
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Usage of Eye Tracking for Adaptive
Contextual Applications

Jakub Gruber

Supervisor: Ing. Jiří Šebek
May 2018

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

456916Osobní číslo:JakubJméno:GruberPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Využití sledování očí pro adaptivní kontextově závislé aplikace

Název bakalářské práce anglicky:

Usage of eye-tracking for adaptive contextual applications

Pokyny pro vypracování:
Sledování očí je technika, při které jsou měřeny oční pohyby jednotlivce tak, aby vědce znal jak tam, kde se člověk dívá
v daný čas, tak pořadí, v němž se oči člověka přesouvají z jednoho místa do druhého. Sledování pohybů očí lidí může
pomáhat vědcům HCI pochopit vizuální a zobrazení založené na zpracování informací a faktory, které mohou mít vliv na
použitelnost systémových rozhraní. [2]
Cíle práce jsou následující:
1) Prostudujte možnosti využití sledování očí pro použití v mobilních aplikacích [1,2]
2) Vytvořte framework, který bude poskytovat rozhraní pro využití dat ze sledování očí
3) Vytvořte mobilní aplikaci demonstrující funkčnost frameworku
4) Otestujte aplikaci na uživatelích
5) Upravte aplikaci na základě potřeb uživatelů
6) Vyhodnoťte testování, možné problémy a přínosy.

Seznam doporučené literatury:
1. D. Selvathi, N. Dhivya, ""Realization of VLSI architecture to detect driver drowsiness for road accident avoidance
system"", Green Engineering and Technologies (IC-GET) 2016 Online International Conference on, pp. 1-5, 2016.
2. Ghaoui, Claude. Encyclopedia of human computer interaction. Hershey PA: Idea Group Reference, 2006. ISBN
9781591405627.
3. Šebek, J. - Richta, K.: Usage of Aspect-Oriented programming in Adaptive Application Structure. New Trends in
Databases and Information Systems: ADBIS 2016 Short Papers and Workshops, BigDap, DCSA, DC, Prague, Czech
Republic, August 28-31, 2016, Proceedings

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Jiří Šebek, Software Engineering and Networking FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: _____________Datum zadání bakalářské práce: 16.01.2018

Platnost zadání bakalářské práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jiří Šebek

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor Ing.
Jiří Šebek for providing materials as well
as for his support, patience and advice
during writing the thesis.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 25, 2018

. .

v

Abstract
The aim of this bachelor thesis is to design
and implement a framework for mobile ap-
plications that will be collecting passive
information about the user using a tech-
nique of eye tracking.

“Eye tracking is a technique whereby an
individual’s eye movements are measured
so that the researcher knows both where
a person is looking at any given time and
the sequence in which the person’s eyes
are shifting from one location to another.
Tracking people’s eye movements can help
HCI researchers to understand visual and
display-based information processing and
the factors that may impact the usability
of system interfaces.” [1]

Another goal will be to implement a
mobile application that will be based
on the developed framework adapt user
interface.[2]

Keywords: eye tracking, adaptive user
interface, dynamic authentication,
Android, context

Supervisor: Ing. Jiří Šebek

Abstrakt
Cílem bakalářské práce je navrhnout a im-
plementovat framework pro mobilní apli-
kace, který bude shromažďovat pasivní
informace o uživateli pomocí sledování
očí.

"Sledování očí je technika, při které jsou
sledovány oči jedince tak, že výzkumníci
vědí, kam se jedinec v daný okamžik dívá
a zároveň také znají sekvenci, při které
jedincovy oči přechází z jednoho místa
na druhé. Sledování očních pohybů může
HCI výzkumníkům pomoci pochopit vizu-
ální informace a informace na obrazovce a
faktory, které mohou ovlivnit použitelnost
systémových rozhraní." [1]

Dalším cílem bude implementovat mo-
bilní aplikaci, která bude na základě vyvi-
nutého frameworku adaptovat uživatelské
rozhraní.[2]

Klíčová slova: sledování očí, adaptivní
uživatelské rozhraní, dynamická
autentizace, Android, context

Překlad názvu: Využití sledování očí v
kontextuálně adaptivních aplikacích

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Structure . 2
2 Background 3
2.1 Adaptive User Interface 3
2.2 Human-Computer Interaction . . . 3
2.2.1 Types of HCI interfaces 4

2.3 Eye Tracking 5
2.3.1 Usages . 5
2.3.2 Ways of Tracking 6

2.4 Android . 8
2.4.1 Activity 8
2.4.2 Fragment 9

2.5 Existing Solutions 10
2.5.1 OpenCV 11
2.5.2 Google Mobile Vision 11

2.6 Metrics . 11
3 Related Work 15
4 Analysis 17
4.1 Framework’s Interactions 17
4.1.1 Subscription to the Framework 17
4.1.2 User Registration 17
4.1.3 User Verification 18

4.2 Components of Application 19
4.3 Provided Use Cases 20
4.4 Framework’s Internal Structure . 21
4.5 Database Structure 22
5 Implementation 25
5.1 Platform dependency 25
5.2 Limitations 25
5.3 Project Structure 25
5.4 Integration 26
5.4.1 Requirements and
recommendations 27

5.5 EyeTrackerFragment 27
5.5.1 registerUser method 28
5.5.2 verifyUser method 28

5.6 Communication between Fragment
and Activity 28
5.6.1 Fragments 28
5.6.2 EyeTrackerContext 29

5.7 EyeTracker 30

6 Eye Tracking Usages 31
6.1 Automatically pause/resume
video . 31

6.2 Notify user to regain his attention 31
6.2.1 Change UI elements 32
6.2.2 Increase Brightness 32
6.2.3 Play Short Sound 32

6.3 Full Device Control 32
6.3.1 Blink to switch activities 32
6.3.2 Blink to scroll 33
6.3.3 Long Gaze 33
6.3.4 Midas Touch Problem 33

6.4 Security . 33
6.4.1 Hide Secret Content 33
6.4.2 Dynamic User Authentication 34

6.5 User Interface Analysis 34
7 Testing 39
7.1 Testing Method and Evaluation 39
7.2 Data Interpretation 39
7.3 Video Control Test 40
7.3.1 Questions 40
7.3.2 Answers and Results 40

7.4 Secret Hiding Test 41
7.4.1 Questions 41
7.4.2 Answers and Results 41

7.5 Dynamic Authentication Testing 42
7.5.1 Questions 42
7.5.2 Answers and Results 42

7.6 Known bugs 43
8 Installation 45
9 Conclusion 47
10 Future Work 49
10.1 Patterns to Evaluate 49
A Bibliography 51
B Listings 53
C List of Abbreviations 55
D Content of Attached CD 57

vii

Figures
2.1 HW eye tracker 7
2.2 Structure of Eye 8
2.3 Mobile OS market share 9
2.4 Android OS version market share 10
2.5 Activity Lifecycle 13

4.1 Sequence Diagram of Subscription 18
4.2 Sequence Diagram of User
Registration . 19

4.3 Sequence Diagram of User
Verification . 20

4.4 Diagram of Components 21
4.5 Use Case Diagram 21
4.6 Class Diagram 22
4.7 Database Structure 23

6.1 Video Use Case 35
6.2 Automatic Content Hiding Use
Case . 36

6.3 Dynamic Authentication Use Case 37

Tables
2.1 Current solutions’ comparison. . 12

7.1 Questions evaluation. 40
7.2 Video Testing Results. 41
7.3 Secret Hiding Results. 42
7.4 Dynamic Authentication Results. 43

viii

Chapter 1
Introduction

1.1 Motivation

Nowadays, almost everyone owns a smartphone and carries it every day in a
backpack or a pocket, on a way to school, to work or when is on a vacation.
Wherever a user is, he has a smartphone with him. This provides developer
a lot of possibilities to collect a variety of information that can be later user
to create a personalized application.

Mobile devices are used in a various environment, in various conditions and
most importantly by various users. Every used is unique and has different
needs.

As a result, an application should, in the best case, be able to adjust itself
based on a combination of situation, environment and user preferences. A
personalized and adaptive application should also predict future actions and
try to save some time for a user by suggesting something that is expected to
be required in future or by changing its UI to make content easily accessible.

Context changes very often and therefore such an action must be detected,
predicted and executed immediately. Because of that, it is necessary to have
a source of information that will be fast and reliable enough.

Sight is one of the most used and the most important human senses and
it is also a great source of information for situations mentioned above. By
watching user’s eye movement, a developer can get necessary information
immediately and automatically amend application behavior or UI.

Considering these advantages, one would expect eye tracking to be used on
a daily basis in a mobile application, the contrary is the case.

1.2 Goals

The goals of this bachelor thesis are to investigate what current solutions are
available for developers who would like to take advantage of eye tracking in
their applications, evaluate existing solutions, find their problems and set
metrics to improve.

Based on previous analysis, design and implement framework that will
eliminate problems of existing solutions and provide an approach that will

1

1. Introduction
simplify eye tracking integration.

The framework should be designed with an emphasis on an adaptive user
interface.

1.3 Structure

The first part of this thesis explains basic terms that are required to understand
the topic.

The second part mentions frameworks, applications and technologies where
eye tracking is used.

The next section describes analysis and design of framework and reasons
why particular solutions were chosen instead of others.

Implementation details of a framework are described in a section that
follows. It contains an overview how to integrate framework into an exist-
ing application, what classes and modules are available to developer and
recommendations to preserve performance.

Following part mentions possible use cases of Eye Tracker Framework in
real applications. Use cases that are implemented in sample application
contain also screenshots.

Final chapters explain how to install the framework, what approach was
chosen for testing and whether it resulted in expected results. It also summa-
rizes possible advantages, disadvantages, overall success and the future of the
thesis.

2

Chapter 2
Background

2.1 Adaptive User Interface

AUI is defined as a software artifact that improves its ability to interact with
a user by constructing a user model based on partial experience with that
user. [3] It means that it is changing its components automatically without
any input needed from the user, only by previous experience and behavior.
However, AUI still needs inputs that are later evaluated and are reasons for
the change. These inputs are provided by the underlying framework.

Such as input is usually a change to contextual information, which is an
information that is related to a specific context. As a specific context can
be understood the process of tracking user’s eye movements, his presence in
front of a tracker or simply a time at a given moment, location or period of a
year.

Context is responsible for assigning different meaning to collected data.
Meaning of data can be changed with a new context but does not necessarily
has to.

As mentioned above, data need to be linked with contextual information.
Classic UI can be considered as a holder for information, but as the context
changes, information should too. Common UI has no tools to detect these
changes. By using adaptive UI, the displayed information is changed on the
go as the context changes.

Support for an adaptive UI is not in common development tools and
therefore it is necessary to use an underlying framework. A problem with
these frameworks is that they are not primarily designed for this purpose.

It results in a difficult integration, mixing of business logic with a logic
related to framework handling and code base is flooded with unnecessary
framework-related calls. As the time goes, source code becomes unmaintain-
able.

2.2 Human-Computer Interaction

Human-Computer Interaction is a discipline that studies communication
between human and computer and evaluates design and realization. [4]

3

2. Background
It utilizes the whole communication and its goal is to create UI which is

pleasant and straightforward to use.
Based on best practices, every application’s UI should be developed in

order to meet following factors [7] and be:. useful - only relevant content is presented. usable - it is easy to use. desirable - every element of the UI has its own purpose. findable - content in the UI is easy to locate, it is where users expect
that to be. accessible - content is reachable for people with disabilities. credible - content is trustworthy

2.2.1 Types of HCI interfaces

HCI interfaces could be for purpose of this thesis divided into two groups
similarly to a common division of brain-computer interfaces 1.

Active

In a traditional active BCI, a user tries to actively send commands to an
application. [19] Application then reacts to commands sent by the user and
adjust its UI or executes the desired action.

An advantage of this approach is that user knows exactly what he is trying
to achieve and what should be expected result.

An example eye tracking UI that could be considered as active are all
applications that allow a user to fully control a device by eye movements.
These applications simulate computer mouse in Android devices and replace
a default Android keyboards.

User synchronizes keyboard in the beginning and later uses only eye move-
ments to navigate within an application, enter text and click buttons.

A category of active UI is used in applications that are designed to also
support handicapped people, which is something that tends to be forgotten
nowadays.

Passive

In comparison to active BCI, passive ones try to analyze user’s brain activity
to predict future actions and execute them without an input required [19].

Goals of passive BCI and AUI are very similar as both are focused on
automatic adaptation without direct inputs and therefore this thesis and
developed framework will focus on supporting passive AUI.

1An interface that connects a device to a brain to make the device controllable by the
brain.

4

.....................................2.3. Eye Tracking

2.3 Eye Tracking

Eye tracking is a technique that is widely used to understand the cognitive
process of an individual performing assigned task. [5].

Within this process, observers concentrate mainly on the length of the eye
gaze at a given point, paths that examined subject chooses while searching
for another point of interest or the length of attention that subject is able to
pay.

2.3.1 Usages

Eye tracking has a huge potential and therefore it is already used in multiple
areas, mainly in cognitive science, design, automotive and it starts to be used
in HCI.

Human-Computer Interaction

Eye tracking is used in HCI testing to analyze desktop or web applications.
A user is placed in front of a computer with an opened application and is
browsing through.

Researchers observe the whole process and record scanpaths 2 created by
analyzed subject. Scanpaths are later converted into heatmaps 3.

Heat maps are adjusted according to selected metrics mentioned below:.Where are users looking in order to find important elements. How long are they looking to analyze how much attention they can
expect from users. In which order are users looking at elements. How placement or size can affect attention.What parts distract users. If different user groups browse application in a different order

Design

Results from HCI research mentioned above are used as inputs for graphic
designers who need to adjust application’s UI to make it more readable and
easy to use.

2A graph that visualizes the way how the user was changing point of interests.
3A graph that uses a color scale to visualize mostly visited areas on the website/applica-

tion.

5

2. Background
Automotive

Driver drowsiness and distraction are responsible for most of the car accidents
nowadays. [6]

Because of that, automotive companies integrate eye trackers in their cars.
An eye tracker is placed facing a driver and consists of a camera and a special
software that analyses captured video in real time.

While driving, eye tracker is able to analyze gaze patterns and changes in
blink duration and based on that detect whether a driver is drowsy or not.
In that case, car systems recommend a driver to take a break.

2.3.2 Ways of Tracking

Devices that are designed to track user’s eye movements are called eye trackers.
Eye trackers are either specialized devices that were made with single

purpose to track user’s eyes or they can be a simple phone that has a front
facing camera and integrated SW to process a video.

Every eye tracker works on a slightly different principle.

Head-Mounted HW

Head-mounted HW technique requires an external device to be mounted on
user’s head. It contains a sensor that communicates with a connected device
that is able to convert data from a sensor into eye movement information.

This solution is very accurate and can also easily track eye movement paths
and create scanpaths.

Common eye trackers look like a single camera attached to user’s head,
but newer ones are designed to look more like glasses. Example of a newer
version of head-mounted eye tracker can be seen in Figure 2.1

Unfortunately, it is not suitable for common use cases because head-
mounted HW is very expensive and is not comfortable to wear the whole
day. The user will also know that he is tracked and therefore can behave
differently than he would in normal cases. This change of behavior has a
negative impact on results of tracking and it is important to remember that
while evaluating results.

It is mainly used for laboratory testing of desktop or web applications.
Applications are later redesigned according to results of testing to show
important content on places that user is looking in the first place. Using
this technique, developers can create efficient UI that holds only necessary
information.

Near-infrared Camera

Near-infrared cameras are used in the most precise eye trackers that are
available on the market. These trackers are placed on a table under a screen
and are facing user’s face or they are integrated into glasses that can later
track user’s eye movements in a similar way like head mounted HW.

6

.....................................2.3. Eye Tracking

Figure 2.1: HW eye tracker (Undertook from [8])

Tracking works in the way that near-infrared light is directed towards eye
pupil and creates reflections in a cornea. These reflections are tracked by a
camera and evaluated by underlying HW. Because of the need of near-infrared
camera, this technique is not applicable to Android devices.

Simplified anatomy of an eye is displayed in Figure 2.2

Video Processing

Video processing is focused on low resources and fast processing. It uses a
real-time video processing to process single video frames. Frame processor
applies cascade classifiers 4 to each frame and tries to detect features. These
features contain information about a position of user’s face, ears, eyes, mouth
and other facial landmarks such as nose or ears.

Video processing has many advantages. Probably as the biggest advantage
could be considered the fact that it does not require any external HW
except camera to provide frames to frame processor. The technique is also
reasonably accurate for basic purposes therefore it can easily be used in
mobile applications that cannot waste resources and need to stay low on the
price. The accuracy of results may also be increased by the fact that user
does not need to know that he is tracked, therefore he will not change his
behavior.

On the other side, accuracy is negatively influenced by many factors that
lower final results. The biggest problem is a light that causes reflections and

4Components to detect features in a frame that are iteratively trained by positive and
negative samples.

7

2. Background

Figure 2.2: Eye Structure depicting cornea and pupil location (Undertook from
[12])

shadows on the face and makes it more complicated for cascade classifiers to
locate desired features of a face.

2.4 Android

Modern mobile devices run on Android OS, iOS, Blackberry OS, Windows
Mobile or some minor OS. As can be seen in Figure 2.3 Android is the most
used operating system nowadays and according to the expectations, it still
will be in the near future.

Even though it is very fragmented as can be seen in Figure 2.4, it’s
SDK is written in Java and provides backward compatibility for most of the
functionalities. Because of that, frameworks written for Android have a wide
variety of potential developers that could make use of a developed framework.

2.4.1 Activity

A basic building block of every Android application is called Activity. Activity
represent a single screen of application that implements one real-world activity
that user can do, e.g. sing-in, buy tickets, create a new note, take a picture.

Every standalone application must have one activity that is marked as a
so-called main activity. This activity is created as a first one as is an entry
point to the whole application.

An activity must not be instantiated by developer directly, but it is done by
the OS. OS creates instances of activities, handles background processes and
user inputs. To be able to do that, activity has to provide an implementation
of lifecycle methods. The most common ones are listed below:. onCreate. Called when a system wants to create new activity instance. The

best place where to initialize UI components. Must be always

8

.......................................2.4. Android

Figure 2.3: Mobile OS market share between 2009-2017. (Undertook from [9])

implemented.. onResume. Called right after onStart method (not listed here). The method is
also called after onPause.. onPause. Called when activity loses focus. An activity must not necessarily be
destroyed when this method was called, but it can follow. OnPause
is invoked if user taps e.g. ’Back’ button.. onDestroy. Called before system destroys activity. A suitable place to release
resources that are available to the single application at given time,
e.g. camera.

More detailed diagram depicting activity lifecycle methods and its hierarchy
can be seen in Figure 2.5.

2.4.2 Fragment

In comparison with activity, fragment serves as a reusable part of a screen
that is attached to parent activity. A fragment cannot exist on its own in the
system and also cannot serve as an entry point to an application.

9

2. Background

Figure 2.4: Android OS version market share in 2017. (Undertook from [10])

A fragment has similar lifecycle to activity, but it adds a few methods such
as onAttach, onCreateView, onActivityCreated or onDetach. These methods
are meant to be used in order to synchronize its internal state with parent
activity which fragment is attached to.

As already said, it can and even must run as a part of an activity. It’s
lifecycle is synchronized and cannot run on its own.

However, a fragment can be running hidden in the background of activity
in so-called ’headless mode’.

Headless mode means that fragment does not create any UI which results
in invisible component running in the background.

In comparison with simple classes, its main advantage is that it can access
system resources such as a camera. It can also easily respond to events
triggered by the user, e.g. closing application, pressing back button etc.

2.5 Existing Solutions

There are no existing solutions that would fulfill requirements for eye tracking
framework with a focus on adaptive UI. Only possible ways how to achieve
that is to use computer vision framework that enables video processing and
create a wrapper that provides expected functionality.

Doing so is quite complicated and usually scares off potential developers
that might want to use it and want to start quickly.

Next section describes two major eye tracking frameworks and explains its

10

....................................... 2.6. Metrics

advantages or disadvantages.

2.5.1 OpenCV

An open source computer vision library that is highly optimized and meant to
be used for computational difficult image processing. It works on a low level
and offers a basic set of functions that need to be merged together to create
complex applications. OpenCV is usually main building block for commercial
eye tracking SW.

On the other side, the library is written in C++ which requires complicated
configuration to get it available in Android and also expects C++ knowledge
from developers. Calls to the library are made either using provided Java
wrappers from OpenCV or by writing own C++ source codes that are later
called from Java using a native keyword.

Integration of OpenCV is complicated. A developer has to configure the
project in order to load and import shared-object library when building an
application, import Java wrappers, explicitly open the camera and then start
parsing each camera frame using OpenCV’s cascade classifiers. On the other
side, it provides more flexibility.

Since Android API 21, Android SDK has a new way how to work with
camera and because of that, the developer has to support both old and new
API in order to support older devices.

Previously mentioned steps are making integration unnecessary compli-
cated.

2.5.2 Google Mobile Vision

Mobile Vision is a library developed by Google that is focused on computer
vision. It provides functions and structures for barcode or text scanning and
also face recognition. The library is distributed using Gradle repository and
later, when is installed to target device, it downloads additional data from
Google Play Services.

Integration into existing application or library project is not as difficult as
using OpenCV, but it still has its downsides.

A developer needs to take care of instances that belong to Mobile Vision
and make sure that e.g. camera is not opened when an application is not
running. Ignoring Android activity lifecycle would block other applications
which would like to use a camera too.

Even though that integration is simplified, activities containing business
logic are flooded with code that takes care of CameraSource instance. As a
consequence, it decreases maintainability of source code.

2.6 Metrics

Previous analysis has shown that existing solutions and frameworks make
integration and basic usage too difficult, which could be one of the reasons

11

2. Background
Library Source Code

Language
Integration Lines of Code

OpenCV C++, Java Local shared-
object libraries,
Java wrappers

approx. 330

Mobile Vision
API

Java Gradle Depen-
dency

approx. 530

Table 2.1: Current solutions’ comparison.

why eye tracking is not used in mobile applications as much as it could be.
Based on that, following metrics were set:. easy integration - framework should be available via Gradle repository
which later requires only one line to download the whole library.. separated logic - a logic of business classes and eye tracker handling
should not be mixed.. extensibility - it should be possible to extend framework’s logic.. Java compatible language - to prevent integration of C++ libraries, a
framework should be written in language that Java can cooperate easily
with.

12

....................................... 2.6. Metrics

Figure 2.5: Activity Lifecycle. (Undertook from [11])

13

14

Chapter 3
Related Work

Using eye tracking to collect passive information from a camera on Android
and later adapt UI is not the only use case. This section describes related
use cases that are taking advantage of eye tracking.

Tobii Technology [14] is a Swedish company that focuses on developing
both eye tracking HW and SW. Tobii’s product range contains glasses, screens
or tables with integrated eye trackers or standalone eye trackers that are
connected with appropriate SW.

Based on eye trackers from Tobii, Microsoft Corporation introduced a new
way of controlling Windows 10 OS [15]. The user has to own Tobii tracker
that is connected to a computer and user is later able to control the whole
system without a need to use a keyboard. The system combines eye tracking
with text-to-speech recognition.

Also another company which is for change known for its computer games
uses eye tracking - Ubisoft Entertainment. Ubisoft recently released a new
game called Assassin’s Creed Origins [16]. The game is using Tobii trackers to
rotate visible area based on the place where a user is looking. As an example,
the user can shoot to a place where he is looking, pick loot by looking at it
and much more.

Closely related to eye tracking are face recognition and comparison. Goal of
face recognition system is either to identify a person based on the associated
record stored in a database - this would be called verification process, or to
find out the identity of a person based on all records stored in a database -
so-called identification process.

Apple uses facial recognition as a part of its Face ID [17] technology that
is used to unlock the phone.

Face comparison is supported by many providers, as an example could be
mentioned Amazon Rekognition module which is a part of AWS.

15

16

Chapter 4
Analysis

Keeping in mind eye tracking examples from Chapter 3, the framework will
support as many features as possible.

It will focus on notifying parent application with regular eye movement
updates and together with that, the framework will offer support for dynamic
authentication similar to Apple Face ID.

The framework will be designed to meet all metrics from Section 2.6, which
means to offer simple integration, low number of lines of code and a widely
used programming language.

4.1 Framework’s Interactions

Sections that follow depict and describe sequence diagrams related to the
framework.

4.1.1 Subscription to the Framework

The diagram in Figure 4.1 shows initialization of eye tracking framework
and also a subscription to eye tracking context updates.

When an application is opened, Android OS instantiates MainActivity
and calls it’s lifecycle methods. As a first is invoked onCreate() where the
framework’s database must be initialized. Initialization is done by calling
EyeTracker.init(this).

Once the database is initialized, MainActivity has to make sure that a new
instance of EyeTrackerFragment is created and attached.

When necessary, MainActivity creates more fragments and these fragments
are attached to this activity and call EyeTrackerAnnotationProcessor.inject()
in their onAttached method that registers them to receive context updates.

4.1.2 User Registration

Figure 4.2 depicts user registration to EyeTrackerFragment.
When a developer decides that it is right time to register the user, usually

on a login screen, the application calls registerUser() method with username
and PictureTakenListener as arguments. EyeTrackerFragment takes a picture

17

4. Analysis

Figure 4.1: Sequence diagram of subscription to fragment.

of a user using a front facing camera, stores the picture on a file system,
rotates the picture if necessary and stores picture’s path to file in a database.

The picture needs to be rotated because there are mobile cameras that
take pictures in a horizontal mode as a default and then rotate it manually.
With some mobile brands, a picture is not rotated as it should and it remains
in horizontal position.

When registration is completed or an error has occurred, PictureTakenLis-
tener is notified with result status of registration and bitmap of a picture
that was taken if no error was detected.

4.1.3 User Verification

Figure 4.3 depicts user verification using EyeTrackerFragment.
To handle dynamic authentication correctly, MainActivity should call veri-

fyUser() method on EyeTrackerFragment and pass username and UserVerifi-
cationListener as arguments.

EyeTrackerFragment loads a path to a file associated with the username
from a database and loads a picture from a file system.

It then takes another picture of a user using a front facing camera and
compares both pictures using AWS Rekognition service to check if both
pictures contain similar persons.

When a response from AWS Rekognition service is received, it is parsed
into UserVerificationResult and an application is notified with a result of a
comparison via UserVerificationListener.

18

.............................. 4.2. Components of Application

Figure 4.2: Sequence diagram of user registration using EyeTrackerFragment.

4.2 Components of Application

The diagram in Figure 4.4 shows components of the application with under-
lying Eye Tracker framework.

Host application runs on Android OS. It consists of UI classes and classes
that handle business logic. UI classes are encapsulated by Fragments. Frag-
ments are the inner part of MainActivity, visualize application’s UI and
represent reusable components that are subsections of the whole screen.

MainActivity serves as a wrapper for all fragments and communicates with
EyeTrackerFragment which is a part of Eye Tracker Framework.

Eye Tracker Framework contains EyeTrackerFragment and underlying
Mobile Vision API framework which tracks user’s face and eyes.

Framework depends on AWS SDK which is a component of AWS and
provides communication with AWS Rekognition Module running on AWS
Cloud. AWS SDK helps to analyze similarity between persons in two different
pictures by uploading both images to AWS Rekongition, handling network
communication and parsing response data.

19

4. Analysis

Figure 4.3: Sequence diagram of user verification using EyeTrackerFragment.

4.3 Provided Use Cases

Figure 4.2 depicts all use cases that developer can do with the framework.
Most importantly, the library provides multiple eye tracking events that

application can subscribe to. Once these events happen, developer’s methods
annotated with specified annotations are invoked.

Furthermore, library enables to take advantage of dynamic authentication.
It consists of registering and verifying a user. User’s photo is captured in
a registration process, stored and later queried and compared with a photo
taken in a verification process. The developer is then notified via callback
method whether user’s identity based on facial recognition does or does not
match.

A building of user attention tree is necessary for adaptation optimization
and it serves as a tool to amend UI appropriately. Once events mentioned
above are detected, framework stores events in a database under associated
attention section. Attention sections allow the developer to define inheritance
between application’s sections and once attention tree is built, it queries all
child of root section requested by developer and loads associated events for
each section.

By data analysis of user attention tree, incorrectly built UI can be analyzed
and changed appropriately to do not display unimportant content as a first
or similar problems.

20

.............................4.4. Framework’s Internal Structure

Figure 4.4: Diagram of Components.

Figure 4.5: Use Case Diagram.

4.4 Framework’s Internal Structure

The class diagram on Figure 4.6 visualizes internal structure of the framework.
To preserve a reasonable level of complexity, it does not picture all support
classes and methods, but only the ones that are exposed to a developer using
the framework.

The framework is initialized by Activity. The Activity represents Android
Activity mentioned in previous sections. This Activity initializes EyeTracker
class which is a singleton class that provides a database for the whole frame-
work. Later, Activity attaches EyeTrackerFragment as one of its children
views. Other fragments subscribe to EyeTrackerAnnotationProcessor to
receive updates.

EyeTrackerFragment provides functionality for eye tracking itself. It creates
CameraController that manages CameraSource class. CameraController is
notified by EyeTrackerFragment with updates to fragment lifecycle in order
to properly manage CameraSource which is a part of Mobile Vision API
framework and provides access to a camera on a device.

21

4. Analysis

Figure 4.6: Class Diagram.

CameraController creates CameraSource and passes a subclass of Abstract-
FaceTracker as an argument. AbstractFaceTracker is notified by Camera-
Source with recognition updates and notifies FaceDetectionsProcessor.

FaceDetectionsProcessor provides EyeTrackerContext and FaceDetection-
sProcessorHelper updates context based on predefined rules to find context
updates. FaceDetectionsProcessor then chooses which events should be trig-
gered and calls EyeTrackerAnnotationProcessor to which fragments subscribed
to receive updates.
EyeTrackerAnnotationProcessor goes through a list of subscribers and

notifies each with an event and a context.
As a final step, once there are enough data in the framework, fragments

can build attention tree using EyeTracker class.

4.5 Database Structure

As mentioned above, framework stores tracking data to be later processed
and evaluated.

Figure 4.7 shows the structure of a database.
UserAttentionNode represents a section of a screen or the whole screen

that subscribed to receive eye tracking events. It contains id, the id of its
parent and section identifier. Section identifier allows to uniquely identify
screen of a subsection of a screen in attention tree.

Each UserAttentionNode has a parent and can have multiple children. Chil-
dren are queried by parent id. It also contains a list of UserAttentionEvents.

22

..................................4.5. Database Structure

Figure 4.7: Database Structure.

UserAttentionEvent contains id, user attention node id linking back to
associated UserAttentionNode and in addition to that event name and date
when an event was created. The entity represents a single event in tracking
process, e.g. that user regained or lost attention. It allows the developer to
identify where users are losing attention.

Last entity is Photo. It consists only of id, username and path to a file and
is used together with dynamic user authentication. When a user is registering
in an application, a photo is taken via Eye Tracker Framework, stored on the
file system and its path is saved into a database with an associated username.

Once verification process begins, a new photo is taken, the previously
captured image is loaded from a file system based on a file path in the
database and photos are compared.

23

24

Chapter 5
Implementation

The framework is implemented for Android OS using Kotlin programming
language that is able to communicate with Java without any changes needed.

Eye Tracker Framework relies on Mobile Vision API which provides a frame
processing and AWS Rekognition module which compares faces in uploaded
images.

5.1 Platform dependency

The framework was specially designed for Android OS, using libraries targeting
this OS and therefore it is not possible to migrate it to another platform.

5.2 Limitations

Unfortunately, a current version of Mobile Vision API does provide only a
limited set of information that prevents tracking exact position where a user
is looking to. Because of that, it is not possible to build heatmaps, scanpaths
or to observe gaze points.

5.3 Project Structure

Eye Tracker project consists of following modules:. eyetracker - a framework which enables usage of eye tracking and depends
on Mobile Vision API and AWS Rekognition.. sample - application which uses eyetracker module to demonstrate con-
crete use cases. This module also serves as an example application for
user testing.. sample-with-preview - simple application showing integration and that
has enabled preview to see what framework actually tracks.. sample-dynamic-authentication - application demonstrating implemen-
tation of dynamic authentication using Eye Tracker framework and
Firebase Authentication to login via Facebook

25

5. Implementation....................................
5.4 Integration

The framework is distributed using Jitpack.io repository. While integrating
the library into an existing project, it is necessary to first register Jitpack
repository in project build.gradle file as can be seen in Listing 5.1.

Listing 5.1: Project Jitpack Repository Dependency
allprojects {

repositories {
maven { url ’https://jitpack.io’ }

}
}

Once the repository is registered, all that is needed to download the
framework is to specify a dependency in module’s build.gradle file as shown
on Listing 5.2.

Listing 5.2: Gradle Dependency
implementation ’com.gitlab.jakubgruber:eye-tracker:1.0.0’

After resolving dependencies, EyeTrackerFragment can be initialized and
attached to parent activity. The fragment is initialized using a builder pattern.
See Listing 5.3.

Listing 5.3: Fragment Initialization
val eyeTrackerFragment = EyeTrackerFragment.Builder

.withFps(20.0f)

.withPreview(false)

.withPrecision(
EyeTrackingLevel.HIGH_PRECISION)

.withAwsAccessKeys(
accessKeyId,
secretAccessKey)

.build()

supportFragmentManager.inTransaction {
add(R.id.fragment_container_eye_tracker,
eyeTrackerFragment, EyeTrackerFragment.TAG)

}

After performing previous steps, EyeTrackerFragment is running in the
background of an activity, but no fragments have subscribed to receive eye
tracking events. To do so, fragments should have at least one method anno-
tated with one of specified annotations (@OnContextUpdate, @OnFaceAp-
peared, @OnFaceLost or @OnYawnDetected). Methods must be public and
accept argument of type EyeTrackerContext. Example method can be seen
on Listing 5.4.

26

................................. 5.5. EyeTrackerFragment

Listing 5.4: Method to receive eye tracking updates.
@OnFaceAppeared
fun onFaceAppeared(eyeContext: EyeTrackerContext) {

activity!!.runOnUiThread {
if (!videoView.isPlaying) {

videoView.start()
}

}
}

Once fragment has method matching example above, it must register to
receive eye tracking events, which shows Listing 5.5.

Listing 5.5: Registering for eye tracking updates.
EyeTrackerAnnotationProcessor.inject(this)

At the end of fragment lifecycle, it should unsubscribe from updates as
shown in Listing 5.6.

Listing 5.6: Unsubscribe from eye tracking updates.
EyeTrackerAnnotationProcessor.disconnect(this)

5.4.1 Requirements and recommendations. There must be only one instance of EyeTrackerFragment in an activity.. An application should be built on fragments or every activity that needs
to use eye tracking should handle its own EyeTrackerFragment.. To use user registration and verification, the developer has to request
AWS access credentials that provide access to AWS Rekognition. In sam-
ple applications, credentials are stored in src/main/raw/aws.properties
file and are read by PropertyReader class. It should also not be staged
within any of version control systems.. An application should adapt only a reasonable amount of UI elements
based on eye tracking data. Firstly, because it could get confusing for
users and secondly because changing UI with every EyeTrackerContext
update would have a significant impact on application performance.

5.5 EyeTrackerFragment

Eye Tracker Fragment is a class that provides API between Eye Tracker
Framework and a host application. It wraps AWS SDK, Mobile Vision API
and synchronizes access to camera according to Android lifecycle. If it is
built with calling .withPreview(true), it also displays camera frames with face
and eye tracking graphic.

27

5. Implementation....................................
The following section explains the usage of available methods on Eye

Tracker Fragment.

5.5.1 registerUser method

This method enables registering of a user with an associated username that
is passed as an argument into EyeTrackerFragment. As a part of registration
process, a new picture of the user is taken by a front facing camera and
picture is stored on a file system. A new record is created in the database
linking username with captured image on the file system.
PictureTakenListener, passed as an argument, is notified with a captured

image in form of Bitmap. The bitmap can be shown to the user to see what
picture was stored.

In case that picture would not be of an expected quality (depends on a
developer who integrates the framework), it is possible to register user again.
All that needs to be done is to call registerUser method once more. An old
photo is replaced by the new one and is deleted. The old photo cannot be
retrieved anymore after new registration.

5.5.2 verifyUser method

The following method is probably the most complicated according to resources.
When called, a new picture of a user is taken again. Based on a username
passed as an argument, library checks if a user has already registered. If not,
no database record is found and verification process is canceled.

In other cases, registration photo is loaded from a file system and both
pictures are sent to AWS Rekognition via AWS SDK. AWS Rekognition
evaluates both pictures, compares people on those images and notifies AWS
SDK back.

Based on the results received from AWS SDK, UserVerificationListener
passed as an argument is notified with UserVerificationResult.

UserVerificationResult acquires VERIFIED value if a face on both pictures
matches. NOT_VERIFIED if a face does not match, NO_INFORMATION if
a user with given username was not registered yet or UNEXPECTED_ERROR
if there is another error, e.g. in network communication.

5.6 Communication between Fragment and
Activity

5.6.1 Fragments

It is recommended to have an activity that has its business logic built by
fragments. These fragments are attached and handled by parent activity. One
of the fragments has to be EyeTrackerFragment that notifies other fragments
with context updates.

28

..................... 5.6. Communication between Fragment and Activity

PictureTakenListener

Serves as a callback for registerUser method. Receives Bitmap with captured
image and TakePictureResult which explains possible errors. It can be in
state of:.OK - a picture was taken successfully and a bitmap will not be null.. NULL_USERNAME - username was null or empty. Could not capture

and save a photo. A bitmap will be null.. UNEXPECTED_ERROR - something unexpected has happened (e.g.
IO operation). A bitmap will be null.

UserVerificationListener

A listener that needs to be passed to verifyUser method. Is later notified
once AWS response is available. Method onUserVerified is invoked and
UserVerificationResult is passed as an argument. It can be in one of following
states:. VERIFIED - user was successfully verified and matches the one that

registered before.. NOT_VERIFIED - a user could not be verified. A user of an application
has changed.. NO_INFORMATION - verification precedes registration. No information
is present.. UNEXPECTED_ERROR - something unexpected has happened (e.g.
network communication error, AWS Rekognition unavailable).

5.6.2 EyeTrackerContext

Context class holding information about user’s eye updates. Is automati-
cally updated at intervals that were specified by calling withFps method on
EyeTrackerFragment.Builder class.

Class contains following information:. facePresent - specifies whether user’s face is present. It means that he’s
paying attention to content.. leftEyeOpen - indicates whether the left eye is opened.. rightEyeOpen - indicates whether the right eye is opened.. blinkDetected - indicates that user has blinked.. yawnDetected - - indicates that user is yawning. A user might be tired.

29

5. Implementation....................................
5.7 EyeTracker

EyeTracker is a singleton class (Kotlin Object) which provides initialization
of a database and once application runs for long time enough, it returns
UserAttentionTree data by buildTree method.

The method returns an object of type UserAttentionTree which serves as a
holder for UserAttentionNode. This node is the root of the tree and contains
its children nodes and events related to the node.

When calling the method, section identifier must be provided as an argu-
ment. Section identifier matches sectionIdentifier from UserAttentionNode
and allows to uniquely tag section of a screen. Example call visible on Listing
5.7:

Listing 5.7: Retrieving UserAttentionTree.
val tree = EyeTracker.buildTree("application_homepage")

30

Chapter 6
Eye Tracking Usages

Eye tracking is being used more and more in a wide area of situation and
following sections suggest possible use cases with explanation how it eye
tracking could be used in given situations.

Some use cases are depicted in figures.

6.1 Automatically pause/resume video

To stop playing video, it is necessary yo tap anywhere on the screen. It does
not sound so difficult, but when something happens, e.g. someone is at the
door and rings the bell, it is necessary to open quickly and stopping a video
starts to be a bit slow.

By integrating eye tracking into an application, it is easy to detect that
user is no longer watching the video and stop it. Once he is back, video
resumes automatically again.

A prototype of automatic video playback is depicted in Figure 6.1.

6.2 Notify user to regain his attention

Applications are created for a user to simplify some tasks, but as an exchange,
it is expected from users to pay attention to what is going on in the application.
Therefore a developer wants a user to pay attention to a content as much as
possible, detect attention loss and try to regain it.

Attracting of user’s attention might be also reversed, e.g. in case of
GPS navigation. Mobile devices are commonly used as a replacement for a
navigation in cars, but it comes with a risk.

Original navigations are single-purpose devices, but Android phones offer
much more.

Because of that, user’s are using phones to check emails and other news
feed while driving and it is worth considering to integrate eye tracking into
map application to detect if a user is not staring at the screen too often and
in the case it happens, notify the user to watch the road instead of a phone.

Suggested methods that can be used to gain user’s attention are explained
in the next subsections.

31

6. Eye Tracking Usages
6.2.1 Change UI elements

If a screen is static, a user does not care about it and pays attention to
something else. By increasing a text size, changing color or position of
selected elements, attention can be regained.

6.2.2 Increase Brightness

Increasing brightness would be efficient especially at night because it is visible
immediately. One thing to keep in mind is that phones are using the highest
brightness possible when in sunlight, so it would not work for these cases.

6.2.3 Play Short Sound

A user usually pays attention to sounds that a phone does and by choosing a
sound that is unknown to the user, attention can be regained quickly. As a
disadvantage stands a fact that choosing of unknown sounds can be ignored
as the user does not expect them.

6.3 Full Device Control

Talking about eye tracking, one usually imagines an application that is fully
controlled by eye movement and that does everything in a way that it does not
require extra user interaction. Referring to Section 5.2, existing frameworks
have its limits and this one is one of them.

Development of such applications is very pricey and it is not being imple-
mented after an application is developed, but its designed while keeping eye
tracking already in mind.

As an example of such application is EVA Facial Mouse [13] that replaces
a keyboard in Android OS to help handicapped persons to control device, as
they are not capable of using their hands.

User firstly synchronizes front facing camera with application to be able to
accurately track user’s face and eyes. After that, he is able to move his head
and eye around and navigate within the application.

Following subsections describe elements being used to provide fully eye
movement-controlled application.

6.3.1 Blink to switch activities

Speaking of full device control, one aspect of eye tracking that helps is a
blinking. It is easy to detect and can be used as one part of navigation in
fully eye-controlled devices. The user would just blink and activities would
be switched based on a predefined order.

A downside is that blinking is something natural and does not necessarily
means that user wants to switch screen, so it can get overused.

It could be however solved by setting a timeout for a blinking duration.
Setting a higher timeout would eliminate unexpected blinking.

32

.......................................6.4. Security

6.3.2 Blink to scroll

Another possibility to use eye blink is scrolling down while browsing in the
Internet or reading a long text. That could be used in applications simulating
e-book readers. A lot of users would use it as they lay down on the bed and
just read and then, if correctly integrated, the application would be changing
pages and scrolling through the content.

6.3.3 Long Gaze

Looking at something for a long time expresses interest. Because of that,
long gaze serves as a core block while building applications fully controlled
by eye movements.

Long gaze expresses a wish to interact with elements, e.g. to zoom them,
click on them or close them.

6.3.4 Midas Touch Problem

Approaches used for full device control by eye tracking must be chosen wisely,
mainly because of so-called "Midas Touch Problem". It states that a border
between looking at an element to examine it and looking at an element to
interact with it is really thin [18].

Users might want just to examine given element, but incorrect implemen-
tation would evaluate long gaze as an impulse to trigger defined event, e.g.
click on the element.

6.4 Security

Eye tracking and face identification can be easily used to increase application’s
security.

6.4.1 Hide Secret Content

As was already mentioned in Chapter 1, mobile devices are used almost
everywhere and hands in hands with that goes the fact, that it limits privacy
of users. It often happens in a public transportation that people stare into a
screen of other users.

With growing development of mobile applications, users are migrating their
web applications to mobile. One kind of them is a banking application that
allows users to manage their finances. It contains details about their financial
situation and it is something that users might not want to tell anyone.

While browsing through an application, all the content should be visible,
that cannot be changed, but once attention is lost, it makes sense to hide
sensitive information in order to prevent unauthorized people to see the
content.

Figure 6.2 depicts an example of a fragment in a banking application that
automatically hides bank account balance to prevent strangers to see it.

33

6. Eye Tracking Usages
6.4.2 Dynamic User Authentication

Classic authentication into an application requires password or fingerprint
input. Password or fingerprint be might secure, but an authentication process
is performed just once and as long as the user does not close an application
or log out, he is authenticated.

Even though most of the users use lock on their device, their mobile can be
stolen in a situation when it is not locked. In such a situation, all application
are accessible and owner of the device would usually be also logged in.

An idea of dynamic user identification is that user would register and log
in in the beginning, but the application would verify his identity also when
running. Example form can be seen in Figure 6.3.

It is understandable that application cannot require password every 5
minutes, but it could take a photo during a registration process and later
compare the stored photo with the one that would be taken while a user is
using application.

By doing so, the user would not be annoyed by never-ending authentication,
but the application would still be automatically locked in case of unauthorized
access. As an addition to that, verification using a photo would stop users to
reuse their credentials between different accounts.

However, such applications should keep in mind that phone can be borrowed
and in that case, it should not be locked automatically.

6.5 User Interface Analysis

Referring back to Subsection 2.3.1, eye tracking is used as a support tool
to evaluate UI. Going more in depth, it provides tools to analyze scanpaths,
heatmaps, fixations or areas of interest.

When a developer is evaluating and processing results from UserAtten-
tionTree (see Section 5.7 for more details), he must keep in mind known
properties of correctly designed UI.

By observing events logged by the framework to specified UserAttentionN-
odes, a developer can see patterns in user behavior. When a user loses his
attention often in parent section rather than in its children, it makes sense to
make UI elements more findable and consider switching parent and children
nodes to expose desired content higher in a navigation tree. Remembering
the desirable property of UI, sections that are not visited and that cause user
attention loss should be removed from application completely.

34

................................ 6.5. User Interface Analysis

Figure 6.1: Automatically pausing/resuming video

35

6. Eye Tracking Usages

Figure 6.2: Automatically hiding a private section of an application.

36

................................ 6.5. User Interface Analysis

Figure 6.3: Use case showing a use of dynamic authentication.

37

38

Chapter 7
Testing

Testing is without a doubt an important process while developing an ap-
plication. Unfortunately, it is not possible to perform automatic testing of
applications that rely on external hardware, especially input from a camera.

Because of that, testing of the application was performed using a user
testing of a sample application in combination with user questionnaire.

Testing subjects then filled a questionnaire that consisted of 5 statements
dedicated to each section.

7.1 Testing Method and Evaluation

Sample application contained 3 sections, where Eye Tracker Framework was
integrated. Each section was separately evaluated by System Usability Scale1

approach.
SUS concept was amended, but the main concept was preserved. The

questionnaire consisted of 3 sections, one for each testing sample. Every
section had 5 statements that were evaluated by a user on a scale from 1 to
5, where 1 means "totally disagree" and 5 "totally agree".

7.2 Data Interpretation

Having three sections with 5 questions each, we can number question from 1
to 15. Positive questions were evaluated by 4 points to "totally agree" going
down to 0 to "totally disagree". Negative questions were evaluated oppositely.
Table 7.1 contains an overview of how many points were awarded to each
question based on answers.

SUS uses 10 questions that are awarded points from 0 to 4 and a sum of
points is multiplied by 2,5 to create a scale from 0 to 100.

As our questionnaire contains 5 question, the sum will be multiplied by 5.
Furthermore, SUS states that system awarded 68 and more points can be

considered as "above average". The threshold of 68 points will be preserved
and considered as a threshold of success.

1https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

39

7. Testing
Answer Points (for ques-

tions 1, 3, 6, 8, 10,
11, 13, 15)

Points (for ques-
tions 2, 4, 5, 7, 9,
12, 14)

Totally agree 4 0
Agree 3 1
I do not know 2 2
Disagree 1 3
Totally disagree 0 4

Table 7.1: Questions evaluation.

7.3 Video Control Test

A first section was dedicated to controlling a video using eye movements. This
use case belongs to a category of active AUI, where a user directly controls
application by executed actions. The sample contained a simple screen with
a single video that was playing in a loop.

In the test, a user was supposed to start, stop and resume the video only
by using eyes, blinking or simulating a complete attention loss by looking
away from the screen.

7.3.1 Questions..1. I would prefer to control video by eye movements rather than by finger
taps...2. I think it was more difficult to control the application by eyes...3. I would image that most people would learn to use the application
quickly...4. I think there was too much inconsistency in the system...5. I needed to learn a lot before understanding how to control the applica-
tion.

7.3.2 Answers and Results

Table 7.2 depicts answers of testing subjects according to testing of video
control.

Average of points awarded to this sample is equal to 57,5 which is slightly
below average set by SUS method which means that users were not really
satisfied with the way how video control worked. It may be caused by the fact
that video was controlled by blinking which, as explained earlier, might be
too sensitive. It can be solved by setting a threshold for blinking detection.

There was also a high inconsistency in results whether it was more or less
difficult to control an application. Despite that, users have agreed that most
of the people would learn to use this feature quickly.

40

.................................. 7.4. Secret Hiding Test

Q1 Q2 Q3 Q4 Q5 Sum Sum*5
3 0 2 2 4 11 55
3 1 2 4 3 13 65
0 0 2 3 2 7 35
2 1 3 2 3 11 55
2 2 3 3 3 13 65
4 2 2 2 0 10 50
2 4 4 1 3 14 70
3 3 4 3 0 13 65

Table 7.2: Video Testing Results.

7.4 Secret Hiding Test

The second task in user testing consisted of an example of a screen of a
banking application with user private information such as name, email and
mainly account balance. Screen fragment was implemented in a way that it
was automatically hiding bank account balance in case that user’s attention
was lost. This example belongs to a group of passive UI that adapts itself
without requiring a user to execute an action.

While testing, a testing subject had to observe this single screen, could in-
crease bank account balance to simulate regular usage of a banking application
and bank account balance was hiding automatically.

7.4.1 Questions..1. I think I would like my banking application to automatically hide private
sections...2. I feel confused by elements that are automatically hiding...3. I would feel more comfortable if my private information would be auto-
matically hidden...4. I found the system very cumbersome to use...5. I found this function in the system well integrated.

7.4.2 Answers and Results

The data in Table 7.3 indicates that testing subjects were more satisfied with
secret hiding than with video control. Its average is 78,75 which is above
SUS threshold.

Successful results may be influenced by increasing worries about users’
privacy. As can be seen in results of question 6, almost all users would like
their banking applications to automatically hide secret information and as
question 10 states, the feature was well integrated and easy to use.

41

7. Testing
Q6 Q7 Q8 Q9 Q10 Sum Sum *

5
4 3 4 3 2 16 80
4 4 3 4 4 19 95
4 4 4 4 4 20 100
3 3 3 2 3 14 70
1 1 2 2 2 8 40
4 0 4 3 4 15 75
4 3 3 3 2 15 75
4 4 4 4 3 19 95

Table 7.3: Secret Hiding Results.

7.5 Dynamic Authentication Testing

A last task of testing represented a login screen with dynamic authentication
integrated using a developed framework. Fragment’s UI consisted of input
for username and two buttons - one for registration, the second one for
verification.

A testing objective was to register into an application by choosing a
username and then clicking on a registration button. User’s picture was
taken and shown to a user. In case of dissatisfaction, a testing subject had a
possibility to repeat registration.

Once registration was completed, another objective was to verify self by
clicking "verify" button. This simulated dynamic authentication that would
be performed automatically by an application at chosen intervals.

Testing subject’s goal was to observe success rate of the framework in
verification.

7.5.1 Questions..1. I think I would like to use photo capture instead of remembering a
password...2. I do not feel comfortable being photographed often by an application...3. I feel safer when using dynamic photo authentication...4. I think that dynamic authentication is unnecessarily complex...5. I think that it would help me to stop reusing similar passwords.

7.5.2 Answers and Results

As seen in Table 7.4, the final score of the feature was rated by 68,13 points.
It is equal to average set by SUS and means that users’ feelings very mixed
according to this feature.

42

..................................... 7.6. Known bugs

Looking at single results, high grades in question 11 denotes that most of
the testing subjects would like to use dynamic authentication instead of using
a password and together with question 15, users have agreed that it would
help them to stop reusing similar password between multiple accounts.

However, the test also indicates that some of the subjects felt uncomfortable
about being photographed constantly by an application and are afraid of
breaking into their privacy.

Q11 Q12 Q13 Q14 Q15 Sum Sum *
5

4 4 4 3 4 19 95
4 2 2 4 4 16 80
4 3 2 4 4 17 85
1 1 2 2 2 8 40
3 1 1 3 3 11 55
4 0 4 0 4 12 60
2 2 2 2 2 10 50
4 2 4 3 3 16 80

Table 7.4: Dynamic Authentication Results.

7.6 Known bugs

The user testing was very helpful because it consisted of testing the sample
application on a variety of different devices.

It has shown up that the framework crashes while running on devices
with a processor architecture x86 and Android Marshmallow or higher. This
problem is caused by one of the libraries and needs to be solved on a side of
a provider.

An error is caused by the fact that the library is text relocations that are
not allowed since Android 6.

43

44

Chapter 8
Installation

Demo application should be able to run under any version of Android that
is equal or higher to 4.0.3. A device must have an access to Google Play
Services that are required for additional data that are necessary for Mobile
Vision API. Phone must have a front facing camera.

The application was installed using an Android Studio 3.0 running on
Windows 10. It was tested smartphone from Sony running Android 8.0.0...1. Insert CD into CD Rom mechanic..2. Extract eye_tracker.zip..3. Copy extracted folder on disk..4. Open Android Studio..5. Import extracted project into Android Studio (File -> New -> Import

Project)

45

46

Chapter 9
Conclusion

The task of the thesis was to investigate current solutions in eye tracking
field and evaluate its advantages and disadvantages. Based on the observed
information, set up metrics for a framework, implement the framework, create
a sample application and evaluate eye tracking use cases by user testing.

Existing solutions were described in Section 2.5 and metrics for a framework
that had to be developed were set. Based on main disadvantages of current
libraries, it was decided that the solution created in this thesis must be easy
to integrate, implemented in a commonly used programming language by
most of the Android developers and its design must be focused on a support
for AUI.

The developed framework was therefore implemented in Kotlin language,
distributed using a Gradle repository and its integration into an existing
project is done by using annotated methods. As seen in Section 5.4, the
whole integration is thanks to a chosen design reduced to approximately
20 lines of code necessary to start using the framework. This number is in
comparison with OpenCV by 300 lines of code less and in case of pure Mobile
Vision API, it is by 500 lines of code less.

Chapter 6 suggested a common approach and use cases how to use the
framework to develop an application with AUI and what advantages it brings.
Keeping these use case in mind, sample application was developed and tested
by users.

According to results of the user testing, it was shown that users found that
too difficult to control a video by their eye movements and that there were
inconsistencies in the way how the feature was implemented. Despite that,
users have expressed themselves that they would like to control the video
by eye movements anyway which indicates an increasing potential for eye
tracking.

The testing has also proven that more and more users are concerned about
their privacy nowadays and because of that, their opinions on a hiding secret
information in an application were predominantly positive.

The last task in the user testing pointed out that eye tracking can increase
applications’ security by replacing a standard way of a registration into a
user account by using a dynamic authentication. Testing subjects have also
agreed that doing so would decrease the number of passwords they reuse in

47

9. Conclusion......................................
different applications.

To summarize the thesis overall, it was shown that eye tracking area of
study is still missing a framework that would fully support a combination
of eye tracking and adaptive contextual applications. Such a framework was
developed as a part of this thesis and it was proven by the SUS study that
users were reacting mostly positively to presented samples. The score of all
samples was around a specified threshold by the SUS and therefore the whole
thesis can be considered as a success.

48

Chapter 10
Future Work

Looking forward, as a first will be fixed a bug detected during user testing
that causes an application to crash on some devices. The fix will require
replacing a current dependency on AWS SDK for a different one that also
offers a face comparison.

In addition to that, the framework will be extended by more features,
mainly focused on a UI that is fully-controlled by eye movements. Due to
limitations of Mobile Vision API that currently does not offer all properties
that are necessary to calculate exact position where a user is looking to,
OpenCV will be used instead. The framework was designed with a focus on
an easy replacement of an underlying framework that provides eye tracking
data and therefore framework’s API will not be influenced.

Going even further, the framework will be used in a combination with
Adaptive Application Structure (AAS)[2] framework to observe patterns in
a user behavior reflecting both eye tracking movements and the way how a
user browses through an application. The AAS framework builds a tree from
an application’s navigation menu and tries to restructure the menu based on
the numbers of visits in each node.

To support a detection of patterns in user behavior, a server with REST
API will be implemented. The server will evaluate eye tracking and adaptive
application structure data by machine learning and find recurring patterns.
Using a database of detected patterns, the server will offer recommendations
to a developer how to build the most effective UI.

10.1 Patterns to Evaluate

A combination of the eye tracker framework and the AAS framework will result
in an application that demonstrates a usage of both frameworks together.
The application will be tested by scenarios that follow.

Once the underlying framework will be replaced, it will be possible to
construct heatmaps and scanpaths. Both heatmaps and scanpaths will serve
as a comparison to the tree that is built by the AAS framework.

Analyzing the heatmap, the final framework would be able to distinguish
the importance of the elements not just by calculating the number of visits,
but also by an analysis of the time that a user dedicates to inspect every single

49

10. Future Work
element. Such a comparison should increase the accuracy of an adaptation
that the AAS framework performs after a large enough dataset is collected.
Moreover, speaking about an amount of data, a usage of eye tracking would
speed up an adaptation, because eyes provide meaningful information much
faster.

A common problem that the AAS framework deals with is a situation
where a parent has too many elements below. An example for this is an
application that displays many sections of the same type, e.g. articles in a
news application. It is expected that a user’s attention will not be influenced
by the structure, but by the content of each article. This experiment would
be simulated by creating two or more applications that have an exactly same
structure, but the content of each application would be different. In the first
case, a content that should be interesting for a user would be chosen and in
other cases, the application would display something unimportant.

Doing so, the experiment should prove that the attention and usability of
the application are not influenced just by correctly built structure, but also
by a provided content. If this would be confirmed, the framework would be
then tested in a combination with a framework that can adapt the content
based on a user’s needs, e.g. by inspecting the text. With every iteration of
integration a new adaptation framework, the UI should improve to attract
user’s attention more and more.

Another usual problem in adaptive application structure rises with a
navigation tree that is too deep, which means that every element contains
another nested element. Expectations for this case would be that a user
will pay attention in the beginning, then lose the attention as he browses
through sections in the middle, and finally regain the attention once he gets
to desired content. The framework should indicate that sections in the middle
are unnecessary and restructure a navigation in an application. The attention
lost in the middle of browsing should be noticeable when inspecting scanpaths
and the time that a user needs to read sections in the middle. The user is
expected not to look on the middle sections for too long.

The testing of a combination of both frameworks should produce a general
machine learning model that would be later applied to a new data from other
applications. If the model would be trained successfully, the UI recommen-
dation for developers should help them to build a UI that would be focused
mainly on a gaining of the user’s attention while keeping the application’s
structure simple.

50

Appendix A
Bibliography

[1] GHAOUI, Claude. Encyclopedia of human computer interaction. Hershey
PA: Idea Group Reference, c2006. ISBN 9781591405627.

[2] ŠEBEK, Jiří a Karel RICHTA. Usage of Aspect-Oriented programming in
Adaptive Application Structure: New Trends in Databases and Information
Systems. DOI: : ADBIS 2016 Short Papers and Workshops, BigDap,
DCSA, DC, Prague, Czech Republic, August 28-31, 2016, Proceedings.

[3] RAHEEL, Saeed. Improving the user experience using an intelligent
Adaptive User Interface in mobile applications. In: 2016 IEEE In-
ternational Multidisciplinary Conference on Engineering Technology
(IMCET) [online]. IEEE, 2016, 2016, s. 64-68 [cit. 2018-01-13]. DOI:
10.1109/IMCET.2016.7777428. ISBN 978-1-5090-5281-3. Available on:
http://ieeexplore.ieee.org/document/7777428/

[4] LIN, Liannan, Wenda QIN a Chuan LONG. The analysis and practice
of the human-computer interaction course system in Stanford University.
In: 2016 11th International Conference on Computer Science & Edu-
cation (ICCSE) [online]. IEEE, 2016, 2016, s. 865-870 [cit. 2018-01-13].
DOI: 10.1109/ICCSE.2016.7581695. ISBN 978-1-5090-2218-2. Available
on: http://ieeexplore.ieee.org/document/7581695/

[5] CHANDRIKA, K R, J AMUDHA a Sithu D SUDARSAN. Recogniz-
ing eye tracking traits for source code review. In: 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA) [online]. IEEE, 2017, 2017, s. 1-8 [cit. 2018-01-13].
DOI: 10.1109/ETFA.2017.8247637. ISBN 978-1-5090-6505-9. Available on:
http://ieeexplore.ieee.org/document/8247637/

[6] ZHANG, Wei, Bo CHENG a Yingzi LIN. Driver drowsiness
recognition based on computer vision technology. Tsinghua Sci-
ence and Technology [online]. 2012, 17(3), 354-362 [cit. 2018-01-
13]. DOI: 10.1109/TST.2012.6216768. ISSN 1007-0214. Available on:
http://ieeexplore.ieee.org/document/6216768/

[7] User Experience Basics [online]. [cit. 2018-01-11]. Available on:
https://www.usability.gov/what-and-why/user-experience.html

51

A. Bibliography.....................................
[8] Video Eye Tracker [online]. 2018 [cit. 2018-01-12]. Available

on: https://www.bradford.ac.uk/research/rkt-centres/visual-
computing/facilities/eye-tracking/

[9] Smartphone OS Market Share [online]. [cit. 2018-01-12]. Available
on: https://www.statista.com/statistics/266136/global-market-share-
held-by-smartphone-operating-systems

[10] Android version market share [online]. [cit. 2018-01-12]. Avail-
able on: https://www.statista.com/statistics/271774/share-of-android-
platforms-on-mobile-devices-with-android-os/

[11] Activity Lifecycle [online]. [cit. 2018-01-13]. Available on:
https://developer.android.com/guide/components/activities/activity-
lifecycle.html

[12] Basic Eye Anatomy [online]. [cit. 2018-01-13]. Available on:
http://www.eyesightresearch.org/background.htm

[13] EVA Facial Mouse [online]. [cit. 2018-01-13]. Available on:
https://play.google.com/store/apps/details?id=com.crea_si.eviacam.service

[14] Tobii [online]. [cit. 2018-01-13]. Available on: https://www.tobii.com/

[15] Windows 10 Eye Tracking [online]. [cit. 2018-01-13]. Available
on: https://support.microsoft.com/en-us/help/4043921/windows-10-get-
started-eye-control

[16] Ubisoft Gaming [online]. [cit. 2018-01-13]. Avail-
able on: https://assassinscreed.ubisoft.com/game/en-
gb/news/detail.aspx?c=tcm:154-305094-16&ct=tcm:154-76770-32

[17] Apple Face ID [online]. [cit. 2018-04-14]. Available on:
https://support.apple.com/en-us/HT208108

[18] Midas Touch Problem in Eye Tracking [online]. [cit. 2018-04-19]. Available
on: http://longqian.me/2017/01/05/midas-touch/

[19] Guide to brain-computer music interfacing. New York: Springer, 2014.
ISBN 978-1-4471-6583-5.

52

Appendix B
Listings

5.1 Project Jitpack Repository Dependency 26
5.2 Gradle Dependency . 26
5.3 Fragment Initialization . 26
5.4 Method to receive eye tracking updates. 27
5.5 Registering for eye tracking updates. 27
5.6 Unsubscribe from eye tracking updates. 27
5.7 Retrieving UserAttentionTree. 30

53

54

Appendix C
List of Abbreviations

HCI Human-Computer Interaction

UI User Interface

AUI Adaptive User Interface

SW Software

HW Hardware

SDK Software Development Kit

OS Operating System

AWS Amazon Web Services

API Application Programming Interface

BCI Brain-computer interface

SUS System Usability Scale

PDF Portable Document Format

AAS Adaptive Application Structure

55

56

Appendix D
Content of Attached CD

The content of CD is divided into following directories and files:. eye_tracking_in_adaptive_contextual_applications.pdf - the bachelor
thesis in PDF format. thesis_sources.zip - TeX sources of the thesis. eye_tracker.zip - an Android Studio project with the framework and
sample modules. attachments.zip - a directory with diagrams and pictures used in the
thesis

57

	Introduction
	Motivation
	Goals
	Structure

	Background
	Adaptive User Interface
	Human-Computer Interaction
	Types of HCI interfaces

	Eye Tracking
	Usages
	Ways of Tracking

	Android
	Activity
	Fragment

	Existing Solutions
	OpenCV
	Google Mobile Vision

	Metrics

	Related Work
	Analysis
	Framework's Interactions
	Subscription to the Framework
	User Registration
	User Verification

	Components of Application
	Provided Use Cases
	Framework's Internal Structure
	Database Structure

	Implementation
	Platform dependency
	Limitations
	Project Structure
	Integration
	Requirements and recommendations

	EyeTrackerFragment
	registerUser method
	verifyUser method

	Communication between Fragment and Activity
	Fragments
	EyeTrackerContext

	EyeTracker

	Eye Tracking Usages
	Automatically pause/resume video
	Notify user to regain his attention
	Change UI elements
	Increase Brightness
	Play Short Sound

	Full Device Control
	Blink to switch activities
	Blink to scroll
	Long Gaze
	Midas Touch Problem

	Security
	Hide Secret Content
	Dynamic User Authentication

	User Interface Analysis

	Testing
	Testing Method and Evaluation
	Data Interpretation
	Video Control Test
	Questions
	Answers and Results

	Secret Hiding Test
	Questions
	Answers and Results

	Dynamic Authentication Testing
	Questions
	Answers and Results

	Known bugs

	Installation
	Conclusion
	Future Work
	Patterns to Evaluate

	Bibliography
	Listings
	List of Abbreviations
	Content of Attached CD

