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Abstract

The aim of this thesis is to study closely
the phenomenon of adversarial samples. It
goes through the history of the adversarial
attacks, presents a categorization of
these attacks and examines several attack
algorithms in closer detail. It also
presents defense strategies both in theory
and in practice.  Next, a practical
implementation of existing method for
creating robust classifiers as well as a
novel method using publicly available
resources is described in detail, from
choosing a dataset to measuring the
performance of the system. Lastly, both
methods are compared side to side.

Keywords: machine learning, robust
classifiers, adversarial samples,
convolutional neural networks, traffic
signs classifier, Foolbox

Supervisor: Mgr. Viliam Lisy, Ph.D.
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Abstrakt

Tato prace se zabyva blizsim studiem fe-
noménu klasifikace manipulovanych dat.
Prochézi historii téchto utoku, t¥idi je do
skupin a podrobnéji rozepisuje fungovani
vybranych algoritmiu. Spolu s dtoky popi-
suje i zplisoby obrany, jak teoretické, tak i
praktické. Déale predklada ctenari detailni
popis implementace systému pro vytva-
feni robustnich klasifikdtortu za pouziti
volné dostupnych zdroju vcéetné vlastni
nové metody, od vybéru datasetu az po
méfeni vykonu. Na zavér porovnava obé
metody pro zrobustnovani klasifikatori,
Cisté z verejnych zdroju a vlastni.

Kli¢ova slova: strojové uceni, robustni
klasifikatory, manipulovana data,
konvolu¢ni neuronové sité, rozpoznavani
dopravnich znacek, Foolbox

Preklad nazvu: Vytvareni klasifikdtor
robustnich vii¢i manipulovanym datim
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Figures
2.1 The image on the left shows a real
world graffiti example on a Stop sign.
Most humans would not think it is
anything unusual, or even suspicious.
The image on the right shows a
perturbation found by the Robust
Physical Perturbations
algorithm [EEFT17], a brand new
Stop sign with black and white
stickers added to it to imitate the
graffiti. As the authors say: "We
design our perturbations to mimic
graffiti and thus 'hide in the human

psyche’." ... 7

2.2 Examples of dodging [Figure (a)]
with 100% success and
impersonations [Figures (b)-(d)] with
average about 85% success
rate [EEFT17]. The impersonators
are in the top row wearing custom
glasses, the bottom row shows
targets. In order they are Milla
Jovovich, the famous actress and
model, the participant in the
experiment shown in Figure (d) with
glasses, and Carson Daly, an
American broadcaster............. 8

3.1 A demonstration of fast adversarial
example generation applied to
GoogLeNet [GSS14] on a sample
from ImageNet. On the left is the
original input image together with
with its label and model’s confidence
in its prediction. In the middle, the
map of gradient signs is shown. Each
pixel’s RGB value is set to maximum
or minimum according to the sign of
gradient for given pixel channel. On
the right, the created adversarial
sample is shown. It is created by
taking the original image and adding
the created gradient sign map
multiplied by very small e. In this
case, the e = 0.007. As we can see in
the network’s label and confidence
values, a for humans virtually
indistinguishable perturbation
radically changes the model’s
prediction. ........ .. ... ... ...

3.2 The Boundary attack [BRB17]
explained. On the left side, the
actual process hidden behind the
walk around the boundary to lower
the distance between is depicted. On
the right side, a single iteration of
drawing a new random direction is
demonstrated. First, it projects on a
sphere with r equal to the distance
between original image and current
adversarial sample (#1), then it
makes a small step towards the

original image without crossing the
boundary (#2)..................

4.1 The distribution of German Traffic
Sign Recognition Benchmark
dataset [SSSI11]. The dataset is
quite unbalanced but the distribution
in dataset basically corresponds to
the real distribution of traffic signs
around Germany. ...............

4.2 Example of original (unchanged)
images from German Traffic Sign
Recognition Benchmark dataset. . .
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4.3 Example of the same images as in
Figure 4.2 after application of all
preprocessing steps — leaving out the
colour information, transformation to
floats in range [0, 1] for higher
precision and equalization of the
histogram (the transformation to
floats is not important here just yet).
Most notably, the advantage of
histogram equalization should be
obvious on first sight. ...........
4.4 Adversarial sample examples after
complete preprocessing. On the left
are original images, in the middle
created adversarial samples and on
the right is the difference between the
two scaled up for improved visibility. 18
4.5 Adversarial sample examples on
input data with colour information
and without histogram equalization.
On the left are original images, in the
middle created adversarial samples
and on the right is the difference
between the two scaled up for
improved visibility. The images are
titled with a label of the prediction of
the model trained up to 99%
accuracy together with the model’s
confidence in its prediction (in
brackets). .......... ...l
4.6 Example of 10 samples from the
MNIST dataset. On the top row,
there is 10 unedited samples from the
dataset, on the bottom row are
correct labels. ......... ... ... ...
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5.1 Depiction of complete model
architecture step by step. It shows
acutely where each convolutional
layer is as well as from where the
bigger-scale feature is extracted and
to where it is max-pooled. After all
feature extraction comes the
flattening down to one dimension
vector and feeding this vector into
the fully connected softmax classifier.
It is based on [Stal7] and expanded
to support all colour information. .

5.2 Complete history of training the
model up to 99% accuracy. On the
left, development of accuracy is
shown. On the right side is the loss
of the model for each epoch. .....

5.3 Complete history of training the
model up to 99% accuracy on the
MNIST dataset. On the left,
development of accuracy is shown.
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Tables

2.1 The attack model by [BNST06].
The summary of attack properties
and their mutual relations is
captured here separated into three
axes, together with examples.
Causative attacks that can alter the
process of training the learner, and
exploratory attacks that use
techniques not interfering with the
learning. Targeted attacks that strive
to exploit one particular weakness or
service while indiscriminate are those
attacks where the attacker has a
wider scope. Integrity attacks where
the attacker seeks to sneak through
some badly categorized samples, or
an availability attacks where he tries
to lower the performance enough to
take down the whole system. ...... 4

2.2 Theory of defense against the
attacks in Table 2.1 [BNST06],
separated in the same categories as
the attacks against which they are
applicable. The regularization is a
technique used to restrict or bias the
choice of the system when it deals
with lack of data or noisy data.
Randomization adds a certain
randomness to the decision boundary
of the classification system. Finally,
the information hiding represents the
effort to hide as much information
from the attacker as possible.. ... .. )

viii

3.1 Foolbox performance comparison.
This table shows complete summary
of Foolbox algorithms attacking the
model described in Chapter 5 trained
on the GTSRB dataset described in
Chapter 4.1. The attack algorithms
are separated in groups according to
the classification described in
Chapter 3.1 in order they are listed
in Foolbox documentation. Next is
shown the time for classification a
single image to give the reader a
perspective on performance.
Following are statistics on the attack
algorithms themselves, first the times
the algorithm needs to successfully
create an adversarial sample, then
the L2 distances between original and
adversarial samples, and finally the
percentage of failures for the attack
algorithm. Each test was executed on
the same five hundred images
randomly selected from the GTSRB
dataset with the single exception of
the SLSQP algorithm and the
Boundary algorithm, which due to
their low speed was run only 50

tImes. ..o 14

5.1 Detailed per-layer description of
the dropout regularization used in
model described in Chapter 5.1. Lists
all layers in the neural network, what
type each layer is, how many neurons
it consists of, what is the probability
p of keeping each neuron in the layer
at current training stage, and also

what is the dropout of each layer.. 22



5.2 Overview of training process of the
model on GTSRB dataset described
in Chapter 4.1. A comparison of
speed between training on Nvidia
GTX 940M and Nvidia GTX 1050Ti
is shown here as well as the
randomness present in the process of
training a neural network. The
difference in performance is not so
significant here but it will be much
more important when the attacks
come into the equation........... 25

6.1 Summary of first ten epochs of
adversarial training using FGSM
algorithm as described in [PMG*17].
The initial model, displayed in
column under epoch 0, is described in
Chapter 5 and trained on the
GTSRB dataset up to 99% accuracy.
The table shows time needed to train
and then evaluate the model together
with the model’s accuracy on both
the original dataset input and
on-spot created adversarial samples.
Next are the statistics for FGSM
algorithm (which it is being trained
on) and DeepFool algorithm to
represent the transferability of
robustness against adversarial
samples. A comparison with
Table 6.2 shows that both algorithms
perform in similar fashion. ....... 29
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algorithm as described in [PMGT17].
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Chapter 1

Introduction

Neural networks are considerably old concept, first model was created by
Frank Rosenblatt in 1957. It received a lot of attention but then the limits of
neural networks were discovered to be more restrictive than what researchers
hoped for, and the research almost stopped. Rosenblatt’s perceptron was
a single neuron. As such, it wasn’t hard to work with but it was able to
classify linearly separable data only. To classify more complicated data, more
complicated networks are necessary which requires more power to simulate.

Recently, the neural networks are getting a lot of attention again. One of the
reasons is that we are finally getting computation power needed to simulate
and train bigger networks. It can still take days but it can be done. Because of
that, neural networks are getting more widespread and penetrate into various
fields of human activity. Arguably the most famous and talked-about in recent
days is the application in autonomous driving vehicles. More information
about the history and development can be found in Chapter 2.

But this sudden boom in use means they attract more attention in general.
Most importantly for this work, attacks against these networks are more
common. Hand in hand with attacks, security needs to be developed and
evaluated for these systems. Chapter 3 presents a more in-depth insight in
the problematic of both attack and defense. It is often not an easy thing to
come up with an appropriate defense strategy, only more so when a new or
confusing vector of attack appears, and this is the case for both.

Although the neural networks work really well in solving certain areas of
problems, they are very different from human understanding of those problems.
This makes it hard for humans to imagine or understand what do the neural
networks actually learn and what criteria they base their decisions on, which
is critical information for making the final solution more robust. Chapter 2.1
describes how humans found some of these properties and what they are.

Let me present an example with traffic signs. Also, let me leave out the whole
process of identifying what is a traffic sign and what is not and just concentrate
on classifying them. When a human sees a traffic sign, he compares it with



1. Introduction

his knowledge base and finds a class that seems the most probable. Until
this point, it is the same with neural networks but the difference between
their respective knowledge bases is vast. Humans have prior knowledge about
colours and geometric shapes and a great number or various other pictographs
which helps with the classification. The neural network does not know about
any of this, it has to derive all its knowledge from a number of examples
of traffic signs. Therefore it looks for some unique identifiers that only the
examples in one class have and uses these found patterns to classify new
inputs.

This introduces a big danger for neural networks, because disturbing such
a pattern is a very easy feat. Moreover, it often doesn’t change the human
perception of given sample. After all, a traffic sign with washed out colours
or a sticker on the edge is still the same traffic sign for us. But for the neural
network, this can easily change the pattern the system learned and make
the system classify this new input as a different class. In other words, these
are inputs that seem perfectly normal and clear for human perception but
they are misclassified by the neural networks. Humans found various ways
to create these alterations and named them the adversarial samples. More
examples are introduced in Chapter 2.2.

There are already many ways to create the adversarial samples. Although it
is a new field with only few years since its discovery, a big number of different
methods to create the adversarial samples was already created. Many of these
come from scientific research and a classification system was put in place.
Chapter 3 delves into the depths of creation of adversarial samples. There
also exist toolboxes that assist with the attack. One of them, the Foolbox is
examined and put to work in this thesis.

Chapter 4 introduces the datasets used in practical examples and experiments.
A number of various preprocessing techniques is also discussed there.
Chapter 5 on the other hand describes the structure of the classifier chosen to
be the basic building block of the system developed in this thesis. The theory
of training a neural network classifier is mentioned together with introduction
of several techniques used to improve the training process. The results of
training the classification model with both datasets are presented too.

The process of making a neural network classifier more robust is described
and demonstrated in Chapter 6. First, an existing method is described and
evaluated. Then, an idea for improvement is introduced and evaluated as well.
Lastly, both methods are compared using different metrics and a conclusion
is drawn.



Chapter 2

Related work

There has always been a need for defense against an attacker in automated
decision making, either in games [FLI8], robot motion planning [MGBO03] or
in machine learning [BNS*06].

The [BNST06] specifically thoroughly analyzed and described the potential
vectors of attacks on machine learning in general. They focused on examining
whether an attacker can manipulate the classification system (and how) to
permit a specific attack, or if it is possible for the attacker to significantly
degrade the performance of the system. Altogether, they found three axes
defining a space of possible attacks:

® Influence — Causative attacks that can alter the process of training
the learner, and exploratory attacks that use techniques not interfering
with the learning, for example probing the learner. This axis more or less
represents the separation into black-box and white-box later in chapter 3.

B Specificity — Deals with the width of area the attacker wants to
target. Targeted attacks that strive to exploit one particular weakness
or service while indiscriminate are those attacks where the attacker has
a wider scope.

B Security violation — This axis defines what the attacker tries to
achieve with his attack. He can perform either an integrity attack
where he seeks to sneak through some badly categorized samples, or an
availability attack where he tries to lower the performance enough to
take down the whole system.

A concise summary of these properties and their mutual relations is shown
in Table 2.1. The [BNS'06] also discussed the theory for possible defenses.
Similarly as in attack properties, the authors propose three main possible
defense vectors:

B Regularization which is a technique from statistics used to restrict or
bias the choice of the system when it deals with lack of data or noisy
data. It is also a good way to keep a high level of generalization of the

3



2. Related work

Integrity Awvatlability
Create sufficient errors to make sys-
Causative: Targeted || Permit a specific intrusion tem unusable for one person or ser-

vice

Create sufficient errors to make
learner unusable

Find a permitted intrusion from a | Find a set of points misclassified by
small set of possibilities the learner

Indiscriminate || Permit at least one intrusion

Exploratory: Targeted

Indiscriminate || Find a permitted intrusion

Table 2.1: The attack model by [BNS*06]. The summary of attack properties
and their mutual relations is captured here separated into three axes, together
with examples. Causative attacks that can alter the process of training the learner,
and exploratory attacks that use techniques not interfering with the learning.
Targeted attacks that strive to exploit one particular weakness or service while
indiscriminate are those attacks where the attacker has a wider scope. Integrity
attacks where the attacker seeks to sneak through some badly categorized samples,
or an availability attacks where he tries to lower the performance enough to take
down the whole system.

classifying system.

® Randomization is a technique easily understood from its name - it adds
certain randomness to the decision boundary of the system. This makes
it a potential candidate against targeted attacks as those are the attacks
that try to move the decision boundary past the targeted point.

B Information hiding is also easily understood from its name. It
represents the effort to hide as much information from the attacker
as possible. An alternative name from security engineering circles that
gained more renown while basically keeping the same meaning is security
through obscurity.

A summary of these techniques together with areas in which they are
applicable is shown in Table 2.2. There is a trade-off in application of each of
these techniques, however. The regularization lowers the effect of legitimate
data on the learning process in order to keep high level of generalization. The
randomization increases the error rate of the classification system on top of
increasing the attacker’s work. And finally, the information hiding is usually
really hard to put in practice or reinstate once discovered, while also going
against the spirit of open-source and the still more popular opinion that only
open-source can offer real security and privacy.

Still, most of those defense mechanisms are nowadays usually already
implemented in the classification model itself, either directly as a part of the
system or in form of some preprocessing (more on this topic in Chapter 4).
These attack and defense models are applicable for all machine learning
systems but there is one big vulnerability shared by most existing machine
learning systems, neural networks in particular, that stands out in present
times.



2.1. Counter-intuitive properties of neural networks

Integrity Availability
* Regularization e Regularization
Causative: Targeted
¢ Randomization e Randomization
Indiscriminate ® Regularization e Regularization

e Information hiding
Ezploratory: Targeted e Information hiding
¢ Randomization

Indiscriminate e Information hiding

Table 2.2: Theory of defense against the attacks in Table 2.1 [BNST(06], separated
in the same categories as the attacks against which they are applicable. The
reqularization is a technique used to restrict or bias the choice of the system
when it deals with lack of data or noisy data. Randomization adds a certain
randomness to the decision boundary of the classification system. Finally, the
information hiding represents the effort to hide as much information from the
attacker as possible.

B 2.1 Counter-intuitive properties of neural
networks

The first to notice this vulnerability were researchers in [SZS'13]. They were
interested in learning more about how the neural networks achieve such high
performance on visual and speech recognition problems. In their studies they
discovered two interesting counter-intuitive properties of neural networks.

B First is the absence of distinction between high level units. There were
many other works before that analyzed the semantic meaning of various
units [GDDM13, GLST09, ZF13]. They tried to find the sets of inputs
that maximize the activation of given unit. This approach, however,
stands on an implicit assumption that the units in the last layer for
feature extraction can be efficiently used to extract semantic information.
That is an expected intuitive result for human beings. On the contrary, it
was proven that a randomly chosen high level unit (or linear combination
of thereof) is equally adept to classify the data (i.e. with comparable
accuracy) as careful selection of units to select round white flowers for
example. This leads to conclusion that neural networks hold the majority
of semantic information in the entire space of activations rather than the
individual units.

B Second property is the high level of discontinuity of input-output
mappings. When dealing with high performance deep neural network, it
is common to assume solid generalization, that is to expect that such
a system will be able to reliably classify previously unseen samples in
correct categories. This system should be robust to small perturbations
to its input, perturbations small enough so they are not able to change
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the category of the image. A white dog is still a white dog even if it
has a bit of grey fur on its ear. Yet, even absolutely imperceptibly
small perturbation can change the category of image if crafted for this
purpose (see Figure 3.1 for example). These images with imperceptible
perturbation are called adversarial samples. On top of that, even the
best performing neural networks are very susceptible to the adversarial
samples. In [SZS'13], they carefully crafted some adversarial samples
that were able to trick the network with the network being almost 100%
sure about its classification while human could not tell the difference
between the crafted adversarial sample and the original picture.

Normally, one would expect these vulnerabilities to be random artifacts
originating from supervised learning. But this property was also proven
to be shared between different neural networks. It was shown that
attackers with access to an independently collected labeled training
set from the same population distribution as the one used to train
the targeted classifying system could train a model with a different
architecture and use it as a substitute for the targeted system. Which
means the attackers can find adversarial samples for their substitute and
take advantage of the adversarial samples being shared as well. The
transferability of changes between different models was studied more in
depth in various works and also serves as a base for various black-box
attacks [LCLS16]. It is this property and its transferability, that makes
the adversarial samples stand out.

. 2.2 \Variety of the adversarial samples application

Since the discovery of adversarial samples, several works have shown that
it is surprisingly easy to craft these images in various ways. Adversarial
samples pose security concerns because they could be used to perform an
attack on machine learning systems, even if the adversary has no access to the
underlying model. There are several great examples of what can actually be
done. In [KGB16], it was shown that there is no need to feed the adversarial
samples directly into the network (which is usually not the case for systems
operating in the physical world, for example those which are using signals
from cameras and other sensors as input).

Others took a different approach and shown that altering of physical objects
in real world and subsequent misclassification of their images is also a real
possibility. The researchers in [EEFT17] designed a new algorithm called
Robust Physical Perturbations which can generate an adversarial sample that
is reproducible in real world, on actual physical objects (see Figure 2.1). By
simply adding a black and/or white stickers to the object, they are able to
achieve 100% success rate in laboratory conditions and over 80% in real world
tests, in this case capturing an on-board video from moving car going by
modified Stop sign.
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Figure 2.1: The image on the left shows a real world graffiti example on a Stop
sign. Most humans would not think it is anything unusual, or even suspicious.
The image on the right shows a perturbation found by the Robust Physical
Perturbations algorithm [EEFT17], a brand new Stop sign with black and white
stickers added to it to imitate the graffiti. As the authors say: "We design our

n

perturbations to mimic graffiti and thus ’hide in the human psyche’.

Another good example would be demonstration of circumventing the facial
recognition systems by simply making a custom pair of glasses [SBBR16].
The researchers here focused on tricking the biometric face recognition
systems with several key points in mind. They wanted to make their attacks
inconspicuous so no one present to the attack (or watching a recording of the
process) would not notice anything out of ordinary, physically realizable and
able to deceive actual face recognition systems employed in real world. They
also set out two goals, either force the system to recognize the impersonator
as a specific authorized user or simply avoid detection as the impersonator
himself. They were able to dodge the identification of the impersonator and
also successfully impersonate someone similar to the impersonator in all cases.
They also achieved about 85% success rate in impersonating basically an
arbitrary person without any regard to sex or racial features such as skin
color (see Figure 2.2).
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(a)

Figure 2.2: Examples of dodging [Figure (a)] with 100% success and
impersonations [Figures (b)-(d)] with average about 85% success rate [EEFT17].
The impersonators are in the top row wearing custom glasses, the bottom row
shows targets. In order they are Milla Jovovich, the famous actress and model,
the participant in the experiment shown in Figure (d) with glasses, and Carson
Daly, an American broadcaster.



Chapter 3

Closer examination of adversarial samples

. 3.1 Classification

There are tens of methods to create adversarial samples already developed.
As a consequence, there are various ways to classify these methods. First big
division is whether or not the attacker has access to the inner workings of the
targeted network. In other words, whether he can obtain knowledge of how
the neural network was built, what layers are present, what type of neurons
these layers consist of, how they are connected, etc.

This separates possible methods in two groups:

1. black-box where the attacker doesn’t know anything about the targeted
network (all he can do is feed the network some input and observe the
outputs), and

2. white-box where the attacker has full access to everything.

White-box attacks are much less common in real world, usually the structure
of the network is not known or is at least obfuscated to increase protection.
Also, as was mentioned in Chapter 2 about defenses, information hiding is
a valid defense mechanism despite its drawbacks, even for increasing the
security of the systems, and only more so for numerous proprietary private
paid systems.

B 3.1.1 Gradient-based attacks

Another possible approach is to classify the attack methods by main features
of the attack algorithm. First of these would be the so called gradient-based
attacks. This is a group of algorithms that use gradient of the model on
input data to shift the weights just enough to mis-classify the adversarial
sample. In other words, these algorithms look at a picture of an airplane,
they test which direction in picture space makes the probability of the cat

9
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Figure 3.1: A demonstration of fast adversarial example generation applied to
GoogLeNet [GSS14] on a sample from ImageNet. On the left is the original input
image together with with its label and model’s confidence in its prediction. In
the middle, the map of gradient signs is shown. Each pixel’s RGB value is set to
maximum or minimum according to the sign of gradient for given pixel channel.
On the right, the created adversarial sample is shown. It is created by taking
the original image and adding the created gradient sign map multiplied by very
small e. In this case, the ¢ = 0.007. As we can see in the network’s label and
confidence values, a for humans virtually indistinguishable perturbation radically
changes the model’s prediction.

class increase, and then they give a little push (i.e. they perturb the input) in
that direction. The new, modified image is mis-recognized as a cat. Probably
the most famous and used method nowadays is the Fust gradient sign method

[GSS14).

B Fast gradient sign method is an iterative algorithm with high
success rate and low time and computational complexity. This method
adds the per pixel sign of the gradient to the image, gradually increasing
the magnitude until the image is misclassified. To obtain the gradient, it
is needed first to compute the derivatives of the loss function according
to the pixels of the image. As mentioned in [GSS14], only the sign of the
derivative is used. So the output is basically a matrix of the same size
as original image, that contains only 4+ or — signs. These signs express
the gradient and all that is left to do is to multiply these by some small
€ to make the next iteration step.

An example is shown on Figure 3.1. There is an sample image from
ImageNet dataset classified by the GoogLeNet [GSS14]. On the left side,
the original input image is displayed together with with its label and
the GoogLeNet’s confidence in its prediction. The input is labeled as
z. In the middle, the map of gradient signs is shown. It is created by
taking the original picture and finding the direction in picture space
that rises the probability of gibbon class in the model’s prediction. The
gradient is a representation of this direction. Each pixel’s RGB value
in this gradient map is set to maximum or minimum according to the
sign of gradient for given pixel channel. On the right side, the created

10
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adversarial sample is displayed. It is created by taking the original image
and adding the created gradient sign map multiplied by very small e. In
this case, the e = 0.007. It is shown in the network’s label and confidence
values that a perturbation for humans virtually indistinguishable from
the original image, changes radically the model’s prediction.

® Other methods in this category are L-BFGS-B [TV15] or DeepFool
[MFF15].

A simple defense is to mask the gradient. However, there are algorithms that
can bypass that by various means (substitute model, gradient approximation,
etc.). Still, hiding the gradient is solid and efficient protection against these
attacks.

B 3.1.2 Score-based attacks

Other type of attacks could be called score based. These algorithms basically
use numerical methods to estimate the gradient and work from here. There
are two main algorithms to introduce in this group, local greedy search and
single pizel attack.

B Single pixel attack chooses one pixel and sets its value to minimum
or maximum value. It is based on the observation that most images
actually have some critical pizels which have significantly higher influence
on model’s prediction than the average [NP16]. This algorithm usually
runs a predetermined number of iterations and chooses the pixels
randomly in hope that it will eventually hit one of the critical pixels.

B Local greedy search is based on the idea and shortcoming of the
single pixel attack algorithm. A single pixel is not always enough to
create an adversarial sample. It might be better to search for a small
set of important pixels and perturb them in smaller steps instead. This
iterative algorithm first chooses a random pixel in the image. Then
it perturbs the pixel and in next iteration it creates a neighbourhood
in shape of square with edge size 5 (experimentally found in [NP16])
centered around each pixel perturbed in previous iteration. In this
neighbourhood it finds pixel locations using an objective function that
minimizes the probability that an adversarial sample with this specific
perturbation belongs to its original class. It terminates if it succeeds to
push the true label below the kth place in the confidence score vector at
any iteration. Otherwise, it proceeds to the next iteration until it hits
the predetermined number of iterations.

m There is also a variation of L-BFGS-B [TV15] that belongs in this
group of attacks since it does not need the gradient, it calculates an
approximation and works with that.

The defense strategy against these attacks is to make it harder to compute
the gradient estimate. That can be done by adding a stochastic elements

11
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like dropout regularization to the model. Another option is to masks both
gradients themselves and also their numerical estimate by creating a sharp-
edged plateau around the samples [TKP*17].

B 3.1.3 Transfer-based attacks

These attacks leverage the knowledge about training data used to learn the
classification model rather than knowledge on the model itself. They rely on
training a substitute model using the same dataset that was used to train
the targeted classification system [PMG'17]. Then they make use of the
transferability property of neural networks as discussed in Chapter 2.1.

A solid defense for this type of attack, based on robust training on a dataset
augmented by adversarial examples from an collection of substitute models,
was introduced in [PMGT17].

B 3.1.4 Decision-based attacks

Yet another group of attacks is decision based. Their biggest advantage is
that they do not need any extra information (for example knowledge about
gradients or probabilities) for their work. These algorithms work usually with
blurring the image or reducing contrast or adding some kind of noise until
the adversarial sample is constructed. Recently however, a novel algorithm
was introduced [BRB17] that achieves much better performance than the rest
in this group at the cost of speed.

B Boundary attack is a powerful algorithm that works by first adding a
big perturbation to the picture to create any adversarial sample. Then,
it performs a random walk along the decision boundary between the
adversarial sample and the original image. The walk has to follow only
two conditions — it needs to stay on the adversarial side of the boundary
and every iteration has to lower the distance between the adversarial
sample and the original image. When the algorithm cannot make next
step while keeping those conditions true or when it reaches maximum
number of iteration, the search terminates. A graphic demonstration of
the process is shown on Figure 3.2.

Currently, there is no simple or intuitive defense for the group of decision-
based algorithms as: a) they do not use any information that could be
hidden or left out, and b) the Boundary attack is a very new addition (yet
there is already a method of disturbing the boundary by creating many local
minimums, in which the Boundary attack stops farther from the original
sample) and the other attack algorithms were mostly overlooked due to their
low performance.

12
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Figure 3.2: The Boundary attack [BRB17] explained. On the left side, the
actual process hidden behind the walk around the boundary to lower the distance
between is depicted. On the right side, a single iteration of drawing a new
random direction is demonstrated. First, it projects on a sphere with r equal to
the distance between original image and current adversarial sample (#1), then
it makes a small step towards the original image without crossing the boundary

(#2).
. 3.2 Foolbox

As was discussed above, there are many different ways of creating adversarial
samples. There are also multiple tools to help with that. Out of all these, T
decided to use the Foolbox [RBB17].

Foolbox is an open-source python package designed to work with multiple
neural network frameworks. It currently contains interfaces for TensorFlow,
PyTorch, Theano, Lasagne, Keras and MXNet models.

The whole toolbox is highly configurable, supporting many attack criteria
and distance measurements. It provides reference implementations of most
published adversarial attack methods including those mentioned above
alongside some new ones. Moreover, all the algorithms implemented in Foolbox
perform internal hyperparameter tuning to find the minimum adversarial
perturbation.

This tool works as a standard python library which provides a big versatility,
including implementation of original algorithms or queueing various steps
into scripts.

A complete overview of all available attack algorithms currently implemented
in Foolbox together with their performance on model described in Chapter 5
trained on the GTSRB dataset described in Chapter 4.1 is shown in Table 3.1.

13
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Category Algorithm name Classification Attack times [ms] L2 distances Attack
times [ms] min avg max min avg max fail %

Gradient-based Fast Gradient Sign Method 2 10 99.49 2939 0.05 1.49 22.01 0.2
DeepFool Attack 2 61 138.176 1105 0 0.65 3.56 0

Saliency Map Attack 2 28 1026.798 12641 0.1 1.58 7.21 0

Gradient Attack 2 10 120.296 3808 0.05 0.77 9.21 1.8

L-BFGS-B Attack 2 750 4644.892 18063  0.03 0.6 4.42 0

SLSQP Attack 2 9431 11719.52 18957 15.74 22.88 28.99 4

Score-based Local Search 2 38 3613.182 6949 0.48 10.72 19.58 0.4
Single Pixel Attack 2 5 4367.618 6380 0.66 1.12 1.73 73.4

Decision-based  Gaussian Blur Attack 2 53  745.904 6532 0.05 5.08 20.31 5.6
Contrast Reduction Attack 2 124 2025.3 3362 0.42 11.25 22.36 4.4

Additive Uniform Noise Attack 2 168 1657.616 3426 0.1 899 22.6 2.6

Additive Gaussian Noise Attack 2 168 1788.876 3196 0.09 848 20.89 5

Blended Uniform Noise Attack 2 42 1578.924 2918 0.42 11.75 27.95 4.6

Salt And Pepper Noise Attack 2 1053 2077.612 2643 0.12 6.19 25.45 0

Boundary Attack 2 1053 2077.612 2643 0.12 6.19 25.45 0

Table 3.1: Foolbox performance comparison. This table shows complete summary of Foolbox algorithms attacking the model described in
Chapter 5 trained on the GTSRB dataset described in Chapter 4.1. The attack algorithms are separated in groups according to the classification
described in Chapter 3.1 in order they are listed in Foolbox documentation. Next is shown the time for classification a single image to give
the reader a perspective on performance. Following are statistics on the attack algorithms themselves, first the times the algorithm needs to
successfully create an adversarial sample, then the L2 distances between original and adversarial samples, and finally the percentage of failures
for the attack algorithm. Each test was executed on the same five hundred images randomly selected from the GTSRB dataset with the single

exception of the SLSQP algorithm and the Boundary algorithm, which due to their low speed was run only 50 times.
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Chapter 4

Datasets

This work utilizes two datasets:

1. German Traffic Sign Recognition Benchmark dataset [SSSI11] as
the main dataset to present various steps in development and test multiple
configurations and results. This is a traffic signs dataset that allows
demonstration of many various techniques in a way that is easy to
understand for humans.

2. Modified National Institute of Standards and Technology dataset

[LBBH98] to demonstrate generalization of this work at important points.
It is a simple yet famous and very often used dataset of handwritten
digits.

B 41 German Traffic Sign Recognition Benchmark
dataset

There is quite a lot of different high quality traffic signs datasets because
of the boom in popularity of autonomous driving. There are well organized
datasets from Sweden [LF11], Belgium [MTBG13] or USA [ST14], to name a
few.

For this work I decided to use arguably the most famous and the most
used dataset of its type, the German Traffic Sign Recognition Benchmark
(GTSRB) dataset [SSSI11] created in 2011 for a classification challenge held
at the International Joint Conference on Neural Networks (IJCNN). This
dataset comprise of 39 209 training images and 12 630 test images separated
into 43 classes, properly labeled and taken from real traffic video around
Germany in various weather conditions. The dataset is quite unbalanced
(see Figure 4.1) but the distribution in dataset should mostly correspond
to the real distribution of traffic signs around Germany, given how it was
constructed. All the images are resized to 32 x 32’ pixels. FEach image
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Figure 4.1: The distribution of German Traffic Sign Recognition Benchmark
dataset [SSSI11]. The dataset is quite unbalanced but the distribution in dataset
basically corresponds to the real distribution of traffic signs around Germany.

therefore is ’32 x 32 x 3’ matrix of pixel intensities as integers in range [0, 255]
representing the R, G and B colour channels respectively.

Bl 4.1.1 Preprocessing

In order to use the dataset with state-of-the-art performance, preprocessing is
an advantageous step as the images varies greatly both in quality and weather
conditions (see Figure 4.2). Typically, preprocessing has several goals to
achieve. It modifies the data so it fits target model as every dataset is usually
in different format and often more than one dataset is used to demonstrate
results. It also improves performance of the classification model by enhancing
the important features so they have bigger impact on the training process.
It usually also improves speed of the training as it does some part of the
work just once ahead of the training process instead of repeating it for every
instance and iteration again and again during the actual training.

® The first step of preprocessing for the GTSRB dataset would be to remove
colour information from the pictures. This can be best done by taking
only the luma component of original image (the Y channel from YCbCr
representation). This preprocessing step was proposed by Sermanet
and LeCun [SL11]. Their experiments show that classification models
using greyscale images as inputs achieve at least similar performance
as coloured version of the same model, and even that using colour
information is often worse than using no colour at all.
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Figure 4.2: Example of original (unchanged) images from German Traffic Sign
Recognition Benchmark dataset.

Figure 4.3: Example of the same images as in Figure 4.2 after application of
all preprocessing steps — leaving out the colour information, transformation
to floats in range [0, 1] for higher precision and equalization of the histogram
(the transformation to floats is not important here just yet). Most notably, the
advantage of histogram equalization should be obvious on first sight.

® Second step is to scale the range from [0, 255] integer value in the original
image to [0, 1] float values. This step is important for two reasons. First,
it allows much higher precision of pixel intensity which is a requirement for
creation of adversarial samples with very small perturbations. Secondly,
it also serves the purpose of fitting the dataset to the model as will be
shown in Chapter 5.

® The last step is to correct the brightness and contrast so all the pictures
are of comparable quality. This means loosing some information but
allows the model to focus on what is important for classification (the
Yield sign is still Yield sign whether it is dark, rainy or sunny). The best
way to do that is to equalize the histogram, i.e. make the darkest spot
absolute black, brightest spot absolute white and proportionally scale
the rest of the picture.

When all the steps above are implemented, the final result would look just
like Figure 4.3.

However, these changes alter the data before it meets the neural network itself.
That effectively puts these alterations out of the model we want to attack
using adversarial samples. It makes sense in normal applications because it
saves a lot of computation time during both training and testing phase of the
neural network. But here it makes the attack algorithms create adversarial
samples on data that is not actual input which leads to loss of some data and
also is not intuitive for humans (Figure 4.4).

To avoid the full impact of the performance hit associated with leaving out
preprocessing completely while keeping the input data as close to reality as
possible, it was decided to omit the preprocessing steps that loose information.
That means keeping only the transformation to floats as a preprocessing while
keeping colour information and skipping the histogram equalization. The
model will be working with fully coloured images which increases mostly space
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Figure 4.4: Adversarial sample examples after complete preprocessing. On the
left are original images, in the middle created adversarial samples and on the
right is the difference between the two scaled up for improved visibility.

requirements (triples them) and skips the histogram equalization completely.
This allows to work with data that reflects real life applications (Figure 4.5)
without any big performance hit.

. 4.2 Modified National Institute of Standards and
Technology dataset

The Modified National Institute of Standards and Technology (MNIST)
dataset was created in 1998 [LBBH98]. Despite its age, this dataset is
increasingly more popular in recent years, and just in year 2017 it received
over 35% of all its citations since creation (according to IEEE and Google
Scholar statistics).

The MNIST dataset is a well known collection of handwritten single digits.
It has 60 000 samples in the training dataset (split into 55 000 training part
and 5 000 validation part) and 10 000 samples in the testing dataset. Each
sample was rescaled to '28 x 28’ pixels and anti-aliased (see Figure 4.6).

Due to the nature of this dataset, there is no preprocessing necessary, the
dataset is distributed as completely ready to be used in training.
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attention_construction [0.99] 50 speed [0.36] Difference
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Figure 4.5: Adversarial sample examples on input data with colour information
and without histogram equalization. On the left are original images, in the
middle created adversarial samples and on the right is the difference between the
two scaled up for improved visibility. The images are titled with a label of the

prediction of the model trained up to 99% accuracy together with the model’s
confidence in its prediction (in brackets).

3 4 6 1 8 1 0 9 8
Figure 4.6: Example of 10 samples from the MNIST dataset. On the top row,

there is 10 unedited samples from the dataset, on the bottom row are correct
labels.
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Chapter 5

Model construction

The idea for the model comes from the work of Alex Staravoitau [Stal7] and
goes all the way back to the work of Sermanet and LeCun [SL11]. It is a
fairly simple deep neural network classifier that has 3 convolutional layers for
feature extraction and 1 fully connected layer as the classifier.

The model uses multi-scale features; that is, the output of each of the
convolutional layers feeds not only in the subsequent layer but also directly to
the last classifying layer. To ensure equal resolution of the final convolutions,
all the input skipping the rest of convolution layers is maz-pooled (discretized/
downscaled on per-sample basis). Figure 5.1 shows full model architecture
with all max-pool conversions and their magnitude step by step.

B 51 Regularization

For training process, a number of regularization techniques is used to keep a
high level of generalization. The background for regularization as a defense
technique was already mentioned in Chapter 2. This is a good goal to achieve
in every classifier but it is even more important here where we try to create
adversarial samples as close as possible to original inputs.

1. Dropout This technique prevents over-fitting by preventing complex
adaptations on training data. At each training stage, individual neurons
are either kept in the net with probability p, or dropped out of the
net with probability 1 — p. This technique is usually employed on
fully connected layers only as those are the most prone to over-fitting.
In [Stal7], the author gets a slight improvement in performance when
using some dropout on all layers, therefore it is kept on all layers here as
well (exact number for each layer is shown in Table 5.1).

2. L2 regularization This technique simply adds an additional error,
proportional to the squared magnitude of the weight vector, to the error
at each node. The L2 regularization has the intuitive interpretation of
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Layer type # of neurons p Dropout
Layer 1 5x5 Convolutional 32 0.9 10% of neurons
Layer 2 5x5 Convolutional 64 0.8 20% of neurons
Layer 3 5x5 Convolutional 128 0.7 30% of neurons
Layer 4  Fully connected 1024 0.5 50% of neurons

Table 5.1: Detailed per-layer description of the dropout regularization used in
model described in Chapter 5.1. Lists all layers in the neural network, what
type each layer is, how many neurons it consists of, what is the probability p of
keeping each neuron in the layer at current training stage, and also what is the
dropout of each layer.

heavily penalizing peaky weight vectors and preferring diffuse weight
vectors. Due to multiplicative interactions between weights and inputs
this has the useful property of encouraging the network to use all of
its inputs a little rather than some of its inputs a lot. The higher
the proportionality constant, the higher is the penalty for large weight
vectors. Here, a value A = 0.0001 is used.

3. Early stopping As the name suggests, this technique stops the training
process before it runs all the way to the end. The limit (also called
patience) chosen for this model is 100 epochs. It rolls back to the last
best-performing model once it detects over-fitting to the training data.
The metric used here is cross entropy loss as opposed to more commonly
used accuracy. The reason for that is when the model is confident about
its prediction, it should generalize better.

B 52 Implementation

This model is built using TensorFlow and is written in Python.

TensorFlow is an interface for expressing machine learning algorithms, and
an implementation for executing such algorithms. It supports a wide range
of devices, can run on both CPU and GPU backend, and is often supported
by other tools and programs [AABT16]. The version of TensorFlow used was
the most current one, 1.7.0 with GPU support.

Python was used in version 3.5.2 and the Foolbox in version 1.1.0.

M 53 Training

Training was done on original dataset without any modification other than
mapping the data samples to model inputs. The learning rate parameter was
set to 0.0001. For each epoch, the dataset is randomly split into the training
part (75% of the dataset which equals to 29 406 samples) and the validation
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Figure 5.2: Complete history of training the model up to 99% accuracy. On the
left, development of accuracy is shown. On the right side is the loss of the model
for each epoch.

part (25% of the dataset which equals to 9 803 samples). These parts are fed
to the model in randomly selected batches of 256 samples to take advantage
of the massive multi-processing capabilities of GPUs while avoiding putting
too much data into VRAM at once (the intention here is to avoid overflowing
the VRAM) to keep the training speed as high as possible.

In each epoch, first the network is trained on the training part of dataset for
this epoch, then evaluated using the validation part. Typically, the validation
is performed only every so often (there are various metrics to decide on which
epochs the model should evaluate itself) as it is common to train the model
for hundreds or thousands of epochs to achieve the highest score possible.
Since the goal of this work is not to achieve the highest classification score, a
99% accuracy was decided to be the goal for this part.

The model described in this chapter achieves 99% accuracy on training
dataset in 21 epochs and in 30 epochs on validation dataset (for development
of accuracy of the model see Figure 5.2 or Table 5.2). The model in this state
was saved and used as a base for the next step.

B 53.1 MNIST dataset

Until now, only the GTSRB dataset was discussed. However, as was mentioned
in Chapter 4, at several points of interest, the second dataset MNIST will be
included. The same model as described above can be also used to classify the
MNIST dataset.

Since the dataset was created to be ready to use without any preprocessing,
the changes are not extensive. First, the input size needs to be downscaled
to a square with edge length of 28 pixels. Same goes for output, the model
needs to choose only one out of 10 classes instead of original 43. Lastly, the
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Epoch 1 2 3 4 5 30

940M Epoch time [s] 46 43 44 43 43 43

Train accuracy [%] 27.1 473 61.2 72.6 79.7 99.7
Valid. accuracy [%] 26.8 46.5 60.3 72.1 783 99
|
]
]

1050Ti Epoch time [s 9 8 8 8 8 8
Train accuracy [%] 284 46.3 61.5 74 79.5 99.6
Valid. accuracy [%] 282 452 60 724 782 989

Table 5.2: Overview of training process of the model on GTSRB dataset
described in Chapter 4.1. A comparison of speed between training on Nvidia
GTX 940M and Nvidia GTX 1050Ti is shown here as well as the randomness
present in the process of training a neural network. The difference in performance
is not so significant here but it will be much more important when the attacks
come into the equation.

model can be simplified to one channel as this dataset is greyscale by default.

Such a model achieves the 99% accuracy threshold in just a 10 epochs. See
Figure 5.3 for step-by-step development.
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Figure 5.3: Complete history of training the model up to 99% accuracy on the
MNIST dataset. On the left, development of accuracy is shown. On the right
side is the loss of the model for each epoch.
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Chapter 6

Making the classifier more robust

. 6.1 Practical black-box attacks and defenses

As discussed in Chapters 2 and 3, there are many various ways to
attack a neural network classifier. However, since the first discovery
of adversarial samples only dates as far as 2013 [SZST13], there are
not many techniques categorized as black-bor attacks. First practical
example came in 2017 [PMGT17]. This work demonstrates viability of
adversarial attacks against completely unknown models with two fairly simple
algorithms (the Goodfellow et al. algorithm [GSS14] and the Papernot et al.
algorithm [PMJ*15]). Their method of attack in general is to:

1. perform a training on substitute deep neural network
a. collect a small set of inputs and outputs

b. choose an architecture of the substitute (based on type of data to
classify)

c. train the substitute on the set obtained by repeatedly querying the
original model

2. use this substitute model to craft an adversarial sample
3. verify that this adversarial sample works on original model as well

Because of its popularity and many citations and practical uses, this technique
is used in this work as a reference to compare with. The algorithm chosen
to work with is the Goodfellow et al. algorithm, also known as the Fast
Gradient Sign Method (described in detail in Chapter 3.1.1), under which
name it is present in Foolbox. The Papernot et al. algorithm is also present
in Foolbox, under the name of Saliency Map Attack. However, due to its
over 10 times lower speed (average time needed to create an adversarial
sample on the model described in Chapter 5 trained on the GTSRB dataset
is over 1 second while the FGSM has the average of 100 milliseconds), it
was substituted with the DeepFool Attack algorithm which has performance
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6. Making the classifier more robust

comparable to the FGSM (i.e., average attack time of 140 milliseconds). The
second algorithm works as a representation for other adversarial algorithms
to demonstrate the transferability of robustness (or lack of thereof) against
the adversarial samples between different attack algorithms. For more details
refer to Table 3.1.

It would be impossible to recreate all the pieces from scratch in scope of this
thesis. Fortunately, the Foolbox takes care of the attacking procedure (see
Chapter 3.2 for details on Foolbox). As a result, after correct setting of the
environment and connecting all the pieces from previous chapters together,
the necessary code can be written in 3 lines.

model = foolbox.models.TensorFlowModel (

tf_x_batch, logits, range)
attack = foolbox.attacks.FGSM(model)
adversarial = attack(image, label)

The last step after that is to use the Foolbox in accordance with [PMG™'17] as
a tool to make the classifier more robust. That means to create an adversarial
sample to each sample used to train the network and use the adversarial
sample to train the network as well, with the same level of significance as
the original sample. Since there is a big number of random selections in the
process, the solution is to intercept the batch when it is going to be used for
training, generate corresponding batch of adversarial samples, and send these
two batches to the network as one batch for training (see Chapter 5.3 for
closer explanation on the training process). This can be done without taking
any effect on the actual process due to the batching nature of the training
process (i.e., the order of pictures in one batch is irrelevant to the training
process).

This procedure effectively doubles the amount of samples the network is
trained on, however the time needed to perform this kind of training rises
many times over due to adversarial sample creation being about at least 50
times more demanding than simple classification (see Table 3.1). On top of
that, the work and time needed to create an adversarial sample increases
proportionally with the model’s resistance to the adversarial samples, which
even further prolongs the training process. Tables 6.1 and 6.2 display the
training process to make the classifier more robust as described in [PMGT17].
Table 6.5 shows the comparison of performance between both GPUs. It is
also the last experiment executed on the GTX 940M as the time required to
get results is already several days.

Classification accuracy and adversarial sample accuracy shows how well the
model classify samples from given dataset, original and adversarial respectively.
The attack accuracy shows how many times the attack successfully finds an
adversarial sample. A consequence to that is that the sum of percentage
from correct classification and attack accuracy can go over 100% since some
samples can end up in both groups.
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6. Making the classifier more robust

Epoch 0 1 2 3 4 ) 6 7 8 9 10

Training time [minutes] 45 57 69 80 96 107 116 124 132 138
Validation time [minutes] 28 31 34 40 44 46 49 52 56 55
Classification accuracy [%] 99 96.68 97.23 97.05 97.56 97.75 97.91 97.95 98.27 98.48 98.32
Adver sample accuracy [%] 879 932 992 1249 1434 15.05 16.34 17.93 19.63 19.5
FGSM accuracy [%] 97.1  96.6 957 93.6 91.2 90.6 89 87.7 86.3 85.7
FGSM average time [ms] 69 79 88 93 93 94 92 99 98 93
FGSM L2 distance 232 275 308 336 325 331 328 3.5 347 3.33
DeepFool accuracy [%)] 100 100 100 100 100 100 100 100 100 100
DeepFool average time [ms] 68 71 72 74 74 75 75 76 79 76
DeepFool L2 distance 0.91 0.96 1 1.03 1.06 1.08 1.09 1.1 112 1.14

Table 6.2: Summary of first ten epochs of adversarial training using DeepFool algorithm as described in [PMG™17]. The initial model, displayed
in column under epoch 0, is described in Chapter 5 and trained on the GTSRB dataset up to 99% accuracy. The table shows time needed to
train and then evaluate the model together with the model’s accuracy on both the original dataset input and on-spot created adversarial
samples. Next are the statistics for FGSM algorithm to represent the transferability of robustness against adversarial samples and DeepFool
algorithm (which it is being trained on). A comparison with Table 6.1 shows that both algorithms perform in similar fashion.

30



6.2. Caching the adversarial samples

Epoch 1 2 3 4 5 6
Training time [minutes] 107 131 184 227 257 281
Validation time [minutes] 61 76 95 108 116 123

Classification accuracy [%] 98.65 98.83 98.84 99.02 98.89 98.88
Adver sample accuracy [%]  2.15 4.25 841 10.75 12.32 13.52

FGSM accuracy [%)] 97.8 95.7 91.6 90.8 89.41 89.1
FGSM average time [ms] 158 196 193 200 206 213
FGSM L2 distance 2,57 314 3.07 3.2 329 341
DeepFool accuracy [%)] 100 100 100 100 100 100
DeepFool average time [ms| 148 146 147 151 153 153
DeepFool L2 distance 098 1.03 106 1.11 112 1.14

Table 6.3: Summary of first six epochs of adversarial training using FGSM
algorithm as described in [PMG*17], this time trained on Nvidia GTX 940M.
The table shows time needed to train and then evaluate the model together with
the model’s accuracy on both the original dataset input and on-spot created
adversarial samples. Next are the statistics for FGSM algorithm (which it is being
trained on) and DeepFool algorithm to represent the transferability of robustness
against adversarial samples. A comparison with Table 6.1 shows again the level
of influence caused by the randomization of training a neural network classifier.
The differences in accuracy and L2 distance values are basically negligible in this
context and should be evened out if a much higher number (at least hundreds)
of epochs was trained. The difference in performance in terms of speed, however,
is much higher and is the reason why the rest of the experiments is executed on
the more powerful Nvidia GTX 1050Ti.

B 6.2 Caching the adversarial samples

As can be seen in the previous section, the model can be trained to be more
robust against one particular attack algorithm. Unfortunately, it comes at
a big price. The time needed to train the model increases by over a 1 000
times. The normal training takes about 8 seconds per epoch as is shown in
Table 5.2, for a total of approximately 81 seconds for first 10 training epochs.
However, the training of first 10 epochs using the method from Chapter 6.1
takes grand total of 1 391 minutes for training using FGSM algorithm and
1 399 for training using the DeepFool attack.

The main reason for this colossal difference is the ineffectiveness of using
hardware. As was shown in Table 3.1, the justifiable difference for untrained
(on adversarial samples) classifier is about 50 times. The utilization of GPU
during original training as described in Chapter 5.3 was constantly 100%.
However, the utilization went down to 40% during the adversarial training
from previous section. The structure of the algorithm is to blame, as it
requires to create an adversarial sample to each original sample at the time
of training that sample. The highly efficient continuous batch training is
interrupted to create the corresponding adversarial samples every time. As
was described in Chapter 6.1, the implementation of [PMG™117] algorithm
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6. Making the classifier more robust

Training dataset Testing dataset

Original dataset size 39 209 12 630
Time needed to create the cache 39 minutes 11 minutes
Created adversarial samples 38 426 11 271

Table 6.4: The statistics related to creation of cache of adversarial samples. The
first row shows how many samples are in each dataset. Next is the time needed
to go through the whole dataset in batch. Lastly, the number of successfully
created adversarial samples is shown. The success rate of the attack algorithm
was 100% which means the rest are samples that were already misclassified.

used in this thesis works with whole batches instead of single samples, but it
is obviously still not good enough.

B 6.2.1 Simple caching method

Since it is not possible to effectively create the adversarial samples in the
middle of training, a solution is to create a cache of the adversarial samples
(potentially multiple layers cache, i.e., have multiple adversarial samples
cached for each original sample), fill it before executing the training process,
and use this cache during the training instead of creating a new adversarial
sample on the spot. The result of this process for one layer of cache is shown
in Table 6.4. The time needed to do this operation clearly does not suffer from
the same drop in speed as the previous method. The most probable reason
for that is the fact that there is only one model present while in method
described in Chapter 6.1, there is a need to shuffle two models (the training
model and the Foolbox model) and perform operations on both of them in
turns, over a hundred times each epoch.

The results of training using the cached adversarial samples are shown in
Table 6.5. Also, a new metric is present, showing how many adversarial
samples in the cache are valid for each epoch. The estimation that the
reason for very low speed of adversarial training is related to the creation of
adversarial samples was proven true. The same 10 epochs that took 1 391
minutes (23 hours and 11 minutes) are completed in 32 minutes now. Another
positive result of this experiment is the proof that there is seemingly no need
to have more than one adversarial sample to one original input thanks to
the fact that approximately 95% of the cached adversarial samples transfer
between epochs (they are still valid adversarial samples).

Unfortunately, another problem came up instead. The accuracy for
classification of adversarial samples stays basically zero, although after 5
epochs some small fraction of the adversarial samples starts to be classified
correctly. Due to the vast improvement in terms of speed, it is possible to
try training more epochs and observe the behaviour of the model over more
iterations. Table 6.6 shows the same method using DeepFool attack as its
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6. Making the classifier more robust

base algorithm over the span of 100 epochs.

As can be seen in Table 6.6, training of the model for more epochs using
the simple caching does not improve the classifier’s accuracy on adversarial
samples. It does make the work of the attacker more difficult as it increases
both the time needed to create an adversarial sample as well as the distance
between the adversarial sample and original image.

There are two possible explanations for this behaviour. Either the adversarial
samples "age" in some way and they are not effective on training the classifier
when used repeatedly, or they need to be crafted in the middle of the training
process and not beforehand. Both these reasons are not very intuitive but
the same can be said about the very existence of adversarial samples. Luckily,
there is a test to try the potential "aging" of the adversarial samples even
though it means a loss of most of the speed originally gained by caching.
Table 6.7 shows the behaviour of the model when the whole cache is invalidated
and recreated each epoch right before the training process begins.

As can be seen in the the table, there is no difference that could be said to be
out of scope of random error. Obviously, there is not problem with "aging" of
the adversarial samples. It seems there is a need for the adversarial sample
to be created in the middle of the training process in order to make good use
of the adversarial sample to make the classifier more robust.

B 63 Comparison of the practical black-box method
and the simple caching method

B 6.3.1 Results on GTSRB dataset

As the previous tables have shown, the practical black-box method has steady
performance in the most important aspect of making the classifier more robust,
the number of adversarial samples correctly classified. The transferability
between different algorithms was proven to be negligible as previous research
also confirmed [PMG™17]. However, this method suffers from big losses in
terms of speed.

The simple caching method displays over a thousand times better speed and
also slightly better L2 distances between adversarial samples and original
data (due to higher number of epochs), however it fails completely when it
comes to accuracy.

B 6.3.2 Results on MNIST dataset

Next, both methods were evaluated on the MNIST dataset. Table 6.8 shows
the original black-box method [PMG™17] using the Fast Gradient Sign Method
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Epoch 0 1 2 3 4 ) 6 7 8 9 10

Training time [minutes] 36 42 45 49 51 53 55 57 58 60
Validation time [minutes] 1 1 1 1 1 1 1 1 1 1
Classification accuracy [%] 99  96.5 97.79 98.13 98.32 98.44 98.55 98.68 98.74 98.88 98.87
Valid adversarial samples 0 0 0 0 0 0 0 0 0 0
Adver sample accuracy [%] 0.04 012 0.12 017 011 013 0.06 0.08 0.11 0.05
FGSM accuracy [%)] 99.97 99.89 99.89 99.83 99.92 99.87 99.94 99.92 99.89 99.95
FGSM average time [ms] 76 119 111 100 134 144 131 159 135 162
FGSM L2 distance 253 452 418 3.75 486 546 5.14 6.02 5.2  6.08
DeepFool accuracy [%)] 96.09 98.07 98.71 98.85 99.03 99.36 99.15 99.2 99.22 99.32
DeepFool average time [ms] 75 97 105 103 116 130 111 139 130 144
DeepFool L2 distance 1.06 1.76 1.88 2.12 21 291 212 245 245 2.86

Table 6.7: Summary of ten epochs of simple caching method with cache invalidation using DeepFool algorithm as its base algorithm. The
initial model, displayed in column under epoch 0, is described in Chapter 5 and trained on the GTSRB dataset up to 99% accuracy. The table
shows time needed to train and then evaluate the model together with the model’s accuracy on both the original dataset input and the created
adversarial samples. Next are the statistics for FGSM algorithm to represent the transferability of robustness against adversarial samples and
DeepFool algorithm (which it is being trained on). The "Valid adversarial samples" field shows that the cache is being invalidated every epoch.
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for generating the adversarial samples. As expected, the model was trained
to be more robust at higher rate, due to its simplicity. However, the time
needed to train an epoch grew by a lot, 489 minutes vs 44 minutes on GTSRB
dataset (Table 6.1) on first epoch. Also, the much higher defense rate shows
clearly that the attack algorithms in general are successful at attacking a
classifier robust to one different attack algorithm.

The performance of Simple caching method on the MNIST dataset is shown
in Table 6.9. The creation of the cache was again much longer, taking 3
hours and 32 minutes for 55 thousand samples. In comparison, the cache for
GTSRB dataset was created in 39 minutes for approximately 39 thousand
images (see Table 6.4). As the table shows, the simple caching method works
on MNIST dataset a little different than on the GTSRB dataset.

It is clearly shown that the Simple caching method does produce the expected
result of making the classifier more robust. It also performs an epoch faster
than the original method. On the other hand, the robustness increases a little
slower when compared to the original method. Still, even in three epochs
the training speed surpasses that of the original method so I would say the
method works as intended.

The much longer times on MNIST dataset (when compared with the GTSRB
dataset) are partly due to almost twice as big training dataset (less than
30 thousands on the GTSRB dataset versus 55 thousands on the MNIST
dataset), but the most important reason is probably related to the increased
difficulty of finding an adversarial sample. Significantly higher times for
generation of an adversarial sample can be observed for all the training
performed on the MNIST dataset. The L2 distances between original images
and the adversarial samples also increased significantly and the robustness of
the model also increases much faster in comparison with the GTSRB dataset.

What is a little surprising is the increasing number of valid adversarial samples
between epochs. More adversarial samples, that are still valid, means that
less adversarial samples need to be generated every next epoch. It basically
means that with each iteration the network looses a piece of its ability to
adapt to the adversarial samples.

B 6.3.3 Summary

The Simple caching method performs faster on all tests, which is satisfactory
as the slowness of the original method was the impulse for designing the
caching method. The Simple caching method also trains the robust classifier
somewhat slower than the original method. That is not unexpected, as
intuitively a new, freshly constructed adversarial samples should have bigger
impact on the model than adversarial samples that the classifier has already
seen two or three times. However, the caching also shows a distinct feature
that is highly unfavourable.
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Epoch 0 1 2 3
Training time [hh:mm] 08:09 12:05 13:34
Validation time [minutes] 7 90 97
Classification accuracy [%] 99 99.06 99.18 99.36
Adver sample accuracy [%] 31.86 51.32 59.26
FGSM accuracy [%)] 68.14 48.68 40.74
FGSM average time [ms] 414 394 403
FGSM L2 distance 6.83 6.49 6.64
DeepFool accuracy [%)] 100 100 100
DeepFool average time [ms] 220 219 221
DeepFool L2 distance 2.77 273 275

Table 6.8: Summary of three epochs of adversarial training using Fast Gradient
Sign Method as described in [PMG™17]. The initial model, displayed in column
under epoch 0, is described in Chapter 5 and trained on the MNIST dataset up to
99% accuracy. The table shows time needed to train and then evaluate the model
together with the model’s accuracy on both the original dataset input and the
created adversarial samples. Next are the statistics for FGSM algorithm (which
it is being trained on) and DeepFool algorithm to represent the transferability
of robustness against adversarial samples. This table is a direct comparison
with Table 6.1 on different dataset, most notably the higher defense rate and
computational time.

Epoch 0 1 2 3
Training time [hh:mm] 05:30 07:02 08:41
Validation time [minutes] 60 64 68
Classification accuracy [%] 99 98.56 98.82 99.05
Valid adversarial samples 54 927 4648 5746 6 910
Adver sample accuracy [%)] 20.16 34.66 47.34
FGSM accuracy [%] 79.84 65.34 52.66
FGSM average time [ms] 374 383 390
FGSM L2 distance 6.61 7.71 8.78
DeepFool accuracy [%] 100 100 100
DeepFool average time [ms] 245 251 256
DeepFool L2 distance 2.85 288 291

Table 6.9: Summary of three epochs of simple caching method using DeepFool
algorithm as its base algorithm. The initial model, displayed in column under
epoch 0, is described in Chapter 5 and trained on the MNIST dataset up to
99% accuracy. The table shows time needed to train and then evaluate the
model together with the model’s accuracy on both the original dataset input
and the created adversarial samples. Next are the statistics for FGSM algorithm
to represent the transferability of robustness against adversarial samples and
DeepFool algorithm (which it is being trained on). The "Valid adversarial
samples" field shows that the cache is being invalidated every epoch.
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6.3. Comparison of the practical black-box method and the simple caching method

It was observed on the GTSRB dataset that the model was completely unable
to train on the cached adversarial samples despite them being misclassified in
the verification process. Several tests were performed to analyze this unusual
behaviour.

® Skipping the verification process and generation of new adversarial
samples did not help as shown in Table 6.7.

® Partial invalidation of the cached adversarial samples did not change
anything either.

® Giving all adversarial samples an uniform label did completely destroy
the model as it should (the observed accuracy after first epoch was
3.28%).

The reason for this behaviour seems to be something in the very nature of
caching. The results on the MNIST dataset support this theory as well — it
is shown that over 90% of the cached adversarial samples had to be recreated
in the middle of training (i.e., using the original method) in the first epoch
and this corresponds to the gain in robustness as well as changes in speed.
Unfortunately, it is unclear precisely why the caching of adversarial samples
results in the model being unable to train on those samples.
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Chapter 7

Conclusion

The system for making the convolutional neural network classifier more robust
was successfully developed, using only open-source resources. Two appropriate
datasets were selected and prepared to be worked on. A suitable model of
convolutional neural network was found and adjusted for the needs of this
thesis, then trained on both datasets to meet the criterion to continue on the
next step. A toolbox was found to help with attacking the model and then
also included inside the model to help with making the model more robust.

Two different algorithms for creating the adversarial samples, the Fast
Gradient Sign Method and the DeepFool attack, were chosen to attack the
system. Two different metrics, the percentage of correctly classified adversarial
samples and the L2 distance between original data and adversarial sample
created from that data, were introduced to evaluate the robustness of the
system. Precise measurement of time for both attack algorithms as well as
for whole epochs was also added in the system. An already existing method
of making the classifier more robust was successfully implemented.

An issue with speed was found during the development in the already existing
method of making the classifier more robust. A new method was designed to
solve this problem. The solution was to add a cache to store the adversarial
samples, fill the cache before initiating the training process and use this cache
in the training process instead.

The problem with speed was immediately solved by using the newly created
cache. The L2 distance between original and adversarial samples also showed
a nice improvement but another problem appeared instead. The accuracy
metric of the robustness (i.e. the percentage of correctly classified adversarial
samples) went down to zero, effectively showing that the caching is not
a suitable mechanism for making the classifier more robust against the
adversarial samples. This was not the expected outcome but both the logic
behind the decision to use the cache as well as the design of the caching
method seemed to be built on solid ground.
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7. Conclusion

The situation was examined and a couple of experiments were run to identify
the problem or discover an error in the proposed method. All performed tests
suggest that the proposed method works as designed and that the problem
lies somewhere in the caching of adversarial samples. Unfortunately, the
reason for this behaviour is not currently known and further research on this
topic is encouraged.

To sum up, all objectives of the thesis assignment were fulfilled:

1.

a review of methods for creating the adversarial samples was done with
further analysis in Chapters 2 and 3.

a review of existing methods for making the classifier more robust was
also discussed in Chapter 3 together with other possible defenses

an existing method was described and implemented in Chapter 6 and a
novel method was designed there as well

both methods were compared on two classifier models constructed to
be as close as possible while working on two different datasets using
two different attack algorithms and three metrics: the robustness of the
model in percents, the L2 distance between original data and created
adversarial samples, and finally the time needed to create an adversarial
as well as the time needed to make the model more robust.
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Appendix B

CD Content

In table B.1 are listed names of all root directories on CD together with a
short description

Directory name Description

ctuthesis-master  thesis sources in latex format and all the figures
organized in sub-folders

sources Python source codes organized in sub-folders
"gtsrb" and "mnist" according to datasets

training-sessions complete outputs of all training sessions during
development organized in sub-folders "gtsrb" and
"mnist" according to datasets

Table B.1: CD Content

47



48



Appendix C

Training outputs

This appendix contains complete output of one selected training session to
display all the information that did not make it in the tables in Chapter 6.

B c1 Training session from Chapter 6.1 using Fast
Gradient Sign Method as the base algorithm

Number of training examples = 39209
Number of testing examples = 12630
Image data shape = (32, 32, 3)
Number of classes = 43

DATA
Training set: 29406 examples
Validation set: 9803 examples (now only 1000)
Testing set: 12630 examples
Batch size: 256
Adversarial training: True

MODEL
--------------- ARCEINICTIURNE ssso——mssssoosss
Type Size Dropout (keep p)
Layer 1 5x5 Conv 32 0.9
Layer 2 5x5 Conv 64 0.8
Layer 3 5x5 Conv 128 0.7
Layer 4 EFC 1024 0.5
———————————————— PARAMETERS --——————————-—————-

Learning rate decay: Disabled (rate = 0.0001)
L2 Regularization: Enabled (lambda = 0.0001)
Early stopping: Enabled (patience = 100)
Keep training old model: Enabled
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C. Training outputs

TRAINING
Timestamp: 2018/04/14 14:59:40
Training 29406 samples (+ 29406 adversarials)
Estimated time: 101 minutes

Timestamp: 2018/04/14 14:59:41

Training done

Timestamp: 2018/04/14 15:44:18
Validating 1000 samples
Estimated time: 2 minutes

Timestamp: 2018/04/14 15:44:18
EPOCH 0/10
Validation loss: 0.17655453, accuracy: 96.73%

Best loss: inf at epoch O

Adversarial samples statistics:

Validation loss: 1.06570339, accuracy: 2.97%

Foolbox attack statistics:
Validation norm: 2.26526799, success: 97.11%
FGSM times: 5, 66.24, 1240 [ms]
DeepFool norm: 0.89076862, success: 100.00%
DeepFool times: 25, 66.98, 613 [ms]
Elapsed time: 01:11:52

Timestamp:

Training 29406
Estimated time:

2018/04/14 16:11:29

samples (+ 29406 adversarials)
101 minutes

Timestamp: 2018/04/14 16:11:30
Training done
Timestamp: 2018/04/14 17:08:35
Validating 1000 samples
Estimated time: 2 minutes
Timestamp: 2018/04/14 17:08:35
EPOCH 1/10
Validation loss: 0.16902132, accuracy: 97.51%
Best loss: 0.17655453 at epoch 0O
Adversarial samples statistics:
Validation loss: 1.07711542, accuracy: 3.58}

Foolbox attack statistics:
Validation norm: 2.73840619, success: 96.57Y
FGSM times: 5, 77.46, 1212 [ms]
DeepFool norm: 0.96766962, success: 100.00%
DeepFool times: 25, 69.63, 878 [ms]
Elapsed time: 02:39:32
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C.1. Training session from Chapter 6.1 using Fast Gradient Sign Method as the base algorithm

Timestamp: 2018/04/14 17:39:09

Training 29406 samples (+ 29406 adversarials)
Estimated time: 101 minutes
Timestamp: 2018/04/14 17:39:10
Training done
Timestamp: 2018/04/14 18:46:40
Validating 1000 samples
Estimated time: 2 minutes
Timestamp: 2018/04/14 18:46:40
—————————————— EPOCH 21 =—————mm—mm——=
Validation loss: 0.15774907, accuracy: 97.61%
Best loss: 0.16902132 at epoch 1
Adversarial samples statistics:
Validation loss: 1.05356121, accuracy: 5.43

Foolbox attack statistics:
Validation norm: 3.01517622, success: 94.75%
FGSM times: 5, 84.28, 1286 [ms]
DeepFool norm: 1.01472624, success: 100.00%
DeepFool times: 24, 70.70, 707 [ms]
Elapsed time: 04:22:26
Timestamp: 2018/04/14 19:22:03

Training 29406 samples (+ 29406 adversarials)
Estimated time: 101 minutes
Timestamp: 2018/04/14 19:22:04
Training done
Timestamp: 2018/04/14 20:41:12
Validating 1000 samples
Estimated time: 2 minutes
Timestamp: 2018/04/14 20:41:12
—————————————— EPOCH B
Validation loss: 0.13423176, accuracy: 98.10%
Best loss: 0.15774907 at epoch 2
Adversarial samples statistics:
Validation loss: 1.00745368, accuracy: 7.30%

Foolbox attack statistics:
Validation norm: 3.22618910, success: 92.86%
FGSM times: 5, 91.40, 1290 [ms]
DeepFool norm: 1.02189458, success: 100.00%
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C. Training outputs

DeepFool times:
Elapsed time:
Timestamp:

Training 29406
Estimated time:

25, 70.40, 1271 [ms]
06:21:50

2018/04/14 21:21:27

samples (+ 29406 adversarials)
101 minutes

Timestamp: 2018/04/14 21:21:27
Training done
Timestamp: 2018/04/14 22:56:29
Validating 1000 samples
Estimated time: 2 minutes
Timestamp: 2018/04/14 22:56:29
EPOCH 4/10
Validation loss: 0.13280101, accuracy: 98.17%
Best loss: 0.13423176 at epoch 3
Adversarial samples statistics:
Validation loss: 1.01087189, accuracy: 9.36

Foolbox attack statistics:
Validation norm: 3.36661524, success: 90.74%
FGSM times: 5, 94.46, 1271 [ms]
DeepFool norm: 1.07245468, success: 100.00%
DeepFool times: 25, 72.58, 917 [ms]
Elapsed time: 08:42:01

Timestamp: 2018/04/14 23:41:38

Training 29406 samples (+ 29406 adversarials)
Estimated time: 101 minutes

Timestamp: 2018/04/14 23:41:39

Training done

Timestamp: 2018/04/15 01:28:15
Validating 1000 samples
Estimated time: 2 minutes

Timestamp: 2018/04/15 01:28:15
EPOCH 5/10
Validation loss: 0.12239983, accuracy: 98.37%

Best loss: 0.13280101 at epoch 4

Adversarial samples statistics:

Validation loss: 0.97993243, accuracy: 10.43%

Foolbox attack statistics:
Validation norm: 3.29705516, success: 89.75%

52



C.1. Training session from Chapter 6.1 using Fast Gradient Sign Method as the base algorithm

FGSM times: 5, 92.82, 1254 [ms]
DeepFool norm: 1.06966712, success: 100.00%
DeepFool times: 24, 72.50, 982 [ms]
Elapsed time: 11:15:28

Timestamp: 2018/04/15 02:15:05

Training 29406 samples (+ 29406 adversarials)
Estimated time: 101 minutes

Timestamp: 2018/04/15 02:15:06

Training done

Timestamp: 2018/04/15 04:10:28
Validating 1000 samples
Estimated time: 2 minutes

Timestamp: 2018/04/15 04:10:28
EPOCH 6/10
0.11328512, accuracy: 98.53%
0.12239983 at epoch 5
samples statistics:

Validation loss:
Best loss:
Adversarial

Validation loss:

Foolbox
Validation norm:
FGSM times:
DeepFool norm:
DeepFool times:
Elapsed time:
Timestamp:

Training 29406
Estimated time:

0.96255738, accuracy: 12.03%

attack statistics:

3.27853484, success: 88.13Y
5, 90.89, 1232 [ms]
1.08965698, success: 100.00%
25, 72.56, 1006 [ms]
14:00:39

2018/04/15 05:00:16

samples (+ 29406 adversarials)
101 minutes

Timestamp: 2018/04/15 05:00:17
Training done
Timestamp: 2018/04/15 07:03:08
Validating 1000 samples
Estimated time: 2 minutes
Timestamp: 2018/04/15 07:03:08

E
Validation loss:
Best loss:
Adversarial
Validation loss:

POCH 7/10
0.10221992, accuracy: 98.62}
0.11328512 at epoch 6

samples statistics:
0.93385792, accuracy: 12.84%
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C. Training outputs

Foolbox attack statistics:
Validation norm: 3.31337871, success: 87.41%
FGSM times: 5, 91.66, 1281 [ms]
DeepFool norm: 1.10182841, success: 100.00%
DeepFool times: 25, 73.33, 1180 [ms]
Elapsed time: 16:54:57
Timestamp: 2018/04/15 07:54:33

Training 29406 samples (+ 29406 adversarials)
Estimated time: 101 minutes
Timestamp: 2018/04/15 07:54:36
Training done
Timestamp: 2018/04/15 10:05:03
Validating 1000 samples
Estimated time: 2 minutes
Timestamp: 2018/04/15 10:05:03
—————————————— EPOCH B/l s—=——mmememmes
Validation loss: 0.09846409, accuracy: 98.48Y%
Best loss: 0.10221992 at epoch 7
Adversarial samples statistics:
Validation loss: 0.91585940, accuracy: 13.59%

Foolbox attack statistics:
Validation norm: 3.37189140, success: 86.58%
FGSM times: 5, 93.38, 1283 [ms]
DeepFool norm: 1.11833447, success: 100.00%
DeepFool times: 25, 73.06, 1815 [ms]
Elapsed time: 19:58:39
Timestamp: 2018/04/15 10:58:16

Training 29406 samples (+ 29406 adversarials)
Estimated time: 101 minutes
Timestamp: 2018/04/15 10:58:17
Training done
Timestamp: 2018/04/15 13:16:09
Validating 1000 samples
Estimated time: 2 minutes
Timestamp: 2018/04/15 13:16:09
—————————————— EPOCH /1) =———————m—————
Validation loss: 0.10074635, accuracy: 98.62
Best loss: 0.09846409 at epoch 8
Adversarial samples statistics:

54



C.1. Training session from Chapter 6.1 using Fast Gradient Sign Method as the base algorithm

Validation loss: 0.92633694, accuracy: 14.14j

Foolbox attack statistics:
Validation norm: 3.53540606, success: 85.99%
FGSM times: 5, 98.48, 1257 [ms]
DeepFool norm: 1.13684214, success: 100.00%
DeepFool times: 25, 74.68, 900 [ms]
Elapsed time: 23:11:53
Timestamp: 2018/04/15 14:11:30
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