
Promise – start-up guide
This document describes steps needed to take to start developing, testing and using

Promise and STS on your computer.
Promise itself contains two separate parts: Front-end and Back-end. While front-end

requires different server setup, back-end and STS require almost the same setup. Where
different, a note is explicitly stated.

1



Chapter 1
Prerequisites
Before you start using and developing Promise or STS, you must make sure to have
installed and correctly set up some required software.

1.1 Production deployment
In this section we suppose you already have built the project and only want to deploy
and run it.

To host the Promise Back-end and/or STS you will need:

1. Database server – PostgresSQL 9.6 recommended but not required
2. Java Runtime Environment 8 (JRE8)
3. Java application server – Apache Tomcat 8 recommended but not required

To host Promise Front-end you will need:

1. Web server – Apache HTTP server 2.4 recommended

1.2 Local development
If you also want to develop and build Promise Back-end and STS, in addition to require-
ments from 1.1 you will also need:

1. Kotlin compiler
2. Java Development Kit 8 (JDK8)
3. Maven 3

NOTE: It is highly recommended to use IntelliJ IDEA as your IDE since it is already
shipped with all of the 3 requirements above.

To build Front-end Apache HTTP Server is not used. Instead you will need:

1. Node Package Manager (NPM 5.6.0 recommended)

2



Chapter 2

Configuration

For both production deployment and local development Promise Back-end and STS want
us to specify a JNDI resource for database connections. Back-end is looking for resource
named jdbc/promise, STS for jdbc/sts.

If you followed previous recommendations and used Apache Tomcat and PostgresSQL,
you can specify the resources in file context.xml in Tomcat’s conf directory:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Context>
3
4 <!-- ... -->
5
6 <Resource name="jdbc/promise" type="javax.sql.DataSource"
7 maxTotal="100" maxIdle="30" maxWaitMillis="10000"
8 username="YOUR-USERNAME" password="YOUR-PASSWORD"
9 driverClassName="org.postgresql.Driver" auth="Container"

10 url="jdbc:postgresql://localhost:5432/promise"/>
11
12 <Resource name="jdbc/sts" type="javax.sql.DataSource"
13 maxTotal="100" maxIdle="30" maxWaitMillis="10000"
14 username="YOUR-USERNAME" password="YOUR-PASSWORD"
15 driverClassName="org.postgresql.Driver" auth="Container"
16 url="jdbc:postgresql://localhost:5432/sts"/>
17 </Context>

While the database structure for Back-end is created automatically, for STS you must
create tables manually e.g. by following minimal SQL commands:

1 CREATE TABLE IF NOT EXISTS AUTHORITIES (
2 USERNAME VARCHAR(256),
3 AUTHORITY VARCHAR(256)
4 );
5
6 CREATE TABLE IF NOT EXISTS USERS (
7 USERNAME VARCHAR(256),
8 PASSWORD VARCHAR(256),
9 ENABLED BOOLEAN

10 );

2.1 Production deployment
Picture 2.1.1 shows the recommended production infrastructure.

3



Figure 2.1.1 Recommended production infrastructure
To follow this recommendation you must correctly setup Apache HTTP Server. We

suppose you are using Apache Tomcat as an application server with AJP enabled on port
8009 (which is true by default).

We also assume you have enabled SSL, Proxy and HTML Proxy modules in Apache
HTTP server and you own a valid certificate for the domain names, therefore TLS and
HTTP/2 can be enabled.

2.1.1 Front-end configuration
Production Front-end configuration file environment.prod.ts is found in the
src/environments/ directory. You shall adjust URLs in there to your actual values.

2.1.2 Virtual hosts configuration
Virtual host for promise.com can be set up as follows:
11 <IfModule mod_ssl.c>
12 Protocols h2 http/1.1
13
14 <VirtualHost *:443>
15 ServerName promise.com
16 DirectoryIndex index.html
17 DocumentRoot /var/www/promise
18 ErrorLog /var/log/httpd/promise.error.log
19 CustomLog /var/log/httpd/promise.log combined
20
21 <Directory "/var/www/promise">
22 Require all granted
23 </Directory>
24
25 <Location /api >
26 ProxyPass ajp://localhost:8009/promise
27 ProxyPassReverse https://promise.com
28 </Location>
29
30 <Location / >
31 RewriteEngine on
32 RewriteCond %{REQUEST_URI} !ˆ/api
33 RewriteCond %{REQUEST_FILENAME} !-d

4



34 RewriteCond %{REQUEST_FILENAME} !-f
35 RewriteRule . /index.html [L]
36 </Location>
37
38 SSLCertificateFile /etc/ssl/promise.com/cert.pem
39 SSLCertificateKeyFile /etc/ssl/promise.com/privkey.pem
40 SSLCertificateChainFile /etc/ssl/promise.com/chain.pem
41 </VirtualHost>
42 </IfModule>

This causes requests, whose path begins with /api, to be proxied to Apache Tomcat
via AJP. Static files will be served from /var/www/promise and requests to non-existing
files will be responded with index.html

Virtual host for sts.promise.com can be set up as follows:

43 <IfModule mod_ssl.c>
44 Protocols h2 http/1.1
45
46 <VirtualHost *:443>
47 ServerName sts.promise.com
48 ErrorLog /var/log/httpd/sts.error.log
49 CustomLog /var/log/httpd/sts.log combined
50
51 #ProxyPass /manager ajp://localhost:8009/manager/
52
53 ProxyPass / ajp://localhost:8009/sts/
54 ProxyPassReverse / /sts/
55 ProxyPassReverse / https://sts.promise.com/sts/
56 ProxyPassReverse / ajp://localhost:8009/sts/
57 ProxyPassReverseCookiePath /sts /
58
59 ProxyHTMLEnable On
60 ProxyHTMLURLMap https://sts.promise.com/sts/ https://sts.promise.com/
61 ProxyHTMLURLMap /sts/ https://sts.promise.com/
62
63 SSLCertificateFile /etc/ssl/sts.promise.com/cert.pem
64 SSLCertificateKeyFile /etc/ssl/sts.promise.com/privkey.pem
65 SSLCertificateChainFile /etc/ssl/sts.promise.com/chain.pem
66 </VirtualHost>
67 </IfModule>

This mainly causes hypertext links to be rewritten to a correct URL.

2.2 Local development
Since Promise Back-end depends on slightly modified AFRest. You must build and locally
install AFRest artifact from the attached source before building Promise Back-end.

To do so, navigate to the AFRest directory and run:

1 mvn clean install -DskipTests

5



You should also install Front-end NPM dependencies by navigating to the Front-end
root directory and running

1 npm install

2.3 Creating users
New users for STS must be added manually either using appropriate REST API endpoint
(preffered way) or into database. Then the user is automatically registered into Promise
during the first time login.

6



Chapter 3
Local development and testing
If all you wanted was to deploy and start using Promise on production server, you can
take a look at the deploy-*.sh scripts in Promise root directory to see how to build and
deploy artifacts to a production server.

However, for local development some more commands are handy.

3.1 Local development environment
To start a local development environment, follow these steps:

1. Build and start STS
2. Build and start Promise Back-end
3. Build and start Promise Front-end

STS and Back-end can be built and started right in your IDE. To start serving Front-
end use:

1 npm run start

Front-end changes are then projected immediately, Back-end and STS must be rebuilt
and redeployed after each change.

3.2 Testing
To test the application a Mozzila Firefox browser is required for Selenium tests.

You must start Front-end in the test mode at first by running

1 npm run test-env

and then you are ready to run the tests using e.g. your IDE.

7


