| 125519_neg

f25519_sub

Figure 6.1: Functions called by edsign_ sign.

In the figure 6.1, we can see what functions are called by edsign_ sign
this scheme is a bit more complicated then the key generation so we can
expect it will take a bit longer.

In conclusion, we can say that the most time consuming function is
ed25519_ smult, taking around ¢ = 148.6 4 2.29 s. This means that the
implementation is not usable for the real time applications but more than
sufficient for this implementation.
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Chapter 7
Thermo GUI

We made a simple application called Thermo GUI for visualizing the data and
key verification. This application run on a Beaglebone with the bb-view cape.
This Beaglebone is running Debian Linux and the LXDE graphical desktop
environment. This Debian image was downloaded from the Beaglebone official
web pages [I]. We chose to write the Thermo GUI in Ruby [5], leveraging
the availability of a multitude of “gems” — pre-packaged library-bindings for
any functionality we might need.

There are readily available gems for GTK+ graphic user interface toolkit,
gem for Ed25519 signatures and also a gem for communication over a serial
port.

The Thermo GUI application consists of the following modules:

ez430.rb handles communicating via serial port over USB with the ez430
AP device,

octave.rb allows for writing temperature processing functions in MATLAB-
like language,

plotview.rb is a simple graph plotting widget for GTK+,
thermo.rb is the main application gluing all the modules together

thermokeys.txt is not a module per-se, but it is important as it contains
public keys of all the registered devices.

The application, as a whole, provides a GUI both on a standalone computer
(or laptop) as well as in an embedded environment like on Beaglebone platform.
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7. Thermo GUI

B 71 Attaching devices

When the application starts, it tries to find a USB-connected ez430 device and
open its USB serial port. If there is no such device connected, the program
waits and polls until the device appears.

In order to setup the serial port and communicate over the device a ruby
gem “serialport” must be installed:

gem install serialport

This allows the application to read data sent from Access Point connected
to the Beaglebone platform.

Finding the device is straightforward, as Linux kernel gives us all the
required information. The information about all the console-like devices
(TTYs), to which the serial ports and USB-emulated serial ports belong, is
located in sysfs file system under the /sys directory. We also know the device
and vendor id for the ez430 device we are looking for:

SYS_CLASS_TTY="/sys/class/tty"

ID_VENDOR=0x0451
ID_PRODUCT=0x£f432

Based on this information, we can find the ez430 device and its ttyACM
device number.

Found following devices: ttyACM3.

After finding which serial port the ez430 is connected to, we can start
reading messages and process them. For this application, we do not need to
process every message immediately as it arrives, but we want to handle them
after they’'ve formed complete message from the End device. In our case, we
have 7 messages so we create buffer which will collect the messages, until we
have all of them. Eventually we can handle it as a whole and update the GUI
components based on the results.

B 7.2 Toolkit

The GUI was created using the GIMP toolkit (GTK+), which allows us
create labels, show temperatures, and more. To use it, we need to install the
following gem:

gem install gtk3
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7.2. Toolkit

After the installation, we use the GTK+ gem by writing require ’gtk3’
at the beginning of the application. At this point, we can then use the
functions we need.

On the left-hand side of the GUI, we can see temperatures for each device.
Next to these temperatures, we added the labels which show us the status of
the device in the network. To demonstrate the status of the devices, we use
the pictures depicted in table 7.1

unknown

P
! signature not valid

@ | public key is not in the “Trusted devices” table
v

signature is valid and public key is in the “Trusted devices” table

Table 7.1: Device status table.

In figure [7.1] we can see the GUI before it receives any data from the End
devices.

Temperature sensor [N E
Temperature sensor
Average temperature: - *C
4T.1: --°C P
¢T.2: --°C P
¢T.3:--°C ?
+T.4: --°C 9

Figure 7.1: Thermo GUI before devices connect.

Now, we are able to recognize the message authentication status of our
devices and we can calculate the average temperature in Octave.

function [tal = average(tl,t2,t3,t4)
t=[t1,t2,t3,t4];
ta=mean(t) ;

end

The reason why we are using Octave to calculate average temperature is
that, in the future, we plan to use this sensor with more sophisticated Octave
script, which will have the capacity to calculate other values. Using octave
as the platform for processing the data gives us the opportunity to write
the functions in MATLAB-like notation. Then the future, it will be possible
to just change the name of the script in the code and calculate and display
different values.

For temperature visualization, we implemented a custom graph plotting
widget. We are plotting the temperatures of the End devices and the average
temperature, as calculated by the Octave script.
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7. Thermo GUI

Temperature sensor (A= E R

Temperature sensor
+Average temperature: 25.875°C
+T.1: 27.0°C

30

+T2:27.00c @ T ——
20

#T.3: 25.8°C ' |

+T.4:23.7°C / 0 -
21:57:00 22:03:00 22:09:00

Figure 7.2: Thermo GUI with average temperature.

Each device has its own color showed next to the temperature and is plotted
on the graph. In figure we can see the calculated average temperature
and temperatures of all the devices plotted in the graph.

. 7.3 Verification

Verification is done using the red25519 library [6] written in ruby. This library
can also be installed as ruby gem and just required at at the beginning of the
code:

gem install red25519

The signature is verified by the verify method of the pubkey object which
is an instance of Ed25519::VerifyKey class. We initialize the public key object
using the public key data we received and then pass the received signature
and message data to the verify method.

puts "sign: #{Q@cryptodevices[unit][:sign]}"

p pubkey

sig = hex_to_bin(@cryptodevices [unit][:sign])
msg = hex_to_bin(@cryptodevices [unit] [:msghex])

vr = pubkey.verify(sig,msg)

puts "signature ok: #{vr}"

As for the verification, we print the output to console to see if everything
went as we designed. Getting a "true'value when looking at the “Trusted
devices” table indicates that we found the correct public key, and the device
has not been compromised.

We show the picture in our GUI depicting the device status according to
the table The whole system with the Beaglebone running the Thermo
GUI can be seen in figure [7.3.
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7.3. Verification

Temperature sensor
4 Average

eT1:250C @
30

- ® #T.2:253°C / &

| Yo

4T3:254°C ¢ o)
i

4Ta:2a5°Cc , 0 -
162600 163200 163800

Figure 7.3: Our small Wireless Sensor Network.
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Chapter 8

Conclusion

This thesis offered a solution for adding message — and therefore device —
authentication to devices with low-power and low-memory MCUs, typically
used for sensors in the Internet of Things domain.

Commonly the sensor security in typical IoT applications nowadays is
completely missing or there is symmetric block cipher used for message
encryption optionally adding shared-key hash-based message authentication
code (HMAC). This approach is far from perfect, because this cryptographic
scheme can be easily broken by compromising single device with the shared
key and it is then easy to impersonate any other device using the same key.

Although some of the constraints imposed by these MCUs on programmers
are very limiting, we have shown that it is possible to devise and implement
a message signing scheme that is usable for practical applications for these
devices. The demonstration application we show typically needs to transfer
the sensory data every 10 minutes and therefore — even though the message
signing time is more than a two minutes and a half — it can be put to sleep
for 75% of its running time, saving batteries lifetime.

The message asymmetric cryptographic scheme we created is built upon
elliptic-curve cryptography using the class of elliptic curves called Twisted
Edwards curves. This allowed us to keep the cryptographic material relatively
small — each number is only 32 bytes, compared to 128 bytes for 1024-bit
RSA, this is a huge improvement memory-wise.

Fitting the algorithm into 1024 bytes of RAM was a challenging task
which required re-using regions of memory for multiple operations, pre-
calculating intermediate forms of the cryptographic keys and re-ordering
certain operations in order to avoid stack overflow. It turned out it was
possible to shrink the memory requirements more than enough to keep spare
RAM for actual sensor applications.

Saving the memory beyond the original goal also allows more “intelligence”
of smart buildings — such as preliminary data processing and filtering — to
be implemented in the sensor MCUs. This makes it possible to provide not
only device authentication (and therefore trust) but also a foundation for
innovative applications distributed over the sensor networks.

Our implementation and its optimizations are not limited only to the
MSP430 MCU, but it can also be used for any other 16-bit CPU.
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8. Conclusion

We have solved the lack of device and message authentication in sensor
networks built with common 16-bit MCUs. We have shown the solution works
in real-world scenarios using the ez430-RF2500 wireless thermometers sensor
network designed for usage in Smart buildings.
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