Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Mobile Application for Safety Occurrence
Reporting

Rail Chamidullin

Supervisor: Ing. Martin Ledvinka
May 2018

ii

cvut ZADANiI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
G)
PFijmeni: Chamidullin Jméno: Rail Osobni &islo: 435602

Fakulta/Ustav: Fakulta elektrotechnicka

Zadavajici katedra/ustav: Katedra pocitaci

L Studijni program: Softwarové inZzenyrstvi a technologie

Il. UDAJE K BAKALARSKE PRACI
o N\
Nazev bakalarské prace:

Mobilni aplikace pro hlaseni bezpecnostnich udalosti

Nazev bakalarské prace anglicky:

Mobile Application for Safety Occurrence Reporting

Pokyny pro vypracovani:

1. Analyzujte moznosti tvorby mutliplatformnich mobilnich aplikaci.

2. Navrhnéte a vytvorte multiplatformni mobilni aplikaci pro hlaseni bezpecnostnich udalosti.

3. Analyzuite, jakym zplsobem Ize tuto mobilni aplikaci integrovat s jiz existujicim serverovym fesenim vytvofenym skupinou
znalostnich a softwarovych systému.

4. Analyzujte a porovnejte riizné pfistupy k synchronizaci dat vytvorenych v offline médu mobilni aplikace a serverové
databéze.

5. Integrujte vytvofenou mobilni aplikaci se serverovym fesenim. Zvlastni diraz bude kladen na zabezpeceni aplikace a
na synchronizaci dat vytvorenych v offline rezimu.

6. Ovéfte spravnou funk&nost aplikace automatizovanymi testy. Provedte uZivatelské testovani mezi experty v oblast
letecké dopravy.

Seznam doporuceneé literatury:

Bonnie Eisenman. 2017. Learning React Native: Building Native Mobile Apps with JavaScript, O'Reilly Media

Zach Mccormick and Douglas C. Schmidt. 2012. Data synchronization patterns in mobile application design. In
Proceedings of the 19th Conference on Pattern Languages of Programs (PLoP '12). The Hillside Group

Bogdan Kostov, Jana Ahmad and Petr Kfemen. 2017. Towards Ontology-Based Safety Information Management

in the Aviation Industry. On the Move to Meaningful Internet Systems: OTM 2016 Workshops. Springer International
Publishing

M.

Jméno a pracovisté vedouci(ho) bakalarske prace:

Ing. Martin Ledvinka, Skupina znalostnich softwarovych systému FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarske prace:

Datum zadani bakalarské prace: 19.02.2018 Termin odevzdani bakalarské prace:

Platnost zadani bakalarské prace: 30.09.2019

Ing. Martin Ledvinka podpis vedouci(ho) ustavurkatedry prof. Ing }ﬁ‘avel Ripka, CSc.
podpis vedouci(ho) prace podpis dékana(ky)

CVUT-CZ-ZBP-2015.1 Strana 1z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Ill. PREVZETI ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalarskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzuitaci.
Seznam pouZité literatury, jinych prament a jmen konzultantd je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 Strana 2z 2 ©® CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my thesis advisor Ing.

Martin Ledvinka for sharing expertise and
valuable guidance.

I would also like to thank the experts who
were involved in the user testing of the
mobile application.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 24, 2018

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 24. kvétna 2018

Rail Chamidullin

Abstract

Reporting Tool is a web application for
safety occurrence reporting. The goal of
this thesis is to analyse possibilities of
mobile application development, commu-
nication with a server of Reporting Tool
and synchronisation of data created dur-
ing offline mode. And then implement
a multiplatform mobile application and
integrate it with the server.

Keywords: mobile multiplatform
application, React, React Native

Supervisor:
Ledvinka

Ing. Martin

vi

Abstrakt

Reporting Tool je webova aplikace pro
hlaseni bezpecnostnich udalosti. Cilem
prace je analyzovat moznosti vyvoje
mobilnich applikaci,
Reporting Tool serverem a synchronizace
dat pfi offline rezimu. A nésledné vyvi-
nout multiplatformni mobilni aplikaci a
integrovat ji se serverem.

komunikace se

Klicova slova: mobiln{ multiplatformni
aplikace, React, React Native

Pfeklad nazvu: Mobilni aplikace pro
hlaseni bezpec¢nostnich udalosti

Contents

1 Introduction 1l
2 Analysis of mobile application
development 3
2.1 Native application
2.2 Web application
2.3 Hybrid application
2.4 Choosing framework
2.4.1 Xamarin 5l

2.4.2 Appache Cordova, Tonic
Framework and Adobe PhoneGap

2.4.3 React Native 6l
2.4.4 Conclusion 6]
2.5 Technology specification
2.5.1 React native / React
252Redux)
2.5.3 React Navigation 9]
2.5.4 Realm Database 1a
2.5.5 React Native il8n..........
2.5.6 React Native Keychain
257 Jest ..o
3 Specification of application 13
3.1 Requirements
3.1.1 Functional requirements
3.1.2 Non-functional requirements .
3.2 Ul structure 15
3.3USe-Casesovveiinninnn. 16/
3.3.1 Create report
3.3.2 View report
3.3.3 Edit report
3.3.4 Remove report.............
4 Implementation 27|
4.1 Integration with server
4.2 Synchronization with server
4.2.1 Online and offline mode. 28
4.2.2 Downloading the data
4.2.3 Uploading the data.........
4.3 Security L
4.4 Testing application............
5 Best practices 33
5.1 Memory leaks
5.2 Navigation
5.3 Stateless components..........

vii

6 Usability testing

7 Conclusion
7.1 Conclusion
7.2 Final impression

Bibliography

Appendices

A Building mobile application
Al Android............

SERE T EEE (R

Figures
2.1 State diagram of React Component
Lifecycle..............

2.2 Examples of navigators
3.1 Screen diagram of the mobile
application.....................
3.2 Screenshots of the mobile
application screens - Reports screen
which contains list of reports,
Create-report screen which contains
form for creating a report and initial
report and Report-detail screen of
saved report which contains
attributes of the report.
3.3 Screenshot of the mobile
application Filter modal.
3.4 Screenshots of the mobile
application screens - Reports screen
which contains list of reports and
Report-detail screen which contains
attributes of the report.

3.5 Screenshots of the mobile
application screens - Reports screen
which contains list of reports,
Saved-reports screen which contains
list of locally saved reports and
Report-detail screen of saved report
which contains attributes of the
report. ... il

3.6 Screenshots of the mobile
application screens - Reports screen
which contains list of reports,
Options menu with buttons for
editing and removing report and
Edit-report screen with form for
editing a report.

3.7 Screenshots of the mobile
application screens - Reports screen
which contains list of reports and
Options menu with buttons for
editing and removing report.

21]

viii

5.1 Screenshots of two main screens of
the mobile application - Reports
screen and Settings screen, and a
Drawer for navigation between those
SCTEENS. « + vttt e e

Tables

3.1 List of functional requirements .
3.2 List of non-functional

requirements 15|

6.1 Usability testing survey - question

6.4 Usability testing survey - question
.............................

ix

Chapter 1

Introduction

In organisations, safety management is an important part, especially when
it comes to a high-risk industry. And in aviation field safety management
is considered mandatory. About that is dealing the project called Indicator-
Based Safety, shortly INBAS. It is described as research and development of
progressive methods for measuring aviation organisation’s safety performance.
This project is elaborated by Knowledge-based and Software Systems Group,
which is part of Department of Cybernetics at FEE CTU.

A part of the INBAS project is a Reporting tool. It is a software designed for
reporting safety occurrences. Main functions of the system are:

B creating occurrence reports,

B classification of severity of occurrences,

® analysis of sub-events,

B gstatistical evaluation of occurrence reports.

The Reporting tool is currently implemented as a web application, i.e. com-
bination of a back-end server and a front-end user interface (UI), which is
accessible from a web browser of devices such as desktop or laptop computers,
tablets and smart-phones. Though the application provides all necessary
data of reports, it also brings inconvenience regarding mobile devices. The
application is accessible on mobile devices only when connected to the Internet
and Ul is adjusted mainly for large screens.

Imagine a situation when a safety occurrence has happened, e.g. an aircraft
has entered a runaway without permission, one of the employees did notice
that, but he is not around his work computer and his smart-phone has no
Internet connection. That means he needs to go to his office to report an
occurrence in the Reporting tool. But what if he does not have the time or
he cannot leave his workplace. He needs to remember or note details about
safety occurrence and report them later after his job is done. But what if
then it is too late, or he forgets to report the occurrence at all. That is one
of the problems organisations are dealing with, where the management has
no real-time review about the situation at the workplace.

1. Introduction

This disadvantage of the current web application is the primary motivation
for developing an additional application designed for mobile devices. The new
mobile application will be working independently on the Internet connection.
During the offline mode users will be still able to report safety occurrences,
and when connected the application will synchronise with the server of the
Reporting tool. It will be a solution, which employees could keep with them
all the time and report safety occurrences with fewer obstacles.

Furthermore, in this situation, there is an opportunity to improve Reporting
tool with extra features. As all mobile devices have cameras and sensors,
there is a possibility to attach sensory data to the occurrence report and
provide more valuable information within the application. The support for
this kind of attachments will be implemented in the mobile application within
this thesis. And the users will be able to attach following sensory data:

B photos and videos from camera or local storage,
B voice recording and
® GPS location.

In case of the whole INBAS project, it would be a logical step to implement
the same support for the web application.

For additional clarification, this thesis is focused on developing the mobile
application, which will be a part of application Reporting tool. The reader
can expect an explanation of technology used, description of used patterns
for synchronisation, security of personal data, and best practices regarding
implementation. However, this thesis does not contain any further information
about INBAS project or safety management.

Chapter 2

Analysis of mobile application
development

There are three main approaches to application development for mobile
platforms - native, web and hybrid mobile applications. All of them have
their benefits and liabilities, and all of them are commonly used. We can
decide by provided requirements for the application which trade-off is the
best for the particular case.

B 2.1 Native application

Native applications are developed specifically for one platform and can use
all device features (e.g. camera, accelerometer, GPS, notification system,
contacts, etc.). Native applications are usually downloaded and installed
through application store (e.g. Apple’s App Store or Google Play). Different
technologies and environments are used for development on each platform.
Apple’s i0S uses programming languages Swift or Objective-C, whereas
Google’s Android uses Java or Kotlin (for performance and computation
reasons it is also possible to use C++).

Benefits

Fast performance.

High degree of reliability, i.e. less unexpected errors.

Applications are installed directly in the device. Therefore they are
usable without the Internet connection.

Applications can access device features.

Liabilities

® Applications needs to be created for each platform separately.

2. Analysis of mobile application development
B 2.2 Web application

Mobile web applications are basic web applications, i.e. websites, which are
adjusted for small screens. Web applications are not installed on the device.
Rather they are accessed on device’s web browser. Although web applications
look and feel like a real native application, they are not available offline, and
they can not access all device features (e.g. accelerometer, notification system,
running in the background, complex gestures, etc.). Furthermore, applications
are highly dependent on server and quality of network connection. The whole
user interface needs to be fetched each time the browser is opened, and there
is no possibility of long-term caching of the user interface, i.e. storing data
to speed up future requests. That can cause performance issues.

Mobile web applications are developed using web technologies such as HTML5,
CSS3 and JavaScript.

Benefits

® Accessible from all platforms. Not only mobile devices but also PCs.
Liabilities

® Applications cannot work without the Internet connection.

® Applications can struggle with performance issues.
® Applications cannot access all device features.

B 23 Hybrid application

Hybrid applications are the compromise of previous two approaches - part
native applications and part web applications. They have the same behaviour
as the native applications, but they are written using web technologies
(HTML5, CSS3 and JavaScript). It is typically ensured by frameworks such
as Apache Cordova or React Native; these frameworks provide a consistent
set of JavaScript APIs to access device capabilities through native APIs. The
main advantage is that the applications are available on all platforms.

Benefits

® Accessible from all mobile platforms. Applications are created once and
can be compiled for each platform.

® Applications can work without the Internet connection.

® Applications can access device features.

Liabilities

® Possible performance issues. Faster than web applications but slower
than native applications.

2.4. Choosing framework
B 24 Choosing framework

The following requirements were specified for this thesis.

1. Mobile application must be multi-platform, i.e. it must be supported by
both iOS and Android operating systems.

2. Application must be available offline.

It is clear that building native or web application would not satisfy both
requirements. Thus, it leads to developing a hybrid mobile application.

There are dozens of available frameworks for hybrid applications. To analyse,
test, compare and find the most suitable one would be enough work for the
whole thesis (most probably it would also be unnecessary as the technologies
change rapidly). So, in this case choosing the technology was done by
researching the descriptions of a few commonly used frameworks and applying
intuition and personal preferences.

B 2.4.1 Xamarin

Xamarin is a well know framework developed by Microsoft. The applications
are written in C#. The disadvantage is that the Ul for each platform must
be designed separately, this was the main deal-breaker as it would be time-
consuming to do one task twice (for iOS and Android) especially when the
implementation of frequent changes was assumed. Therefore there was no
need to analyse Xamarin furthermore.

B 2.4.2 Appache Cordova, lonic Framework and Adobe
PhoneGap

Apache Cordova is an open-source mobile development framework. The
applications are implemented using standard web technologies such as HTML5,
CSS3 and JavaScript. HTML5 provides access to underlying hardware such
as the accelerometer, camera, and GPS. Furthermore, the framework can be
extended with native plug-ins, which allow access to the device’s compass,
file system, microphone, and more. The user interface is rendered using an
embedded web browser, i.e. web-view. Besides support for iOS and Android,
Apache Cordova also supports Windows Phone 8, and computer operating
systems: Windows 8.1/10, macOS and Ubuntu.

Ionic Framework is built on Apache Cordova and AngularJS, front-end web
application framework mainly maintained by Google. Besides standard web
technologies, it supports TypeScript, an extension of JavaScript, and Sass, a
CSS extension.

2. Analysis of mobile application development

Adobe PhoneGap is an open source distribution of Apache Cordova framework
and with additional Adobe services and tools like the PhoneGap Developer
App, the PhoneGap Desktop App, PhoneGap Build and PhoneGap Enter-
prise.

B 2.4.3 React Native

React Native is a framework developed by Facebook. It is based on React
library which is used for developing web applications, and it carries all the
features of the React. The React Native applications are developed mainly
with JavaScript, and additionally, there is a possibility to use native code
such as Java, Swift, etc.

The JavaScript frameworks such as Ionic Framework or Adobe PhoneGap
render elements using web-views (wrappers). This approach is the most
common, but it comes with performance drawbacks and issues with mimicking
native Ul elements. React Native, on the other hand, uses standard rendering
APIs of its host platform, i.e. it uses real native Ul components, which is
faster.

Furthermore, following advantages have played their role in choosing React
Native.

B React Native is well documented.

® Previous knowledge of React library. React Native uses the same design
as React, i.e. component life-cycle (properties and state) and declarative
rendering (i.e. application re-renders the minimal amount necessary).

® Build utilities for easier development (e.g. Debug mode and Hot-
reloading).

Wide community of JavaScript developers. There is a lot of discussion
regarding development problems and a lot of NPM (Node Package
Manager) packages which can be used.

As every great technology React Native has its drawbacks and risks. The
primary concern is that this framework is relatively young, as it was released
in 2015, and there are still some unfinished aspects.

B 2.4.4 Conclusion

In the end, React Native was chosen. It has promised good performance
and simplicity. Also, the current implementation of the user interface of the
web application Reporting Tool was considered, as it is written in React
library.

Developing with React Native has spared a lot of time since there was
no need for extra additional learning. However, as in every more extensive
implementation, there were discovered some best practices, which had enforced

6

2.5. Technology specification

rewriting a lot of code. Best practices are discussed in (Chapter |5 And the
resulting impression of application is described in |Section |7.2.

B 25 Technology specification

In this chapter are listed technologies used for developing the mobile appli-
cation with a description of key features of each technology. Besides React
Native framework, there were also used Redux, React Navigation, Realm,
React Native i18n, React Native Keychain and Jest.

This work does not intend to supplement official resources for learning mobile
development technologies. However, a minor knowledge is advised for better
understanding future chapters, e.g. explanation of implementation and
architectural mistakes and their solutions.

If the reader is familiar with technologies described in the following sections,
he can continue to the next chapter.

B 2.5.1 React native / React

React Native is the main framework, that holds mobile application together
and allows functioning on mobile devices with operating systems such as iOS
and Android.

The framework is based on the library React, which is intended for developing
user interface of web applications. There are slight differences in developing
a React web application and React Native mobile application. For example,
React Native applications are mainly developed in JavaScript, whereas React
applications also use HTML and CSS, i.e.:

B React Native uses XML elements instead of HTML elements. Basically,
for developers, it means different names of elements and sometimes
different names of attributes, e.g. in React there is <div>, and in React
Native there is <View>.

® Instead of CSS style-sheet stored in separate files, there are JavaScript
objects called StyleSheet. This JavaScript StyleSheets contain fewer
rules/styles than basic CSS and are designed with a focus on Flexbox, a
(CSS3 layout model that aims at providing a more efficient way to lay
out, align and distribute space among items in a container.

But otherwise, React Native has the same major features as React.

The user interface of an application is assembled from React Components.
When the state of application changes only React Components containing
modified data re-render. That is a significant performance advantage since
the application does not re-render the whole view.

7

2. Analysis of mobile application development

React Component is a JavaScript class or an object, depending on the
version of ECMAScript, a specification of scripting language that standardises
JavaScript. It contains a render function which returns the view, optional
Component Lifecycle related functions (explained below) and optional helper
functions.

Each React Component contains Props and State.

® Props (as properties) are arguments that are passed to the component
by the parent component. It is an immutable object, i.e. it can not be
changed inside a current component, only by the parent.

B State is a set of variables defined inside of the component, and the
variables can be changed inside of the component.

Page renders

:

Component did mount

l

State / Props changed

|

T Component re-rendered

Component will unmount

Figure 2.1: State diagram of React Component Lifecycle

Each modification of Props and State invokes re-render, see the
That is a part of a Component Lifecycle which starts with mounting
component, where the State variables are established. It continues with

8

2.5. Technology specification

optional updates of the component, where the new Props are passed, or
the State is changed. And it ends when the component is unmounted, in
this stage, all references should be removed, and the framework completely
removes the component from the view.

There is also a specific type of React Component that does not contain State.
The component is called Functional Stateless React Component, and it is
used for simple use cases, when a component needs to be just rendered and
its state will not change, offering potential for performance optimisations by
React.

B 252 Redux

Redux is an implementation of Flux[9], an architectural pattern defined by
Facebook. It allows to store global state and pass it to the React Components
via Props. Often Redux (or similar libraries) is referred to as a single source
of truth. Typical cases of usages are following:

B Storing global state of application which cannot be different across
multiple components, e.g. information whether the user is logged in.

B Storing data received from the server. For example, when multiple parts
of view need to render information from one data request, it is better to
cache the data than to repeat the same request.

Redux must not be confused with a database since it stores the data in the
computational memory and it does not access file system. I.e. when an
application is closed all data stored in Redux will be removed.

B 2.5.3 React Navigation

The library React Navigation allows to implement transitions between screens
simply. The main principle of the library is Navigator object, which contains
identification of current screen, a list of previous screens and navigation
functions, which allow to return to the previous screen (if one is available)
or to go to the next screen. There are three types of navigators, see [Figure
2.2k

B Stack navigator - the Main type of the Navigator, it adds Header element
to the top of the screen. The header contains a title of the screen and a
go back button in case there is a previous screen.

® Tab navigator - Panel with buttons typically located at the bottom, each
button navigates to the different screen.

® Drawer navigator - Hidden drawer on the left (or right) side of the
screen. The drawer is typically shown by pressing the button or by
the swipe gesture, and it typically contains navigating buttons to the
different screens and some additional information depending on the type
of application.

2. Analysis of mobile application development

Carrier & 5:00PM

Reporting Tool
Carrer 500 (=3 Occurrence 13 UURLEERY (@) John Smith
M: e test1
= Reports Filter

Occurrence1s [UEETEM occurrence 12 (ETEYTE = Reports
oruptmanea AMAR & settings

2] 100 - Acci._] Occurrence 11 [T
May 012018 e Tue May 012018

Occurrence 14 RS
Tue M 2018

Abrupt maneuvre

(a) : Stack navigator (b) : Tab navigator

© KBSS FEL CVUT v Praze, 2018
ersion: 0.1.0

(c) : Drawer navigator

Figure 2.2: Examples of navigators

B 2.5.4 Realm Database

For storing local data is used Realm Database. It is an object database, which
is an alternative to SQLite. In comparison with SQLite, Realm has following
advantages:

B Easy to use - Database provides an intuitive interface for writing and
reading data.

® Performance - Thanks to its zero-copy design, Realm Database is often
faster than raw SQLite, as stated by the creators of the database[l0],
which prevents the unnecessary load of unneeded data.

Realm also provides functionalities typical of a relational database such
as Triggers (called Notifications in Realm), relations between objects, etc.
But they are not used in this application due to the shape of entities and
implementation reasons.

B 25.5 React Native i18n

One of the requirements for the mobile application is support for localisation,
i.e. support for multiple languages. This feature is ensured by a library React
Native i18n which is developed by a community. Shortcut i18n is common
term for localization and internationalization in computing, it stands for the
first and last letters in the word internationalization and the 18 characters
between them.

The simple description of how it works is following;:

® There are dictionary files, and each file is designated for a specific
language. The files contain key-value pairs, where the key is a unique
universal shortcut and the value is a text in given language. All dictionary
files contain the same set of keys, only the values vary.

10

2.5. Technology specification

® Then there is a configuration file that specifies used language of the
mobile application, and typically it is adjusted by the language of the
device.

8 When there is needed to print some text, e.g. name of a button, an
application calls a function which returns text in a specific language for
given key.

B 25.6 React Native Keychain

For safely storing credentials is used library React Native Keychain which is
developed by a community. The library provides access to Android keystore
and iOS keychain, the official storage units for saving cryptographic keys.
This library is described in detail in the chapter [4.3|

B 257 Jest

Jest is a library developed by Facebook, which provides an interface for testing
JavaScript applications including applications implemented with React and
React Native. The process of automation testing of the mobile application is
described in chapter 4.4}

11

12

Chapter 3

Specification of application

The specification of the application contains list and description of require-
ments that the mobile application needs to fulfil, description of user interface
structure and main use-cases with screenshots of the application.

B 31 Requirements

In this section are described requirements for the mobile application specified
by the project supervisor. The requirements are divided into functional
requirements, i.e. description of application behaviour, and non-functional
requirements, i.e. criteria for quality of the application.

B 3.1.1 Functional requirements

The main purpose of the mobile application is to manage reports, and the
application will support operations such as viewing, creating, editing and
removing reports.

The attributes of report are headline - name of the report, date - when
the event has occurred, occurrence class and occurrence category - two
types of classifications of reports, summary - detailed description of report,
list of sub-events and sensory data - photos, videos, audio recordings
and GPS location. Besides specified attributes, which are editable by users,
the application will store hidden attributes such as date of creation, author
and number of revisions.

The mobile application will synchronise reports with the existing server
application, and all data will be stored in the server database.

The mobile application will be able to work in offline mode, i.e. when the
mobile device has no network connection. During this mode, the application

13

3. Specification of application

List of functional requirements
FR: 1 The mobile application will be synchronized with existing server
application and all data will be stored in the server database.
FR: 2 Communication with the server application will be provided via REST
API.
FR: 3 In case of no available network connection application will store its
data in a local database.
FR: 4 Users will be able to view reports.
FR: 5 Users will be able to create reports.
FR: 6 Users will be able to edit reports.
FR: 7 Users will be able to remove reports.
FR: 8 Each report will contain following attributes:
® Headline
8 Date
® QOccurrence class (severity) and category
B List of sub-events
® Summary
B Sensory data
FR: 9 Headline, date, occurrence class and category and summary will be
required attributes, i.e. each report must contain this information.
FR: 10 Application will remotely load and store predefined values for Sub-
event types, Occurrence class and Occurrence Category.
FR: 11 User will be able to attach photos to reports.
FR: 12 User will be able to attach videos to reports.
FR: 13 User will be able to attach audio recordings to reports.
FR: 14 User will be able to attach GPS location to reports. GPS location
will be automatically recorded by mobile application.
FR: 15 Users will be able to create a short report (called Initial report) with
providing only description of occurrence. The server will parse the
Initial report and will return full report.
FR: 16 Application will present reports in a list or a table.
FR: 17 Users will be able to filter reports by occurrence category and class.
FR: 18 Each item in the list of reports will contain headline, date, category
and class.

Table 3.1: List of functional requirements

will allow users to create reports and will save the reports to the local

database.

Besides main entity - report, the application will support shorter version of
a report, which is called Initial report. The initial report contains only one
attribute, that is a description of occurrence. When a user creates an Initial
report, the mobile application will send it to the server, which will parse text
in the description, based on which it will create a regular report and send it

14

3.2. Ul structure

back to the mobile application.

The functional requirements described above are structured in a list, see
3.1l

B 3.1.2 Non-functional requirements

Along with required functionalities, the mobile application must also fulfil
quality criteria. The mobile application must be multi-platform, supporting
two widely used mobile operating systems: iOS and Android. It is expected,
that in the production, the server will contain hundreds of reports, and
the mobile application must ensure flawless processing of that data. The
architecture of the mobile application must be designed with a support for
localisation in mind, i.e. support for multiple languages may be implemented
in the future.

The non-functional requirements described above are structured in a list, see
3.2l

List of non-functional requirements

NR: 1 Application will be supported by iOS and Android operating systems.

NR: 2 Application must process and present to user hundreds of reports
without recognizable flaws.

NR: 3 A part of the application will be automated tests.

NR: 4 Support for localization - (prepared, not necessary implemented).

Table 3.2: List of non-functional requirements

. 3.2 Ul structure

The mobile application contains two top-level screens: Reports screen and
Settings screen. A user can switch between them with a drawer, a Ul
component that slides in from the side by pressing a button or by swiping.
The user needs to be logged in, to access top-level screens and all other
features of the application. If the user is not logged in, the application
displays Login screen, otherwise, if the user has already logged in ones
before, the application has saved his credentials and performs an automatic
login.

The first screen, a user sees, is the Reports screen, which contains a list of
reports. In this screen user can perform following actions:

B view detail of a report, this action will navigate to the Report-detail
screen,

B create a new report, this action will navigate to the Add-report screen,
where user can switch between forms of two types of report: basic report
and initial report,

15

3. Specification of application

B cdit an existing report, this action will navigate to the Add-report
screen. In this case, the screen contains a form of a report with filled
attributes.

B view a list of saved reports which were not uploaded yet, this action will
navigate to the Saved-reports screen.

In the second top-level screen, Settings screen are located Logout button
and GPS settings. In the future, if needed, there can be added further settings,
for example, user account management.

For a better understanding of application structure refer to the figure below,
Figure (3.1

Login

!—l—l

Settings Reports

Report detail Add / edit report Saved Reports

—

Report detail Edit report

— Edit Report

Figure 3.1: Screen diagram of the mobile application

. 3.3 Use-cases

The application supports one type of user, which needs to be registered and
logged in to access the application. In this section are listed main supported
operations such as creating, editing, removing and viewing reports.

16

3.3. Use-cases

B 3.3.1 Create report

When a user needs to create a report, he must decide whether to create a
basic report with all attributes or to submit a few notes within simplified
report so-called Initial Report.

The application checks network connection after the user submits a form of
the report. If a mobile device is online it sends report directly to the server
and report is successfully created. Otherwise, the application saves the report
to a local database and shows panel with a list of pending reports. When
the mobile device is connected again to the network, the user can decide
whether to upload the report to the server or to remove it from the mobile
application.

B Create report scenario

This scenario realizes requirements [FR: |5, [FR: |8, [FR: |9, FR: [11, FR: |12,
FR: 13, FR: |14 and FR: [15.

1. User opens Reports screen which contains a list of reports and opera-
tion buttons such as create new report, edit or remove existing report
and filter reports. See [Figure |3.2a.

2. User presses on Add report button.

3. Application navigates to the Create-report screen. The screen con-
tains tab bar, which allows to switch forms between two types of report
- basic Report (see Figure |3.2b) and Initial Report (see |[Figure |3.2c).

4. User chooses the preferred type of report, fills the required attributes,
optionally attaches sensory data and clicks on Save button.

Application is online:

5. Application sends the report directly to the server where the report is
saved and refreshes the list of reports.

Application is offline:

5. Report is saved to the internal database and application sets event
listener for network changes.

6. When the device connects to the Internet, the application notifies the
user about pending report.

7. Then user decides whether to upload or delete report and accordingly
presses on Save button or Remove button in the bottom of the screen
(see Figure [3.2d). Then the application refreshes the list of reports.

17

3. Specification of application

Carrier 12:21PM 7 -
Carrier & 12:21PM (Cm) < Reports Add Report
= Reports Filter
Cessna 560XL Citatio... .
Wed Aug 05 2015 Headline

9 - GCOL: Ground Collision

Cessna 560XL Citatio... [ZAUEEEIES Date
Wed Nov 25 2015
18 - SCF-NP: System/component failu..

RSl 200 - Seri... Class
Thu Feb 22 2018

10 - ICE: Icing

BK - test - 0001 I Category

Sun May 28 2017
14 - MAC: Airprox/ ACAS alert/ loss of...

Factors Add
NARRATIVE_TEST_30

Tue Jul 29 2014
e «©

19 - SCF-PP: powerplant failure or mal...

NARRATIVE_TEST_22

Mon Aug 03 2015 Audio

14 - MAC: Airprox/ ACAS alert/ loss of... @ 00:00/00:00
Loss of Separation R... [ZAUURSERS Photos

Tue Feb 02 2016 Select photo

14 - MAC: Airprox/ ACAS alert/ loss of...

(b) : Create-report screen -
basic report tab
Carrier & 12:21PM - Carrier 12:23 PM

< Reports Add Report < Back Report

Description Class

1- AMAN: Abrupt maneuvre G

(a) : Reports screen

"

Factors
GPS
-122.406, 37.786

Audio
00:00/00:00

Photos

Summary

Description of occurrence 19

Upload new report

Remove report

(c) : Create-report screen - (d) : Report-detail screen of
initial report tab saved report

Figure 3.2: Screenshots of the mobile application screens - Reports screen which
contains list of reports, Create-report screen which contains form for creating a
report and initial report and Report-detail screen of saved report which contains
attributes of the report.

Bl 3.3.2 View report

A user can preview report with attributes it contains. Besides text attributes
such as headline, occurrence category, occurrence class, etc., the application
also shows images (if the report contains any) and allows to play voice
recording (if the report contains any). The same scenario is applied to both

18

3.3. Use-cases

reports on the server and reports in the local database.

Viewing reports involve finding a report. It can be complicated when the
server contains hundreds of reports. For this purpose, the application allows
filtering reports by occurrence class and category.

B Filter reports scenario

This scenario realizes requirement

Class

Category

Figure 3.3: Screenshot of the mobile application Filter modal.

1. User opens Reports screen which contains a list of reports and opera-
tion buttons such as create a new report, edit or remove existing report
and filter reports.

2. User presses on Filter button.

3. Application opens modal with form for filtering reports (see Figure |3.3).
The attributes of the form are occurrence class and category.

4. User picks occurrence class and category and presses on Filter button.

5. Application closes the modal and loads a new filtered list of reports from
the server.

B View report scenario

This scenario realizes requirement [FR: |4

1. User opens Reports screen which contains a list of reports and opera-
tion buttons such as create new report, edit or remove existing report
and filter reports. See |[Figure |3.4a

19

3. Specification of application

Application is online:

Carrier & 12:21PM -

= Reports Filter

Cessna 560XL Citatio... [AJUSEEES
Wed Aug 05 2015
9 - GCOL: Ground Collision

Cessna 560XL Citatio... [0
Wed Nov 25 2015
18 - SCF-NP: System/component failu.

Test5.77

Thu Feb 22 2018
10 - ICE: Icing

BK - test - 0001 OSSR
Sun May 28 2017
14 - MAC: Airprox/ ACAS alert/ loss of...

NARRATIVE_TEST_30 A=t
Tue Jul 29 2014
19 - SCF-PP: powerplant failure or mal.

NARRATIVE_TEST_22 [PAJoT=Iie
Mon Aug 03 2015
14 - MAC: Airprox/ ACAS alert/ loss of...

Loss of Separation R... USSR

Carrier & 1:06 PM -
< Reports Report
Headline

Occurrence 18

Date
Thu May 10 2018

Class

100 - Accident

Class
1- AMAN: Abrupt maneuvre

Factors
GPS
Unknown

Audio
00:00/00:00

Photos

Tue Feb 02 2016
14 - MAC: Airprox/ ACAS alert/ loss of

(a) : Reports screen (b) : Report-detail screen

Figure 3.4: Screenshots of the mobile application screens - Reports screen which
contains list of reports and Report-detail screen which contains attributes of the
report.

2.

3.

As the application is online, it fetches reports from the server and shows
them in the list of reports. User finds desired report and presses on it.

Application navigates to the Report-detail screen. The screen con-
tains attributes of the report such as headline, date, summary, etc. See

Figure |3.4b

Application is offline and local database contains reports:

2.

As local database contains reports, in the bottom on the Reports
screen is located panel, which indicates number of offline reports. See

User presses on the Offline reports panel.

Application navigates to the Offline-reports screen, where a list of
reports is located and operation buttons such as create new report, edit

or remove existing report and filter reports. See

User chooses the preferred report and presses on it.

Application navigates to the Report-detail screen (see Figure |3.5c).

The screen contains attributes of the report such as headline, date,
summary, etc.

20

3.3. Use-cases

Carrier & 12:18PM - Carrier & 12:19PM -

Carie vy D - { Reports Pending Reports Filter < Back Report

= Reports Filter

Offline report RS Headline

Occurrence 18 [REE= ““{:»‘ y 10 201 g Offline report
1- AMAN: Abrupt [New | Date
Occurrence 17 [T Thu May 10 2018
hu M: 018 e
1- AMAN: Class

o
Occurrence 16 [[RIEEE
T AMANE Abr Class

1~ AMAN: Abrupt maneuvre [)
Occurrence15 [N

e May 012018 Factors
1- AMAN: Abrupt
Occurence 6 [[IEE GPS
“‘ Apr 13 2€ § -122.406, 37.786
Audio
Cessna S550 Citation... [[EEEE= 00:00/00:00
15 - RE: R ex e Photos
Cessna S550 Citation... IR Upload All
Pending reports: 1
(b) : Saved-reports (c) : Report-detail
(a) : Reports screen
screen screen

Figure 3.5: Screenshots of the mobile application screens - Reports screen which
contains list of reports, Saved-reports screen which contains list of locally saved
reports and Report-detail screen of saved report which contains attributes of the
report.

B 3.3.3 Edit report

When a user needs to edit a report, it depends whether the report is saved in
the server and is accessible by every other user, or the report is located only
in a local database.

In case the report is saved on the server, the mobile device must be connected
to the network or must contain cached reports. If so, a user can find the report
in the list of reports, open preview, edit attributes and submit changes.

If the report is saved in the local database, the user always can modify it.
The process is the same, the user finds the report in the list of local reports,
open preview, edit attributes and submit changes.

B Edit report in the server scenario

This scenario realizes requirement |FR: |6

1. User opens Reports screen which contains a list of reports and opera-
tion buttons such as create a new report, edit or remove existing report

and filter reports. See |[Figure |3.6a

2. User selects report and presses on the right side of the row where is
located list icon.

3. Application shows modal with two buttons - Edit report and Remove

report. See

4. User presses on Edit report button.

21

3. Specification of application

Carrier & 1221PM - Carrier & 4:26PM T -

=] Reports Filter < Reports Edit Report

Cessna 560XL Citatio... EXTEITIN Headline
We 015 e

ind Collision

Occurrence 18

Date

Cessna 560XL Citatio... [EXIEEEIM
Wed Nov 2! e 10-05-2018 06:03

ystem/component failu.

Class

o
Category
1~ AMAN: Abrupt maneuvre []
Airprox/ ACAS alert/ loss of
Factors e
NARRATIVE_TEST_30
Tue Ju 4
19- owerplant failure or ma Accident [
NARRATIVE_TEST_22 [EREET Accident (<]
Mo 3 2015
4 rox/ ACAS alert/ loss of.
eps S
K Edt «©
Loss of Separation ...
Tue Fe 16 Audi
14 MAC: Airprox] ACAS alert 1oss of W Remove udie @ 00:00/00:00
(a) : Reports screen (b) : Options menu (c) : Edit-report screen

Figure 3.6: Screenshots of the mobile application screens - Reports screen which
contains list of reports, Options menu with buttons for editing and removing
report and Edit-report screen with form for editing a report.

Application navigates to the Edit-report screen (see Figure |3.6c)).
The screen contains a form of the report.

User modifies attributes of the form and clicks on Save button.

Application sends the report directly to the server where the report is
modified.

Edit report in the local database scenario

This scenario realizes requirement FR: |6

1.

User opens Reports screen which contains a list of reports and opera-
tion buttons such as create a new report, edit or remove existing report
and filter reports.

As local database contains reports, in the bottom of the Reports screen
is located panel, which indicates a number of offline reports.

User presses on the Offline reports panel.

Application navigates to the Offline reports screen, where a list of
reports is located and operation buttons such as create a new report,
edit or remove existing report and filter reports.

User selects report and presses on the right side of the row where is
located list icon.

Application shows modal with two buttons - Edit report and Remove
report.

User presses on Edit report button.

22

10.

3.3. Use-cases

Application navigates to the Edit-report screen. The screen contains
a form of the report.

User modifies attributes of the form and clicks on Save button.

Application saves modified report into the local database.

23

3. Specification of application

B 3.3.4 Remove report

Removing report is very similar to editing, it only requires fewer steps.

B Remove report in the server scenario

This scenario realizes requirement [FR: |7

Carrier & 12:21PM -

= Reports Filter

Cessna 560XL Citatio... [ZAUSEEES
Wed Aug 05 2015
9 - GCOL: Ground Collision

Cessna 560XL Citatio... ARSI
Wed Nov 25 2015
18 - SCF-NP: System/component failu...

Test 5.77 [JURR SN
Thu Feb 22 2018
10 - ICE: Icing

BK - test - 0001 [ZOEElRN
Sun May 28 2017
14 - MAC: Airprox/ ACAS alert/ loss of...

NARRATIVE_TEST_30 [0t
Tue Jul 29 2014
19 - SCF-PP: powerplant failure or mal...

NARRATIVE_TEST_22 BT
Mon Aug 03 2015
14 - MAC: Airprox/ ACAS alert/ loss of...

E Edit
Loss of Separation R...
Tue Feb 02 2016
14 - MAC: Airprox/ ACAS alert/ loss of... W Remove
(a) : Reports screen (b) : Options menu

Figure 3.7: Screenshots of the mobile application screens - Reports screen which
contains list of reports and Options menu with buttons for editing and removing

report.

1. User opens Reports screen which contains a list of reports and opera-
tion buttons such as create a new report, edit or remove existing report

and filter reports. See [Figure |3.7a

2. User selects report and presses on the right side of the row where is

located list icon.

3. Application shows modal with two buttons - Edit report and Remove

report. See

4. User presses on Remove report button.

5. Application removes the report from the server and refreshes the list of

reports.

B Remove report in the local database scenario

This scenario realizes requirement [FR: |7

24

3.3. Use-cases

User opens Reports screen which contains a list of reports and opera-
tion buttons such as create a new report, edit or remove existing report
and filter reports.

As local database contains reports, in the bottom of the Reports screen
is located panel, which indicates a number of offline reports.

User presses on the Offline reports panel.

Application navigates to the Offline reports screen, where a list of
reports is located and operation buttons such as create a new report,
edit or remove existing report and filter reports.

User selects report and presses on the right side of the row where is
located list icon.

Application shows modal with two buttons - Edit report and Remove
report.

User presses on Remove report button.

Application removes the report from the server and refreshes the list of
reports.

25

26

Chapter 4

Implementation

B a1 Integration with server

Integration with the server is straightforward, as the implementation of the
server already exists and mobile application must adapt. The server uses
Representational State Transfer (REST) to communicate with a front-end user
interface. REST is an architectural style, which defines set of properties and
rules for communication over Hypertext Transfer Protocol (HTTP).

The mobile application uses SuperAgent library for interaction with the server.
It is a light-weight API that provides a set of methods for retrieving data
from the server or sending the data to the server. The methods are based on
HTTP methods such as POST, GET, PUT, DELETE, etc.

The most of the data such as reports are transferred (sent or received) within
file format called JavaScript Object Notation (JSON), see Listing 4.1, The
JSON data objects consisting of attribute-value pairs, where the attribute is
denoted as a string and value can be any serializable data type such as string,
number, boolean, array or nested JSON object.

Besides JSON format, the mobile application also sends data as HTTP form
data. Depending on header HT'TP standard allows to encode data, suitable
for authentication of a user, or to send binary streams, ideal for sending files
such as photos or voice recordings.

Listing 4.1: Example of report represented in JSON format.

"key":"72643792288465405893",
"fileNumber":1526655215986,
"phase":"http://onto. fel.cvut.cz/processed",
"author": {
"uri":"http://www.inbas.cz/people#John+Smith",
"firstName ":" John" |
"lastName ":" Smith",

27

4. Implementation

"username ":" smith@fel . cvut.cz",
"types ":["http://onto.fel.cvut.cz/Agent"],
"enabled ": true,
"locked ": false
}
"dateCreated ":1526655215986 ,
"revision ":1,
"identification ":" testingl ",
"date":1527087000000,
"summary ":" Safety event'
"severityAssessment ":"http://onto. fel.cvut.cz/v—200",
"occurrenceCategory ":" http://onto. fel .cvut.cz/v—1"

B a2 Synchronization with server

Communication with the server is one of the main requirements for this mobile
application. Besides the technical aspects described in the previous section,
it is also necessary to consider synchronisation patterns so the application
can provide up-to-date data to the users without noticeable delays and it will
prevent creating duplicates.

Before choosing and implementing patterns for data synchronisation, it is
essential to understand the purpose of the application, how it should work
and what users would expect. In architectural design, there is no universal
solution, but rather trade-offs, i.e. different patterns suite different types of
applications. So, it is essential to set priorities for various features.

The primary purpose of the application is to provide the users with a possibility
to report occurrences everywhere in the workplace. It is doubtful that users
will use the application to monitor and inspect existing reports, it would
be very impractical, as mobile devices have small screens. Therefore, the
application is designed for uploading, rather than downloading. Hence the
priority is set for creating new occurrence reports and in the second place is
a presentation of existing reports fetched from the server.

B 4.2.1 Online and offline mode

The mobile application is designed to work in two states, depending on
network connection:

® online mode and
® offline mode.

When the application is connected to the Internet, it is considered as the
online mode. The application is connected directly to the server, and it

28

4.2. Synchronization with server

directly downloads and uploads data to the server, i.e. it works the same way
as the web application.

During in the offline mode, when the application has no connection to the
Internet, it cannot communicate with the server. That makes downloading
the data impossible. So, is the application usable in the offline mode? Yes,
it is. The application can still create new data, i.e. users can create new
reports, which will be stored in the local database, and when the mobile device
connects again to the network, it can send saved reports to the server.

Furthermore, during the online mode, the mobile application stores down-
loaded reports in the temporary memory. These reports are still accessible
during offline mode (assuming the mobile application was not closed) and
a user can view the reports and edit them (editing during offline mode is
explained in the next section). Cached reports along with other temporary
data are removed when the application is closed.

Bl 4.2.2 Downloading the data

For choosing suitable synchronisation patterns for downloading the data,
there is needed to consider following questions:

® when and how often the data needs to be synchronised,
® what amount of data needs to be fetched,
B is it possible to cache the data?

To, minimise unnecessary data synchronisation, most of the transfers are trig-
gered by a user manually. When the user opens the application, it downloads
occurrences from the server and then waits for further actions.

The total amount of occurrences in the server can be in the range of thousands
and more. Therefore, storing all occurrences in the mobile application would
be unpractical and complicated. Instead, it is preferred to load a small
number of occurrences and if the user requires, load more. The application is
downloading 60 reports in the current implementation.

There is expected that in the production the set of occurrences in the server
will vary. Many users will create or modify occurrences. Therefore there is no
way to cache them in the mobile application. However, there was indicated
that records of different types of occurrence class, occurrence category and
factors are mostly static. Hence, there were implemented cache measures:
after initialisation, the mobile application will download and store static data
in a local database. Then it will monthly check if the static data has changed
and if so, it will update its records. Also users are able to download the data
manually.

All synchronisations are done as an asynchronous mechanism[2]. That means,
a user can use other functions of the application, while the data is loading.

29

4. Implementation

E.g. if the user waits for receiving the list of occurrences, he can still create
a new report.

Bl 4.2.3 Uploading the data

Uploading the data during online mode works the same way as in a web
application. The user can create, edit or remove report and the mobile
application will send a relevant request to the server for processing. But in
offline mode synchronisation can originate issues regarding collisions.

Imagine a situation when the user has no network connection and creates a
report on the mobile application. The report is saved in the local database
of the mobile application. Then he comes back to his workplace and creates
the same report on the web application that sends it directly to the server
(reason can be that the users prefer a desktop over smart-phone and he has
forgotten about the already created report in the mobile application). What
should the mobile application do with its report in a local database, since
there is already another version of the same report on the server? The correct
solution is to remove report in the local database, but how mobile application
or the server can recognise that report already exists?

It would be complicated, as there is no unique identification. The attributes
that come to mind are a time of creation, headline, occurrence category and
occurrence class. But, there could be cases when the user creates two very
similar reports, but application automatically removes one of them. Hence
the final solution is to leave the decision to the user. I.e. mobile application
shows locally saved report to the user, who can decide whether to upload or
remove it.

The used synchronisation pattern is called Read/Write Data Last Write Wins.
This pattern is recommended for mobile applications where it is not likely
for multiple end-users to change the same data while the application are
offline[3].

The very similar case is with editing report during the offline mode. However,
in this case, the user can only edit cached reports, i.e. the reports that
were downloaded during online mode and temporarily saved in the mobile
application. When user edits report during offline mode, the application
stores edited the report in the local database. After mobile device connects
back to the network, the user can upload edited report to the server, and
that report becomes the newest version of the original report.

Support for removing reports during offline mode seems unnecessary and too
complicated. Hence current implementation of the mobile application does
not support it.

30

4.3. Security

B a3 Security

For ensuring sufficient security measures of mobile application, one must
identify sensitive data, e.g. passwords, personal data, location records, handle
passwords on device securely and ensure secure transit of data between device
and server.

The only sensitive data in the mobile application are user credentials, i.e.
combination of a user-name and a password. The credentials are obtained
when the user logs in for the first time and then saved in the mobile application.
Each time application is opened, it performs automatic login task, and the
user does not need to fill his credentials regularly.

An issue is to choose the right technology for storing credentials. React
Native offers AsyncStorage, a simple key-value storage system, and it is an
alternative to the LocalStorage which is often used as a storage system in
the front-end of web applications. However AsyncStorage is not adequately
protected, i.e. it stores data unencrypted. Hence there were evaluated other
possibilities and third-party solutions and in the end, was chosen library
React Native Keychain developed by a community. The library provides
access to Android keystore and iOS keychain (secure storage systems for
storing cryptographic keys, passwords, etc.), the credentials are encrypted,
and the key is non-exportable, this means that the system will not allow
exporting key to a transportable file that can be copied on another device.
Therefore it makes an entire process more secure.

Note: The Android keystore is available on APT level 23+ and is considered
as secure storage. On older levels the data are stored in SharedPrefer-
ences, a simple key-value storage system for Android, and encrypted
/ decrypted with Facebook Conceal, a set of Java APIs to perform
cryptography. In this case, authors of React Native Keychain library
warns that the key may be obtained when the Android device is rooted
or if an attacker can somehow access the filesystem.

For secure exchange of credentials between the mobile application and the
server is used protocol HT'TPS, which ensures secure transfer of data. HT'TPS
is an extension of the Hypertext Transfer Protocol (HTTP) for secure com-
munication over a computer network.

B a4 Testing application

Automated testing is a useful addition to applications. Developers or testers
design automated tests to validate individual functions of the application.
Tests make implementation process faster and less faulty, as the developer
does not need to validate some functionalities manually and it reduces human
error.

31

4. Implementation

In the mobile application, automation testing is implemented with library
Jest. As every testing software, it allows to execute parts of an application
and compare actual outcome with predicted outcomes.

In the application are automatically tested user interface, i.e. if the view
renders correctly, and controller functionalities, e.g. management of reports
or management of application preferences.

For testing user interface was used Snapshot testing. It is a feature of Jest
that allows to create a human-readable snapshot of a component and compare
it with a previous snapshot. If the component has changed, the test will
recognise it and alert developer. In the mobile application is tested each
elementary component (i.e. button, label, etc.) and each screen (i.e. login
screen, reports screen, etc.).

Testing controller methods require mocking some functionalities, like a local
database or a filesystem of a mobile device, to prevent the creation of perma-
nent changes. The Jest library allows mocking either individual functions or
whole modules.

32

Chapter 5

Best practices

At the beginning of developing an application, one has a general picture of
application structure. But before seeing the details, it is not clear, whether the
main idea contains any flaws and whether the design should be modified.

One can refer to sources on the Internet, where the community describes
best ways of implementation and usage of particular technology. However
sometimes described possibilities vary and it is not clear what is the best for
specific case. Therefore one must expect possible changes.

During the development of this mobile application, there were done many
architectural modifications and were discovered some best practices, which
can help make a better decision right from the beginning.

B 51 Memory leaks

Before starting developing an application one of the first decisions was whether
to use Redux. Due to the simpleness of application, it seemed not necessary.
So, in the first design, the global state (i.e. reports) has been stored in the
root component of the screen, the application contained a pointer to the
component, and it could update the state when needed. It was all done
simply and minimalistic to prevent errors and unnecessary code. Besides the
state in the component, there were implemented a simple caching system and
an observer object[8] - a software design pattern in which an object notifies
subscribers when the data changes.

This concept worked to the point when it came to switching between screens.
When the screen changes, the screen component is unmounted and the
garbage collector cleans all data of the component. The garbage collector
is a mechanism for automatic memory management, it reclaims memory
occupied by objects that are no longer in use by the program. However
if the application still contains a pointer to this unmounted component, it
can not be cleaned. That leads to memory leaks, which cause impaired

33

5. Best practices

performance or failure. Also when the component is unmounted, and the
pointer still exists, other parts of an application can try to change the state
of it. That is a large anti-pattern described by Facebook, which can lead to
the impaired functioning of the application. That was the exact case of the
first design.

To fix the memory leaks, there needed to be implemented more complex layer
over the screen components, including more observer objects, which would
track the data changes. But it was already implemented, these mechanisms
are part of one global state container called Redux.

Using Redux, memory leaks were solved, and the code became more transpar-
ent. In conclusion, this practice has shown that the Redux (or other library
implementing global state pattern flux) is a crucial part of almost every React
or React Native application.

B 5.2 Navigation

With React Navigation, a library which contains a few already implemented
navigators with a navigation system comes to a question, which navigator to
use. The first choice is a Stack navigator since it contains a header (a typical
part of every mobile application) with already implemented back button and
a title of the screen. It allows forward and reverse navigation within one part
of the application, e.g. in the screen with a list of reports application can
navigate to the screen with full detail of a chosen report.

The user interface structure was designed to contain two top-level screens,
for this is recommended lateral navigation[I1]. Therefore there should also
be used either a Tab navigator or a Drawer navigator.

The decision was to use the Drawer navigator, since the drawer can contain
more information, not only the buttons but also information of user or
application, etc.

The navigation design of the mobile application was based on an exam-
ple of multiple navigators usage in the documentation of React Navigation
library[12]. The Drawer navigatorFigure [5.1a was the root component which
was switching between two screens - screen with reportsFigure |5.1b| and
screen with settingsFigure |5.1c. Each screen was a Stack navigator which
contained further screens. However, this approach was too complicated. The
application needed to store pointers of two navigators, one for switching
between reports and settings and another one for navigating within this
screens.

In the end, it was decided not to use Drawer navigator and use only one
Stack navigator with a custom implementation of the drawer. The user
interface design was not changed, just the code architecture. This approach
has paid off, and the application code became more straightforward and more

34

5.3. Stateless components

Carrier & 5:00PM Carrier & 12:21PM - Carrier & 10:35 AM

| N B A S = Reports Filter = Settings

N Cessna 560XL Citatio... [ENEESM Use GPS R
Reporting Tool Wed Aug 05 ()

9 - GCOL: Ground Collisior

(7)) John Smith Cessna 560XL Citati
7 test Wed Nov 25 201¢

3 200 - Seri...

SCF-NP: S
= Reports
& settings
BK - test - 0001 [
Sun May 28 201
14 - MAC: Airprox/ ACAS alert/ loss of
NARRATIVE_TEST_30 ENREETM
Tue Jul 29 2014

1€ PP: powerplant failure or ma

Loss of Separation R... EEEEM °
Tue F
S alert/ loss of

KBSS FEL EVUT v Praze, 2018 u
(a) : Drawer (b) : Reports screen (c) : Settings screen

Figure 5.1: Screenshots of two main screens of the mobile application - Reports
screen and Settings screen, and a Drawer for navigation between those screens.

transparent. Furthermore, the application creates fewer objects, which means
better performance.

In development, especially with JavaScript language, there are many libraries
which provide many functionalities. But not always it is a right decision to
use every available feature.

B 53 Stateless components

At the beginning of development, there were used only classical React Com-
ponents. It has seemed like an only way to define components. Even
though the current version of React library documentation promotes us-
age of Functional Stateless React Component[I3], a lot of examples in React
Native documentation and Learning React Native book uses classical React

Components[I][14].

Classical React Component created as JavaScript class contains functionalities
which are not always required. A typical example is a State and component
Lifecycle function. If an only reason of React Component is to be rendered
as a fundamental element, such as a button or a text, which does not contain
any logic inside, it should not carry any State. For these reasons, React allows
creating a so-called Functional Stateless React Component, which is created
as a JavaScript function. The component does not contain constructor nor
Lifecycle functions, and it offers potential performance optimisation.

After some time, the decision was made to utilise Functional Stateless React
Components. The performance improvements were not visible, but the
modification made a code clearer. For the beginner, who is exploring the
library, it might seem not that important, but for the developer, who is

35

5. Best practices

creating an application with a potential to be used in the future, every such
detail is significant.

That might be an evident approach, but still, there are some React or React
Native applications with every React Component implemented as a JavaScript
class.

36

Chapter 0

Usability testing

Usability testing is a technique to evaluate a product by testing it on users.
It is one of the requirements for this thesis.

When the core features of the mobile application were finalised, the the-
sis supervisor had handed over the application to the four potential users
(testers).

Testers were required to complete tasks to determine a quality of the user
interface and whether all features are intuitive, easily accessible, work correctly
and fast enough. The tasks are following;:

Open detail of a report

Filter list of the reports

Create a report

Create a report during offline mode - Turn off wifi and mobile data and
then create a report. Then open detail of that report.

® Logout

After testing the application, the testers filled out a provided form which
contains 4 question. The results of questions 1 and 2, that are listed in the
and the are positive. The answers indicate that the

user interface is intuitive and the response time is satisfactory.

On the other hand, the testers had an issue with crashing of the application.
See the answers to question 3 that are listed in [Table |[6.3. The issue should
be traced and solved in the future work.

At last, the testers have suggested recommendations to improve the applica-
tion. See the answers to question 4 that are listed in |Table |6.4.

Note: The usability testing was done at the end of the project. Thus there was
no time to solve the reported issues and process the recommendations.

37

6. Usability testing

Was every task easy to accomplish? If not, which task and
what difficulties were there?

Tester 1 Yes, the application is fairly straightforward, in-
tuitively usable. No tasks were really problem-
atic.

Tester 2 Every task was easy to accomplish (except in the
case below - question 3).

Tester 3 Fach task was tested and it was easy to accom-
plish. It was intuitive and responded as expected.

Tester 4 All tasks are OK, except of log out — it was
impossible

Table 6.1: Usability testing survey - question 1

Is the application fast enough?

Tester 1 Yes, no problems were identified regarding the
application speed.

Tester 2 Yes, it is.

Tester 3 Application responded without problem. Re-

sponse time is satisfactory. I tested it few times
and noticed a slight differences in response time,
however it never freeze or crashed.

Tester 4 Yes, except the issue below (question 3)

Table 6.2: Usability testing survey - question 2

Does the application crash, hang or freeze?

Tester 1 It does crash occasionally when browsing details
of a report, but at all times when I want to record
audio in a new report or do so whilst editing an
existing report. Sometimes, when I click details
of a report, the screen goes blank and the app
needs to be restarted.

Tester 2 The application repeatedly crash during the fac-
tor addition step. (a report creating, the airport
public wifi connection)

Tester 3 During the test application did not crashed,
hanged or freeze.

Tester 4 During saving occurrence, after clicking on save,
there were still the “working sign” but the ap-
plication don’t go to other window, I have to do
it manually by clicking on “back arrow” During
saving, there is word “Loading” it looks strange

Table 6.3: Usability testing survey - question 3

38

6. Usability testing

Do you have any recommendation for the application?

Tester 1

In a new report, the factors added are all or-
ganized in parent-child fashion when displayed
in web-based RT to edit the chain. The first
added factor is parent of the second, the second
is parent of the third etc. All factors should be
equal, none should be parent of any other.

Photos can be added in the application, but not
viewed (edited) afterwards. Maybe the photos
are not saved, but the latter feature would def-
initely help. Interestingly, for offline reports in
preview of a pending report, attached photos are
visible and editable, even though full-size picture
cannot be displayed to check individual pictures.

Tester 2

Tester 3

It is possible to set a date in future as a date
of event. The classic INBAS reporting tool con-
trols whether the date is set appropriately and
it prevents setting a date in future.

Tester 4

For users in field, it could be good, if there would
be possible to fill in other basic information like
aircraft registration, type of aircraft etc.

Table 6.4: Usability testing survey - question 4

39

40

Chapter 7

Conclusion

. 7.1 Conclusion

The purpose of this thesis was to implement Mobile Application for Safety
Occurrence Reporting which is intended to be a part of a web application
called Reporting Tool.

Before the beginning of development, there were analysed and evaluated
approaches and technologies for mobile application development. In the end,
was chosen the hybrid mobile application implementation approach with
React Native framework designed by Facebook.

As the mobile application has to cooperate with the server, to store and
retrieve occurrences and user data, there were needed to analyse possibilities
of integration with the server. At last, the integration was adapted to the
server and was used an architectural style REST.

One of the requirements for the application is a possibility to work in of-
fline mode, which can cause a corruption of the data (e.g. the creation of
duplicates). To prevent that there were analysed and utilised synchronisation
patterns.

During the implementation was several times needed to modify the structure of
the application. The whole process of implementation has led to a discovery of
useful practices, for example, utilisation of a Flux architectural pattern.

In the end, the description of the mobile application, applied approaches
and discovered outcomes were written into this document. And the mobile
application was passed on to potential users for a usability testing.

In the future future work there would be implemented requirements such as
support for attaching video records to reports and support for creating Initial
reports during offline mode.

41

7. Conclusion

B 72 Final impression

When trying new technology (new framework) developer typically creates
"hello world” demo, which contains a simple implementation of major features
without any meaningful purpose of the application. In this case, everything
seems to work, and if it does not, it is probably the mistake of the developer,
who uses the technology in a wrong way, because of a lack of knowledge.

However, when the developer approaches the end of implementation, and the
application contains functionalities which real users might use, the impression
is different. First of all, the developer already possesses more profound
knowledge about the technology, he has read literature, browsed through
community forums and has solved numerous bugs in his program. Thus when
there is a strange behaviour with no possible cause of application, it might
be an error of the framework.

During the implementation of this mobile application, there were several
cases of bugs in the React Native framework. The most of them were already
solved in newer versions. Hence an update was a solution.

But there are still unresolved issues. When using an iOS simulator, the appli-
cation behaves flawlessly. On the other hand, when running the application
on an android device, there are slowdowns in animations, e.g. while opening
modal, and occasional freezes of a view. These minor issues do not prevent
using the mobile application, as all functionalities work, but sometimes it
might be irritating for the users.

During this project, which has lasted approximately for a year (including the
period of learning the framework), there were released several new versions
of React Native and React. In this updates were introduced better Ul
components and implementation approaches and there were solved bugs. In
the future, hopefully, the creators of React Native framework will resolve
issues with animations.

Also, there was reported an issue of application crashing by the testers. As
the crashes were observed only on some devices it may be caused by different
versions of operating system and it does not have to be an error of the React
Native. This issue should be traced and resolved in the future work.

In the end, I do not regret my decision of choosing React Native. The
negatives described above are little, and other frameworks may have even
more significant flaws. Furthermore, I am convinced, that the performance
optimisation may be applicable and animation issues can be solved (probably
not in the JavaScript code, but in the native code, i.e. Swift and Java).

42

Bibliography

[1] Bonnie Eisenman. Learning React Native: Building Native Mobile Apps
with JavaScript. O'Reilly Media, 2017.

[2] Zach Mccormick and Douglas C. Schmidt. Data synchronization patterns
in mobile application design. [In Proceedings of the 19th Conference on
Pattern Languages of Programs (PLoP ’12)]. The Hillside Group, 2012.

[3] OutSystems (2018, May 21) OutSystems 10 documentation. Retrieved
from

https://success.outsystems.com/Documentation/10/Developing_ |
lan_Application/Use_Data/0ffline/Offline_Data_Sync_Patterns|

[4] Bogdan Kostov, Jana Ahmad and Petr Kfemen. Towards Ontology-Based
Safety Information Management in the Aviation Industry. [On the Move
to Meaningful Internet Systems: OTM 2016 Workshops]. Springer Inter-
national Publishing III, 2017.

[5] European Network and Information Security Agency. Smartphone Secure
Development Guidelines for App Developers. [On the Move to Mean-
ingful Internet Systems: OTM 2016 Workshops]. Springer International
Publishing ITI, 2011.

[6] Leonard Richardson and Sam Ruby. RESTful Web Services. O'Reilly
Media, 2017.

[7] Alex Banks, Eve Porcello. Learning React. [Functional Web Development
with React and Reduz] O’Reilly Media, 2017.

[8] John Vlissides, Ralph Johnson, Richard Helm, Erich Gamma Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[9] Facebook Inc. (2018, May 1) Flux - Application architecture for building
user interfaces. Retrieved from
https://facebook.github.io/flux/

43

https://success.outsystems.com/Documentation/10/Developing_an_Application/Use_Data/Offline/Offline_Data_Sync_Patterns
https://success.outsystems.com/Documentation/10/Developing_an_Application/Use_Data/Offline/Offline_Data_Sync_Patterns

Bibliography

[10] Realm (2018, May 1) Documentation of Realm Database. Retrieved from
https://realm.io/docs

[11] Google LLC (2018, May 14) Material design. Retrieved from
https://material.io/design/navigation/understanding-navigation.html

[12] A. Tevosyan, B. Vatne, D. Pack, K. Magiera, M. Hamil, A. Miskiewicz,
S. Carli (2018, May 14) Documentation of React Navigation. Retrieved
from
https://reactnavigation.org/docs/en/tab-based-navigation.html

[13] Facebook Inc. (2018, May 14) Documentation of React. Retrieved from
https://reactjs.org/docs/components-and-props.html

[14] Facebook Inc. (2018, May 14) Documentation of React Native. Retrieved
from
https://facebook.github.io/react-native/docs/getting-started.html

44

Appendices

45

Appendix A

Building mobile application

Below are described steps for building and running the mobile application on
iOS simulator or device and Android emulator and device.

B A1 Android

For building a React Native application on Android emulator or device are
required following dependencies:

® Node

the React Native command line interface
Python2 (for Windows)

Watchman (for macOS)

JDK

Android Studio

For installing Node, Python2, Watchman, a JDK and Android Studio, please
refer to [React Native documentation!

React Native CLI is installed by running following command in a Comand
Prompt or shell:

npm install —g react—native—cli

Then in a Command Prompt or shell change directory to the mobile applica-
tion source code directory and run following command:

react—native link

At last, to run the mobile application connect the mobile Android device to

the computer via USB cable or start an Android emulator in Android Studio
and run following command:

react—native run—android

47

https://facebook.github.io/react-native/docs/getting-started.html

A. Building mobile application

B A2 ios

Building application for iOS is possible only in macOS operating system,
which needs to have installed following dependencies:

® Node
® the React Native command line interface

For installing Node, please refer to [React Native documentationl

React Native CLI is installed by running following command in a shell:

npm install —g react—native—cli

Then in a shell change directory to the mobile application source code directory
and run following command:

react—native link

At last, to run the mobile application connect the mobile i0OS device to the

computer via USB cable (in case of running the application on iOS Simulator
there are no other steps needed) and run following command:

react —native run—ios

48

https://facebook.github.io/react-native/docs/getting-started.html

	Introduction
	Analysis of mobile application development
	Native application
	Web application
	Hybrid application
	Choosing framework
	Xamarin
	Appache Cordova, Ionic Framework and Adobe PhoneGap
	React Native
	Conclusion

	Technology specification
	React native / React
	Redux
	React Navigation
	Realm Database
	React Native i18n
	React Native Keychain
	Jest

	Specification of application
	Requirements
	Functional requirements
	Non-functional requirements

	UI structure
	Use-cases
	Create report
	View report
	Edit report
	Remove report

	Implementation
	Integration with server
	Synchronization with server
	Online and offline mode
	Downloading the data
	Uploading the data

	Security
	Testing application

	Best practices
	Memory leaks
	Navigation
	Stateless components

	Usability testing
	Conclusion
	Conclusion
	Final impression

	Bibliography
	Appendices
	Building mobile application
	Android
	iOS

