
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Radioelectronics

Distributed signal processing
in radio communication networks

Jakub Kolář
Open Electronic Systems

May 2017
Supervisor: prof. Ing. Jan Sýkora, CSc.

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Radioelectronics

BACHELOR PROJECT ASSIGNMENT

Student: ​Jakub Kolář

Study programme: Open Electronic Systems

Title of Bachelor Project: ​Distributed Signal Processing in Radio Communication
Networks

Guidelines:

Student will get acquainted with fundamental principles of the algorithms on graphs with
a special focus on distributed signal processing algorithms for radio communication
networks. Main focus of the work should be on average consensus algorithm on the graph.
Student should apply this algorithm on selected simple scenarios in communication
networks, e.g. distributed time or carrier synchronisation. The algorithms should be
implemented in Matlab including suitable graphical demonstration of the distributed
convergence process and algorithms performance.

Bibliography/Sources:

[1] Lin Xiao, Stephen Boyd, Seung-Jean Kim: Distributed average consensus with
least-mean-square deviation. Journal of Parallel and Distributed Computing, 2007, Volume
67 Number 1
[2] U.Spagnolini: Distributed signal processing and synchronization, tutorial 2013

Bachelor Project Supervisor: prof. Jan Sýkora Ing., CSc.

Valid until the end of the summer semester of academic year 2017/2018

L.S.

doc. Mgr. Petr Páta, Ph.D.
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 27, 2017

Acknowledgement / Declaration
I would like to thank the supervisor of

this thesis, prof. Ing. Jan Sýkora, CSc.,
for such an interesting assignment. Al-
so, I’d like to write here thanks to my
beloved friends and family, who all in-
spire me and motivate me as well.

I declare that I completed the pre-
sented thesis independently and that all
used sources are quoted in accordance
with the Methodological Instructions
that cover the ethical principles for
writing an academic thesis.

In Prague, 26. 5. 2017

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 26. 5. 2017

. .

v

Abstrakt / Abstract
Cílem této bakalářské práce je sezná-

mení se s lineárním konsenzuálním algo-
ritmem nad grafy. Jde o distribuovaný
iterativní algoritmus, který pracuje s
hodnotami přiřazenými vrcholům grafu
a jehož cílem je, aby asymptoticky byly
tyto hodnoty ve všech vrcholech stejné
a průměrem hodnot počátečních. Glo-
bálního cíle je dosaženo pouze lokálními
operacemi. Studovaný algoritmus toho
docílí jen komunikací mezi dvojicemi
vrcholů přes existující hrany grafu. V
práci využíváme maticovou reprezentaci
grafu a pro nalezení vhodných parame-
trů algoritmu používáme Laplaceovu
matici. Algoritmus je tak převeden na
opakující se maticové násobení, jehož
význam zachovává původní úlohu. Dále
uvádíme názorné ukázky toho, jak al-
goritmus pracuje v případě ideálních
aktualizací a základní řešení v případě
ovlivňování aktualizací šumem s nulo-
vou střední hodnotou. Součástí práce je
implementace algoritmu v Matlabu. V
práci nejsou uvedeny složitější důkazy
a odvození, ale odkazujeme se na pří-
slušnou uvedenou literaturu. Na závěr
uvádíme několik jednoduchých příkladů
využívajících popsané iterativní schéma.

Klíčová slova: Graf, Laplaceova ma-
tice, Lineární konsenzus, Aktualizace s
rušením, Odhad parametru

The major objective of this Bache-
lor’s thesis is to provide an introduction
to Linear average consensus algorithm
on a graph. It is a distributed itera-
tive algorithm, that works with values
assigned to vertices of the graph and
the goal is to asymptotically obtain an
average value of the initial values in all
vertices, respecting the topology of the
graph, i.e. it reaches the global goal
using only local operations. In the text,
we have used a matrix representation
of the graph. To design the parameters
of the algorithm we used the Laplacian
matrix. Using matrix representation,
the algorithm that solves the original
problem is transferred to iterative ma-
trix multiplication. In the next step,
we have provided examples of the run
of the algorithm in the case of ideal
and reliable communication and also
an outline of the solution in the case
of zero-mean noisy updates. Included
are Matlab scripts with the algorithm
implementation. More difficult for-
mal proofs and derivations are not
included, but we have provided refer-
ences, where it is possible to find them
in the literature. In the final part, we’ve
implemented a few simple examples of
the described algorithm, motivated by
radio communication.

Keywords: Graph, Laplacian, Lin-
ear average consensus algorithm, Noisy
updates, Estimation

vi

Contents /
1 Introduction .1
1.1 Motivation .1
1.2 Outline .1

2 Graph theory .2
2.1 Motivation .2
2.2 Notation .3
2.3 Definitions .3

2.3.1 Undirected graph3
2.3.2 Directed graph3
2.3.3 Adjacency matrix4
2.3.4 Degree matrix4
2.3.5 Incidence matrix5

2.4 Laplacian matrix5
2.4.1 Definition.5
2.4.2 Basic properties6
2.4.3 Bounds for eigenvalues6
2.4.4 Matrix tree theorem8
2.4.5 Eigenvalue λ28
2.4.6 Operations with dis-

joint graphs9
3 Linear average consensus al-

gorithm . 11
3.1 Distributed algorithms. 11
3.2 Introduction . 11
3.3 General convergence condi-

tions . 12
3.4 Heuristics based on the

Laplacian matrix 13
3.4.1 The Metropolis-

Hastings weighting
method 16

3.5 Average consensus algorithm
with additive noise 17

3.6 Mean-square convergence in
case of noisy updates and
observations . 18
3.6.1 Model setup 19
3.6.2 Time-varying weights 19
3.6.3 Approach of descend-

ing step size 20
3.6.4 Recommendations of

literature concerning
noisy updates topic 24

4 Distributed Estimation in
Wireless Sensor Networks 25

4.1 Introduction . 25

4.2 Overview of Distributed
Consensus Estimation 26
4.2.1 Consensus-Based Dis-

tributed Parameter Es-
timation 26

4.2.2 Asymmetric communi-
cation . 26

4.2.3 Multidimensional ob-
servation. 27

4.2.4 Description of Algo-
rithm DCUE 27

5 Examples of Usage of Average
consensus algorithm in wire-
less communication 29

5.1 Distributed estimation of the
number of deployed nodes 29

5.2 Tracking of dynamic target 29
5.3 Distributed time synchro-

nization of already commu-
nicating nodes 31

5.4 Initial Distributed time base
synchronization of nodes 32

6 Conclusion . 36
References . 37

A Matlab scripts . 39
A.1 Matlab script: Average con-

sensus algorithm with per-
fect communication 39

A.2 Matlab script: Average con-
sensus algorithm with noisy
observation and updates us-
ing decreasing step size 41

A.3 Matlab script: Estimation of
nodes number in given area . . . 43

A.4 Matlab script: Tracking of
dynamic target 43

A.5 Matlab script: (Measure-
ment) Time base synchro-
nization . 45

A.6 Matlab script: Initial time
base synchronization 46

B Content of CD 47

vii

/ Figures
2.1. View on city Königsberg.2
2.2. Example of a undirected graph. . .3
2.3. Example of a directed graph.4
2.4. A bigger graph to present

Gershgorin theorem.7
2.5. Plot of Gershgorin circles.7
2.6. Graph with two components.9
2.7. Another demonstration of

Connectivity eigenvalue
meaning. 10

3.1. Example of average consen-
sus algorithm. 16

3.2. Example of ACA with one
fixed vertex value. 16

3.3. Example with noisy updates. . . 17
3.4. More samples to Figure 3.3. . . . 18
3.5. Used Matlab library graph

bucky. 20
3.6. Values of nodes from Exam-

ple 3.8 . 21
3.7. MSE of values in nodes in

run of Example 3.8 21
3.8. MSE of values w.r.t an aver-

age value in iterations from
Example 3.8 . 22

3.9. Decreasing variance of nodes
values from Example 3.8. 22

3.10. 60 nodes ring topology from
Example 3.9. 23

3.11. Values convergence from Ex-
ample 3.9. 23

3.12. Variance running from Ex-
ample 3.9. 24

5.1. Graph used to demonstrate
number of nodes estimation. . . . 30

5.2. Convergence process in node
number estimation. 30

5.5. Figure to Distributed time
synchronization Example. 32

5.6. Tx without TDMA. 33
5.7. Tx with TDMA. 33
5.8. Phase-locked loop. 34
5.9. Inputs of the Time difference

block. 34
5.10. Time base synchronization

(PLL). 35

viii

Chapter 1
Introduction

The topic of distributed algorithms used in radio communication has been for last
decades a subject of research. In this thesis, we are studying and commenting the basic
results found in the corresponding literature, with emphasis on the understanding of
the average consensus algorithm.

1.1 Motivation
To begin with an idea of the average consensus algorithm, let’s make a thought experi-
ment. We are looking for the average quantity, for example an average temperature in
a room, with a group of wireless communication devices, that can exchange informa-
tion, providing they are in range to reach each other. We deploy these thermometers in
the room randomly, with no special requirements on a topology. We need to consider,
that for each pair of the thermometers we could determine, whether they can exchange
information or not – meaning we are able to get know all neighbors of all devices, that
are mutually in range to communicate.

Now, we can encode our experiment settings to a graph. Drawing this graph is quite
natural way to represent it. In order to do so, we simply take all thermometers as
different vertices. Indubitably, every vertex always knows a result of its own measure-
ment. By an edge between two vertices, we mark the relation, that these two nodes
can exchange information. Which means each node can get know also the value that
measures its neighbor. This ought to be only a basic illustration how to transfer this
physically realizable experiment to the terms of graphs.

Finally, as we shall see, if we fulfill some basic convergence conditions on the prop-
erties of this graph, the average consensus algorithm should act like this: We syn-
chronously update the value in each node by some increment, depending only on the
old value in this node and the values of its direct neighbors in the graph. By doing this
long enough, we are going to obtain a new value for each node, which is the limit going
to the average of all initially measured values.

1.2 Outline
Graph theory provides an elegant way to represent information encoded by graphs as
matrices. In the first chapter, we will provide some basic definitions from the Graph
theory and properties of these important matrices. Using matrices, we will also briefly
mention some useful results from Matrix analysis, because a serious object of our interest
will be the topic of eigenvalues of matrices. We will define a Laplacian of a graph and
show some of its basic properties. In the following chapter, we will provide a description
of the average consensus algorithm and show some examples with graphically illustrated
solutions. In the last part of this thesis, we will try to implement this algorithm, so
we will be able to solve some typical basic problems in the area of wireless digital
communication, e.g. a time base synchronization problem.

1

Chapter 2
Graph theory

2.1 Motivation
It is commonly known, that the elements of Graph theory were set by a mathematician
Leonhard Euler in the 18th century, when he solved a problem called Seven Bridges of
Königsberg [1].

Figure 2.1. View on city Königsberg with marked bridges [2] .

The problem was formulated like this: River Pregole flows through the city and
creates two islands in there; these two islands were connected with the city by 7 bridges
(see Figure 2.1 above) and the question was, whether it is possible to take a walk
through the city in such a way, to pass each bridge exactly once [1]. Euler described
this problem as a graph, where the edges represented the seven bridges, and the vertices
were the separated parts of the city. He proved, that in this case, it is impossible to
pass each bridge only once and showed, that such a way exists if and only if each vertex
of the graph is of an even degree [1].

Nowadays, a modern and interesting example of usage of the Graph theory is visu-
alization and simulation of the communication networks, such as the Internet, mobile
network etc. A typical task is to find the best route from a source to a destination loca-
tion with respect to a given, specific, metric. This metric can possibly depend on many
parameters. Typical criteria are e.g. a number of intermediate devices, end-to-end
delay or a bandwidth of the connectivity. These Graph algorithms are often based on
an efficient improvement of Depth-first search. (This is a case of the famous Dijkstra’s
algorithm used by OSPF routing protocol, to find the best way from each node to all
the others with edges with a given cost.)

For interest, we will briefly meet also term Spanning tree. In Ethernet-based com-
munication is very important to avoid loops in a network, because they might cause
a congestion of the network and failure of the service. A Spanning tree of a graph is
a factor of this graph, which originates by removing some of its edges, in a way to
preserve all vertices reachable, and removes all cycles in the graph [3]. In the chapter
about Laplacian, we shall see how to simply find a count of these Spanning trees.

2

. 2.2 Notation

To finish this motivation part, a very nice example of the usage of distributed algo-
rithm is a Network time protocol (NTP). It is important to have globally synchronized
time between server computers. Few of the servers are connected to the reference clocks.
To them are hierarchically connected other devices, servers, that are statistically ana-
lyzing properties of neighbor’s time to obtain the final value of time, that they use and
provide to next users [4].

2.2 Notation
In the sequel, we will use the following notation. Scalars are denoted by small letters,
such as a, d, α. Vectors are marked as e.g. u or v . We use column vectors. Especially
1 is a column vector of all ones (in the text always of length N as a number of nodes).
Matrices are marked by capitals, such as L,P. I stands for the Identity matrix. Single
elements of vectors and matrices are denoted as scalars with lower indices with the
meaning of the position, e.g. vi or pij , respectively. Finally, in the last chapter, we use
e.g. xi to mark a vector that is in i-th node.

2.3 Definitions
A graph G = (V,E) is described by a pair of its vertices V and edges E.
V = {v1, v2, ..., vN} is a set of N vertices. By the vertices, we understand the
points connected by the edges. An edge (vi, vj) means a connection between vertices
vi and vj .

2.3.1 Undirected graph

1

2

3

4

5

Figure 2.2. Example of a simple undirected graph to demonstrate basic definitions.

The graph G = (V,E) above can be described by the set of vertices V = {1; 2; 3; 4; 5}
and by the set of edges E = {(1, 4); (1, 3); (2, 4); (2, 5); (3, 2); (3, 3); (3, 5); (4, 5)}. Set of
neighbors Ni of a vertex vi is Ni = {vj ∈ V |(vi, vj) ∈ E}. For example N4 = {1; 2; 5}.
Degree of a node is di = |Ni|.

2.3.2 Directed graph
For directed graph holds the same as for undirected with only difference, we distin-

guish the edges (vi, vj) and (vj , vi). Then, for a degree of a node in directed graph, we
have to consider only neighbors available via oriented edges, dINi = |Ni|. Drawing the
figure, we distinguish the orientation of edges with arrows.

3

2. Graph theory .

1

3

2

4

5

Figure 2.3. Example of a directed graph.

2.3.3 Adjacency matrix
An Adjacency matrix is a very natural way of a full graph description. This matrix is
A ∈ RN×N and for graph G with N vertices describes inner connectivity of the graph
with information, to what all vertices goes an edge from a given vertex. Its values ai,j
are defined as [5]:

ai,j =
{ 1 if there is the edge (vi, vj),

0 if i = j,
0 otherwise.

(2.1)

The Adjacency matrix of the graph from Figure 2.2 reads

A2.2 =


0 0 1 1 0
0 0 1 1 1
1 1 0 0 1
1 1 0 0 1
0 1 1 1 0

 . (2.2)

We can see, that Adjacency matrix of an undirected graph is symmetric.
And the Adjacency matrix of the graph from figure 2.3 is

A2.3 =


0 0 1 1 0
0 0 0 0 1
1 1 0 1 1
1 0 0 0 1
0 0 0 0 0

 . (2.3)

For directed graph the Adjacency matrix generally is not symmetric.
For undirected graphs allowing Weighted graphs means, that for each pair of vertices

i, j we assign a certain weight ai,j , that satisfies conditions: 1) ai,j = aj,i, 2) ai,j ≥ 0
and 3) aij 6= 0 if and only if vertices i and j are not connected by an edge. This is only
a generalization of the Adjacency matrix definition above.

2.3.4 Degree matrix
A Degree matrix D ∈ RN×N is a diagonal matrix bearing an information about degree
of each vertex. Its diagonal elements are di =

∑
i 6=j ai,j and all non diagonal elements

are equal to 0 [6]. For example Degree matrix of undirected graph from figure 2.2 reads
D2.2 = diag{2, 3, 4, 3, 3}. Next, for the case of directed graph we have to consider only
incoming edges. This for graph from figure 2.3 means D2.3 = diag{2, 1, 1, 2, 3}. And
also let’s define ∆ = maxi(di).

4

. 2.4 Laplacian matrix

2.3.5 Incidence matrix
An Incidence matrix of a directed graph provides for each edge an information about
an initial and terminal vertex. For a graph with N vertices and L edges the Incidence
matrix E ∈ RN×L elements ei,j are defined as [7]:

ei,j =
{ 1 if edge j begins in the vertex i,
−1 if edge j ends in the vertex i ,
0 otherwise.

(2.4)

So the Incidence matrix for graph on figure 2.3 reads

E2.3 =


−1 −1 0 1 0 0 0 1 0
0 0 −1 0 1 0 0 0 0
1 0 0 −1 −1 −1 −1 0 0
0 1 0 0 0 1 0 −1 −1
0 0 1 0 0 0 1 0 1

 (2.5)

We can see, this matrix is very spare. In each column contains only one pair of 1
and -1. The Adjacency matrix provides the same information, but with a typically
smaller matrix.

2.4 Laplacian matrix
The structure of following section about the Laplacian is based mainly on [8]. Supple-
mentary references are added in corresponding paragraphs.

2.4.1 Definition
In the previous text we defined the Adjacency and the Degree matrix of a graph G.
Now, in [8] is defined the Laplacian matrix L(G) of a graph as

L(G) = D(G)− A(G). (2.6)

Matrix L(G) for a graph with N vertices is L(G) ∈ RN×N . Loops do not affect L(G). To
make hold some important results from Linear algebra and Matrix analysis, we will next
consider only undirected graphs without loops. Which means, that the corresponding
Adjacency matrix will be symmetric: because the A(G) is symmetric, the L(G) comes
to be also symmetric.

Using the Incidence matrix of graph E(G), we can find the Laplacian matrix of graph
G as

L(G) = E(G)ET (G). (2.7)

The Laplacian definitions in Equations (2.6) and (2.7) are equivalent.
Let’s denote µ(G, x) the characteristic polynomial of L(G), i.e.

µ(G, x) = det(L− xI). (2.8)

Roots of this characteristic polynomial are called the Laplacian eigenvalues of G. As
it is common in the literature, we will denote them λ1 ≤ λ2 ≤ ... ≤ λN , enumerated
with lower indices in an increasing order with counting multiplicities. N denotes the
number of vertices. The set {λ1, λ2, ..., λN} is called the spectrum of L(G) and is in the
interest of spectral graph theory [8].

5

2. Graph theory .
2.4.2 Basic properties

Theorem 2.1. If A ∈ RN×N is symmetric then A has real eigenvalues.
Proof: Ommited. For example [9], page number 92.

Theorem 2.2. Let G be an undirected graph without loops. Then 0 is an eigenvalue
for the Laplacian matrix of G with an eigenvector (1, 1, ..., 1)T .

Proof: Found in [10]. If G is an undirected graph, then the sum of the entries in row
i of Adjacency matrix A gives exactly the degree di of vertex i. So we can write:

A


1
1
...
1

 =


d1
d2
...
dN

 . (2.9)

And from that:

L(G)


1
1
...
1

 = (D(G)− A(G))


1
1
...
1

 =


d1 − d1
d2 − d2

...
dN − dN

 =


0
0
...
0

 = 0


1
1
...
1

 . (2.10)

In which we can easily recognize the relation holding for eigenvalues.
Theorem 2.3. The Laplacian matrix L(G) is positive semidefinite and singular [11].

Proof: Let λ be an eigenvalue and v its corresponding eigenvector. Then

Lv = λv , (2.11)

λ = vTLv = vTEET v = (vTE)(ET v) = (ET v)T (ET v) = ‖ET v‖2 ≥ 0. (2.12)

L is singular because the sum of all elements in each column is zero [11].

2.4.3 Bounds for eigenvalues
Theorem 2.4. Gershgorin circle theorem[9]. Consider matrix A ∈ CN×N and
i = 1, 2, ..., N. Let’s denote

ri =
N∑

j=1; i 6=j
= |aij |, Ki = {z ∈ C | |z − aii| ≤ ri}. (2.13)

The Ki sets are called Gershgorin circles. It holds for all eigenvalues {λ1, λ2, ..., λN} of
the matrix A, that they are all localized in the union of Gershgorin circles {K1 ∪ K2 ∪
... ∪ KN} in the Complex plane.

Proof: Let λ be an eigenvalue of A and its corresponding eigenvector x =
(x1, x2, ..., xN) . So holds Ax = λx . Let xk be the biggest absolute value num-
ber in vector x. Then λxk =

∑N
j=1 akjxj . Next move the akkxk summand from RHS to

LHS. We obtain xk(λ − akk) =
∑N

j=1;j 6=k akjxj . Now we take an absolute value of this
equation, divide by xk and using Triangle inequality we go to:

|λ− akk| =

∣∣∣∣∣
∑N

j=1;j 6=k akjxj

xk

∣∣∣∣∣ ≤
N∑

j=1;j 6=k

∣∣∣∣akjxjxk

∣∣∣∣ ≤ N∑
j=1;j 6=k

|akj | = rk. (2.14)

6

. 2.4 Laplacian matrix

6

7

9

2

3

10

1

8

4

5

10

Figure 2.4. Graph to present Gershgorin theorem.

Example 2.5. To present the Gershgorin theorem practically, consider the graph in
Figure 2.4 with its Laplacian matrix:

L =



3 −1 −1 0 0 0 0 −1 0 0
−1 4 0 −1 −1 0 0 −1 0 0
−1 0 4 0 −1 0 −1 0 0 −1
0 −1 0 4 −1 −1 −1 0 0 0
0 −1 −1 −1 5 −1 −1 0 0 0
0 0 0 −1 −1 3 −1 0 0 0
0 0 −1 −1 −1 −1 5 0 −1 0
−1 −1 0 0 0 0 0 3 0 −1
0 0 0 0 0 0 −1 0 2 −1
0 0 −1 0 0 0 0 −1 −1 3


, (2.15)

and a characteristic polynomial: µ(G, x) = x10−36x9 +561x8−4 954x7 +27 236x6−
96 318x5 + 218 121x4 − 303 398x3 + 233 888x2 − 75 870x. Note, that L is a symmetric
matrix and 0 is clearly a root of µ(G, x).

Numerically solving µ(G, x) = 0, we obtain the following eigenvalues (rounding for 3
decimal points): {0; 1, 274; 1, 416; 3, 100; 3, 233; 3, 936; 4, 826; 5, 280; 6, 458; 6, 476}.
All values are real and nonnegative. Finally, we provide a plot of complex plane with
marked eigenvalues and Gershgorin circles. As expected, all eigenvalues are included in
the circles.

0 5 10 15

-4

-2

0

2

4 Actual Eigenvalues

Figure 2.5. Plot of Eigenvalues and according Gershgorin circles.

7

2. Graph theory .
Since Laplacian matrix has an interesting construction, e.g. its rows and columns sum

up to zero, there may be found some interesting properties holding for its eigenvalues.
We provide them here according to [8].
Theorem 2.6. Let G be a graph with N vertices. Then holds:.

λ2 ≤
N

N − 1 min
i
{d(vi)|vi ∈ V (G)}, (2.16).

λN ≤ max
i
{d(vi) + d(vj)| (vi, vj) ∈ E(G)}, (2.17). if G is a simple graph, then

λN ≤ N, (2.18).
N∑
m=1

λm = 2|E(G)| =
∑
vi

d(vi), (2.19)

.
λN ≥

N

N − 1 max
i
{d(vi)|vi ∈ V (G)}[8]. (2.20)

One is recommended to check these rules e.g. on the matrix from Example 2.5.
These may be found very useful for example when using numerical methods for solving
the roots of µ(G, x). It is well-known, that we don’t have exact analytical formulas to
obtain roots of polynomials with higher degree than 5. Using these bounds, we know
where the roots must be, respective where they can not be.

2.4.4 Matrix tree theorem
L(G) may be also referred to as Kirchhoff matrix due to the following theorem. We
revise: A tree is a connected, acyclic graph; a spanning tree of graph G is a tree which
origins as a subgraph, preserving the set of vertices V (G) and removing some of its
edges to avoid cycles. A spanning tree may be found only for connected graphs.

An (i, j)-cofactor of a matrix is a determinant of a submatrix created by deleting the
i-th and the j-th column from this matrix [12].

Theorem 2.7. Kirchhoff’s Matrix-Tree Theorem. Let G be a connected graph with its
Laplacian matrix L(G). Then all L(G) cofactors are equal and this common value is
the number of spanning trees of G [13].

Proof: Omitted. Is based on decomposing the Laplacian matrix into the product of
Incidence matrix and its transpose and then usage of Cauchy-Binet formula [13].
Example 2.8. For graph from Figure 2.4 we could so find 7587 spanning-trees.

2.4.5 Eigenvalue λ2

We call graph G with N vertices connected if there is a path from any vertex vi to any
other vertex vj , ∀i, j ∈ {1, 2, ..., N}.

Eigenvalue λ2 is also called graph connectivity [8]. This eigenvalue is probably the
most important from the whole spectrum, or at least in the context of our consensus
algorithm is in the center of interest. Holds, that λ2 > 0 if and only if the graph is
connected. The multiplicity of 0 as eigenvalue is the number of connected components
[8]. We emphasize, λ2 is directly proportional to the rate of connectivity, i.e. high λ2
means dense graph.

8

. 2.4 Laplacian matrix

A diameter of a graph G, diam(G), is the biggest number of edges we have to pass,
to get from one vertex to another.

There exist some properties and bounds for λ2. Very interesting and easily inter-
pretable, in context of the connectivity term, is the following one. Let’s consider graph
G with N vertices and diameter diam(G). Then holds [8]:

λ2 ≥
4

N · diam(G) . (2.21)

2.4.6 Operations with disjoint graphs
Very detailed reading about this part of Laplacian topic may be found besides in [8]
also in [14]. Let’s now briefly mention what happens with Laplacian of a graph, that is
not connected.

Considering the definition of the Laplacian L(G) = D(G) − A(G), we are not sur-
prised, that Laplacian of a graph consisting of k mutually disjoint sets of vertices will
have block diagonal form obtained from matrices L(G1),L(G2), ...,L(Gk) [8].
Theorem 2.9. Let G be a graph created as a union of disjoint graphs G1, G2, ..., Gk.
Then holds [8]:

µ(G, x) =
k∏
i=1

µi(Gi, x). (2.22)

Example 2.10.
Let’s take a graph from the following Figure 2.6, consisting of two disjoint components

with vertices {1, 2, 3} and {4, 5, 6, 7}.

1

2

3 7

5

4

6

Figure 2.6. Example of a graph with two disconnected components.

Laplacian matrix of the whole graph reads:

L(G) =



2 −1 −1 0 0 0 0
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
0 0 0 2 −1 −1 0
0 0 0 −1 3 −1 −1
0 0 0 −1 −1 2 0
0 0 0 0 −1 0 1


. (2.23)

L(G) is a block diagonal matrix consisting of submatrices L(G{1,2,3}) and L(G{4,5,6,7}).
For characteristic polynomial holds:
µ(G, x) = µ(G{1,2,3}, x)µ(G{4,5,6,7}, x) = (x3 − 6x2 + 9x)(x4 − 83 + 19x2 − 12x) =

x7−14x6+76x5−198x4+243x3−108x2.Note, that 0 is clearly double root, corresponding
to the 2 components of graph.

9

2. Graph theory .

2

Figure 2.7. Another demonstration of Connectivity eigenvalue meaning.

Example 2.11. To get more intuition about Connectivity eigenvalue λ2, consider two
graphs in Figure 2.7.

The eigenvalues of the spare and low connected graph on the left are

λS1 = 0, λS2 ≈ 0.21, ..., λS10 ≈ 5.46.

The eigenvalues of the dense graph on the right are

λD1 = 0, λD2 ≈ 1.65, ..., λD10 ≈ 7.56.

We notice, that λS2 of the spare graph is almost eight times smaller than λD2 of the
relatively dense graph. In next chapter, we shall see, that the Connectivity eigenvalue
directly limits the speed of convergence.

10

Chapter 3
Linear average consensus algorithm

In this chapter, let us consider an undirected and connected graph G = (V,E) with N
vertices and edges (vi, vj) between vertices i, j, where i, j ∈ {1, 2, ..., N}. We denote an
initial value xi(0) the value assigned to the i-th vertex (node, agent) in time t = 0, t ∈ Z.
Then xi(t) refers to the value in the i-th vertex in time t. Our goal is for t→∞, using
only communication between vertices compute in all N vertices of the graph an average
value of those initial values. Based on a matrix-like description of graph G, we want to
construct matrix P, whose components pij will suit this average consensus algorithm,
in a form of iterative matrix multiplication [15].

In this chapter, subject of our interest will be a linear, discrete-time consensus algo-
rithm. A detailed description of the following is in [16], [17] both containing also rich
references to other publications.

3.1 Distributed algorithms
A step-by-step introduction to the theory of Distributed algorithms may be found in a
book [18].

In this chapter about Linear average consensus algorithm we will assume, that:.The topology of the graph is fixed. Our goal will be to find only a static algorithm,
that works for the whole time of computing with constant Adjacency and Incidence
matrices..The communication between vertices is reliable. So all updates for a given agent
always reach a destination. In a real case, a very good level of reliability might
have been reached using e.g. some ARQs algorithms used for an Ethernet network.
However, this would have slowed the algorithm down..All nodes have globally synchronized clocks with one central time, so that the com-
putations are synchronized (practically, we could use for example clock ticks from
GPS satellites)..We always know an initial state of each vertex, i.e. an input value to the algorithm.

3.2 Introduction
Assume this linear update equation

x(t+ 1) = P(t)x(t), (3.1)

where x(t) = (x1(t), x2(t), ..., xN (t))T ∈ RN and for all values of t, P(t) ∈ RN×N is a
stochastic matrix, i.e. pij(t) ≥ 0 and

∑N
j=1 pij = 1, ∀i, j ∈ 1, 2, ..., N. Meaning, that

all values in each row sum up to 1. The pij components are also often referred to as
weights [17].

Now, let’s rewrite the equation (3.1) by expanding the matrix multiplication:

11

3. Linear average consensus algorithm .

xi(t+ 1) =
N∑
j=1

pij(t)xi(t) = xi(t) +
N∑

j=1;j 6=i
pij(xj(t)− xi(t)). (3.2)

Equation (3.2) is for given P(t) a general form of a linear consensus algorithm, that
may be usually found in the literature. Frankly spoken, all the theory behind linear
consensus algorithm aims to find the best matrix P(t), such as the consensus is reached.

Formally defined, we say that P(t) solves consensus problem, if for all i holds

lim
t→∞

xi(t) = α,∀i. (3.3)

Then, for a solution of the average consensus problem must be in an addition to the
previous condition fulfilled also

α = 1
N

N∑
i=1

xi(0). (3.4)

Next, we call P(t) doubly stochastic, if holds also
∑N

j=1 pij = 1,∀j ∈ 1, 2, ..., N. So
both, rows and columns sum up to 1. Note, that if P(t) is stochastic and symmetric,
P(t) = P(t)T , then P(t) is doubly stochastic.

The P(t) matrix may be considered as: 1) constant P(t) = P, i.e. we set up only
one matrix at the beginning of the computation, to be used for the whole run of an
algorithm, 2) a deterministic time variable matrix, 3) randomly variable matrix; it is the
most general case bearing also most complexities [16]. For simplicity, we will concern
only case 1).

3.3 General convergence conditions
Let’s formulate some conditions for our constant P matrix. We call a matrix P com-
patible with a graph G, if pij = 0 for j /∈ Ni (i.e. i-th node is not in a set of neighbors
of the j-th node). Still considering an undirected graph, we can write:

P = PT . (3.5)

We define terms irreducible and primitive matrices: we call matrix A irreducible if its
associated graph G is strongly connected; and we call A primitive, if it is an irreducible
stochastic matrix, that has exactly one strictly greatest modulus of eigenvalue [19].
Theorem 3.1. Perron-Frobenius theorem [19]. Let P be a primitive non-negative matrix
with left and right eigenvectors w and v , respectively, satisfying Pv = v , wTP = wT

and vTw = 1 . Then
lim
t→∞

Pt = vwT . (3.6)

(Note, the upper index t in expression Pt means power of matrix.) Perron-Frobenius
theorem may be found in many stronger forms, but for us, this minimalistic form will
be sufficient.

Now, let’s add the desired property to make the algorithm average. We define an
averaging matrix 1

N 11T , where 1 denotes a column vector of N ones. Note, 11T is
N ×N matrix of all ones, however 1T1 = N is a scalar. When multiplying this rank-
one matrix with a vector z ∈ RN , z = 1

N 11T z, we obtain a column vector z with all
components equal to the average of all N components of the z vector [17].

12

. 3.4 Heuristics based on the Laplacian matrix

What we ask about the algorithm is

lim
t→∞

x(t) = limt→∞Pt x(0) = 1
N

11T x(0), (3.7)

which is for arbitrary vector x(0) equivalent to the

limt→∞Pt = 1
N

11T . (3.8)

Next, according to the above Perron-Frobenius theorem (3.6) and equation (3.7), our
next naturally appearing condition for P is to have it doubly stochastic , i.e. :

P1 = 1 , (3.9)

and
1TP = 1T . (3.10)

Explicitly summarizing: to reach the convergence of the average consensus algorithm,
the increasing powers of (not unique) stochastic matrix P must converge and moreover
converge to a doubly stochastic matrix 1

N 11T .
So far, we wrote down some conditions for P matrix, however, it should be clear, that

they definitely do not determine any unique matrix and still leave a lot of freedom how
to choose it. But as there are more ways to construct P matrix, to reach convergence,
for all of them will be necessary to always hold it compatible with a given graph. We
must not forget, that P corresponds to a physically realizable information exchange in
the graph G, so this condition allows communication only over existing edges.
Theorem 3.2. Equation

limt→∞Pt = 1
N

11T (3.11)

holds if and only if
1TP = 1T , (3.12)

i.e. 1 is left eigenvector of P with eigenvalue 1,

P1 = 1 , (3.13)

i.e. 1 is also right eigenvalue of P and

ρ

(
P − 1

N
11T

)
< 1, (3.14)

where ρ(.) denotes the spectral radius of a matrix, i.e. the greatest absolute value of
an eigenvalue.

Proof: Complete proof may be found in [20].

3.4 Heuristics based on the Laplacian matrix
The basic material for the following section comes mainly from [20].

There have been developed some simple heuristics for choosing matrix P, that fulfills
the established conditions from the previous section. They are based on the construction
of the Laplacian matrix, shown in Graph Theory chapter. So then, let us heuristically
take

P = I − αL, α ∈ R. (3.15)

13

3. Linear average consensus algorithm .
P is often refered to as Perron matrix, because of Perron’s (1880 – 1975) work in last
century [21].

This P evaluates edges of graph with a value α. The first great advantage of this
choice is that such a matrix P will be automatically compatible with the graph, while
it bears information about connected, respectively disconnected vertices and also, in
this way, as we build the P matrix like a subtraction of an Identity matrix and some
specified multiple of a Laplacian matrix, this subtract originated matrix is, of course, a
stochastic matrix, regarding to the property of the Laplacian matrix, that all its rows
sum up exactly to zero [17].

The elements of P are

pij =

α if there is the edge (vi, vj),
1− diα if i = j,
0 otherwise,

(3.16)

where we remind di is the degree of vertex i.
Now on, we can from equation P = I−αL determine an expression linking eigenvalues

of matrix P with eigenvalues of matrix L.
Theorem 3.3. [17]:

λi(P) = 1− αλN−i+1(L), i = 1, 2, ..., N, (3.17)

where λi(.) stands for the i−th smallest eigenvalue of the symmetric matrix.
Proof: Quite simple, this can be verified writing the equation for characteristic

polynomial of matrix αL:
det (αL− λI) , (3.18)

which is using αL = I − P equal to

det ((I − P)− λI) = det ((1− λ) I − P) . (3.19)

Next we want to solve characteristic equation det ((1− λ) I − P) = 0. In this, we can see
from RHS of (3.19), that the spectrum of αL will be exactly the spectrum of (1−λ(P)).
And since holds

det(aX) = a det(X),

the proof is complete.

We have seen, that for Laplacian matrix of connected graph holds

λ1(L) = 0. (3.20)

Then we can using previous theorem immediately write

λN (P) = 1. (3.21)

This is for us extremely useful! Since because of Equation (3.21) the matrix P is
primitive and holds Equation (3.6) from Perron-Frobenius theorem, i.e. because there
is exactly one greatest eigenvalue the the limit in Equation (3.11) is guaranteed to exist.
Theorem 3.4. (Convergence condition.) Consider a network of agents given by a
strongly connected graph G with N nodes and Perron matrix P = I − αL. Applying
the distributed consensus algorithm

x(t+ 1) = Px(t), (3.22)

14

. 3.4 Heuristics based on the Laplacian matrix

where α ∈ (0, 1
∆], consensus is asymptotically reached for all initial states [19].

We already showed in Chapter 2, that Laplacian matrix is always positive semidefi-
nite. Because of this property, we have to necessarily choose

α > 0, (3.23)

to successfully accomplish the convergence condition [20]

ρ

(
P − 1

N
11T

)
< 1. (3.24)

The spectral radius of a matrix
(
P − 1

N 11T
)

may be then expressed as

ρ

(
P − 1

N
11T

)
= max{λN−1(P),−λ1(P)} = max{1− αλ2(L), αλN (L)− 1}. (3.25)

Using the condition ρ
(
P − 1

N 11T
)
< 1 we can write

0 < α <
2

λN (L) . (3.26)

Finally, according to [20], the choice of α to minimize ρ
(
P − 1

N 11T
)

is

α∗ = 2
λN (L) + λ2(L) . (3.27)

This is the best possible choice based on the Laplacian matrix. However, very useful
is to select the coefficient as stated in [19]

0 < α∆ <
1
∆ , (3.28)

which choice depends only on the maximum degree in the graph, assuming the graph is
strongly connected. It is useful, because we do not have to look for the eigenvalues of
Laplacian matrix. Next interesting reason is, if in implementation the topology of the
graph would have changed, typically in a way that one of the nodes breaks and shuts
down, the number ∆ can only decrease, which implies the coefficient α∆ to increase.
Therefore, we don’t have to be worried of algorithm divergence. Proof of asymptotic
convergence may be found e.g. in [19].

Matlab script used in following Examples 3.5, 3.6 and 3.7 may be found in Appendix
A.1.
Example 3.5. Let us take an undirected graph from Figure 2.2, initializing simply the
i−th vertex with value i , i = 1, 2, ..., 10. In the figure 3.1 are shown the time varying
values in each vertex. We can clearly see, that the all values converge to the expected
value 5, 5.
Example 3.6. In next example in Figure 3.2, let’s again take exactly the same graph
2.2, but now we will during the run of the algorithm fix the value in vertex v3 = 3. It
is quite interesting, however not surprising, that this modification causes all values to
converge to the value 3.
Example 3.7. For this moment the last experiment in Figure 3.3, that we want to
present over topology from Figure 2.2, is adding reasonably small Additive White Gaus-
sian Noise (AWGN) to the updates. Noisy updates will be the main subject of the next
chapter.

15

3. Linear average consensus algorithm .

0 5 10 15 20 25 30
Iterations [-]

0

2

4

6

8

10

V
al

u
e

[-
]

Convergence to mean of initial values

Figure 3.1. Average consensus algorithm on graph from Figure 2.2. The nodes are initial-
ized with values 1 - 10 (vertical axis). Using exchanging updates between neighbors, the

consensus is reached in 10 iterations.

0 5 10 15 20 25 30
Iterations [-]

0

2

4

6

8

10

V
al

u
e

[-
]

Convergence to the initial value of node v3

Figure 3.2. Average consensus algorithm in graph from Figure 2.2, where we again initial-
ized nodes with values 1-10, but this time we during run of the algorithm fix the value in
v3, xv3(t) = 3 ∀t ≥ 0. We can see, that consequently all nodes converge to the fixed value.

3.4.1 The Metropolis-Hastings weighting method

As mentioned before, the choice to construct P is not unique. Although the Laplacian-
based approach is in the related basic literature probably the most common, we will
for illustration give one other satisfactory example [22].

The Metropolis-Hastings weighting method coefficients of PMH matrix are

pMH
ij =


1

1+max(di, dj) for j ∈ Ni, i 6= j,
1−

∑
j∈Ni

pij if i = j,
0 otherwise [22].

(3.29)

16

. 3.5 Average consensus algorithm with additive noise

0 20 40 60 80 100 120 140 160 180 200
Iterations [-]

1

2

3

4

5

6

7

8

9

10

V
al

u
e

[-
]

Run of algorithm with updates a,ected by AWGN

Figure 3.3. Run of average consensus algorithm on the graph from Figure 2.2 with noisy
updates. We can see, that adding noise to the updates in the run of the simple version of

algorithm causes the algorithm to lose convergence property.

3.5 Average consensus algorithm with additive noise
Source for this section is [17].

In previous text, we assumed during the run of algorithm a perfectly reliable commu-
nication. Now, let’s have a look, what happens, when this holds no more. The simplest
case to begin with, is an Additive noise w(t) ∈ RN = (w1(t), w2(t), ..., wN (t)). In detail,
the w(t) is a random variable with zero mean and unit variance. Mathematically for-
mulated, the average consensus algorithm affected by additive noise will be described
as

x(t+ 1) = P(x(t) + w(t)) (3.30),

where we expect that P fulfills the convergence conditions stated before. Note, that
now the sequence of the vectors x(t) becomes to be a stochastic process, i.e. a set of
random variables parameterized by the time t.

By E[.], we denote an Expectation operator, (i.e. the Mean). Then since in (3.30)
we expected a zero mean, it implies that holds

E[x(t+ 1)] = PE[x(t)].

So using the operator E[.], the algorithm doesn’t even know about the noise, while its
mean is zero. This models a situation, when to the updates that are being exchanged
is added some noise. However, the values in each vertex do not converge at all. To
present this, let’s define a function

a(t) = 1
N

1T x(t), (3.31)

that provides an average value of a vector x(t) (i.e. a scalar) [17]. Then

a(t+ 1) = 1
N

1T x(t+ 1) = 1
N

1T (Px(t) + w(t)) = 1
N

1TPx(t) + 1
N

1TPw(t) =

=
∣∣1TP = 1T

∣∣ = a(t) + 1
N

1Tw(t).

17

3. Linear average consensus algorithm .
Note, the expression 1

N 1Tw(t) is nothing but a sequence of random variables, which
implies that a(t) has the following properties [17]:

E[a(t)] = a(0) (3.32)

and
E [a(t)− E[a(t)]]2 = t. (3.33)

(Note, in Eq. (3.33) we used a fact that var[w(t)] = 1.) We emphasize, that (3.33)
means, the variance of a random variable a(t) increases linearly with time. It’s also
interesting, that nor (3.32) nor (3.33) do not depend on the structure of matrix P [17].
Let’s revisit the Figure 3.3. The increasing variance problem may be seen in Figure 3.4,
which is the same setup as in Figure 3.3 but showing more iterations of the algorithm.
We can see that there is no convergence and the obtained data are therefore useless.

0 2 4 6 8 10 12
Iterations [-] #10 4

0

5

10

15

20

25

V
al

u
e

[-
]

Run of algorithm with updates a,ected by AWGN

Figure 3.4. More samples to Figure 3.3 show failure of the simplest version of algorithm
in presence of noise.

3.6 Mean-square convergence in case of noisy
updates and observations

As we have seen above, when taking into account noisy updates, during the run of
the algorithm, as stated in Equation (3.1), i.e. with constant matrix P, the algorithm

18

. 3.6 Mean-square convergence in case of noisy updates and observations

fails to converge because of (linearly) increasing variance. In the following section we
provide a simple way, according to [23], how to solve this problem. The core idea of
the approach is to change the coefficient α from Equation (3.15) to some time variable
γ, i.e. γ = γ(t), and decreasing in time, so that γ(t+ 1) < γ(t). Roughly spoken, when
properly choosing the sequence {γ(t)}∞t=1, the effect of updates gradually fades away.
This is a basic concept, that is used in many more sophisticated methods that take into
account the nonidealities of transmission. Later, we will provide some references and
an outline of such an algorithm in Chapter 4.

3.6.1 Model setup
Let’s specify the model of the situation first. In the previous parts, we in fact didn’t
assume anything about the values that were the inputs of the algorithm. The model
could have been used as a way to compute an average value of any general inputs.

Now we will follow a model of a situation, where our N nodes observe one fixed-value
θ ∈ R in the network with presence of Additive noise w (with zero mean), so that the
observation of i-th node, i = 1, ..., N, is

xi(0) = θ + wi. (3.34)

Let’s again organize these observations into the vector x(t) = (x1(t), x2(t), ..., xN (t))T .
So we keep the taken observations of the nodes, affected by the noise w(t), in vec-
tor x(0) = (x1(0), x2(0), ..., xN (0))T . These observations are assumed to be unbiased,
uncorrelated and with variance σ2 and with some finite mean value.

3.6.2 Time-varying weights
Firstly, we change the Perron matrix of the algorithm by adding a scalar weight γ = γ(t)
that will gradually decrease the impact of updates

P(t) = I − γ(t)L, (3.35)

and the impact of noise on the according graph’s edge will be integrated into the
algorithm via elements of noise matrix N(t) , i.e. nij(t), as

x(t+ 1) = P(t)x(t) + diag{P(t)N(t)} = P(t)x(t) + m(t), (3.36)

where the vector m(t) = diag{P(t)N(t)} consists of the diagonal elements of the prod-
uct of matrices (P(t)N(t)), by which we model the situation when the values of neigh-
bors reach the given node affected with Additive noise. The vector m(t) forms a random
process and its stochastic parameters, i.e. variance and mean, will, of course, depend
on the weight γ(t), that is hidden in P(t) and also on the parameters of matrix N(t)
discussed above [24].

For the time-varying weight sequence must hold

∞∑
t=0

γ(t) =∞, (3.37)

and
∞∑
t=0

γ2(t) <∞, (3.38)

in order to reach convergence. The proof may be found in [25].

19

3. Linear average consensus algorithm .
3.6.3 Approach of descending step size

There are more approaches to design the step size weights. In [26] was verified that a
valid choice might be e.g. sequence in form

γ(t) = a

(b+ t)c , (3.39)

where a > 0, b > 0, c ∈ (0, 5; 1]. Using this sequence will guarantee the convergence for
any initial step in sense of decreasing mean square error (MSE), because the conditions
in Equations (3.37) and (3.38) are fulfilled, however to avoid an initial divergence of
algorithm, corresponding to situation when doesn’t hold Condition (3.26), the initial
step should be selected to be smaller than 2

∆ for the given graph [23] [25] [24].
Example 3.8. Now we give an example, how the above method works. For this simula-
tion we use a Matlab library graph Bucky with N = 60 nodes, each having 3 neighbors.
(Its pattern looks like a surface of a soccer ball, see Figure 3.5.) All nodes observe a
constant θ = 10 in a zero mean additive noise with variance σ2

observation = 1 and the
according updates are traveling through the graph affected by zero mean additive noise
with variance σ2

updates = 0, 1. Imagine, that the observed value is some physical quan-
tity, e.g. time base, temperature, humidity, etc. with arbitrary scaling factor located
e.g. somewhere in the middle of the bucky graph. Since the algorithm is linear, only
ratio of the measured values and the variances σ2

observation, σ2
updates is meaningful. The

script used for the simulation is in Appendix A.2 and it is prepared for a situation
σ2
observation = 10σ2

updates.
We selected the decreasing sequence γ(t) = 1

(42+t)0,75 , which satisfies that
γ(0) < 1

∆ = 1
3 . To demonstrate the convergence of algorithm, we run 100 000

iterations.

Figure 3.5. Graph used in simulation in Example 3.8.

We can see in Figure 3.6 that such a modification of algorithm works and the values
in all nodes converge to one value, although very slowly. Selecting the sequence γ(t)
does not have any general rules (or at least we didn’t manage to find them) and there
is a trade off between the speed of convergence and between the value, up to which the
MSE decreases. In next Figure 3.8 we can see in loglog graph, how the Mean square
error of values truly decreases. In similar Figure 3.7 we demonstrate another important
fact: The MSE of actual values in each decreases according to Figure 3.8, but they do
not come to the average of initial values. This shows Figure 3.7. MSE with respect to
an initial average will stop decreasing at some point. In this sense, we have to say, that
values in all nodes converge asymptotically to one value, but they do not converge to
the average of initial values.

20

. 3.6 Mean-square convergence in case of noisy updates and observations

Figure 3.6. The values in nodes of graph in run of 100 000 iterations of the algorithm
from Example 3.8. Precious result is, that using the descending step size the algorithm

does not diverge.

10 0 10 1 10 2 10 3 10 4 10 5

Iterations [-]

10 -3

10 -2

10 -1

10 0

M
S
E

w
.r
.t

in
it
ia

l
av

er
ag

e
[-
]

Mean square error w.r.t. initial average

Figure 3.7. Decreasing MSE w.r.t. initial average in nodes of the graph in the run of
the algorithm from Example 3.8. Decrease of this value consequently slows down, because
variance of the noise comes to be still more significant w.r.t the small differences in updates.

21

3. Linear average consensus algorithm .

10 0 10 1 10 2 10 3 10 4 10 5

Iterations [-]

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

M
S
E

w
.r
.t
.
m

ov
in

g
av

er
ag

e
[-
]

Mean square error w.r.t. moving average

Figure 3.8. Decreasing MSE w.r.t. moving average in nodes of graph in each iteration of
run of the algorithm from Example 3.8. We can note, that this value continues to decrease

according to fact, that difference between nodes converge to unique value.

10 0 10 1 10 2 10 3 10 4 10 5

Iterations [-]

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

V
ar

ia
n
ce

[-
]

Variance

Figure 3.9. Decreasing variance of the values in nodes of the graph in the run of the
algorithm from Example 3.8. We note, that shape of this curve is the same as for Moving
MSE from Figure 3.7. This is possibly related to the fact, that for an unbiased estimation

MSE is equal to variance.

22

. 3.6 Mean-square convergence in case of noisy updates and observations

Example 3.9.
Second example that we provide here is with the same settings of θ, σ2

observation,
σ2
updates, γ(t) values as in Example 3.8, but this time with ring topology, again with

60 nodes.

Figure 3.10. 60 nodes ring topology from Example 3.9.

0 1 2 3 4 5 6 7 8 9 10

Iterations [-] #10
4

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

V
al

u
e

[-
]

Values in nodes - ring topology with 60 nodes

Figure 3.11. Values convergence from Example 3.9.

Let’s compare the results from Examples 3.9 and 3.8. Both nodes topologies are in
environment with the same stochastic parameters and hence, we can see the Bucky
topology converges much faster. Of course, it is because of the connectivity of first
graph is much bigger, specifically in Ex. 3.9 λbucky2 ≈ 0, 243 4 and λring2 ≈ 0, 0109 6.

Note: since Laplacian of ring topology graph depends only on the number of nodes,
it is quite interesting, that the connectivity eigenvalue can be computed analytically.
The equation to compute Connectivity eigenvalue of Laplacian matrix of N -node ring
topology is:

λ2 = 2− 2 cos
(

2π
N

)
, (3.40)

23

3. Linear average consensus algorithm .

10 1 10 2 10 3 10 4 10 5

Iterations [-]

10 -3

10 -2

10 -1

V
ar

ia
n
ce

[-
]

Variance of values in nodes- ring topology with 60 nodes

Figure 3.12. Variance running from Example 3.9.

and one can check, that as the number of vertices increases, the connectivity decreases
referring to the fact, that the information takes a longer time to propagate [27].

3.6.4 Recommendations of literature concerning noisy updates
topic

Here we list some publications, that solve the topic of noisy updates in a formal way
with proofs, which are behind the scope of this text.. [26] : Here is described the purpose of descending weights during the run of the

algorithm with noisy updates.. [24] : This paper is about designing of the weights that minimize MSE during
the run of the algorithm. There may be found also an interesting concept about
designing the weights without explicit knowledge of graph Laplacian, which is quite
advantageous since in implementation sometimes the exact topology we simply do
not know.. [28] : Herein were presented two algorithms, that solve problematic of noisy up-
dates. The basic idea remains in designing of sufficient descending weights but the
solution provided here is probably state of the art. The same authors published
also [29] where are provided further details.. [30] : Takes into account quantization noise that takes effect while implementing
algorithm e.g. in fixed point arithmetic.

24

Chapter 4
Distributed Estimation in Wireless Sensor
Networks

The following chapter should serve as a description of the topic of distributed estima-
tions in wireless networks. We will summarize firstly the problematics overview, with
the focus on the aspects that complicate the estimation process, and then provide a
description of some basic approaches to implementation of a consensus algorithm, that
respects the true nonideal properties of real networks.

This chapter is based on source [31].

4.1 Introduction
Wireless networks are present in a great number of applications of an everyday life.
The most commonly given examples are e.g. communication systems (mobile networks,
LTE, Wi-Fi), all sorts of measuring devices (technical, medical, industry and another
usage). Currently very popular are autonomous cars. In the context of our main topic,
the average consensus algorithm might be commonly seen in solving a problem of moving
in coordinated formations (e.g. flights of drones and others unmanned vehicles).

The subject of our interest will be now Wireless Sensor Networks (WSN) with smart
nodes, i.e. nodes, that own some computing power and are programmable (i.e. not just
an ordinary sensor). By localizing such nodes in some area to create a network, we aim
to avoid using any kind of centralized topology. One benefit is, that WSN becomes to
be much more robust with respect to a single failure point of a central device. (We do
not have any). Naturally, now we are not limited to a fixed topology and the nodes
can move. Even more important is, that in a situation, when nodes of WSN aim to
estimate some value θ in a distributed manner, it is naturally much faster when the
nodes communicate directly. Having nodes, that are battery-supplied, we are also glad
to avoid using the limited amount of power without necessity. It seems natural, that
more effective way is to use only direct communication between nodes, that want to
obtain the desired estimation, without employing some distant data center.

WSN networks may consist of hundreds of nodes. Its goal is to estimate the value
cooperatively and locally, instead of moving the calculation somewhere else, because
sometimes it might not be even possible. Typically, in wireless communication, the
nodes should obtain an overview of the network parameters (network topology, carrier
frequency, common time base). Concerning the topology, one node initially knows only
its direct neighbors. In digital communication is typically necessary, that each node
knows the topology of the whole network (an Adjacency matrix). This is exactly the
case when we can not avoid a cooperation between nodes. With respect to the previous
chapters, we note that the WSN can be for a purpose of distributed consensus algorithm
simply coded into a graph with, expressing the possibility of an information exchange
between nodes [31].

25

4. Distributed Estimation in Wireless Sensor Networks .
4.2 Overview of Distributed Consensus Estimation

Our general observation model will be

z = Hx + w , (4.1)

where z is our observation, x is the target value, H is an observation matrix and w is
the additive noise.

Typical problems in WSN estimation process are:. Noise in the network. We generally never receive the same value as we send. The
observation process is also affected by noise.. Wireless devices are battery-powered and because of that, the estimation process
should be effective and not to waste the power.. Topology of WSN may generally change.. The algorithm requires a common clock synchronization between nodes.. The communication between two nodes generally doesn’t have to be symmetric,
so that e.g. A node can send information to B, however B is not able to answer
to A directly. Hence, a graph describing the WSN inter-nodes communication is
then the directed graph.

4.2.1 Consensus-Based Distributed Parameter Estimation
In [31] may be found quite general concept of a solution to the estimation process in
WSN. We will use it to present the main difficulties related to the algorithm design.
The authors there use two kinds of sensors: Sensor Nodes (SN), that locally measure
the value we want to globally estimate and Relay Nodes (RN), that do not measure
anything but only distribute the measure results of SN to other nodes. This concept
would have been practically used to save money for many expensive sensors. Such a
network we call heterogeneous and hence, all the nodes do not have the same impact on
the result. By adding RN into the WSN, we also naturally increase the connectivity of
the graph. Typically, we can add cheap RN into the network to enable and/or improve
the connectivity of all SN.

Next, we briefly list the main difficulties that must be considered using this model.

4.2.2 Asymmetric communication
Since this model describes situation with asymmetric communication channels a di-
rected graph representation must be used. In our case, a weighted graph G is a triplet
G = (V,E,A), where V is the set of RN and SN, E ⊂ V × V, and A is a matrix of
weights associated to edges E. For elements of A holds

aij > 0⇔ (i, j) ∈ E. (4.2)

Note, this A matrix is a generalization of already before used Adjacency matrix. Con-
sidering directed graphs, it is in a literature common to call a source vertex of an edge
parent and the destination vertex child [31].

Assuming, that i−th node transmits to the j−th at a constant power level PTi in
distance dij , the communication will be successful if holds the inequality for Signal to
Noise Ratio (SNR)

PTi
Ndηij

≥ β, (4.3)

26

. 4.2 Overview of Distributed Consensus Estimation

where N stands for a power level of noise in the channel, η is an exponent expressing the
lossy behavior of the channel and β is the minimum SNR value fulfilling the condition
for communication [31]. From Equation (4.3) we can determine a maximum distance
dijmax between nodes i, j, that will serve as a threshold for evaluating the communication
as possible

dijmax = η

√
PTi
Nβ

. (4.4)

4.2.3 Multidimensional observation
In [31] is solved a problem of estimation of a vector θ ∈ RJ , whose components are
separately measured by SN. The measurement of the desired vector θ is described as

yi (t) = Hiθ + wi (t),∀i ∈ IS (4.5)

where Hi ∈ RJi×J is an observation matrix and wi (t) is white Additive Gaussian
noise. The statement Ji ≤ J for i−th SN means, that it generally provides only limited
information about the vector θ, because it can’t measure the rest of components. The
RN nodes can’t measure θ at all, because they are not equipped with the sensors.

The vector nature of θ will consequently bring to the matrix description of the update
equations, similar to the Equation (3.1), Kronecker product. Although such a descrip-
tion is possible, it is in my opinion very confusing and is reasonable to use probably
only in theory. To see this matrix description, we refer to [31].
Definiton 4.1. (Kronecker Product) [32] Given matrix A ∈ Rm×n and matrix B ∈ Rp×q,
their Kronecker Product C ∈ Rmp×nq is denoted

C = A⊗ B,

where cαβ = aijbkl, using α = p(i − 1) + k and β = q(j − 1) + l. To give an intuition,
we provide a simple example.
Example 4.2. (Kronecker product practice.) Calculate a Kronecker product C = A⊗J,
where

A =
(
a b
c d

)
, J =

(
j k
l m

)
.

Solution:

C = A⊗ J =


aj ak bj bk
al am bl bm
cj ck dj dk
cl cm dl dm

 .

4.2.4 Description of Algorithm DCUE
The DCUE algorithm assumes perfectly synchronized updates. We use the following
notation in this subsection: yi (t) is, as defined in Equation (4.5), an observation of
vector θ, determined in the i−th node by the Observation matrix Hi in the specific
node and affected by the noise vector wi (t). Next, xi (t) is a vector containing local
estimations of the vector parameter θ in the particular nodes. All the column vectors
of local estimations in nodes might be placed into a vector of vectors (i.e. a matrix)
X(t) = (x1 (t), x2 (t), ..., xN(t)). In the case of convergence of the algorithm, as t→∞,
single elements of each raw of this matrix X(∞) will be equal. In each node i is initially
known a value xi (0) (motivated as the measurement). N S

i and NR
i mark the set of SN

27

4. Distributed Estimation in Wireless Sensor Networks .
neighbors and RN neighbors to the i−th node, respectively. The update equation of
DCUE algorithm states:

xi (t+ 1) = xi (t) + ρ(t)αiHi
T (yi (t)−Hi xi (t)) +

+ρ(t)
ci

∑
j∈NS

i

aij(xj (t)− xi (t)) +
∑
j∈NR

i

aij(zj (t)− xi (t))

 , (4.6)

where αi > 0 controls the update rate of information during the run of algorithm;
ρ(t) > 0 is a weight controlling an impact of received updates (we preserve the notation
of the authors of [31] here: in the previous text, see Subection 3.6.3, this factor ρ(t)
was denoted as γ(t) i.e. it provides the descending step size); ci > 0 controls impact
of i−th own measurement (i.e. we use more different observations in different times in

particular nodes) and aij =
√

PTj |hij |2

dηij
represents an amplitude of a signal received by

node i from node j (i.e. elements of the Adjacency matrix), in which hij is a fading
coefficient describing a channel between i and j, and it is a reason why aij 6= aji [31].

Next, an update equation for RN nodes reads

zi (t) =
∑
j∈NS

i

γijxj (t) +
∑
j∈NR

i

γijzj (t),∀i ∈ IR, (4.7)

where γij are some non negative weighting coefficients [31].
Summarizing the meaning of equations describing the algorithm, that we stated

above: Firstly, Equation (4.5) says, that observation of node i, yi (t), in time t are
elements of vector θ, according to its appropriate matrix Hi , and this observation is
affected by the Gaussian noise wi . Next, Equation (4.6) proposes the way how i−th SN
should update the values to be estimated. It consists of a specific linear combination
of values that node i self-measures and values that it receives from neighbors SNs and
RNs, respectively. Doing this, we take into account distance between neighbors (i.e.
in units of length, not a number of hops), properties of the channel between nodes,
transmitting power and consequently we decide, whether the update can be applied,
according to these channel characteristics. Finally, Equation (4.7) is an analogy update
equation for i-th RN, whose updates are determined as a linear combination of values
of its RNs and SNs neighbors.

28

Chapter 5
Examples of Usage of Average consensus
algorithm in wireless communication

In this chapter, we provide few more examples of usage of Average consensus algorithm
in wireless digital communication.

5.1 Distributed estimation of the number of
deployed nodes

Let’s consider a situation, that in some area we placed a number of nodes, each marked
with its unique identification I, for simplicity we take I = 1, 2, ..., N ; and these nodes
are supposed to exchange information [15]. We want to estimate the overall number of
sensors N. We will model this problem as Average consensus algorithm over the set of
variables I assigned to the vertices. From Figure 5.2 we can read, that in this particular
example an average node number I is

I = 1 +N

2 = 50. (5.1)

Then we follow to find the number N as

N = 2I − 1 = 2 · 50− 1 = 99, (5.2)

and 99 is indeed the number used in the simulation. Note: a priori none of the nodes
didn’t know the parameter N, and using simple Equation (5.2) the information about
the total number of nodes will be obtained in all nodes.

An alternative to this approach is solving this problem in a way, that all nodes send
some acknowledgment to a central point, CP computes them and sends the number
of nodes back, but using the approach described in our example, we avoid a risk of a
central point failure. Matlab script used for the simulation is in Appendix A.3.

5.2 Tracking of dynamic target
Let’s consider a small graph with only 5 nodes. Four of them, v1− v4 are followers and
they track a target v5. In this implementation, we expand the previous Example 3.6,
where we fixed one vertex value of the algorithm and observed how the rest of vertex
values are asymptotically converging to it (see Figure 3.2). We make two changes now.
The first is trivial, we run in parallel two runs of the algorithm with the meaning of
moving in the plane xy space (see Figure below). The second is that the previously
fixed parameter will be now slowly, randomly changing.

In Matlab script in Appendix A.4 we provide an implementation, where the target
is initialized in a random position and for a half of the simulation time it has some
small dynamics, implemented as moving for a small random distance in each step of

29

5. Examples of Usage of Average consensus algorithm in wireless communication

-5 -4 -3 -2 -1 0 1 2 3 4 5
-6

-4

-2

0

2

4

6

Figure 5.1. Figure of graph on which we demonstrate estimation of overall nodes number
using local communication.

0 5 10 15 20 25 30
Iterations [-]

0

20

40

60

80

100

A
ve

ra
ge

ID
[-
]

Average ID number estimation

Figure 5.2. Convergence process of estimation to find a number of deployed nodes. Using
the average consensus algorithm we find the average ID of nodes I, from which we can

easily compute the overall number of deployed nodes.

the iterative algorithm. Goal of the nodes v1−v4 is to be as near as possible to v5, with
only some small d distance, that v1 − v4 hold to prevent collision. In the simulation
we had to significantly decrease the choice of α parameter, α = 0, 1 · α∗ = 1

10·∆ , that
controls the choice of Perron matrix P, which bears the algorithm. This is justified by
fact, that the iterations of the algorithm are too fast and we should respect, that the
followers are moving with finite velocity. (Consequently, in such a case the animation
would not be interesting at all.)

In Figures 5.3 and 5.4 we show four screens from simulation, that is an output of
provided Matlab script in Appendix A.4. Note that as a result v1 − v4 perfectly tracks
v5. Usage of Average consensus algorithm is quite common in automatic control of
e.g. flights of drones, that should keep some given distance between each other; this
is referred to as ’Multi-vehicle Formation Control’ (or also sometimes less formally

30

. 5.3 Distributed time synchronization of already communicating nodes

flocking), and for more information and rich references we again recommend e.g. [19].
Average consensus algorithm may be so used to design feedback control system for such
unmanned vehicles.

-200 -100 0 100 200
x

-200

-100

0

100

200

y

Initialization

-200 -100 0 100 200
x

-200

-100

0

100

200

y

10 iterations

a) b)
Figure 5.3. Initialization and 10th iteration of Target tracking simulation.

-200 -100 0 100 200
x

-200

-100

0

100

200

y

100 iterations

-200 -100 0 100 200
x

-200

-100

0

100

200

y

1000 iterations

a) b)
Figure 5.4. 100th and 1000th iteration of Target tracking simulation.

5.3 Distributed time synchronization of already
communicating nodes

In this Example, we want to show, that the Average consensus algorithm may be used
by perfectly communicating nodes to synchronize to e.g. make a measurement at one
moment. We assume, that there has already been established communication between
the nodes.

The problem, that solves this section might have been motivated e.g. like this:
Imagine, our N sensors are supposed to measure some quantity, e.g. temperature.
Because of typical WSN limitations, such as battery capacity, they are designed to shut
down sensors, at moments during which they are not in use, to save power, and we
want all the nodes to turn on the sensors and measure at same time instants. Usually,
each sensor will keep its time as some big number, i.e. an integer in its memory, that is
being periodically incremented according to ticks of its internal oscillator. E.g. in time
provided by GPS satellites the receivers obtain information in form of GPS-weeks and
GPS-seconds since January 1980 [33].

A Matlab script, that we used to simulate the problem described above may be
found in Appendix A.5. In the simulation, we used 30 nodes of an average degree

31

5. Examples of Usage of Average consensus algorithm in wireless communication
4. In the Figure 5.5 we present a detail look to initial synchronization. Observation:
the algorithm doesn’t have any problem with fact, that the values in nodes in each
iteration increase, nevertheless we can not speak about something like convergence.
The variables, that are inputs of the algorithm still increase and the iterations of the
algorithm hold the error in nodes reasonably small. The result, that we desire in this
example is, that all the nodes have, within about 30 iterations, the same time base
synchronized, which may be used e.g. to turn on the sensors in specific moments.

0 50 100 150
Iterations [-]

1000

1200

1400

1600

1800

2000

T
im

e
in

th
e

n
o
d
e

[e
.g

.
se

co
n
d
s
or

ti
ck

s]

Online time synchronization - beginning detail

Figure 5.5. A detailed view on result of the first 150 iterations of the simulation. Each
node was initialized with time base T = 1000± δoffset, where δoffset is a random number
from Uniform distribution from interval [0; 1000]. We can see, that the convergence is

reached in about 30 iterations.

5.4 Initial Distributed time base synchronization
of nodes

The last example concerns again time base synchronization, but in a different manner
than previously. This time we want to find out, how to use the Average consensus
algorithm to synchronize time base, that will serve to rule timing of the communication
between nodes, e.g. motivated by purpose of usage a Time Division Multiple Access
(TDMA), i.e. situation, when we want to ensure, that transmissions from different
nodes will not overlap and cause collisions.

So we are given N nodes, denoted as i = 1, 2, ..., N , and each equipped with its in-
ternal oscillator with a (possibly different) period Ti. To clarify the difference between
this task and the previous one: in the previous example we expected, that time syn-
chronization from this example was already performed and therefore the nodes could
have been exchanging only the variables that symbolized some global time. Now we
do not assume, that there has already been established time-synchronized communica-
tion between nodes. We need only precise detection of impulses, as explained later.
Meaning of the TDMA is explained on the following Figures 5.6 and 5.7, see the labels.

32

. 5.4 Initial Distributed time base synchronization of nodes

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.2

0.4

0.6

0.8

1

V
al
u
e
[-
]

Without TDMA synchronization

Tx1

Tx2

Tx3

Figure 5.6. Without TDMA synchronization it happens, that the transmissions overlap
and the received signal is therefore damaged. (Tx2 damages Tx1 and Tx3.)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.2

0.4

0.6

0.8

1

V
al
u
e
[-
]

Example of TDMA transmission (time base synchronized)

Tx1

Tx2

Tx3

Figure 5.7. TDMA prevents the transmissions to overlap, because each node has desig-
nated time slots, when it is allowed to transmit.

A very nice summary of this time synchronization problematic may be found in [34].
We will now present here one possible approach, that may be found there. Solution may
be described like this (see Figure 5.8): i−th node’s internal oscillator ticks on frequency
1/Ti. Next, e.g. at the end of each period, its antenna sends out an impulse that
propagates towards the rest of nodes and reaches its neighbors. These impulses reveal
the i−th node’s time base to its neighbors. Simultaneously the i−th node receives these
impulses from neighbors, so we assume the possibility of implementation in full-duplex
communication. For simplicity, we now assume, that distances between all nodes are
approximately comparable and therefore we neglect time differences caused by different
times of propagation of the impulses. Next block is called ’Time difference’ block, whose
inputs are the time delayed or advanced, impulses received from the neighbors and i−th
node’s own internal time base (see Figure 5.9). The output of this block is denoted as
∆ti and it is a weighted linear combination of these time differences, specified by the
weights previously denoted as pij (i.e. elements of the Perron matrix P). We can thus
write down the corresponding update equation for this part of loop as:

∆ti(n) =
N∑

i=1;i 6=j
pij(tj(n)− ti(n)). (5.3)

33

5. Examples of Usage of Average consensus algorithm in wireless communication
Finally as αi is denoted a filter, that operates over ∆ti(n) to determine ti. The situation
is presented in the following Figures. Then we can write the following update equation:

ti(n+ 1) = ti(n) + Ti + α
N∑

i=1;i 6=j
pij(tj(n)− ti(n)), (5.4)

which is very familiar. We can see, that our problem to synchronize time base of nodes
using Average consensus algorithm may be solved using Phase-locked loop [34]. The Ti
in Eq. (5.4) is an increment of Time in each iteration and the whole Eq. (5.4) should
be seen to correspond with Figure 5.8.

α1

Time
difference

VCO

1/T1

antenna

Δt1 Time
difference

α2

VCO

1/T2

Δt2

antenna
Node 1 Node 2

radio transmission
t1

t2

Figure 5.8. Scheme of 2 nodes with a Phase-locked loop. Generally, VCO in each node
ticks with its frequency signed as 1/Ti. Each node sends out an impulse at moments that
the node’s clock has e.g. zero value. We neglect the differences in propagating of these
impulses (they propagate by the speed of light). The Time difference block (TD) then
provides input to the filter αi, that calculates a weighted combination of the offsets and
its output goes to the VCO. Also, note, that the input from TD block to the antenna is a
scalar, however from the antenna to TD is generally a vector of the received neighboring

node’s impulses. This Figure is according to [34].

-3 -2 -1 0 1 2 3 4 5 6 7
Time [ms]

0

0.5

1

A
m

p
li
tu

d
e

of
im

p
u
ls
e

[-
]

Inputs of the Time di,erence block

Pulse from node 1
Pulse from node 2
Pulse from node 3
Pulse from node 4
Given node

Figure 5.9. Inputs of the Time difference block. The impulses come into the block with
either time delay or advance. The value located in 0 of horizontal axis corresponds to the
value, that the nodes expect to be the correct time base. Asymptotically should the offsets
decrease and be approximately zero once the time base is synchronized. Output of the

block is ∆ti .

Using the update equation (5.4), we provide the result of simulation of this approach.

34

. 5.4 Initial Distributed time base synchronization of nodes

0 20 40 60 80 100 120
-10

-5

0

5

10

Figure 5.10. Time base synchronization: we use ring topology with 30 nodes and assume,
that distances between all neighbors are comparable. Each node initializes the time base
with random offset selected from uniform distribution [−10; 10], measured in milliseconds.
Each node receives in every iteration 2 impulses, that are shifted from 0 according to the
offsets of its neighbors. The Figure shows how the Average consensus algorithm makes the
nodes to change the offset w.r.t. the initialized values. After about 80 iterations of the

algorithm, we can say, that the nodes synchronized mutually their time base.

35

Chapter 6
Conclusion

The main goal of this Bachelor’s thesis was to become acquainted with the Linear
average consensus algorithm on the graph. We provided a basic introduction to the
Graph theory, including important terms that are common to describe the algorithm,
with the focus on the Laplacian matrix, i.e. its definition and basic properties. Next,
we provided the Linear average consensus algorithm description, as it is common in the
related literature and also briefly overviewed the core idea concerning the convergence
condition. This helped us to understand, why it appears advantageous to design the
algorithm using the Laplacian matrix of the graph. We also briefly mentioned the topic
of noisy updates, which is important in wireless digital communication, and showed
in a particular example, that the algorithm scheme must be modified to preserve the
convergence of the algorithm. In this noisy-update example we, without proof, used
Decreasing step size approach found in relevant stated literature. In the text are also
mentioned the most common difficulties and pitfalls in the context of estimation in
wireless networks, including the fact, that the mathematical description becomes in
general cases quite complex. Finally, we used the knowledge to provide simple examples,
implemented as Matlab scripts (in Appendix), that are commented in the last part of
the thesis.

My contribution is, that after I had studied the necessary, relevant, theory in the
required range, I managed to implement the average consensus algorithm on the graph
in several examples, that have been motivated by typical problems occurring in radio
communication. These successful implementations are graphically demonstrated and
the obtained results stand for the fact, that the experimentally obtained outputs are
consistent with the previous theoretical part.

Further work on this topic could focuse on specific approaches dealing with the
problematics of noisy updates, which is necessary for the ability to use this algorithm
in wireless communication. The algorithm itself is general and may be used in many
branches.

36

References
[1] Seven Bridges of Königsberg. 2001-.

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg.
[2] Bogdan Giusca. The problem of the Seven Bridges of Königsberg. 2005.

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png.
[3] Eric W. Weisstein. Spanning Tree.

http://mathworld.wolfram.com/SpanningTree.html.
[4] Network Time Protocol.

http://www.ntp.org/ntpfaq/NTP-s-algo.htm.
[5] Eric W. Weisstein. Adjacency Matrix.

http://mathworld.wolfram.com/AdjacencyMatrix.html.
[6] Eric W. Weisstein. Degree Matrix.

http://mathworld.wolfram.com/DegreeMatrix.html.
[7] Eric W. Weisstein. Incidence Matrix.

http://mathworld.wolfram.com/IncidenceMatrix.html.
[8] Bojan Mohar. The Laplacian spectrum of graphs. In: Graph Theory, Combina-

torics, and Applications. Wiley, 1991. 871–898.
[9] Miroslav Dont. In: Maticová analýza. Prague: Česká technika, 2011. 91–92.

ISBN ”978-8-001-04857-3”.
[10] Anne Marsden. Eigenvalues of the Laplacian and Their Relationship to the Con-

nectedness of a Graph. In: Chicago, 2013. 5 - 6.
http://math.uchicago.edu/˜may/REU2013/REUPapers/Marsden.pdf.

[11] Vahid Liaghat. Spectral Graph Theory and Algorithmic Applications. 2015.
https://web.stanford.edu/class/msande337/scribe1.pdf.

[12] Eric W. Weisstein. Cofactor.
http://mathworld.wolfram.com/Cofactor.html.

[13] R. B. Bapat. The Laplacian spectrum of a graph. 1996, 214 - 223.
[14] M.W. Newman. The Laplacian Spectrum of Graphs. University of Manitoba, 2001.

https://mspace.lib.umanitoba.ca/bitstream/handle/1993/2048/MQ57564.pdf?
sequence=1.

[15] U.Spagnolini. Distributed signal processing and synchronization, tutorial. 2013,
[16] Federica Garin, and Luca Schenato. A Survey on Distributed Estimation and Con-

trol Applications Using Linear Consensus Algorithms. In: Networked Control Sys-
tems. London: Springer London, 2010. 75–107. ISBN 978-0-85729-033-5.
http://dx.doi.org/10.1007/978-0-85729-033-5_3.

[17] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed Average Consensus
with Least-mean-square Deviation. J. Parallel Distrib. Comput.. 2007, 67 (1),
33–46. DOI 10.1016/j.jpdc.2006.08.010.

37

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png
http://mathworld.wolfram.com/SpanningTree.html
http://www.ntp.org/ntpfaq/NTP-s-algo.htm
http://mathworld.wolfram.com/AdjacencyMatrix.html
http://mathworld.wolfram.com/DegreeMatrix.html
http://mathworld.wolfram.com/IncidenceMatrix.html
http://math.uchicago.edu/~may/REU2013/REUPapers/Marsden.pdf
https://web.stanford.edu/class/msande337/scribe1.pdf
http://mathworld.wolfram.com/Cofactor.html
https://mspace.lib.umanitoba.ca/bitstream/handle/1993/2048/MQ57564.pdf?sequence=1
https://mspace.lib.umanitoba.ca/bitstream/handle/1993/2048/MQ57564.pdf?sequence=1
http://dx.doi.org/10.1007/978-0-85729-033-5_3
http://dx.doi.org/10.1016/j.jpdc.2006.08.010

References .
[18] Michel Raynal. Distributed Algorithms for Message-Passing Systems. 1 edition.

Berlin: Springer-Verlag Berlin Heidelberg, 2013. ISBN ”978-3-642-38123-2”.
[19] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and Cooperation in

Networked Multi-Agent Systems. Proceedings of the IEEE. 2007, 95 (1), 215-233.
DOI 10.1109/JPROC.2006.887293.

[20] Lin Xiao, and Stephen Boyd. Fast Linear Iterations for Distributed Averaging.
Systems and Control Letters. 2003, 53 65–78.

[21] J. Ding, and A. Zhou. Nonnegative Matrices, Positive Operators, and Applications.
2009. ISBN 9789813107434.
https://books.google.ie/books?id=FxU8DQAAQBAJ.

[22] Saber Jafarizadeh, and Abbas Jamalipour. Weight Optimization for Distributed
Average Consensus Algorithm in Symmetric, CCS and KCS Star Networks. 2010.
arXiv:1001.4278v3.

[23] C. Mosquera, R. Lopez-Valcarce, and S. K. Jayaweera. Distributed estimation with
noisy exchanges. In: 2008 IEEE 9th Workshop on Signal Processing Advances in
Wireless Communications. 2008. 236-240.

[24] C. Mosquera, R. Lopez-Valcarce, and S. K. Jayaweera. Stepsize Sequence Design
for Distributed Average Consensus. IEEE Signal Processing Letters. 2010, 17 (2),
169-172. DOI 10.1109/LSP.2009.2035373.

[25] B. Touri, and A. Nedic. Distributed consensus over network with noisy links.
In: 2009 12th International Conference on Information Fusion. 2009. 146-154.

[26] L. Pescosolido, S. Barbarossa, and G. Scutari. Average consensus algorithms robust
against channel noise. In: 2008 IEEE 9th Workshop on Signal Processing Advances
in Wireless Communications. 2008. 261-265.

[27] Spectra of complete graphs, stars, and rings. 2016.
https: / / www . johndcook . com / blog / 2016 / 01 / 09 / spectra-of-complete-graphs-
stars-and-rings/.

[28] S. Kar, and J. M. F. Moura. Distributed Consensus Algorithms in Sensor Networks
With Imperfect Communication: Link Failures and Channel Noise. IEEE Transac-
tions on Signal Processing. 2009, 57 (1), 355-369. DOI 10.1109/TSP.2008.2007111.

[29] Soummya Kar, José M. F. Moura, and Kavita Ramanan. Distributed Parame-
ter Estimation in Sensor Networks: Nonlinear Observation Models and Imperfect
Communication. CoRR. 2008, abs/0809.0009

[30] B. Li, H. Leung, and C. Seneviratne. Distributed consensus in noisy wireless sen-
sor networks. In: 2016 19th International Conference on Information Fusion (FU-
SION). 2016. 1356-1363.

[31] Cailian Chen, Shanying Zhu, Xinping Guan, and Xuemin Shen. Wireless Sensor
Networks : Distributed Consensus Estimation. 2014 edition. Cham: Springer, 2015.
ISBN 9783319123783;3319123785;.

[32] Eric W. Weisstein. Kronecker Product.
http://mathworld.wolfram.com/KroneckerProduct.html.

[33] NPS. Time Systems and Dates - GPS Time.
http://www.oc.nps.edu/oc2902w/gps/timsys.html.

[34] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz. Distributed syn-
chronization in wireless networks. IEEE Signal Processing Magazine. 2008, 25 (5),
81-97. DOI 10.1109/MSP.2008.926661.

38

http://dx.doi.org/10.1109/JPROC.2006.887293
https://books.google.ie/books?id=FxU8DQAAQBAJ
http://dx.doi.org/10.1109/LSP.2009.2035373
https://www.johndcook.com/blog/2016/01/09/spectra-of-complete-graphs-stars-and-rings/
https://www.johndcook.com/blog/2016/01/09/spectra-of-complete-graphs-stars-and-rings/
http://dx.doi.org/10.1109/TSP.2008.2007111
http://mathworld.wolfram.com/KroneckerProduct.html
http://www.oc.nps.edu/oc2902w/gps/timsys.html
http://dx.doi.org/10.1109/MSP.2008.926661

Appendix A
Matlab scripts

A.1 Matlab script: Average consensus algorithm
with perfect communication

This is script perfect communication example.m used in Examples 3.5, 3.6 and 3.7 to
present the run of algorithm. In this case we do not use the built-in matlab functions
to compute desired values, only to check them.

% Run of average consensus algorithm with perfect communication
clear all;
s=[1 1 2 2 3 3 3 4 4 4 5 6 7 8 8 9 9 10];%source vertices
t=[2 3 4 5 7 10 5 5 6 7 6 7 5 1 2 10 7 8];%destination vertices
w=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; %weights of edges
G = graph(s,t,w); %create graph G with parameters s, t, w
iterations = 30;
for i= 1:length(s) %A is adjacency matrix; A(i,j)=1 <=> exists edge (i,j)

A(s(i),t(i))=1;
A(t(i),s(i))=1;

end
checkA=isequal(A, adjacency(G)); %check adjacency matrix
M=0; %M is the highest degree of vertex
for i=1:size(A)

sumRadek=sum(A(i,:))
if sumRadek>=M

M=sumRadek;
end

end
for i = 1:size(A)

D(i,i)=sum(A(i,:))%D is degree matrix
end
L=D-A; %Laplacian matrix
checkLaplacian=isequal(laplacian(G),L); %check Laplacian
for i= 1:length(s) %Incidence matrix

E(s(i),i)=1;
E(t(i),i)=-1;

end
L2=E*transpose(E); %another way to compute Laplacian
checkLaplacian2=isequal(laplacian(G),L2); %check Laplacian
I=L*ones(max(s)); %check that Laplacian rows sum up to 1
D = eig(L,’matrix’);%diagonal matrix of eigenvalues of laplacian
L_eig=eig(L);
alpha=2/(L_eig(2)+L_eig(max(s)))

39

A Matlab scripts .
for i = 1:max(s)
node_initial_value(i)=i; %initialization of values to average
%running_value(i+1,j)=node_value(j);
running_value(1,i)=node_initial_value(i);
running_value_Error(1,i)=-node_initial_value(i)+mean(node_initial_value);
end
for i= 1:max(s)
final_value(i)=mean(node_initial_value); %expected average value
end
node_value=node_initial_value; %inicialization of nodes values
running_value_Error(1,:)=final_value-node_initial_value;
for i=1:iterations+1
discrete_time(i)= i-1;
end
for i = 1:iterations;

IT=eye([max(s) max(s)])-alpha*L; %iteratation Perron matrix
node_value=node_value;
node_value= node_value* IT;
for j=1:max(s)

running_value(i+1,j)=node_value(j);
running_value_Error(i+1,j)=final_value(j)-node_value(j);

%node_value(3)=3; % uncomment for convergence to v_3 initial value
end

end

figure;
plot(discrete_time, running_value(:,:));
ttl1=title(’Run of algorithm ’)
ttl1=set(ttl1,’Interpreter’,’latex’,’FontSize’, 15);
xlbl1=xlabel(’Iterations [-]’);
xlbl1=set(xlbl1,’Interpreter’,’latex’);
ylbl1=ylabel(’Value [-]’);
ylbl1=set(ylbl1,’Interpreter’,’latex’);
grid;
figure;
grid on
plot(discrete_time, running_value_Error(:,:));
title(’shrinking of error’);
grid on
figure;
plot(G); %plot graph G

40

. A.2 Matlab script: Average consensus algorithm with noisy observation and updates using decreasing step size

A.2 Matlab script: Average consensus algorithm
with noisy observation and updates using decreasing
step size

This is script script noisy updates gamma.m used in Example to present simple way
to preserve convergence in case of noisy updates.

% Run of average consensus algorithm with noisy
% updates using descending step size scheme gamma=a/(1+b)ˆc

%% graph definition
clear all; clc;
variance_noise=0.1; %variance of the gaussian noise added to the updates
iterations =100; %number of iterations of the algorithm
nodes=60; %number of graph nodes
G=graph(bucky); % using matlab default graph bucky
% i.e. 60 nodes with degree 3
%% variables initialization
equiv_noise_vector=zeros(1,nodes);
x_0=zeros(1,nodes);
diag_D=zeros(nodes,nodes);
%plot the used graph
figure;
plot(G)
deg=degree(G);
for p=1:nodes

diag_D(p,p)=deg(p);
end
%observation initialization const 10 + wgn with variance 1
for i=1:nodes %initialize measurement

x_0(i)=(10+wgn(1,1,log10(10*variance_noise)));
end

%% variables definition
x_est_run(1,:) = x_0;
MSE_act(1)= sum((x_0-mean(x_0)).ˆ2);
MSE_ave(1)=MSE_act(1);
VAR(1)=var(x_0);
noise_matrix=zeros(nodes);
%Laplacian using library functions
A=adjacency(G); %adjacency matrix
L=laplacian(G); %laplacian matrix
eig_L=eig(L);%eigenvalues of Laplacian
gamma=2/(eig_L(2)+eig_L(nodes));%the best possible coefficient
mean_0=mean(x_0);%value to converge to

%% Iterations of the algorithm
for i=1:iterations

gamma=1/(i+42)ˆ0.75; %selected descending step size
P=eye(nodes)- gamma* L; %Perron matrix

for j=1:nodes %computation of the nise affecting updates exchange
noise_matrix(j,:)=wgn(nodes,1,10*log10(variance_noise)) ;

41

A Matlab scripts .
noise_matrix(j,j)=0 ;

end
equiv_noise_matrix= P*noise_matrix;

for j=1:nodes
equiv_noise_vector(j)= equiv_noise_matrix(j,j);
end
x_est_run(i+1,:)= P*x_est_run(i,:)’+equiv_noise_vector’;

end

%calculation of the run statistics
for i=1:iterations

MSE_ave(i+1)= sum((x_est_run(i+1,:)-mean(x_0)).ˆ2)/nodes;
MSE_act(i+1)= sum((x_est_run(i+1,:)-mean(x_est_run(i+1,:))).ˆ2)/nodes;
VAR(i+1)= var(x_est_run(i+1,:));

end

%% Plot results
figure;
plot(0:iterations, x_est_run(:,:));
ttl1=title(’Values in nodes’)
ttl1=set(ttl1,’Interpreter’,’latex’,’FontSize’, 15);
xlbl1=xlabel(’Iterations [-]’);
xlbl1=set(xlbl1,’Interpreter’,’latex’);
ylbl1=ylabel(’Value [-]’);
ylbl1=set(ylbl1,’Interpreter’,’latex’);
grid;

figure;
loglog(0:iterations, MSE_ave(:));
ttl1=title(’Mean square error w.r.t. initial average ’)
ttl1=set(ttl1,’Interpreter’,’latex’,’FontSize’, 15);
xlbl1=xlabel(’Iterations [-]’);
xlbl1=set(xlbl1,’Interpreter’,’latex’);
ylbl1=ylabel(’MSE [-]’);
ylbl1=set(ylbl1,’Interpreter’,’latex’);
grid;

figure;
loglog(0:iterations, VAR(:));
ttl1=title(’Variance ’);
ttl1=set(ttl1,’Interpreter’,’latex’,’FontSize’, 15);
xlbl1=xlabel(’Iterations [-]’);
xlbl1=set(xlbl1,’Interpreter’,’latex’);
ylbl1=ylabel(’Variance [-]’);
ylbl1=set(ylbl1,’Interpreter’,’latex’);
grid;

42

. A.3 Matlab script: Estimation of nodes number in given area

A.3 Matlab script: Estimation of nodes
number in given area

% Script to find number of N sensors based on their ID
%% Initialization
clear all;
iterations = 30;
nodes=60; %number of graph nodes
G=graph(bucky); % using matlab default graph bucky
L=full(laplacian(G));
degreeMax= max(max(L));
alpha=1/degreeMax;
P=eye(nodes)- alpha* L; %Perron matrix

for i = 1:nodes
x_running(1,i)=i; %initialization vertex with its ID
end

%% iterations of the algorithm
for i = 1:iterations

x_running(1+i,:)=P*x_running(i,:)’;
end

%% plot results
figure;
plot(0:iterations, x_running(:,:));
ttl1=title(’Average ID number estimation’)
ttl1=set(ttl1,’Interpreter’,’latex’,’FontSize’, 15);
xlbl1=xlabel(’Iterations [-]’);
xlbl1=set(xlbl1,’Interpreter’,’latex’);
ylbl1=ylabel(’Node ID [-]’);
ylbl1=set(ylbl1,’Interpreter’,’latex’);
grid;

figure;
h = plot(G);
c = h.EdgeColor;
h.EdgeColor = ’k’;
h.LineWidth=1
h.MarkerSize=8;
h.EdgeAlpha=1;
labelnode(h,1:nodes,’ ’)

A.4 Matlab script: Tracking of dynamic target
%Tracking of dynamic target script
clear all;
nodes = 5; % 4 followers and 1 target
d=0.01;%distance between followers
r=200; % range of plot axis (xy)

43

A Matlab scripts .
iterations = 1000;
s=[1 1 1 1 2 2 2 3 3 4];%graph definition
t=[5 2 3 4 5 3 4 5 4 5];
v1_pos=[100,100]; %initialize followers position
v2_pos=[-100,100];
v3_pos=[100,-100];
v4_pos=[-100,-100];
v5_init_pos=[100*rand, 100*rand]; %target position is random
G =graph(s,t)%generates graph
L=full(laplacian(G)); %matlab function for Laplacian
degreeMax= max(max(L));%generate weight that control dynamics
alpha=0.08*1/degreeMax; %coefficient 0.08 found experimentaly
P=eye(nodes)- alpha* L; %Perron matrix
x_pos_vect(1,:)=[v1_pos(1) v2_pos(1) v3_pos(1) v4_pos(1) v5_init_pos(1)];
y_pos_vect(1,:)=[v1_pos(2) v2_pos(2) v3_pos(2) v4_pos(2) v5_init_pos(2)];
v5_pos_x(1)=v5_init_pos(1);
v5_pos_y(1)=v5_init_pos(2);
for i = 1:iterations
x_pos_vect(i+1,:)=P* x_pos_vect(i,:)’;

y_position_vector(i+1,:)=P*y_position_vector(i,:)’;
if i<0.5*iterations %for first half of iterations the target moves
y_position_vector(i+1,5)=y_position_vector(i,5)+0.5*rand*(-1ˆ(i));
x_pos_vect(i+1,5)= x_pos_vect(i,5)+0.5*rand*(-1ˆ(i));

end
% distance between followers
y_position_vector(i+1,1)=y_position_vector(i+1,1)+d;
x_pos_vect(i+1,1)= x_pos_vect(i+1,1)+d;
y_position_vector(i+1,2)=y_position_vector(i+1,1)+d;
x_pos_vect(i+1,2)= x_pos_vect(i+1,5)-d;
y_position_vector(i+1,3)=y_position_vector(i+1,3)-d;
x_pos_vect(i+1,3)= x_pos_vect(i+1,3)+d;
y_position_vector(i+1,4)=y_position_vector(i+1,4)-d;
x_pos_vect(i+1,4)= x_pos_vect(i+1,4)-d;

end
%% plot the animation of mooving point
figure(’Position’, [100, 100, 450,300])
for i=1:iterations
hold off;
plot(x_pos_vect(i,5),y_pos_vect(i,5),’ob’,’MarkerSize’,8)
hold on;
plot(x_pos_vect(i,1),y_pos_vect(i,1),’or’,’MarkerFaceColor’,’r’)
hold on;
plot(x_pos_vect(i,2),y_pos_vect(i,2),’or’,’’MarkerFaceColor’,’r’)
hold on;
plot(x_pos_vect(i,3),y_pos_vect(i,3),’or’,’MarkerFaceColor’,’r’)
hold on;
plot(x_pos_vect(i,4),y_pos_vect(i,4),’or’,’MarkerFaceColor’,’r’)
hold on;
grid;
axis([-r r -r r])
pause(0.001)

end

44

. A.5 Matlab script: (Measurement) Time base synchronization

A.5 Matlab script: (Measurement) Time base
synchronization

This is script used to simulate synchronization of Time base, meant to e.g. synchronize
the sensors to do the measurement at one common instant. See Section 5.3.

% Time base synchronization script
%% Initialization
clear all;
iterations = 150; %number of iterations of the algorithm
nodes=60; %number of graph nodes
G=graph(bucky); % using matlab default graph bucky
L=full(laplacian(G)); %Laplacian using Matlab function
degreeMax= max(max(L)); %find the greatest degree of graph
alpha=1/degreeMax; %choose parameter to Define Perron matrix
P=eye(nodes)- alpha* L; %create Perron matrix
commonTimeBase=1000; % some big number used to initialize time base
% e.g. in gps time used number of weeks and secs since January’80
for i = 1:nodes %initialize the vertices time base + some random offset
time_running(1,i)=commonTimeBase+1000*rand; %init of time base + offset
end
for i = 1:iterations

%average consensus iterations
time_running(1+i,:)=P*time_running(i,:)’;
%each vertex adds to the computed value some addition,...
%... representing ticks of its internal oscilator
time_running(1+i,:)= time_running(1+i,:)+1+2*rand;
% between 300th and 350th we simulate an outage of 10 sensors
if (i>300)&(i<500)
time_running(1+i,10:20)= time_running(200,20:30) ;
end

end
%% plot results
figure;
plot(0:iterations, time_running(:,:));
ttl1=title(’Online time synchronization’)
ttl1=set(ttl1,’Interpreter’,’latex’,’FontSize’, 15);
xlbl1=xlabel(’Iterations [-]’);
xlbl1=set(xlbl1,’Interpreter’,’latex’);
ylbl1=ylabel(’Time in the node [e.g. seconds,ticks]’);
ylbl1=set(ylbl1,’Interpreter’,’latex’);
grid;
%
figure;
h = plot(G);
c = h.EdgeColor;
h.EdgeColor = ’k’;
h.LineWidth=1
h.MarkerSize=8;
h.EdgeAlpha=1;
labelnode(h,1:nodes,’ ’)

45

A Matlab scripts .
A.6 Matlab script: Initial time base synchronization

% Initial time base synchronization
%% Initialization
clear all;
nodes = 30; %number of nodes of graph
iterations = 120; %number of iterations of the algorithm
s=(1:1:30); %source and destination vertices of ring graph
t=[30,1:1:29];
G = graph(s,t); %create graph
L=full(laplacian(G)); %Laplacian using Matlab function
Ti=1; %period of the i-th’s clock; all nodes have same oscillator
a=-10;b=10;
offsets= a + (b-a).*rand(nodes,1);%define initial offsets
time_base(1,:)=offsets;%detected by the TD block in PLL
L_eig=eig(L); %eigenvector of Laplacian
alpha=2/(0.5+L_eig(2)+L_eig(max(s)));%choose parameter to Perron matrix
P=eye(nodes)- alpha * L; %create Perron matrix

for i = 1:iterations
%averaging consensus iterations
time_base(1+i,:)=P*time_base(i,:)’;

end
%% plot results
figure;
plot(0:iterations, time_base(:,:));
ttl1=title(’Time base synchronization - ring topology with 30 nodes ’)
ttl1=set(ttl1,’Interpreter’,’latex’,’FontSize’, 15);
xlbl1=xlabel(’Iterations [-]’);
xlbl1=set(xlbl1,’Interpreter’,’latex’);
ylbl1=ylabel(’Offsets received by TD block [ms]’);
ylbl1=set(ylbl1,’Interpreter’,’latex’);
grid;

46

Appendix B
Content of CD

|-- Distributed_signal_processing_in_radio_communication_networks.pdf
|-- scripts

|-- average_consensus_algorithm_basic_example.m
|-- consensus_algorithm_short_version.m
|-- dynamic_target_tracking.m
|-- initial_time_base_synchronization.m
|-- measurement_time_synchronization.m
|-- nodes_number_estimation.m
|-- noisy_update_decreasing_weights.m

47

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	/Figures
	Introduction
	Motivation
	Outline

	Graph theory
	Motivation
	Notation
	Definitions
	Undirected graph
	Directed graph
	Adjacency matrix
	Degree matrix
	Incidence matrix

	Laplacian matrix
	Definition
	Basic properties
	Bounds for eigenvalues
	Matrix tree theorem
	Eigenvalue $lambda _2$
	Operations with disjoint graphs

	Linear average consensus algorithm
	Distributed algorithms
	Introduction
	General convergence conditions
	Heuristics based on the Laplacian matrix
	The Metropolis-Hastings weighting method

	Average consensus algorithm with additive noise
	Mean-square convergence in case of noisy updates and observations
	Model setup
	Time-varying weights
	Approach of descending step size
	Recommendations of literature concerning noisy updates topic

	Distributed Estimation in Wireless Sensor Networks
	{Introduction}
	Overview of Distributed Consensus Estimation
	Consensus-Based Distributed Parameter Estimation
	Asymmetric communication
	Multidimensional observation
	Description of Algorithm DCUE

	Examples of Usage of Average consensus algorithm in wireless communication
	Distributed estimation of the number of deployed nodes
	Tracking of dynamic target
	Distributed time synchronization of already communicating nodes
	Initial Distributed time base synchronization of nodes

	Conclusion
	References
	Matlab scripts
	Matlab script: Average consensus algorithm with perfect communication
	Matlab script: Average consensus algorithm with noisy observation and updates using decreasing step size
	Matlab script: Estimation of nodes number in given area
	Matlab script: Tracking of dynamic target
	Matlab script: (Measurement) Time base synchronization
	Matlab script: Initial time base synchronization

	Content of CD

