

Semantic Pipeline Editor
Yan Doroshenko

Mentor: Mgr. Miroslav Blaško, Ph.D.

Software Engineering and Technologies, Faculty of Electrical Engineering,
Czech Technical University in Prague, 2018

mailto:yan.doroshenko@fel.cvut.cz
mailto:blaskmir@fel.cvut.cz

Acknowledgement
I would like to thank my mentor, Mgr. Miroslav Blaško, Ph.D., for his
unprecedented dedication and endless enthusiasm and Ing. Martin Ledvinka,
for his immense assistance and benevolence.

Author’s Affirmation
I hereby declare that the submitted thesis is exclusively my own work and

that I have listed all used information sources in accordance with the Method-
ological Guideline on Ethical Principles for College Final Work Preparation.

Prague May 24, 2018 Yan Doroshenko

Abstract
SPipes is a framework for processing web content using Semantic Web tech-
nologies. A pipeline is defined as an oriented graph with modules as nodes
executed in order defined by the graph edges. This document contains the
analysis of SPipes scripts based on the existing project, as well as design
and implementation description for the SPipes editor, capable of editing and
executing scripts and configuring modules using the SForms library
Keywords: Semantic Web, RDF, Ontology, Jena, JOPA, SPARQL, SPipes,
Graph, Scala, Java, Spring, React, SForms

Abstrakt
SPipes je framework pro zpracováńı dat z webu pomoćı technologíı Sémantického
webu. Datový proud je definován ve formě orientovaného grafu, kde uzly
reprezentuj́ı moduly, spouštěj́ıćı v pořad́ı, definovaném hranami. Tato práce
popisuje analýzu skriptu SPipes na základě existuj́ıćıho projektu a také návrh
a implementaci SPipes editor̊u, umožňuj́ıćıho editovat a spouštět skripty a
konfigurovat moduly pomoćı knihovny SForms.
Kĺıčová slova: Semantic Web, RDF, Ontology, Jena, JOPA, SPARQL,
SPipes, Graph, Scala, Java, Spring, React, SForms

Contents

1 Introduction 2
1.1 Project Goals . 2

2 Background 4
2.1 Domain Diagram . 4
2.2 Semantic Web . 4
2.3 RDF . 5

2.3.1 RDFS . 6
2.3.2 OWL . 6
2.3.3 RDF Serialization Formats 7
2.3.4 SPARQLMotion . 10

2.4 SPipes . 11

3 Design 13
3.1 Analysis of the existing SPipes scripts 13

3.1.1 Form model . 16
3.1.2 Script Modularization Patterns 17

3.2 Integration Diagram . 22
3.2.1 SPipes Engine . 23
3.2.2 SPipes Editor Backend 23
3.2.3 SPipes Editor Frontend 23

3.3 Use Case Diagram . 24
3.4 Requirements . 25

3.4.1 Functional Requirements 25
3.4.2 Non-functional Requirements 26

3.5 Existing Solutions . 26
3.5.1 Evaluation Criteria . 27
3.5.2 Editors . 28
3.5.3 Graph Visualization Libraries 29
3.5.4 Feature Matrix . 30

3.6 Debugging Proposal . 32

4 Implementation 34
4.1 Application Architecture . 34
4.2 Technology Stack . 35

4.2.1 Scala . 35

4.2.2 Spring . 35
4.2.3 Jena . 36
4.2.4 JOPA . 36
4.2.5 React . 37
4.2.6 SForms . 37

4.3 JSON-LD REST API . 38
4.4 Data Transformation . 38

4.4.1 Model Generation . 38
4.4.2 Graph Visualization 39
4.4.3 Configuration Form Generation 40

4.5 File System Synchronization 47
4.6 Implementation Issues . 48
4.7 Application User Interface . 49

5 Testing 50
5.1 Test Model . 50
5.2 Scenarios . 50
5.3 Automated Code Testing . 55

5.3.1 Statistics . 55
5.3.2 Issues . 56

6 Comparison With Topbraid Composer 56

7 Conclusion 59
7.1 Project Goals Fulfillment . 59
7.2 Future Development . 60

8 Installation Guide 61
8.1 Prerequisites . 61
8.2 SPipes Editor . 61
8.3 Local SPipes Engine . 61

9 References 62

10 Appendix 64
10.1 Abbreviations . 64
10.2 CD Contents . 65

1 Introduction

The World Wide Web caused deep changes in communication between
people and the way business is conducted. It enabled instant data transfer
and reduced information fetch latency from hours or even days to seconds.
But with the increasing complexity of the Web and growing number of web
applications arose the problem of exchanging information without the loss of
meaning. The World Wide Web extension called Semantic Web was created
to solve this problem. Semantic Web tools are numerous, but the one that
stands out due to its importance is the Resource Description Framework or
RDF, a set of specifications for describing information on the Web in a uni-
formed way. RDF spawned several data description languages like SPARQL-
Motion – a scripting language for describing data processing pipelines with a
graphical notation, that represents pipelines as scripts consisting of modules
(processing nodes) and dependencies between them showing the dataflow di-
rection. Modules can be defined declaratively in RDF or as a Java class,
implementing a specific interface. Knowledge-based Software Systems group
of the Department of Cybernetics, CTU in Prague, is developing its own
dialect of SPARQLMotion, the SPipes, which is for now just a restriction
of SPARQLMotion and the only added value are the concrete modules and
the SPipes Engine, capable of SPipes scripts execution. Due to the nature
of the SPARQLMotion (and SPipes) scripts they can be represented in form
of an acyclic directed graph and therefore edited as one, using a suitable ed-
itor. The goal of the project is to design and partially implement the SPipes
Editor and test it on typical use cases.

This document gives an insight into the domain of the SPipes (Section 2),
describes the analysis of existing solutions, functional requirements and use
cases for the SPipes Editor, as well as the model used and design of the SPipes
Editor (Section 3), its implementation (Section 4), testing (Section 5) and
comparison with the SPARQLMotion editor Topbraid Composer (Section 6).

1.1 Project Goals

The goals of this thesis are the following:

• Review existing graph visualization libraries and editors, based on spe-
cific requirements.

• Analyze possible patterns to modularize SPipes scripts.

2

• Define use cases for editing and debugging the scripts.

• Implement the editor for SPipes scripts, based on the analysis results.

• Compare the implemented editor with the SPARQLMotion editor Top-
braid Composer.

• Test the editor on specified use cases.

3

2 Background

This section briefly describes the backgound for the resulting application
and provides definitions for some of the important concepts.

2.1 Domain Diagram

The diagram, giving an initial insight into the domain in question is shown
in the Figure 1. Each entity in the diagram is relevant for the scope of this
project. The most significant ones will be described in the corresponding
sections of this document.

Legend:
Red – Declarative language Yellow – Programming language
Orange – Runtime environment Blue – Library
Cyan – Serialization format Green – Editor

Figure 1: Domain diagram

2.2 Semantic Web

Semantic Web is a World Wide Web extension developed by the World
Wide Web Consortium to solve the problem of data exchange between ap-
plications in the realm of rapidly growing Web. The way it achieves the goal

4

is representing Web content in a machine-processable form and using special
techniques to take advantage of this representation. It wasn’t necessarily
meant to replace the World Wide Web, but rather to gradually evolve from
it[1]. Semantic Web was created by its authors as a set of specifications and
standards for data representation, rather than a particular technology stack.
Therefore several technologies compliying with the standards are being devel-
oped, the main one being the Resource Description Framework also referred
to as RDF.

2.3 RDF

The Resource Description Framework (RDF) is a framework for describ-
ing resources. Anything can be viewed as a resource, including people, doc-
uments, physical objects and even abstract concepts. The main goal of RDF
is to express information in a form that can be processed by different appli-
cations across the Web without the loss of meaning. As a framework, RDF
lets application developers to use different available processing tools[2].

RDF features a mechanism for syntax-neutral resource description with-
out defining a specific domain semantics, which means that any domain can
be described using RDF model[13].

RDF data are represented as triples <subject> <predicate> <object>.
Each triple represents a relationship, where subject is a resource, connected
to the object (that does not necessarily need to be a resource, can be a literal
value like a string or a number) by the predicate, that represents the nature
of the relationship and is called a property.

A collection of triples is a graph that represents an ontology or a part of
it, ontology being a piece of information about a particular domain.

Informal example of RDF triples, showing the general structure, is shown
in the Figure 2.

<Bob> <is a> <person>.

<Bob> <is a friend of> <Alice>.

<Bob> <was born on> <the 26th of April 1986>.

Figure 2: Triple examples

5

2.3.1 RDFS

RDF Schema is an extension of the RDF, which provides a data-modelling
vocabulary, defining a backbone for the application designers to base their
data models on, but not attempting to enumerate all the possible forms of
data representation. Some of the important RDFS definitions are[15]:

• rdfs:

rdfs: is the prefix for all the RDFS definitions and refers

to http://www.w3.org/2000/01/rdf-schema#.

• rdfs:Resource

All the things, described by RDF are resources – instances of the
rdfs:Resource class.

• rdfs:Literal

rdfs:Literal class represents literal values like strings and numbers.

• rdfs:Property

rdfs:Property is a class of RDF properties.

2.3.2 OWL

The Web Ontology Language is developed as a vocabulary extension of
RDF to serve as a semantic markup language for publishing and sharing on-
tologies. OWL defines many useful terms like owl:imports and owl:Ontology[16].
Imports play particularly important role in the SPipes scripts modulariza-
tion.

An owl:imports statement references another ontology, whose definition
is considered a part of the importing ontology. Importing ontology together
with the imported triples is called an import closure. Importing is done
through referencing the imported ontology URI and is transitive[16]. An
example of importing is shown in the Figures 3 and 4 (prefixes are omitted
for the sake of clarity), where the fel:fruits ontology imports fel:apples
and thus contains the information about the fel:apples/red-apple.

6

fel:apples a owl:Ontology .

fel:apples/red -apple rdfs:label "This is a red apple" .

Figure 3: Apples ontology

fel:fruits a owl:Ontology ;

owl:imports fel:imported .

Figure 4: Fruits ontology imports the apples ontology

2.3.3 RDF Serialization Formats

There are multiple serialization formats for the RDF used for textual
representation of information. While keeping the general RDF structure (in
that data is represented by triples) each language has different syntax, which
makes it useful for a specific purpose.

The most important ones for the purpose of this project are:

• Turtle

A Turtle document is an RDF serialization format that allows writing
down an RDF graph in a compact textual form[3], suitable for human
comprehension and processing. It allows for defining prefixes in the
beginning of the document thus simplifying the document reading for
a human. Also there is an anonymous nodes syntax which can be used
to represent an entire collection of triples as a single object, that also
positively affects the human perception of the document. An example
is shown in the Figure 5.

7

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://example.org/stuff/1.0/> .

<http://www.w3.org/TR/rdf-syntax-grammar>

dc:title "RDF/XML Syntax Specification (Revised)" ;

ex:editor [

ex:fullname "Dave Beckett";

ex:homePage <http://purl.org/net/dajobe/>

] .

Figure 5: Turtle document example[3]

• JSON-LD

JSON-LD is an RDF serialization format that combines the simplicity
and power of JSON with the concepts of Semantic Web. It combines
three ways to process linked data: considering raw triples, using a
graph processing API and building a tree structure from a portion of
the graph[4]. In practice what JSON-LD provides us is the mechanism
to access linked data from JavaScript as if it were a plain JSON. A
JSON-LD example is shown on Figure 6.

8

{

"@context ": {

"rdf": "http ://www.w3.org /1999/02/22 -rdf -syntax -ns#",

"dc": "http :// purl.org/dc/elements /1.1/" ,

"ex": "http :// example.org/stuff /1.0/"

},

{

"@id": "http ://www.w3.org/TR/rdf -syntax -grammar"

"dc:title": "RDF/XML Syntax Specification (Revised)",

"ex:editor ": {

"ex:fullname ": "Dave Beckett",

"ex:homePage ": "http:purl.org/net/dajobe"

}

}

}

Figure 6: JSON-LD document example

• SPARQL

SPARQL is a query language for RDF-based databases, allowing to
retrieve and manipulate data stored in RDF[5]. The example SPARQL
query is shown in the Figure 7. It selects distinct RDF nodes, based
on the graph pattern ?module a ?type (SPARQL variable ?module is
of type ?type) and the filter WHERE clause that checks the absence
of the subtype for ?type, such that ?module a ?subtype (?module is
of type ?subtype) and type and subtype are different.

9

PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>

SELECT DISTINCT ?type where {

?module a ?type .

FILTER NOT EXISTS {

?module a ?subtype .

?subtype rdfs:subClassOf ?type .

FILTER (?subtype != ?type)

}

}

Figure 7: SPARQL query example

2.3.4 SPARQLMotion

SPARQLMotion is a scripting language based on SPARQL used to
define data processing pipelines. It features a graphical notation for
visualization[6]. The key concepts of SPARQLMotion are:

– Script

Script is a textual representation of a data processing pipeline,
written in some of the RDF languages. It can be represented in a
form of a directed acyclic graph where the direction of the edges
represents the flow of data. Scripts can be stored in files in any
RDF serialization format (Turtle, JSON-LD, etc), having an extra
.sms extension in case the script is meant to have its functions
available through REST API. Each script is an ontology that can
import triples from other ontologies.

– Variable

SPARQLMotion variables can be bound to RDF nodes, compliant
with SPARQL in a way that SPARQLMotion variables can be used
within SPARQL queries and SPARQL expressions and vice versa.
SPARQLMotion variables are shared throughout the entire script
within a single scope.

10

– Module

Module is a processing step of the pipeline, that can be repre-
sented as a node of the graph. It can be defined declaratively in
RDF or programatically as a Java class, implementing a specific
interface. Module can return RDF graph, bind a variable or do
both. They can depend on each other in a way that one module
consumes the data another one produces. These dependencies can
be represented as an edge of the graph, the target node of the edge
being the dependent module.

Input modules are modules that depend on no other module within
the pipeline. They can take not only RDF as input. Output mod-
ules are the modules no module depends on. They are typically as-
sociated with functions and don’t have to return necessarily RDF.

– Function

SPARQLMotion function is a function, backed by a SPARQL-
Motion script, which is executed on function call. When called,
function binds its output parameters as variable bindings to spe-
cific modules. A function must point to the end of the pipeline
and must not have any side effects.

– Module Type

Module type is a definition of module’s behavior (typically being
driven by a SPARQL query). It defines parameters that individual
modules can specify. Many module type definitions are a part of
SPARQLMotion’s core library, but the new ones can be defined
as well.

2.4 SPipes

SPipes is an RDF scripting language, based on SPARQLMotion[8]. The
main distinction is that SPipes does not allow cycles (repeated execution
of the part of the pipeline, depending on the parameter). Moreover SPipes
functions bind their output values globally in the shared pipeline scope in-
stead of passing them to specific modules. At the moment the only RDF
serialization format supported by SPipes is Turtle.

In addition, each module within SPipes can define constraints, in form of

11

SPARQL Ask queries1, for RDF graph and bindings that it consumes/pro-
duces.

Spipes Engine, an implementation of the SPipes language, allows to seri-
alize execution data and metadata into an ontology, compliant with Dataset
Description Ontology2 which can be saved into set of files or RDF4j server
repository[14]. The latter allows to not only query execution data and meta-
data, but also to define pipelines based on previous executions (adaptive
pipelines).

1https://www.w3.org/TR/rdf-sparql-query/#ask
2http://onto.fel.cvut.cz/ontologies/ddo/current/index-en.html

12

3 Design

This section describes the existing SPipes scripts and defines the possible
script modularization patterns, lists the application requirements, based on
the defined patterns, and describes the application design phase and the
analysis it is based upon.

3.1 Analysis of the existing SPipes scripts

SPipes Editor was tested on existing scripts from the 16gacr-model from
the project Efficient Exploration of Linked Data Cloud No. GA 16-09713S
of the Grant Agency of the Czech Republic[17]. This is a model, used
in production by the KBSS group3, featuring several pipelines of various
complexity built on top of the s-pipes-modules module type definitions.
s-pipes-modules is an extension to the SPARQLMotion Core library, fea-
turing several module types, tailored for the KBSS group needs. Most of
them are implemented using Java extension mechanism.

One of the scripts from 16gacr-model, that will be used throughout the
thesis, is shown in the Figure 8 as an example. It computes schema for
the RDF data from a repository, specified by snapshotServiceUrl, using
common RDF graph summarization techniques[14].

3kbss.felk.cvut.cz

13

Figure 8: Example script from the 16gacr-model

Modules with a B icon are of type Bind with constant, they takw a vari-
able name and a value and set the value to the variable. The wrench modules
are of type Apply construct, they take SPARQL CONSTRUCT query as
input parameter and return an output graph that is result of applying the
query on its input graph. The Return descriptor and deploy-descriptor

modules are the output modules, having the functions bound to them. The
former returns an input RDF graph in the specified serialization format,
while the latter deploys the input to the RDF4J repository. The data flow
in this script is the following:

1. Variable snapshotServiceUrl, representing the URL of some SPARQL
endpoint providing input data4 is bound by the corresponding module.

2. • descriptorGraphId is bound, using the value of snapshotServiceUrl.

4In case of the example shown in the Figure 9 it’s https://linked.opendata.cz/

resource/dataset/seznam.gov.cz/rejstriky/objednavky

14

https://linked.opendata.cz/resource/dataset/seznam.gov.cz/rejstriky/objednavky
https://linked.opendata.cz/resource/dataset/seznam.gov.cz/rejstriky/objednavky

• targetRdf4jServerUrl, datasetEndpointId and executionId

are bound by the corresponding modules.

• Number of triples for each property is computed for the graph
at snapshotServiceUrl by the compute-endpoint-statistics

module.

3. • Value of descriptorEndpointUrl is assembled from the targetRdf4jServerUrl
and datasetEndpointId.

• Additional metadata is collected for each property.

by the compute-spo-descriptor-for-each-property.

4. The resulting metadata is returned in the specified serialization format
from the Return descriptor module, or deployed to the RDF4J repos-
itory and graph from descriptorEndpointUrl and descriptorGraphId

respectively.

15

Result of the function compute-spo-summary-descriptor-metadata,
applied on the Orders5 dataset from the Czech Linked Data Cloud6, is
shown in the Figure 9.

Figure 9: Descriptor funtion output[14]

3.1.1 Form model

Each module and function call is configured using a configuration form,
which is represented as a question-answer tree structure, where the question
can have zero or more subquestions, zero or more answers and some other
metadata (e.g. label shown to the user and origin that allows to reference the
triple the question was created from). The question-answer model diagram
is shown in the Figure 16. The entire form is the root question which is,

5https://linked.opendata.cz/resource/dataset/seznam.gov.cz/rejstriky/objednavky
6https://linked.opendata.cz/

16

naturally, the root of the question tree structure. It then has wizard step
subquestions (shown as tabs in the rendered form) that, due to the relatively
simple structure of the configuration dialogue, are represented by a single
entry. The actual configuration value questions are the leaves of the tree
structure, in this case being the direct

3.1.2 Script Modularization Patterns

During the analysis of SPARQLMotion and SPipes scripts, several possi-
ble script modularization patterns were discovered (the screenshots are taken
from the Topbraid Composer):

• Function reuse

In case of function reuse, a SPARQL function is defined once and
then imported and used in multiple scripts. In the Figure 10 the
form-ecc-lib:create-q function is defined, which is then used in a
SPARQL CONSTRUCT query, shown in the Figure 11.

Figure 10: form-ecc-lib:create-q function definition

17

CONSTRUCT {

?s_q doc:has_related_question ?o_q .

}

WHERE {

?s a e-m:instance .

?s e-m:has -child -instance ?o .

}

BIND(form -ecc -lib:create -q(?s) as ?s_q)

BIND(form -ecc -lib:create -q(?o) as ?o_q)

}

Figure 11: form-ecc-lib:create-q function reuse

• Module reuse

The module reuse scenario describes the case when certain module is
defined once and then reused in multiple scripts for example by extend-
ing it. In the Figure 12 a module of type sml:ImportFileFromURL is
described, which has two input parameters – documentId and sheetId.
In the figure 13 a module, extending sml:ImportFileFromURL and cre-
ating a closure on the input parameters, is defined.

Figure 12: Module definition

18

Figure 13: Module extension

• Pipeline reuse

Pipeline reuse is using an entire pipeline definition or a part of it and
including as a part of an another pipeline, possibly extending it with
additional processing steps. The Figure 14 shows the pipeline later
included as a part of an another pipeline, shown in the Figure 15.

19

Figure 14: Pipeline definition

20

Figure 15: Pipeline reuse

Analysis of the use of those patterns in the gacr16-model revealed that
frequence of the pipeline reuse pattern occurence was much higher, then the
frequency of the other patterns. So the main pattern taken into accout during
the editor requirements collection and design was the pipeline reuse.

21

Figure 16: Question-answer model

3.2 Integration Diagram

The integration diagram, focused on high-level view on the application
parts, is shown on Figure 17 with a description of individual parts following.

22

Figure 17: Integration diagram

3.2.1 SPipes Engine

SPipes Engine is a reference implementation of the SPipes language. In
the scope of this project, it has two functions: generating form data for the
configuration forms which is discussed in the Section 4.4.3 and processing
function execution requests from the editor. Pipeline execution can be started
in a way that all the data and metadata are logged into an RDF4J server
repository, that can be queried for the information on the execution.

3.2.2 SPipes Editor Backend

SPipes Editor backend handles all the work on data reading, writing and
transformation (except the form generation, mentioned above) and supplying
data for the frontend to be presented to the user.

3.2.3 SPipes Editor Frontend

SPipes Editor frontend does all the UI work, presenting the user the graph
representation of the script, module configuration and function call forms as

23

well as notifying user about the changes in the script currently being edited.
All the data the fronted operates on is provided by frontend through either
REST or Websocket API.

3.3 Use Case Diagram

Figure 18 shows the use case diagram for the SPipes Editor. Currently
unsupported use cases are shown in italics.

Figure 18: Use case diagram

24

3.4 Requirements

3.4.1 Functional Requirements

Functional requirements are separated by the relevant subsystem and
graded using the MoSCoW method[12]:

M Must have requirements represent features critical for the project suc-
cess.

S Should have requirements are important, but not as critical.

C Could have requirements are desired, but not necessary. Usually they
represent features that improve user experience and can be imple-
mented if time and resources permit.

W Won’t have requirements represent least important features that can
not be implemented at the given time due to the lack of time or re-
sources.

• Editing

FR1 M Visualize a script in form of a directed graph.

FR2 W Create a new script.

FR3 C Layout graph using multiple algorithms.

FR4 M Alter graphs using a graphical interface.

FR5 S Notify user of the changes in the script currently being edited.

FR6 M Add/remove modules to a script.

FR7 M Add/remove dependencies between modules to a script.

FR8 M Configure modules using forms.

FR9 W Move the entire module configuration or part of it to a specific
subscript.

FR10 W Visualize input/output module parameters.

FR11 C Collapse parts of the graph respecting layout (for example,
based on imports).

FR12 W Add/remove script imports.

25

FR13 S Allow for the visual distinction between module types.

FR14 S Show the entire graph overview.

• Execution

FR15 S Execute scripts.

FR16 C Debug scripts.

FR17 W Visualize script execution process.

FR18 W Show the execution data and/or metadata.

FR19 W Autocomplete function call parameters, based on previous ex-
ecutions.

3.4.2 Non-functional Requirements

NR1 Allow for parallel graph edition in separate sessions.

NR2 Present the graph automatically layed out.

NR3 Notify user of the errors during the script visualization.

NR4 Be tested using automated testing.

NR5 Be suitable for the typical use cases (see Section 5.2).

3.5 Existing Solutions

There are several tools relevant to the subject, divided into two groups –
editors and general-purpose graph visualization libraries.

While the graph visualization libraries review is necessary for the obvious
reason of selecting the good basis for the SPipes Editor’s UI, some existing
graph editors are evaluated to better understand the graph editing process
and define the features necessary for it to be efficient.

This section focuses on the ones relevant to the problem and defines the
criteria for their evaluation.

26

3.5.1 Evaluation Criteria

There were several criteria considered during the research of existing tools
and libraries. Main ones are:

• Critical

1. Automatic layout
Automatic layout is one of the main concerns regarding the func-
tionality due to average scripts having tens and possibly hundreds
of modules and therefore being very difficult to layout manually.
The critical feature is a flow layout. An ability to change the lay-
out direction (left to right, top to bottom, etc.) and support of
multiple layout algorithms are desired features.

2. Collapsing parts of the graph respecting layout
Some use cases require parts of the graph to be collapsible without
affecting layout.

3. Module parameter visualization
As modules can have input and output parameters, an ability to
vizualize them is crucial.

4. Overall view of a graph
An ability to see the overall preview of a graph is important due
to the necessity to orientate in very large graphs.

5. Module type icons
Modules have to be easily identifiable based on their types.

• Nice-to-have

1. License
Tool has to be licensed under the free license due to the likely
need to adapt the tool for the specific applications.

2. Active development
The project should be in active development due to the need to
receive bug fixes and possibly new features.

3. Visualization of node/edge state
As the SPipes Editor is meant to be capable of SPipes scripts
execution, being able to visualize execution process is a useful
feature.

27

4. Documentation and code reusability
Codebase should be well structured and documented in order to
be easily integratable and reusable.

5. Technology
Technologies used have to be modern and actively maintained.

3.5.2 Editors

Under this section the editors in some way relevant to the topic are de-
scribed. Each one is given a short annotation with a more detailed feature
comparison shown in the feature matrix (Figure 19).

• Ontodia7

Ontodia is a well documented and actively developed web-based tool for
editing ontologies in form of a directed graph, partially licensed under
the LGPL 2.1 (with more advanced features available in the proprietary
version). The lack of pipeline support and absence of the way to add it
due to a proprietary license limit its usefulness severely for the purpose
of the SPipes Editor.

• LinkedPipes ETL8

LinkedPipes ETL is a pipeline editor that features graph visualization.
While providing an intuitive and user-friendly graphical interface and
convenient means of form-based pipeline editing, it lacks many graph
editor features like layout or module type icons. The other disadvantage
is obvious lack of scalability of visualization.

• yEd Graph Editor9

yEd Graph Editor is an advanced general-purpose graph editor, not
suited for editing pipelines and having no SPARQLMotion support.
The proprietary license further limits its use in the given context, as
the necessary features can’t be implemented without the access to the
source code. Exists in the desktop and web-based versions.

7http://www.ontodia.org/
8https://etl.linkedpipes.com/
9https://www.yworks.com/

28

3.5.3 Graph Visualization Libraries

This section describes generic graph visualization libraries also providing
a brief annotation, while the feature comparison is shown in the Figure 19.

• JointJS10

JointJS is a popular JavaScript diagramming library, partially licensed
under Mozilla Public License 2.0 (with more advanced features available
in a paid proprietary version), that might be used as a graph editor
library if needed.

• dagre-react11

dagre-react is a JavaScript library that provides React components for
graph visualization, using Dagre as a layout backend. It’s very small
and simple library that lacks any advanced features and is unlicensed.

• dagre-d312

dagre-d3 just like dagre-react uses Dagre as a backend utilizing D3 for
rendering. It’s officially unmantained and lacks advanced features.

• KlayJS-D313

KlayJS-D3 uses D3 for rendering and KlayJS14 for layout. Simple vi-
sualization library that does not allow graph editing.

• vis.js15

vis.js is a user-friendly visualization library with a predefined set of
components. Lacks oriented graph support and any of the advanced
features.

• ArborJS16

Arbor is a graph visualization library providing a force-directed layout.
Lacks any necessary features.

10https://jointjs.com
11https://github.com/osnr/dagre-react
12https://github.com/cpettitt/dagre-d3
13https://github.com/OpenKieler/klayjs-d3
14https://github.com/OpenKieler/klayjs
15https://visjs.org
16http://arborjs.org/

29

• Drakula Graph Library17

Drakula Graph Library is a simple library for primitive graph visual-
ization.

• Sigma js18

Sigma is a JavaScript library dedicated to graph drawing, that is lacking
advanced features.

• The Graph Editor19

The Graph Editor is a JavaScript library built with React, that sup-
ports advanced features like thumbnail and parameter visualization.
The library is well documented, actively developed and licensed under
the MIT license.

3.5.4 Feature Matrix

Comparison between features supported by different libraries is shown on
Figure 19.

17https://www.graphdracula.net/
18http://sigmajs.org
19https://github.com/flowhub/the-graph

30

O
n
to

d
ia

L
in

ke
d
P

ip
es

E
T

L

y
E

d
G

ra
p
h

E
d
it

or

J
oi

n
tJ

S

D
ag

re
-R

ea
ct

D
ag

re
-D

3

K
la

y
J
S
-D

3

v
is

.j
s

A
rb

or
J
S

D
ra

k
u
la

G
ra

p
h

L
ib

ra
ry

S
ig

m
a

js

T
h
e

G
ra

p
h

E
d
it

or

Autolayout X X X X X X X X
Collapsing ? X
Parameters X X X
Thumbnail X X X

Module type icons X X

Free license ∼ X ∼ X X X X X X X
Active X X X X X

State visualization X X
Documentation X X X X X X X X X X X

Technology X X
X – library is compliant with the requirement for the given feature
? – supported in a proprietary paid version
∼ – library is partially compliant with the requirements for the given feature

Figure 19: Feature matrix

As seen from the feature matrix (Figure 19) and functional requirements
(Section 3.4.1), the tools most suitable as a basis for the SPipes Editor are
the yEd Graph Editor, which lacks extendability and flexibility due to its
proprietary codebase, so none of the desired features can be added to it, and
the The Graph Editor, which might have slightly reduced functionality, but
has the source available for the audit and enhancement, with a strong active
community standing behind it.

So the existing solution analysis showed that The Graph Editor from the
Flowhub project would be the best library to base SPipes Editor on.

31

3.6 Debugging Proposal

The proposal for debugging a script was developed around the concept
of execution ID. Once the user requests a function execution, a request with
parameters is sent to the backend. A unique execution ID is then generated
on the backend and attached to an execution request sent to the SPipes
Engine. The execution ID is then returned to the fronted in a response. The
client then subscribes for the execution notifications, sending the execution
ID through the Websocket. Once there are execution changes, SPipes Engine
sends a notification request to the editor backend. The updates on execution
are then collected from the external repository (saving and queryng execution
data and metadata is shown in the Figure 20) by the backend and propageted
to the frontend through the Websocket. The sequence diagram of the process
is shown in the Figure 21.

Figure 20: Execution data and metadata logging

32

Figure 21: Execution sequence diagram

33

4 Implementation

This section describes the implementation, focusing on the topics, specific
and unique for the given application.

4.1 Application Architecture

SPipes Editor is built as a typical layered client-server application, where
each layer has its own role:

• Model layer contains the model and DTO classes, implemented in Java
and annotated with JOPA annotations.

• Persistence layer is responsible for fetching data from the storage, files
in this case.

• Service layer envelops all the data transformation and processing logic.

• REST controllers receive the client’s requests and delegate them to the
services.

• Websocket controller is used to actively send messages to the client.

• Client layer contains the client code, run in the user’s browser and
responsible for the entire UI.

The diagram, describing the architecture is shown in the Figure 22.

34

Figure 22: Application’s layered architecture

4.2 Technology Stack

4.2.1 Scala

As SPipes Engine is implemented in Java and runs on JVM, the editor
should be implemented in a programming language, also running on JVM.
Scala was chosen because of the concise syntax, reach API, active develop-
ment and possibility to use advanced concepts (like currying and implicits)
while still being relatively easy to comprehend for an inexperienced program-
mer. Another reason is almost complete Java interoperability allowing to use
Java libraries and frameworks with minimal boilerplate.

4.2.2 Spring

Spring framework is used for Dependency Injection and as a Web frame-
work to create REST and Websocket APIs and also for automated testing.
Spring is an industry standard and supports all the libraries necessary for
semantic APIs.

35

4.2.3 Jena

The Java library used for ontology management used is Apache Jena, that
provides a rich toolkit for ontology querying, serialization/deserialization and
transformation, as well as adding and removing triples and managing imports
(ontologies loaded from external files). There are two important concepts,
relevant for the SPipes Editor:

• Model

Model is a set of triples with some additional metadata like contexts.
There are different implementation of the Model interface in Jena, the
most relevant being the OntModel, that stores information about im-
ported triples’ origin and InfModel, capable of triple
inference – creation of the new relationships, based on the information
available[7]. Figure 23 shows the informal example of inference.

< A >< subClassOf >< B >

< B >< subClassOf >< C >

}
inference
====⇒ < A >< subClassOf >< C >

Figure 23: Informal inference example

• Statement

Statement is the Jena’s look on triple that stores a reference to a model
it originates from and provides some syntactic sugar over triple process-
ing like fetching a typed value of the triple’s object.

4.2.4 JOPA

Java Ontology Persistence API is the tool that enables loading ontological
data as Java objects. For achieving this, the class definition as well as every
class field is annotated with a corresponding URI value that binds data in
semantic format to the entity class in a fashion, similar to JPA’s @Table and
@Column annotations. The URIs used to annotate entity classes are taken
from the vocabulary, that can be automatically generated from the ontology

36

using a part of JOPA’s toolkit – OWL2Java. An example of the JOPA entity
is shown in the Figure 24.

@OWLClass(iri = Vocabulary.s_c_Modules)

public class Module extends AbstractEntity {

@OWLDataProperty(iri = Vocabulary.s_p_label)

private String label;

@OWLObjectProperty(iri = Vocabulary.s_p_next)

private Set <Module > next;

@OWLObjectProperty(iri = Vocabulary.s_p_specific_type)

private ModuleType specificType;

@Types

private Set <String > types;

// Constructors , getters , setters , equals , hashCode , ...

}

Figure 24: Example of a JOPA entity

4.2.5 React

React acts as a nexus of the application’s frontend, providing vizualization
components and tying different parts together while also mitigating some of
the plain JavaScript disadvantages and being a mainstream well supported
technology that is relatively easy to grasp with no prior experience.

4.2.6 SForms

JavaScript library SForms provides React components for vizualizing se-
mantic question-answer structures as reactive forms, providing the user with
a familiar interface for editing ontologies. In the SPipes Editor it is used to
render module configuration and function call forms.

37

4.3 JSON-LD REST API

As the application is meant to integrate with the Semantic Web domain,
a logical step to take was to make the public APIs compliant with the Se-
mantic Web standards. The most reasonable way to achieving this being to
reimplement REST API to make it accept and produce JSON-LD instead
of the plain JSON[10] as it required minimal changes in the frontend of the
application and had all the necessary mechanisms available from the JOPA
toolkit.

All the changes necessary were:

• Register custom JSON-LD deserializer included in the JOPA toolkit.

• Add all the data about the entities being translated to/from JSON-LD
to the ontology that vocabulary is generated from.

• Annotate the entity classes and their fields with the specific annotations
provided by JOPA for them to be correctly serializable and deserializ-
able.

• Rewrite the way objects’ inner data is being accessed in JavaScript
(mostly replace indices).

• Add a correct @type element to every request object send from JavaScript
as it is required for the deserializer to know which entity class should
be used for the deserialization.

4.4 Data Transformation

Due to the different formats and schemas of the source data, there is a
necessity to transform it to be suitable for consumption. Two major aspects
of the data transformation in the SPipes Editor are transformations from
script data to graph and from module data to configuration form.

4.4.1 Model Generation

The common problem for both the script to graph transformation and
configuration form generation is assembling the model. As mentioned be-
fore, scripts can import parts of other scripts (either locally from files or
from the Web) so in order to get the complete information, all the imports

38

should be resolved and correctly appended to the model. Luckily, Jena pro-
vides its own solution for this problem, the OntDocumentManager, so the user
only needs to take all the script files, map them to the URIs of ontologies
they contain and pass the resulting map to the manager, that keeps all the
complicated work under the hood. After that it can be queried for the model
of the desired ontology by the ontology URI. To create an import closure,
the loadImports() method must be called. Another useful feature of the
ontology document manager is that it retains the ontology to file mapping
that can be queried later for the purpose of finding the file a specific state-
ment comes from. After the model is assembled, the transformation itself is
done.

4.4.2 Graph Visualization

To translate the script, contained in the model, to the directed graph
form, there is a sequence of steps required:

1. The model is queried directly for the module entries through JOPA
using the SPARQL query.

2. The query shown in the Figure 7 is run to determine the most specific
type of the module for the module to provide the most information to
the user after being rendered as a graph node.

3. An instance of the Node class is created for each module, containing
all the information relevant: module URI, label, types and the most
specific type separately.

4. List of modules is traversed again to collect the dependencies. An
instance of the Edge class is created for every dependency, which holds
a reference to the source and target nodes.

5. An instance of the View class – the representation of the whole graph –
is assembled from nodes and edges as well as the path of the file, con-
taining the script.

6. The view is saved to an ontology storage and returned as a transfor-
mation result.

39

4.4.3 Configuration Form Generation

Each module should be configurable through a form, which is generated,
based on the module data. As generation of the configuration form from the
script data is a generally useful concept in SPipes, it was implemented as a
part of SPipes Engine project. The sequence diagram of the configuration
form creation process is shown in the Figure 25.

Figure 25: Form generation sequence diagram

The resulting form is represented by a question-answer model, described
in the Section 3.1.1.

A module configuration form generation process (shown in the Figure 26)
is the following:

1. Find the triples, describing the given module, in the script.

2. Create the root question, set its origin to the module’s URI (to be able
to locate the original module in case user changes the URI) and a layout
class (necessary for the SForms to correctly render the question).

3. Create a wizard step question, set its label to show module type and
origin to the module’s URI (for the sake of completeness, it does not
participate in lookup process) and add section and wizard-step lay-
out classes for the sake of rendering.

4. Create a URI question with a constant origin and set the value of its
answer to the actual module’s URI.

40

5. Iterate through the triples, describing the module and create a leaf
question from its predicate and an answer from the object, add the
answer’s original type to the question’s metadata and set question and
answer origins to values, deterministically generated from the triple.

6. If there are predicates in the module type definition absent from the
module’s description, create a leaf question for each of them the same
way the module’s questions are created, but leaving the answer blank.

7. If there was no question about label generated during the triples trav-
elsal, create one.

8. Order the questions so that the URI question is on top, below it is the
label question and all the rest are below that.

9. Append all the leaf questions to the wizard step question.

10. Append the wizard step question to the root question.

41

Figure 26: Module configuration form generation

42

Some aspects of the diagram, shown in the Figure 26, are:

• Identity question (red frame)

Identity question is a question about the module’s URI.

• Statement question (green frame)

Statement questions are questions, generated from the concrete module
definition.

• Schema question (blue frame)

Schema questions are generated only for the statements, absent from
the concrete module.

• Wizard step question (dark green frame)

Wizard step question is an envelope to contain all the statement and
schema questions.

• Root question

Root question represents the entire form and is a wrapper around a
wizard step question.

The example module type definition in the Turtle format, the part of
the transformed form in JSON-LD and the configuration form for creating
the module of that type are shown in the Figures 27, 28 and 29 respectively
(ellipsis marks the omitted part of the document).

43

kbss -module:deploy

rdf:type sm:Module ;

spin:constraint [

rdf:type spl:Argument ;

spl:optional "false "^^ xsd:boolean ;

spl:predicate km-rdf4j:p-rdf4j -context -iri ;

rdfs:comment "Context IRI" ;

] ;

spin:constraint [

rdf:type spl:Argument ;

spl:optional "false "^^ xsd:boolean ;

spl:predicate km-rdf4j:p-rdf4j -repository -name ;

rdfs:comment "Repository name" ;

] ;

spin:constraint [

rdf:type spl:Argument ;

spl:optional "false "^^ xsd:boolean ;

spl:predicate km-rdf4j:p-rdf4j -server -url ;

rdfs:comment "Server URL" ;

] ;

spin:constraint [

rdf:type spl:Argument ;

spl:predicate km-rdf4j:p-is-replace ;

spl:valueType xsd:boolean ;

rdfs:comment "Replace context flag" ;

] ;

sm:icon "database" ;

rdfs:label "Deploy" ;

.

Figure 27: Module type definition in the Turtle format

44

{

"@context ": {

"form": "http :// onto.fel.cvut.cz/ontologies/form/",

. . .

},

"doc:has_related_question ": {

"@id": "doc:question -681 f0e57 -d9af -49e2 -9ab4 -c10aa26563b9",

"@type ": "doc:question",

"doc:has_related_question ": {

"@id": "doc:question -f2c799de -c79e -4de2 -a807 -0 ad03ed1a15d",

"@type ": "doc:question",

"doc:has_answer ": {

"@type ": "doc:answer"

},

"doc:has_related_question ": [],

"form:has -preceding -question ": {

"@id": "doc:question -d7fdc37e -a243 -49a7 -ba23 -b41fb9e20b3f"

},

"form:has -question -origin ":

"http :// onto.fel.cvut.cz/ontologies/lib/module/rdf4j/

p-rdf4j -repository -name",

"dce:description ": "Rdf4j repository name",

"rdfs:label":

"http :// onto.fel.cvut.cz/ontologies/lib/module/rdf4j/

p-rdf4j -repository -name"

},

"form -layout:has -layout -class": [

"wizard -step",

"section"

],

. . .

},

"form -layout:has -layout -class": "form",

. . .

}

Figure 28: Part of the transformed module creation form

45

Figure 29: Module creation form

The process of the function call form generation is similar, but simplified
in that:

• There are only function definition leaf questions and therefore no an-
swers.

46

• No origins are created as there is no need to track answers to the original
triples.

• There’s no label question as function call does not require a label.

The reverse transformation happens in the similar fashion, looking up
the triples based on origins and replacing them with the ones, specified by
the question and the answer. After all the triples are replaced, the entire
module’s URI is changed to the value of the URI question’s answer.

4.5 File System Synchronization

One of the main requirements for the SPipes Editor is the ability for par-
allel edition of the same file which brings a synchronization problem between
different sessions as well as between an editor user and someone editing the
file externally. After considering several possibilities like only allowing one
session to open the file for editing and restricting others to read-only mode
or automatically reloading the view every time the file is changed, the final
solution of the problem was to notify the user about the fact that changes oc-
cured in the file currently being edited and let user decide whether to update
the view now or later.

To achieve that the combination of the WatchService and Websocket is
used the following way:

1. During the application start the WatchService object is created. All
the directories configured as script locations are recursively traversed
to add each subdirectory to the watch service. After that the watch
service starts waiting for the file system events.

2. Once user opens a view, a message, containing the name of the file being
edited, is sent through Websocket to the backend where it’s saved to a
map from files being edited to a list of sessions associated with them.

3. When a change occurs on a file, a file system event is emitted. If the file
in question is located in a directory watched by the watch service, the
event is processed by the application. The target file path is extracted
from the event and the mapping is checked if there are any sessions
associated with the file. If there are, each one is sent a message through
Websocket.

47

4. When frontend receives a Websocket message, the prompt is shown to
the user where to reload the view or to ignore it. If user chooses to
reload, the view is reloaded and the data consistency is restored. If the
user ignores the prompt, he takes a risk of working on the outdated
data.

The sequence diagram of the process is shown in the Figure 30.

Figure 30: File system synchronization

So the application provides user with all the information he needs to make
a right decision for the given situation while also not enforcing any specific
behavior or making the choice for him.

There is an issue though in that user, who has caused the change, receives
a notification too. This can be fixed by attaching some identifier (session ID
for example) to every change request and ignoring the session, associated
with that identifier, during notification. It has not been implemented yet
though.

4.6 Implementation Issues

There were several issues during the implementation caused either by the
bugs in the libraries or by the Scala-Java interoperability:

48

• JOPA vocabulary

Vocabulary is generated as a Java class, containing constants, repre-
senting URIs[9]. This lead to an issue with Scala and Java interoper-
ability in that Scala does not recognize Java’s static final variables
as constants and does not allow to use them as annotation parameter
values leading to the necessity to implement all the entity classes in
Java, effectively adding to the overall line count and amount of boiler-
plate.

• Jena OntDocumentManager cache

There is an issue with Jena’s OntDocumentManager in that it caches the
imported models in a weird way not allowing to clear the cache in an
intuitive way and therefore providing the outdated data from imported
ontologies until the entire application restart. The issues has not been
fixed to date.

• JOPA and Scala collection wrappers

Another issue between JOPA and Scala was the way JOPA handled
collections. Scala has its own collection API, that contains a mechanism
for Java interoperability that wraps Scala collections in the wrappers
Java can understand[11]. As Java does not support variation, there was
a type checking issue in that JOPA’s CollectionInstanceBuilder

did not recognize the Scala collection wrappers being instances of the
Collection so the workaround with the additional type checking and
wrapping had to be applied.

4.7 Application User Interface

Main window of the resulting editor is show in the Figure 31. The main
part of the window is occupied by the graph view. Bottom right features a
thumbnail. On the top right there is a layout panel with a button allowing
to duplicate the view in a new tab. Top left contains module creation and
function call controls.

49

Figure 31: Main editor window

5 Testing

5.1 Test Model

As stated before 3.1 the implementation and testing was done using the
16gacr-model (will be attached to the application source code) with the
module type definitions from s-pipes-modules.

5.2 Scenarios

This section describes the typical scenarios SPipes Editor is meant to
handle and evaluation of users’ ability to use it for the specific tasks.

The user focus group consisted of three people of different levels of famil-
iarity with RDF, SPARQL and SPipes. The users were given a brief intro
about the SPipes and the Editor’s capabilities and asked to perform the
following tasks:

• Find the value of outputVariable, bound by module bind-snapshot-service-url
in file descriptor/spo-summary/transformation.ttl.

Script lookup was a bit confusing to all the users due to the suboptimal
script selection screen layout, shown in the Figure 32. Occasionally all

50

the users discovered that the search feature, integrated in the browser,
works and effectively decreased the time needed they needed to find a
specific script in the list.

Figure 32: Script selection screen

The mechanism to open the module configuration form (shown in the
Figure 33) where the desired value could be found was also not intuitive
for the users.

• Alter the label of module bind-descriptor-type in file
descriptor/spo-summary/transformation.ttl.

51

Figure 33: Module configuration form

The module configuration scenario worked out as intended.

• Create a new module of type Bind with constant.

The module creation being practically identical to the module config-
uraion also worked out too.

• Call function compute-spo-summary-descriptor-metadata with any
parameters from file descriptor/spo-summary/description.sms.ttl.

52

The function call scenario was disturbed by the module type list’s place-
holder that distracted the user (Figure 34).

Figure 34: Function call selection

• Create dependency from bind-execution-id to bind-target-rdf4j-server-url
in file descriptor/spo-summary/transformation.ttl.

Due to the lack of familiarity with the editor, the dependency creation
took some time to figure out.

• Delete module bind-execution-id from file
descriptor/spo-summary/transformation.ttl.

Module deletion was trivial as the button is located in the same menu
that spawns the module configuration form (Figure 35).

53

Figure 35: Module menu

• Delete dependency from bind-execution-id to bind-target-rdf4j-server-url
in file descriptor/spo-summary/transformation.ttl.

Dependency deletion is identical to the module deletion and thus was
easy for the users to execute.

• Layout graph in file descriptor/spo-summary/transformation.ttl

using Mr. Tree algorithm, duplicate the view and compare the dupli-
cate with the original one.

The layout scenario was succesfully done by the users, the only com-
plaint being the absence of the current layout indication.

• Check if there are any modules in file descriptor/config.ttl and if
there are any modules in module.sms.ttl.

The user had to only find and open the correct script to be presented
with a message about the absence of module types or modules so the
scenario was succesful.

The user testing of the application showed that the main issue of the user
interface is the user’s lack of experience which can be considered a success.

There also were several other notes on usability from the users:

• There should be a possibility to see a current module configuration (for
example, show read only configuration form).

54

• Module configuration form should close on the Escape key press.

• Going back to the script selection screen by using the browser’s Back
feature is unintuitive for the single-page application.

• Module icons as well as script entries can be extended to show much
more useful information.

• There should be an indication of the script currently edited.

Not all of those features can be easily implemented as some of them require
rewriting libraries, so each feature will be evaluated during the future devel-
opment and the decision will be made if it is worth implementing.

5.3 Automated Code Testing

Due to the issues with the automated code testing, described in detail
in the Section 5.3.2, the amount of work needed for MVP implementation
and the need to meet the deadline, automated code testing was given less
of a priority, being mostly replaced by manual testing, which was necessary
in any case. Main focus of the automated testing was done on the service
methods, while integration testing was mostly done manually.

5.3.1 Statistics

Some of the important statistics are shown in the Figure 36. During the
class coverage statistics collection, classes, where automated testing is not
applicable (enumerations, configuraion classes) were ignored.

SPipes Editor SPipes Forms
Tests written 10 16

Tests run 10 3
Tests ignored 0 13

Code coverage, classes 65%(19/29) 33%(1/3)
Code coverage, methods 24%(75/309) 15%(5/32)

Code coverage, lines 16%(147/871) 5%(14/265)

Figure 36: Some test statistics

55

5.3.2 Issues

Due to the use of Java libraries and APIs as well as Scala’s focus on
functional programming paradigm, application implementation became a mix
of Object Oriented and functional code, which resulted in issues in automated
testing. Main ones are the following:

• Mutable state

One of the main advantages of pure functional programming is the ab-
sence of mutable state, which leads to deterministic results of all the
actions (except the final IO stage). Mixing in the Object Oriented
paradigm brings mutable state to the table therefore taking away the
detereministic nature of the function calls and adding the need to con-
sider the internal state of the objects.

• Complex configuration

Some of the libraries used (e.g. Spring, JOPA) require complex con-
figuration to function which takes time, adds boilerplate and another
possibilty to make a mistake.

• Rigid testing tools

Existing testing tools are aimed on testing either pure functions with no
side effects and therefore incompatible with Object Oriented-style code,
or classes, objects and methods, lacking support for more advanced
functional programming concepts like currying.

• Dependency on the file system

Many features of the editor are dependent on the file system (e.g. read-
ing/writing files, traversing directory structure), sometimes leading to
the need to either provide a part of directory structure or create quite
complex testing data for the ability to test the given feature.

6 Comparison With Topbraid Composer

Topbraid Composer is a complex general purpose RDF editing suite, fea-
turing a reach toolkit of diverse instruments suited for different tasks. How-
ever, being a general purpose editor, it’s not optimized for SPARQLMotion
and therefore has limited use for SPipes as well. SPipes Editor is not meant

56

to replace it in all the possible use cases, but rather to provide functionality,
similar to the graph editor, integrated in the TBC20, to complement the ad-
ditional ontology or text editor. Therefore only comparison of the features
relevant to the SPipes Editor will be mentioned in this Section.

• Functionality

The aspects in which the SPipes Editor is superior to the TBC’s graph
editor are:

– Multiuser support

As TBC is a monolithic offline desktop application, it allows only
one session to be run and therefore does not support sharing data
or between users or parallel editing.

– Module configuration copying

Copying configuration values from one module to another is a typ-
ical scenario editor has to handle. However, TBC does not allow
the used to simultaniously open multiple module configuration
forms. In SPipes Editor it is possible to achieve that by the view
duplication feature.

However, there are some important advantages TBC has over SPipes
Editor – for instance, module parameters visualization and collapsing
parts of a graph respecting layout.

• Usability

Regarding usability, SPipes Editor is better suited for the editing of
large graphs due to the more efficient use of the screen space, achieved
by minimal borders and toolbars. More intuitive controls behavior
(drag-and-drop of module type to create a module instead of clicking on
it and clicking on the main canvas, right click to show the menu instead
of double click) also has positive effect on the overall user experience.
SPipes Editor also supports mobile devices and touch input.

• Design

SPipes Editor features a more modern responsive design achieved by
using scalable components allowing to zoom the view in or out keeping

20Here and later in the text TBC refers to the Topbraid Composer Maestro edition

57

the most important information while also preventing the view from
being cluttered.

More structured feature comparison is shown in the Figure 37.

TBC SPipes Editor
Script creation X

Script visualization X X
Collapsing parts respecting layout X

Multiple layout algorithms ∼ X
Script editing X X

External change notification X X
Module configuration X X

Module configuration copying X
Script execution ∼ X

Execution process visualization ?
Script debugging ?

Move configuration to a subscript ?
Show multiple configurations X
Visualize module parameters X ?

Show the graph overview X X
Show execution history ?
Multiple user editing X

Parallel editing editing X
Mobile devices support X

X – Fully supported ∼ – Limited support
? – Designed, but not yet implemented

Figure 37: Comparison between TBC and SPipes Editor

58

7 Conclusion

7.1 Project Goals Fulfillment

• Review existing graph visualization libraries and graph editors, based
on specific requirements, described in Section 3.5.1

The main result of the review is the feature matrix, shown in the Fig-
ure 19, that allowed to select the most suitable library to serve as the
base of the editor.

• Analyze possible patterns to modularize SPipes scripts

There were several possible script modularization patterns discovered,
which are described in the Section 3.1.2.

• Define use cases for editing and debugging the scripts

The typical use case analysis spawned several scenarios SPipes Editor
should be able to handle, which are described as user test cases in the
Section 5.2.

• Implement the editor for SPipes scripts, based on the analysis results

The application implemented meets all the critical requirements, set
during the analysis phase of the project, as well as some of the less
crucial requirements.

• Compare the implemented editor with the Topbraid Composer SPAR-
QLMotion editor

As Topbraid Composer is a complex ontology editing suite, only the
features, relevant to the SPipes Editor were taken into consideration.
Those features are compared in the Section 6.

• Test the editor on specified use cases

The specified use cases, as well as the feedback received from users
during the testing, are described in the Section 5.2.

As all the project goals are fully or at least for the most part fulfilled, the
project can be considered a success.

59

7.2 Future Development

The three issues future development has to address are the following:

• Fixing bugs

As application is still in the phase of active development, there are
implementation problems and bugs that have to be taken care of before
the production release.

• Features

There are still several important features, according to the requirements
(Section 3.4.1) that have not been implemented due to the lack of time,
that can be added in the future. For instance, collapsing parts of the
graph respecting layout and module parameter visualization.

• Testing

As stated in the Section 5 there is a plenty of work to be done on the
automated code testing, that would benefit the long-term health of the
application.

60

8 Installation Guide

8.1 Prerequisites

For installing the application from source, Apache Maven21 and Node
Package Manager22 are necessary, as well as an application server (e.g. Apache
Tomcat23).

8.2 SPipes Editor

To install the application, a configuration needs to be done. In the file
src/main/resources/config.properties set the scriptsLocation prop-
erty value to point to the root directory, containing scripts (for example,
the included 16gacr-model directory); for function calls to work set the
executionEndpoint property value to point to the SPipes Engine execu-
tion endpoint (web service address). After configuration is done, run mvn

clean package -P production from the root source directory and deploy
the target/s-pipes-editor.war to your application server of choice.

8.3 Local SPipes Engine

To install a local instance of SPipes Engine, go to the semantic-pipes-web
directory, included with the application sources and run mvn clean package.
Deploy the resulting web archive from target/semantic-pipes-web-0.1.0.war

to an application server.

21https://maven.apache.org/
22https://npmjs.com
23https://tomcat.apache.org

61

9 References

[1] Grigoris Antoniou, Frank van Harmelen, A Semantic Web Primer, 2nd
edition, The MIT Press, Massachusetts, 2008.

[2] Guus Schreiber, Yves Raimond, RDF 1.1 Primer,
https://www.w3.org/TR/rdf11-primer/, 2014

[3] Eric Prud’hommeaux, Gavin Carothers, RDF 1.1 Turtle,
https://www.w3.org/TR/turtle/, 2014

[4] David I. Lehn, JSON-LD Primer,
https://json-ld.org/primer/latest/, 2017

[5] Steve Harris, Andy Seaborne, SPARQL 1.1 Query Language,
https://www.w3.org/TR/sparql11-query/, 2013

[6] Holger Knublauch, SPARQLMotion,
http://sparqlmotion.org/ 2010

[7] Graham Klyne, Jeremy J. Carroll, Resource Descrip-
tion Framework (RDF): Concepts and Abstract Syntax,
https://www.w3.org/TR/rdf-concepts/ 2014

[8] Miroslav Blaško, Petr Křemen, SPipes,
https://kbss.felk.cvut.cz/web/kbss/s-pipes

[9] Petr Křemen, Zdeněk Kouba, Ontology-Driven Information System De-
sign, IEEE Transactions On Systems, Man, And Cybernetics—Part C:
Applications And Reviews, Vol. 42, 2012

[10] Markus Lanthaler, Christian Gütl,
On using JSON-LD to create evolvable RESTful services, Proceedings of
the Third International Workshop on RESTful Design, ACM, 2012

[11] Cay Horstmann, Scala for the Impatient, Pearson Education, 2012

[12] Kevin Brennan, A Guide to the Business Analysis Body of Knowledger,
2nd edition, IIBA, 2009

[13] Dan Brickley, Ramanathan Guha, Resource Description Framework
Specification, 2000

62

[14] Miroslav Blaško, Bogdan Kostov, Petr Křemen, Ontology-based Dataset
Exploration – A Temporal Ontology Use-Case, Intelligent Exploration of
Semantic Data, 2016

[15] Dan Brickley, Ramanathan Guha, RDF Schema 1.1,
https://www.w3.org/TR/rdf-schema/, 2014

[16] W3C OWL Working Group, OWL 2 Web Ontology Language Document
Overview (Second Edition), https://www.w3.org/TR/owl2-overview/,
2012

[17] Jakub Kĺımek, Martin Nečaský, Bogdan Kostov, Miroslav Blaško, Petr
Křemen, Efficient Exploration of Linked Data Cloud, in Proceedings of 4th
International Conference on Data Management Technologies and Appli-
cations, SciTePress, 2015

63

10 Appendix

10.1 Abbreviations

Abbreviation Meaning

API Application Programming Interface
DAO Data Access Object pattern
DTO Data Transfer Object pattern
ETL Extract Transform Load
ID Identifier
IO Input/Output

IIBA International Institute of Business Analysis
IRI Internationalized Resource Identifier

JOPA Java Ontology Persistence API
JS JavaScript

JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data

JVM Java Virtual Machine
KBSS Knowledge Based Software Systems
LGPL Lesser GNU Public License
MIT Massachusets Institute of Technology
OWL Ontology Web Language
RDF Resource Description Framework

RDFS Resource Description Framework Schema
REST Representational State Transfer

SPARQL SPARQL Protocol and RDF Query Language
TBC Topbraid Composer
UI User Interface

URI Uniform Resource Identifier
URL Uniform Resource Locator

64

10.2 CD Contents

/..Root directory
thesis.pdf.............................The thesis in PDF format
thesis...Thesis sources

thesis.tex............................The thesis LATEX source
images..Illustrations

app ..Application files
s-pipes-editor SPipes Editor source directory
semantic-pipes-web.................SPipes Engine web service
16gacr-model...............................16gacr-model files

65

	Introduction
	Project Goals

	Background
	Domain Diagram
	Semantic Web
	RDF
	RDFS
	OWL
	RDF Serialization Formats
	SPARQLMotion

	SPipes

	Design
	Analysis of the existing SPipes scripts
	Form model
	Script Modularization Patterns

	Integration Diagram
	SPipes Engine
	SPipes Editor Backend
	SPipes Editor Frontend

	Use Case Diagram
	Requirements
	Functional Requirements
	Non-functional Requirements

	Existing Solutions
	Evaluation Criteria
	Editors
	Graph Visualization Libraries
	Feature Matrix

	Debugging Proposal

	Implementation
	Application Architecture
	Technology Stack
	Scala
	Spring
	Jena
	JOPA
	React
	SForms

	JSON-LD REST API
	Data Transformation
	Model Generation
	Graph Visualization
	Configuration Form Generation

	File System Synchronization
	Implementation Issues
	Application User Interface

	Testing
	Test Model
	Scenarios
	Automated Code Testing
	Statistics
	Issues

	Comparison With Topbraid Composer
	Conclusion
	Project Goals Fulfillment
	Future Development

	Installation Guide
	Prerequisites
	SPipes Editor
	Local SPipes Engine

	References
	Appendix
	Abbreviations
	CD Contents

