
CZECH TECHNICAL UNIVERSITY

BACHELOR THESIS

Intelligent Tree Data Management
Component

Author:
Jakub LEČBYCH

Supervisor:
Ing. Petr KŘEMEN, Ph.D.

A thesis submitted in fulfillment of the requirements
for the degree of Bachlor of Software engineering and technology

in the

Knowledge Based Software Systems Group
Department of Cybernetics

May 24, 2018

https://www.cvut.cz/en
http://kbss.felk.cvut.cz
https://cyber.felk.cvut.cz/

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457806Osobní číslo:JakubJméno:LečbychPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Inteligentní komponenta pro správu stromových dat

Název bakalářské práce anglicky:

Intelligent Tree Data Management Component

Pokyny pro vypracování:
1.Proveďte
a)rešerši existujících JavaScript komponent pro výběr ze stromových dat, např. RC-tree a
b)existujících REST rozhraní pro poskytování stromových dat, včetně propojených dat.
2.Formulujte funkční a nefunkční požadavky na inteligentní komponentu pro výběr stromových dat a jejich tvorbu, která
umožní přístup k propojeným datům od různých poskytovatelů.
3.Navrhněte komponentu a svůj návrh formulujte v jazyce UML.
4.Implementujte komponentu ve vhodném JavaScript frameworku a vhodně otestujte na několika datových sadách se
stromovou strukturou a zhodnoťte její výhody ve vztahu k technologiím z bodu 1a.
5.Proveďte uživatelské testy na vhodných scénařích a otestujte škálovatelnost vzhledem k velikosti stromových dat a jejich
struktury.

Seznam doporučené literatury:
[1] https://github.com/react-component/tree
[2] Tom Heath and Christian Bizer (2011) Linked Data: Evolving the Web into a Global Data Space (1st edition). Synthesis
Lectures on the Semantic Web: Theory and Technology, 1:1, 1-136. Morgan & Claypool.
[3] http://www.uml.org/

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Petr Křemen, Ph.D., Skupina znalostních softwarových systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 25.05.2018Datum zadání bakalářské práce: 09.02.2018

Platnost zadání bakalářské práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Petr Křemen, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iii

v

Declaration of Authorship
I, Jakub LEČBYCH, declare that this thesis titled, “Intelligent Tree Data Management
Component” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

vii

Abstract
Intelligent Tree Data Management Component

Current UI components for working with structured tree data have some limita-
tions. These limitations are especially performance issues when working with large
datasets or support of Linked Data. After comparing and analyzing existing so-
lutions and after the research of relevant web APIs, the design of the component
is proposed, which complements these missing functions. Furthermore, this thesis
describes the structure of the proposed component, its function and documents its
API. Then it shows component usability and scalability in test scenarios. In conclu-
sion, there is a summary of the results achieved and a proposal for successive steps
describing the issues that need to be addressed.

Inteligentní komponenta pro správu stromových dat

Současná řešení UI komponent pro práci se strukturovanými stromovými daty mají
určitá omezení. Těmito omezeními jsou zejména výkonnostní problémy při práci s
velkými datovými objekty nebo podpora propojených dat. Po srovnání a analýze
existujících řešení a následnému výzkumu relevantních webových API je navrhnuta
komponenta, která doplňuje tyto chybějící funkce. Dále tato práce popisuje struk-
turu navrhnuté komponenty, její funkce a dokumentuje její API. Poté je ukázána její
použitelnost a škálovatelnost na testovacích scénářích. Závěrem je shrnutí dosažených
výsledků a návrh následných kroků, popisující problémy, které je zapotřebí vyřešit.

Key words

Component, Filter, Linked Data, Multi-select, Select, Tree Data, Tree, React, Redux

Klíčová slova

Komponenta, Třídění, Propojená data, Více násobný výběr, Výběr, Stromová data,
Strom, React, Redux

ix

Acknowledgements
I would like to thanks to my supervisor Ing. Petr KŘEMEN, Ph.D. for his patience,
advice, and feedback during my work on this project. Also I thanks for providing
materials like example data and useful web sources to this topic.

xi

Contents

Declaration of Authorship v

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Overview . 1
1.2 Current situation . 1
1.3 Thesis goal . 1
1.4 Outline . 2
1.5 Term definition . 2

2 Background 3
2.1 Resource Description Framework . 3
2.2 Linked Data . 3
2.3 JSON-LD . 4
2.4 React, Redux . 4
2.5 React virtualized select and React select 4

3 Related work 7
3.1 React dropdown tree select . 7
3.2 RC tree select . 8
3.3 Ant design tree select . 9
3.4 Summary of the related works . 9

4 Design 11
4.1 Requirements . 11

4.1.1 Functional . 11
4.1.2 Non-Functional . 11

4.2 Use-cases . 12
4.3 Providers APIs research . 13
4.4 Component architecture . 14
4.5 Component life cycle and search cycle 17
4.6 Creating and adding options . 18

5 Implementation 19
5.1 Inputs and outputs . 19
5.2 Component parts . 19

5.2.1 Virtualized-tree-select part . 19
5.2.2 Settings part . 20
5.2.3 Modal form part . 21

5.3 Performance . 21
5.4 Render algorithm . 21

xii

5.4.1 Filter algorithm . 22
5.4.2 Merge algorithm . 23
5.4.3 Sort algorithm . 23
5.4.4 Performance results . 23

6 Conclusion 25
6.1 Future work . 25
6.2 Summary . 25

A Intelligent Tree Select component API 27

Bibliography 31

xiii

List of Figures

2.1 JSON-LD document . 4

4.1 Use Case diagram . 12
4.2 Request header . 13
4.3 Architecture . 15
4.4 Class Diagram . 16
4.5 Initialization . 17
4.6 Search diagram . 17
4.7 New option diagram . 18

5.1 Intelligent tree select component . 20
5.2 Redux form . 22
5.3 Input data example . 24

xv

List of Tables

1.1 Definition of terms used in this thesis 2

5.1 Structure of the returned option . 19
5.2 Time performance based on data structure and data size 23

A.1 Intelligent tree data management component API 27
A.2 API of the provider object . 28
A.3 Option renderer method API . 29

xvii

List of Abbreviations

HTML Hyper Text Markup Language
API Application Program Iinterface
RDF Resource Description Framework
IRI Internationalized Resource Identifier
URI Uniform Resource Identifier
JSON JavaScript Object Notation

1

Chapter 1

Introduction

1.1 Overview

Data, pieces of information that are measured, collected, analyzed and used for dif-
ferent kinds of things. Such data are distinguished based on their structure - un-
structured (e.g., a list of strings) or structured (e.g., a graph), on their type - specific
or general, and so on. Structured data are often represented as a graph. Human
intuition allows us to understand these graph connections with no problem, but
computers do not have that intuition. So the data context must be defined to enable
the computer to understand these connections between the data and the meaning of
that data. This problem is one of the main reasons why people created a concept of
the Web Ontology Language (Group, 2009). However, more about that will be down
below.

Data are in many cases provided through the web APIs. The most straightfor-
ward definition of the web APIs is following. Web API is the interface through which
an application can communicate with that server. Then fragmentation of the web
APIs is so significant that many existing solutions support only one type and does
not allow to get responses from multiple APIs simultaneously. More detailed infor-
mation about web API is in Chapter 3.

With all that data provided by the web APIs, there is a question - “How to render
that data as options efficiently?”. Because rendering large lists, is operation can be
time-consuming and can affect the performance of an application significantly. Per-
formance is one of the most critical aspects of the modern applications. Based on
the study (Nah, 2011) the delay of 2 seconds is the limit where a response to simple
commands becomes unacceptable to users.

1.2 Current situation

UI developers often need to use a tree select input in their applications. The Problem
is that default HTML select input is not usable in many cases. Also, most current
solutions cannot handle complex data (e.g., graph data) or cannot render large data
lists efficiently. Moreover, if the developers finally find a solution with functionality
that they need, the solution does not fit by design into their application. So in many
cases, they have to develop their component for that specific problem.

1.3 Thesis goal

The primary goal of this bachelor thesis was to create a UI component that will sup-
port all features of the previous component such as rendering data as a tree, sup-
port of linked data, and support of graph type data structure. Also, the component

2 Chapter 1. Introduction

should provide several new features. These features are:

• selecting or multi-selecting options

• simplicity of use and integration with other applications

• flexibility (e.g. customization, different types of datasets)

• re-usability

• good performance with large datasets

• creating new options

1.4 Outline

This thesis is divided into two main parts - research part and implementation part.
In the research part, the primary focus will be on the technology and work related to
this problem. The second part will describe the implementation of the component,
logical structure, and behavior. So the second chapter will be dedicated to the used
technology, and to the related problems. Especially the Linked Data and the concept
of the semantic web. Then we will have a look at the APIs that provide these data,
their construction and how they behave. In the next part, we will look at the techni-
cal aspects of the component such. Then the focus will be on the component itself. A
chapter about implementation will describe individual parts or sub-components and
at the end of that chapter algorithms for filtering and rendering will be described.
In the end, there will be a comparison of other solutions and benchmark. The last
chapter will summarise the results and describe future steps.

1.5 Term definition

In this theses will be often used a several terms. To avoid any misunderstanding this
table shows description of each term.

TABLE 1.1: Definition of terms used in this thesis

Term Description
select input HTML element represented as <input type=’select’/>
dropdown menu HTML elements displayed under select input. This element

contains individual options
option Part of the dropdown men. Option represent one data ob-

ject. Example of data object: {value: ’123’, label: ’option
label’} .

option provider Web API providing data.
search Process of filtering and rendering results of filter subpro-

cess in form of dropdown menu with options.

3

Chapter 2

Background

One of the requirements of this thesis was the ability to work with linked data.
As well as the React framework, because of high usage of that framework in other
projects that are developed by Knowledge Based Software Systems Group. So now
in this chapter, introduce the technologies that are related to this thesis.

2.1 Resource Description Framework

Resource Description Framework (V., D., and B., 2014) is a general description frame-
work for describing informations provided by web sources. This framework creates
a basis for the semantic web. Representation of the RDF can be as a graph or dataset.

In graph representation, data are a set of RDF triplets. Each triplet consists of
three components - subject, predicate, and object. Subject and object are nodes and
predicate is an edge of the graph. Triplet in official terminology express some facts
about the source. A claim consists of three pieces that together create a sentence:
subject –> predicate –> object. Within this statement, the source is a subject identified
by URI (or IRI), the property is a predicate (what we say about the source), and value
is an object. Predicates that we used for describing a source come from so-called
schemas – that are vocabularies or ontologies. Examples can be Dublin Core or Friend
of a Friend metadata standards. RDF syntax has various type of formats that are
called serialization formats. Among these formats are for example Turtle, N-Quads,
N-Triplets, or JSON-LD.(Sporny et al., 2014)

An RDF dataset is a set of RDF graphs. This set can consist of:

• default graph - exactly one RDF graph that does not have a name and may be
empty

• named graphs - a pair of RDF graph and IRI or blank node

2.2 Linked Data

To understand what is Linked Data, you do not need any experience with web pro-
gramming, just a basic knowledge of HTTP, URI, and IRI. The concept of Linked
Data (Bizare, Heath, and Berners-Lee, 2009; Heath and Bizer, 2011) is following.
Firstly, lest start what data are. Data are sets of values consisting of pieces of in-
formation. Problem with these data is that they do not carry any context about the
information they represent. Imagine this example, two different data objects both
objects have a property called ’name’ with some value. That property represents
some name, but without any further knowledge, that name representation can have
a different meaning in each object.

http://kbss.felk.cvut.cz

4 Chapter 2. Background

On the other hand, Linked Data help to solve the problem by describing and
interconnecting data by shared vocabularies. By packaging a data in the way that
they express what kind of data they represent, you will receive a Linked Data. With
all of this, there are still two main problems. First is what format use for Linked
Data. There are lots of formats, for example, JSON, RDFa, XML, CSV, HTML, etc.
The second problem is how we can link the pieces of data together. Most common
and easiest way to express data is on the key-value pair.

2.3 JSON-LD

JSON-LD is a format based on JSON format. JSON format is easy to use in a web
application because it is readily convertible to JavaScript object, which represents
data in a web application

JSON-LD is an RDF syntax for describing linked data using JSON format. (Sporny
et al., 2014) JSON-LD is both JSON document and RDF document (Klyne, Carroll,
and B., 2014), but it has some differences with RDF. First, JSON-LD properties can
be URIs (or IRIs) or blank nodes whereas in RDF properties must be URIs (or IRIs).
That means that JSON-LD can serialize RDF data-sets. The other direction is not
possible. Second, JSON-LD object lists are part of data model whereas RDF objects
are part of the vocabulary. The last one, RDF values are either literals or language-
tagged strings whereas JSON-LD also supports JavaScript native types, which are
numbers, booleans, and strings.

FIGURE 2.1: Example of JSON-LD document

2.4 React, Redux

React (React) is a JavaScript UI framework developed and maintained by Facebook.
Its one of the most used framework because it’s easy to learn and because of its
performance efficiency. If you are familiar with the MVC model(“Model view con-
troller”), React is only the view part. Redux (Redux) is completely independent on
React. Redux is a state container for JavaScript. This means, that Redux is just a
framework for managing the state of your web applications. It evolves from Flux
(Flux) framework but does not take Flux complexity.

2.5 React virtualized select and React select

React-virtualized-select and React-Select as the name suggests, are both React compo-
nents. Both components are almost same. As the Brian Vaughn says: "react-select-
virtualized works just like react-select". The only difference between them is that the
first component is able to render large list more efficiently. This was achieved by a
special way of rendering options. In a nutshell, the drop-down menu is rendered

2.5. React virtualized select and React select 5

only with a minimum required amount of options that are in focus (visible in the
drop-down menu). A detailed description of this process will be described later on.

7

Chapter 3

Related work

In this chapter, I will compare three existing solutions. I choose these three solutions
because they are the solutions with the highest number of downloads (more than
5000 per month. In case of rc-tree select 270 thousand per month). Also, all three
solutions have most of their functionality similar or same to mine. These similar
features are:

• selecting/ multi-selecting options

• displaying data as a tree or as a list

• toggle/ expand function for each option with children options

• filtering/ highlighting results

So I will not compare these functionalities, only the benefits, and disadvantages
of each solution.

3.1 React dropdown tree select

One of the alternatives to my work is React dropdown tree select (react-dropdown-
tree-select).

Pros Cons
Design can be overridden to match Boot-
strap (Bootstrap) or Material design (Ma-
terial design) frameworks.

All nodes are collapsed by default and
cannot be expanded altogether.

Search debouncing - The tree debounces
key presses to avoid costly search calcu-
lations. The default duration is 100ms.

Cannot collapse/ uncollapse tree nodes
during a search.

Component does not support highlight-
ing of matched text during a search.
Component does not support asyn-
chronous data loading.
Data must have label and value proper-
ties.

Continued on next page

8 Chapter 3. Related work

Table 3.1 – Continued from previous page
Pros Cons

Data cannot be represented as an array
of graph nodes. Parent node must have
child property to display children nodes
and so on. This main problem with this
approach is that for manipulating with
some node, you need whole tree branch.
Also, it is hard to calculate the length (to-
tal number of options) in this data struc-
ture.
Renders all relevant options at once, this
can slow performance of the component.

3.2 RC tree select

First competitive solution is a React tree select component (rc-tree). However, as I
found out this solution is just a React solution of Ant design component. Moreover,
nowadays Ant design components work with React as well so I do not see a point to
use this component.

Pros Cons
Does not support highlighting of
matched text during search.
Selected items can be removed only via
checkboxes. Other solutions have small
’×’ button that can remove correspond-
ing option. But in the case of this solution
you need at least two steps to remove a
selected option. (1. find that option 2.
uncheck it)
Renders all relevant options at once
which can slow performance of the com-
ponent.

3.4. Summary of the related works 9

3.3 Ant design tree select

Last one is a tree select from Ant design (TreeSelect).

Pros Cons
Complete ecosystem with other Ant de-
sign components.

Render all relevant options at once this
can slow performance of the component.

Maintained and updated on a regular ba-
sis by the Ant UED team.

Does not cashed previous search result.
For every new character (searched string)
they filter through original data set.

Solutions for other UI frameworks like
Angular, Vue, Ember and ClojureScript

3.4 Summary of the related works

Each of these solutions provides expected functionality from this type of component.
Also, these component are popular to use, that supports a fact of the high download
rate. On the other hand, none of these components is useful for rendering a large
number of options. Moreover, none provide the functionality of Intelligent tree select
component such as support of multiple data providers.

11

Chapter 4

Design

4.1 Requirements

Requirements are distinguished into the two categories, functional, and non-functional.
Each category has requirements specified for the user, and for a developer. A user
is a person that use or communicate with the component in the form of actions like
searching or filtering. Requirements are defined based on the assignment as well as
based on the functionalities of the current solutions.

4.1.1 Functional

Functional requirements related to the user are following:

1. Component must support multiple options providers

2. Dropdown with results will be displayed on focus

3. Each option should show its state (additional info such as - comment, providers,
or its state)

4. User must be able to filter among these options

5. Selection and multi-selection must be provided

6. The component must provide a way to create new options

7. The component should accept and visualize tree-structured data.

Other functional requirements for developers

8. The component must be able to work with linked data sources

9. The component should support multiple input formats – JSON (because of the
easy interpretation on the client side) and XML (because of the wide market-
place)

4.1.2 Non-Functional

Non-functional requirements

1. Operations like search and render must be scalable without negative impact
on the user experience

2. Processing data, filtering and rendering should be real-time (not take longer
than acceptable)

12 Chapter 4. Design

Other non-functional requirements for developers

3. Component must be easily integrable with React applications

4. Component must be flexible – custom styling, own filter method and render
method

4.2 Use-cases

Based on the requirements, I identified the following use-cases. There are two actors,
a developer and a user of the component. The focus of the use cases for the user is
mainly on the interaction between user and data displayed by the component in the
form of options. On the other hand for the developer use-cases are focused on the
needs to integrate the component into their applications.

FIGURE 4.1: Use Case diagram

4.3. Providers APIs research 13

4.3 Providers APIs research

Firstly, lets quickly introduce what Application Programming Interface (API) is.
API stands for Application Programming Interface. It is a program layer that is re-
sponsible for interacting with users, giving them responses based on their request.
We will be focusing only on Web API. The simplest way to describe Web API is
that Web API is set of dedicated web URLs, somewhere on the internet that return
some response (usually in text format) to the requestor. There are several types of
Web APIs. From historical SOAP (Simple Object Access Protocol) (D. et al., 2000)
and SOA to more modern REST (Representational State Transfer) (“REST”). Because
nowadays usage of the REST API is highest, let’s focus only on this one type. I will be
using Spotify API (Spotify API) as an example, because of their excellent documen-
tation and variety of their endpoints. All Web APIs have three parts. As you can see
below, first is their root address, in this case, it is https://api.spotify.com then follow-
ing a version, but this is an optional part. Next is an endpoint /artists/id/albums;
notice a id parameter in the URL, this is one way how to send some data to the API.
Last part is query parameter. Query parameters are at the end of the URL behind
question mark and contain key=value pairs connected with an ampersand. Usually,
all query parameters are optional because they have a default value specified on the
API side.

https://api.spotify.com/v1/artists/1vCWHaC5f2uS3yhpwWbIA6/albums?
market=ES&album_type=single&limit=2

Each HTTP (group, 2018) request must also have a header part, where are speci-
fied some other information. E.g. Accepted-language or encoding, but most impor-
tant are Referer and Host.

FIGURE 4.2: Example of request header

Last part of each request is body part. This is the second way how you can send
or get some data. But the data format must be in a format that is supported by
the server side. The most commonly-used data format is JSON or XML. Often the
service supports multiple formats, and the client can request one or the other by
including ’json’ or ’xml’ in the header field ’Accept’.

The functionality of the Web API is much more complicated. The main problem
is the complexity; each API can have different behavior based on what data format
provides. As I mentioned earlier, most common data formats are JSON or XML.
These are both text file formats, but you can also get images, web pages, music file
and much more.

There are some examples of the Web APIs that returns different data types.

• returning json file: https://api.spotify.com/v1/artists/6sFIWsNpZYqfjUpaC
gueju

14 Chapter 4. Design

• returning web page: https://open.spotify.com/artist/0OdUWJ0sBjDrqHygG
UXeCF

• returning image: https://u.scdn.co/images/pl/default/438f9b65ac4eb48681
351593142daeb070986293

• returning music file: https://p.scdn.co/mp3-preview/3eb16018c2a700240e9d
fb8817b6f2d041f15eb1?cid=774b29d4f13844c495f206cafdad9c86

Some APIs supports filtering in the server side so you can create a requests to
get a specific data you want. For example, this API returns 10 artists whose name
contains ’tania’

• https://api.spotify.com/v1/search?q=tania%20bowra&type=artist&limit=
10

Most of the time API returns only simplified data object, and to get the full infor-
mation you must request it with for that specific ID.

• https://api.spotify.com/v1/artists/1vCWHaC5f2uS3yhpwWbIA6/albums

This request return an object with an array of simplified album objects. To get the
full detail of the album object another request must be made.

• https://api.spotify.com/v1/albums/43977e0YlJeMXG77uCCSMX

This request returns a full album detail.

In conclusion, there is a lot of different Web API types. You can distinguish them
based on their response format (JSON, XML, img, CSV, etc.), type of their response
– some supports filtering results on their side, some return an only limited amount
of data, while another may return only header information (e.g., IDs), so you must
make another request for each ID to get detailed information. So in my component,
I will provide an interface through which user can define how to handle communi-
cation with specific option provider (Web API)

4.4 Component architecture

Firstly let’s have a look at the high-level view. Structure of the Intelligent Tree Data
Management component consists of the three main parts or sub-components. The
core sub-component is called Virtualized-tree-select and represent the input field
with a drop-down menu. The second one is component representing modal form
for creating new options. And the last one exposes some settings to the UI so the
user can change the behavior of the component. Both Settings and Modal form sub-
components, together with the main component communicate with Redux store,
where all necessary data are stored. The third sub-component is independent on the
Redux store because all necessary data are passed down as props from the parent
component. More about each sub-component will be described in next chapter.

In a low-level point of view, let’s look at the UML (Unified modeling language)
class diagram. As you can see in the image below, main class have three important
methods. First method ’onInputChange’ check if current input is in history if not,
then it call ’getData’ for each provider, and then call ’addNewOptions’. The second
method fetches data from providers and returns an array of results. The last method
takes the results of the previous call, merge them based on priorities and save it to

4.4. Component architecture 15

FIGURE 4.3: Component architecture

the already saved options. Other three classes are described in detail in chapter 5
section 5.2 Component parts.

The last one is not quite a class, but rather an object of a specific shape. Each
option has one or more providers. Provider defines the option characteristics and
provides some functions. First function ’response’ should return result from the
provider. Second one ’toJsonArr’ format that response to the array of JSON objects
if necessary, and the last one is called only if the label is not a string but array of
objects. (e.g. label: [{’lang’: ’en’, ’value’: ’This is label’}, {’lang’:’de’, ’value’: ’Das ist
Label’ }]). Definition of all properties is in the appendix A.

The association between Provider and Option is 1..N: 1..M because each provider
can provide the infinite number of options, but at least it must provide one option.
From the other side, it is the same. Each option must have at least one provider.
For options that are provided locally the provider called ’local provider’ is assigned.
Next, there is a reflexive association, where each option cant has more than one par-
ent node and N children nodes. Because if you have an option with more than one
parent node, then the data cannot be represented as a tree graph. Last association is
between enum class called Type. This class represents the state of the option. Each
option can have only one state. However, the state can be contained in N options.

16 Chapter 4. Design

FIGURE 4.4: Component model structure visualized as a class dia-
gram

4.5. Component life cycle and search cycle 17

4.5 Component life cycle and search cycle

I will not describe how React handle classes life cycle, because it is not a part of this
theses. Also, I will not describe step-by-step of component initialization because it is

FIGURE 4.5: Component Initialization process

an out-of-the scope of this the-
sis. Official React (React) doc-
umentation provides all the
necessary information needed.
So shortly, as you can see
in this image below, the ini-
tialization process is divided
into three parts. In the first
part, the Redux store is cre-
ated, and all variables (props)
are saved. Then the actual
HTML elements are rendered
and in the last part. If local
options are set then they are
passed to the virtualized-tree-
select sub-component, where
they are processed, sorted and
the tree graph is created.

Search cycle is a little bit complicated because some actions are not handled by
me, but by the React-Select and React-virtualized-select components. However, I can

FIGURE 4.6: Search process

describe this process from my
side. So, when user types
into the input field the filter
method is triggered by three
arguments, current input, al-
ready selected options and all
local (cashed) options. Af-
ter that, the results are ren-
dered. Then ’onInputChange’
method is executed.The pro-
cess of that method was already
mentioned in the previoud sec-
tion (4.4 Component architec-
ture) in the second paragraph.
This method fetches data from
all providers, pre-process them
(e.g., convert them to the same
format if necessary). Then all
new options are saved into the
Redux store. Then the ’fil-
terOptions’ method is executed
again but with new options and finally, new results are displayed. During all of this
process, the loading indicator is displayed to the user, so the user is informed that
some process is running in the background.

18 Chapter 4. Design

4.6 Creating and adding options

The process of creating and adding new option is simple. When a user clicks on
button ’New option’ the modal dialog with Redux form is displayed. Structure of
this form is described in chapter 5 section 5.2.3 Modal form part. After filling up the
form and submitting it, the validation function triggers. If the validation finishes
with no errors (all required fields are not empty and contains at least 3 characters),
the form is submitted. After that, the new option is created and added to all cashed
options.

FIGURE 4.7: Process of creating new option

19

Chapter 5

Implementation

5.1 Inputs and outputs

As any other React component you can simply import the main class into your cur-
rent project and that’s pretty much all. Then you can customize the component,
provide it some data and start using it. Detailed API is in the appendix, there you
can find all properties that you can use.

The most important property is ’options’, this property represents actual options
that will be rendered. These options can be represented in two ways. As a graph
(simplified version) where each node is represented as one object or as a list of objects
(non-simplified) where children are parts of the parent. You can see an example of
the options structure in the figure 5.3 down below.

Another important property is ’onInputChange’, this is a function that will be
called when a user selects an option. So this is the way how you can get all selected
options. The option that you get back will not be same as you provide. The structure
of the new option is following:

TABLE 5.1: Structure of the returned option

Key name Type Description
provider Object object representing provider of that option. See appendix

for more detail structure of this object
state Object Object representing state of the option. E.g. {label:

’Merged’, color: ’warning’, message: ’...’},
expanded Boolean Represent if option is expanded (children should be ren-

dered or not)
’childrenKey’ List List of the children IDs. Key name stay same as chil-

drenKey value
... All other properties that was in the original object

5.2 Component parts

5.2.1 Virtualized-tree-select part

Main part virtualized-tree-select component is custom component build on react-
virtualized-select and react-select. This component retains the same API as both
components, in addition it provide several new configurations, that configurations
can be seen in appendix. So as React-Select, this component generates hidden text

20 Chapter 5. Implementation

input field that contains the value of the selected option, so it could be submitted
as part of the standard form. When the option is selected, ‘onChange’ event is fired
and this event return selected option. All the changes to the select input must be
handled by the user; the user must pass that event value to the ‘value’ attribute of
the select component.

5.2.2 Settings part

This is just a collapsible form with several checkboxes that provide some changes to
the Virtualized-tree-select component, like expand or collapse all. Multi-select, this
option, if it is checked then the component will provide multi-selection otherwise
only one option will be selectable. Render as a tree, as the name suggests, this option
renders all nodes as a tree also it slightly change filtering because by default if this
option is checked the filtering will also show the whole path in the tree, meaning
all parents until root parent will be displayed as well. Display info on hover, this
option enables to show additional information for that node on hover. For example,
description.

FIGURE 5.1: Virtualized tree select component with expanded set-
tings

5.3. Performance 21

5.2.3 Modal form part

This component part consists of two dependent react classes. The first one renders
empty modal dialog that contains an only header and close button. The second one
renders the actual redux-form in modal body and actions buttons for submitting or
canceling in the modal footer. As I mentioned earlier, this redux-form is used for
creating new Nodes. It has several form fields:

• Option label (required) – representing a value that is visible in a drop-down
box

• Option value (required) – representing the unique ID

• Option description

• Children – a multi-select box containing labels of all other options

• Parent – select box containing labels of all other options

In the advanced section, there is a button that adds a new pair of form fields. The
first one represents object key, second one object value.

After each key press validation is triggered, so the user is informed about invalid
inputs before submitting that form. Also, the form is submitted only in the case
when all fields are valid. After that new node is created and its added to current tree
graph and event ‘onNewOptionCreation’ will be fired.

5.3 Performance

Usability of the application may be affected by the performance of the used compo-
nents. So the performance of my component was one of the critical points during the
development. Even that the performance of the current version is acceptable, I still
think that there is a space for improvements so that I will continue with the research
in this field. As you may know for the flexibility, you have to pay something. Several
algorithms have an impact on the overall performance. These algorithms are:

1. Filter algorithm

2. Algorithm responsible for rendering drop-down menu with options

3. Algorithm that merge all duplicate options

4. Sort algorithm

5. Algorithm for processing data

5.4 Render algorithm

These, who have good experience with HTML, may know that rendering process
is a lengthy operation, compared to the JavaScript computation. So I decided to
include React-virtualized-select that can perfectly handle the problem with rendering
a large number of options. The first method is menu rendered and the second one is
row renderer. Row renderer is responsible for rendering individual options. Menu
renderer renders drop-down menu. This method takes several parameters, most
important are - filtered options, currently focused option, option height, drop-down

22 Chapter 5. Implementation

FIGURE 5.2: Redux form for adding new terms

menu height. From these parameters, it can compute how many and what options
should be rendered and call row renderer for each of these options.

The best way is to provide an example. Let’s say that filtered options is an array
of 20 options. Currently focused option has an index equal to 10. Option height is
20px (pixels) and dropdown height is 100px. So the algorithm renders a container
representing dropdown menu with 100px height, then the empty container with a
height equal to 400px (20 options times 20px each option) into that previous con-
tainer. Then algorithm renders individual options with the specified offset, so the
method that renders each option is called for the ninth to sixteenth options.

5.4.1 Filter algorithm

The second algorithm that affects performance is an algorithm that filters all op-
tions. This algorithm can be divided into three parts. First, all matching options are
filtered out. Second, for each filtered option find all parent options (this part will be
conditional in future). Last part, all options that are not expanded (their parent have
expanded set to false) are also filtered out.

In detail, the method for filtering options takes 3 arguments. All options, match
string and selected options. First of all, options that contain a match string are fil-
tered out. Then the parent options are found for each filtered option. Finding a
parent option is done a constant time because the internal data structure of options

5.4. Render algorithm 23

is same as the structure that is used by Firebase real-time database (), which is JSON
tree structure. I choose this structure because data are represented as one big JSON
object where keys correspond the option value (unique ID of that option) and val-
ues of the JSON object are options itself. This structure enables to access the options
in constant time. And finally, the algorithm for every option of that previous sub-
process (finding parents), check if an option has a property called ’expanded’ equal
to ’true’, if not then the algorithm removes all children options of that option.

5.4.2 Merge algorithm

Next algorithm merges all duplicate options based on the provider’s priority. This
algorithm is executed only when new options are added. So if you decided to use
only VirtualizedTreeSelect component where you include all options directly this
algorithm is never executed. Anyway, this algorithm for each new option checks if
that option is already present in the array of all cashed options. If no, then simply
adds it and if yes then updates it.

5.4.3 Sort algorithm

Sort algorithm is included in the method that processes all input data. Like the
previous algorithm, this algorithm is executed when new options are added. This
process takes the option and adds some keys that are used, e.g., parent ID, expanded,
state and depth. This algorithm has the same approach like a depth-first search
algorithm (“Introduction to Algorithms”). So the first item in that sorted array is a
root node, next item is left children node of that node and so on, and the last item in
last right leaf node.

5.4.4 Performance results

Now let’s look at some numbers and data. In this table below you can see how long
does is to take for each process to finish. For the test purpose, I have one large dataset
of 2617 options represented as a graph (simplified) 5.3a and one smaller dataset of
480 options represented as an array of objects with children as their properties (non-
simplified) 5.3b.

These datasets represented types of aviation accidents and were provided by
the Knowledge Based Software Systems Group(KBSS). Usage of these datasets is in
the INBAS (https://www.inbas.cz/reporting-tool) project. Actual test data will be
provided together with the source code.

This table represents the tests results. Each test was done 10 times on two dif-
ferent test machines and two different web browsers. Data in the table are average
values.

TABLE 5.2: Time performance based on data structure and data size

Method Data type ∼ Time to finish
Add new options simplified 90 - 200 ms
Process options simplified 4-7 ms
Filter options simplified 1-7 ms
Add new options non-simplified 3-5 ms
Process options non-simplified 0-1 ms
Filter options non-simplified 0-1 ms
Convert dataset non-simplified 3-4 ms

http://kbss.felk.cvut.cz

24 Chapter 5. Implementation

(A) Example of simplified data structure

(B) Example of non-simplified data structure

FIGURE 5.3: Example of data structure

Tests were done on two PCs and on the different browsers. However, the differ-
ences are negligible (0-2 ms).

The first test machine specification: Intel i7 series 2.8 Ghz, 16GB ram, win10.
Second test machine specification: AMD FX series 3.5Ghz, 8GB ram, win10. Both
tests were done on Chrome v66, Firefox v55, and Edge v40 web browsers.

As you can see, even with large datasets (2617 options) all together does not
take more than 250 milliseconds. Maybe you think that non-simple datasets are
processed faster. That’s not really true, because even non-simplified datasets are
converted into simplified datasets. That difference between them is because of these
data was not so complex. The maximum depth of the child nodes was only 3 com-
pared to the 8 in the other (larger) dataset. So the most significant impact has the
complexity of the data, not the type you provide.

25

Chapter 6

Conclusion

6.1 Future work

After all, there is still much work that can be done. The current version of the compo-
nent is in beta version because there are still some bugs that need to be solved. E.g.,
problems with destroying react child components in a drop-down menu or hover-
ing effect. These bugs do not affect the functionality nor visual site, but they are not
handled properly and result in errors in console.

Next thing I am planning to look at, as I already mentioned earlier, is a better
function for filtering and processing data. Current methods are the first thing that
comes to my mind and definitely can be optimized.

Also, I could add more interface features that will make the component even
more flexible.

6.2 Summary

In conclusion, Intelligent tree select component is based on already great compo-
nents such as React-Select and React-virtualized-select. This component is providing
functionality for displaying options as a tree or creating a new one. As well it can
be used with linked data, support two data formats, multiple providers, and much
more. A structure is divided into three parts that are independent of themselves.
Performance is not perfect in current beta version, but it can perfectly handle a large
number of options in acceptable time. Overall compared to other solutions this com-
ponent is same in core functionality but better in other aspects.

27

Appendix A

Intelligent Tree Select component
API

All available select props are described here: https://github.com/JedWatson/react-select#
select-props and here: https://github.com/bvaughn/react-virtualized-select/
#react-virtualized-select-props. Additional parameters used by VirtualizedTreeS-
elect component are described in this table:

TABLE A.1: Intelligent tree data management component API

Property Type Default value Description
childrenKey PropTypes.string ’children’ Attribute of option that contains

the values (ID) of the children op-
tions

valueKey PropTypes.string ’value’ Attribute of option that contains
the values of the option

labelKey PropTypes.string ’label’ Attribute of option that contains
option label

labelValue PropTypes.func null Function that is called only if op-
tion[labelKey] is an object not an
string. This function get op-
tion[labelKey] as an parameter and
must return a string value. This is
useful e.g. if your data are multi-
language

simpleTreeData PropTypes.bool true Dataset is in simplified format
expanded PropTypes.bool true Attribute if all options are ex-

panded by default or not
renderAsTree PropTypes.bool true Attribute if options should be ren-

dered as a tree. If false options are
rendered normally as for default se-
lect

displayInfoOnHover PropTypes.bool false Display tool-tip with additional in-
formation

displayState PropTypes.bool false Should display state of the option
(local, external, new, merged)

optionRenderer PropTypes.func null Custom way to render options (see
below)

filterOptions PropTypes.func null Custom way to filter options (see
below)

Continued on next page

https://github.com/JedWatson/react-select#select-props
https://github.com/JedWatson/react-select#select-props
https://github.com/bvaughn/react-virtualized-select/#react-virtualized-select-props
https://github.com/bvaughn/react-virtualized-select/#react-virtualized-select-props

28 Appendix A. Intelligent Tree Select component API

Table A.1 – Continued from previous page
Property Type Default value Description
onOptionCreate PropTypes.func null Callback on creating a new option
options PropTypes.array [] Array of default options
providers PropTypes.array [] Array of provider objects

Provider object structure

TABLE A.2: API of the provider object

Property Type Default value Description
name PropTypes.string (required) Unique identification of each

provider
response PropTypes.func (required) Function that return data. This

function get one string parameter
that is equal to current input

toJsonArr PropTypes.func null Function that is called to convert
providers response to JSON array.
This function is called only when
response is not an JSON object

childrenKey PropTypes.string ’children’ Attribute of option that contains
the values (ID) of the children op-
tions

valueKey PropTypes.string ’value’ Attribute of option that contains
the values of the option

labelKey PropTypes.string ’label’ Attribute of option that contains
option label

labelValue PropTypes.func null Function that is called only if op-
tion[labelKey] is an object not an
string. This function get op-
tion[labelKey] as an parameter and
must return a string value. This is
useful e.g. if your data are multi-
language

simpleTreeData PropTypes.bool true Dataset is in simplified format

Appendix A. Intelligent Tree Select component API 29

Custom option renderer

TABLE A.3: Option renderer method API

Property Type Description
focusedOption PropTypes.object The option currently-focused in the

drop-down. Use this property to
determine if your rendered option
should be highlighted or styled dif-
ferently.

focusedOptionIndex PropTypes.number Index of the currently-focused op-
tion.

focusOption PropTypes.func Callback to update the focused op-
tion; for example, you may want to
call this function on mouse-over.

labelKey PropTypes.string The attribute of option that con-
tains the display text.

option PropTypes.object The option to be rendered.
options PropTypes.arrayOf

(PropTypes.object)
Array of options (objects) con-
tained in the select menu.

selectValue PropTypes.func Callback to update the selected val-
ues; for example, you may want to
call this function on click.

style PropTypes.object Styles that must be passed to the
rendered option. These styles are
specifying the position of each op-
tion (required for correct option
displaying in the drop-down).

valueArray PropTypes.arrayOf
(PropTypes.object)

An array of the currently-selected
options. Use this property to de-
termine if your rendered option
should be highlighted or styled dif-
ferently.

valueKey PropTypes.string Attribute of option that contains
the value.

onToggleClick PropTypes.func Callback to event for clicking on ex-
pand button

childrenKey PropTypes.string Attribute of option that contains
the values of children options

Custom filter options
By default, a component uses a custom function for filtering the options. I don’t

recommend overriding this method unless you know what you are doing. For more
details, you can look at https://github.com/JedWatson/react-select#advanced-filters

https://github.com/JedWatson/react-select#advanced-filters

31

Bibliography

.
Bizare, C., T. Heath, and T. Berners-Lee (2009). “Linked Data - The Story So Far”.

In: URL: http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-
linked-data.pdf.

Bootstrap. URL: https://getbootstrap.com.
codecademy. “Model view controller”. URL: https://www.codecademy.com/articles/

mvc.
— “REST”. URL: https://www.codecademy.com/articles/what-is-rest.
Cormen, Thomas H. et al. “Introduction to Algorithms”. In: ed. by edition. MIT Press

and McGraw-Hill. Chap. 22.3: Depth-first search, pp. 540–549.
D., Box et al. (2000). “Simple Object Access Protocol (SOAP) 1.1”. URL: https://www.

w3.org/TR/soap/.
Dublin Core. URL: http://dublincore.org.
Financial, Ant. TreeSelect. URL: https://ant.design/components/tree-select/.
Flux. URL: https://facebook.github.io/flux/.
Friend of a Friend. URL: http://www.foaf-project.org.
group, MDN (2018). “HTTP”. URL: https://developer.mozilla.org/en-US/docs/

Web/HTTP.
Group, W3C OWL Working (2009). “OWL 2 Web Ontology Language”. In: URL:

https://www.w3.org/TR/owl2-overview/.
Heath, Tom and Christian Bizer (2011). Linked Data: Evolving the Web into a Global Data

Space. Synthesis Lectures on the Semantic Web: Theory and Technology. 1st edition.
Morgan and Claypool.

Jones, Dow. react-dropdown-tree-select. URL: https://github.com/dowjones/react-
dropdown-tree-select.

Klyne, G., J. J. Carroll, and McBride B. (2014). “RDF 1.1 Concepts and Abstract Syn-
tax”. In: 1.8 RDF Documents and Syntaxes. URL: https://www.w3.org/TR/
rdf11-concepts/#rdf-documents.

Material design. URL: https://material.io.
Nah, Fiona Fui-Hoon (2011). A study on tolerable waiting time: how long are Web users

willing to wait? URL: http://sighci.org/uploads/published_papers/bit04/
BIT_Nah.pdf.

rc-tree. URL: https://github.com/react-component/tree.
React. URL: https://reactjs.org.
Redux. URL: https://redux.js.org.
Sporny, M. et al. (2014). “JSON-LD 1.0.” In: 16. URL: https://www.w3.org/TR/json-

ld/.
Spotify API. URL: https://beta.developer.spotify.com/documentation/web-

api/.
Unified modeling language. URL: http://www.uml.org/.
V., Guha R., Brickey D., and McBride B. (2014). “RDF Schema 1.1”. In: URL: https:

//www.w3.org/TR/rdf-schema/.

http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
https://getbootstrap.com
https://www.codecademy.com/articles/mvc
https://www.codecademy.com/articles/mvc
https://www.codecademy.com/articles/what-is-rest
https://www.w3.org/TR/soap/
https://www.w3.org/TR/soap/
http://dublincore.org
https://ant.design/components/tree-select/
https://facebook.github.io/flux/
http://www.foaf-project.org
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://www.w3.org/TR/owl2-overview/
https://github.com/dowjones/react-dropdown-tree-select
https://github.com/dowjones/react-dropdown-tree-select
https://www.w3.org/TR/rdf11-concepts/#rdf-documents
https://www.w3.org/TR/rdf11-concepts/#rdf-documents
https://material.io
http://sighci.org/uploads/published_papers/bit04/BIT_Nah.pdf
http://sighci.org/uploads/published_papers/bit04/BIT_Nah.pdf
https://github.com/react-component/tree
https://reactjs.org
https://redux.js.org
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://beta.developer.spotify.com/documentation/web-api/
https://beta.developer.spotify.com/documentation/web-api/
http://www.uml.org/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

32 BIBLIOGRAPHY

Vaughn, Brian. React-virtualized-select. URL: https://github.com/bvaughn/react-
virtualized-select/.

Watson, Jed. React-Select. URL: https://github.com/JedWatson/react-select.

https://github.com/bvaughn/react-virtualized-select/
https://github.com/bvaughn/react-virtualized-select/
https://github.com/JedWatson/react-select

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Overview
	Current situation
	Thesis goal
	Outline
	Term definition

	Background
	Resource Description Framework
	Linked Data
	JSON-LD
	React, Redux
	React virtualized select and React select

	Related work
	React dropdown tree select
	RC tree select
	Ant design tree select
	Summary of the related works

	Design
	Requirements
	Functional
	Non-Functional

	Use-cases
	Providers APIs research
	Component architecture
	Component life cycle and search cycle
	Creating and adding options

	Implementation
	Inputs and outputs
	Component parts
	Virtualized-tree-select part
	Settings part
	Modal form part

	Performance
	Render algorithm
	Filter algorithm
	Merge algorithm
	Sort algorithm
	Performance results

	Conclusion
	Future work
	Summary

	Intelligent Tree Select component API
	Bibliography

