
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

David Zahrádka

Motion planning for team of Unmanned Aerial
Vehicles with flight time constraint and Dubins

vehicle model

Department of Cybernetics

Thesis supervisor: Ing. Robert Pěnička

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

434763Personal ID number:Zahrádka DavidStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Systems and ControlBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Motion planning for team of Unmanned Aerial Vehicles with flight time constraint and Dubins vehicle
model

Bachelor’s thesis title in Czech:

Plánování pohybu týmu bezpilotních prostředků s omezením délky letu a použitím modelu Dubinsova
vozítka

Guidelines:
1. Get familiar with motion planning for team of robots over multiple target locations with route length constraint (i.e. Team
Orienteering Problem) [2] for information gathering tasks.
2. Design selected method for Team Orienteering Problem [1,2] with Euclidean norm distances between target locations.
3. Extend designed method for motion planning with Dubins vehicle model [3] suitable for Unmanned Aerial Vehicles.
4. The deigned method should consider information gathering within circular neighborhood of given target locations [4].

Bibliography / sources:
[1] Pieter Vansteenwegen, Wouter Souffriau, Dirk Van Oudheusden, 'The orienteering problem: A survey,' in European
Journal of Operational Research, vol. 209, pp. 1-10, 2011.
[2] I-Ming Chao, Bruce L. Golden, Edward A. Wasil, 'The team orienteering problem,' in European Journal of Operational
Research, vol. 88, pp. 464-474, 1996.
[3] R. Pěnička, J. Faigl, P. Váňa and M. Saska, 'Dubins Orienteering Problem,' in IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 1210-1217, 2017.
[4] J. Faigl and R. Pěnička, 'On close enough orienteering problem with Dubins vehicle,' in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, pp. 5646-5652, 2017.

Name and workplace of bachelor’s thesis supervisor:

Ing. Robert Pěnička, Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 16.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Robert Pěnička
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to thank my advisor for his invaluable help and guidance, my family and
friends for their never-ending support, the legendary emperor Shennong for the invention
of tea and Hedwig Norris for her patient assistance during my long debugging sessions.

Abstract

This thesis deals with Dubins Team Orienteering Problem with Neigh-
bourhoods, a novel routing problem formulation. The goal is to collect
a reward by visiting locations’ close vicinity using multiple curvature-
constrained vehicles, each limited by specified travel budget. This prob-
lem formulation is useful in data-collection scenarios with fixed-wing or
multirotor UAVs with constant forward speed, where remote data collec-
tion is possible and where it is necessary to consider the limited amount
of fuel or battery capacity. A Greedy Randomised Adaptive Search Pro-
cedure with Path Relinking is presented as a solution to the Dubins Team
Orienteering Problem with Neighbourhoods. The algorithm was tested
in a real-life experiment scenario using multiple Micro Aerial Vehicles.

Abstrakt

Tato práce se zabývá optimalizačńım problémem Dubins Team Ori-
enteering Problem with Neighbourhoods. Jeho ćılem je maximalizo-
vat odměnu źıskávanou navštěvováńım bĺızkého okoĺı zadaných lokaćı s
předem stanovenou odměnou pomoćı několika neholonomńıch voźıtek.
Praktické využit́ı této optimalizačńı úlohy může být např́ıklad ve
scénář́ıch s dálkovým sběrem sensorických dat pomoćı skupiny bezpi-
lotńıch letoun̊u s jistým minimálńım poloměrem zatáčeńı a omezeným
palivem či kapacitou bateríı. V této práci je jakožto řešeńı Dubins
Team Orienteering Problem with Neighbourhoods představena heuris-
tika Greedy Randomised Adaptive Search Procedure with Path Relink-
ing. Výsledky byly otestovány experimentem v reálných podmı́nkách se
skupinou bezpilotńıch multikopter.

CONTENTS

Contents

1 Introduction 1

2 State of the art 3

2.1 Travelling Salesman Problem . 3

2.2 Orienteering Problem . 5

2.3 Greedy Randomised Adaptive Search Procedure 9

3 Problem formulation 10

3.1 Team Orienteering Problem . 10

3.2 Dubins Team Orienteering Problem . 12

3.3 Dubins Team Orienteering Problem with Neighbourhoods 14

4 GRASP with Path Relinking for the DTOPN 16

4.1 Construct Procedure . 16

4.2 Local Search Procedure . 18

4.3 Link to Elites Procedure . 19

4.4 Update Elites Procedure . 20

4.5 Dubins Extension . 21

4.6 Neighbourhoods extension . 22

5 Experimental Results 23

5.1 Testing Instances . 23

5.2 Implementation performance . 24

5.3 Reward collection . 25

5.4 Dubins Resolution Parameter . 26

5.5 Neighbourhood Resolution Parameter . 29

5.6 Dubins Radius Parameter . 30

5.7 Neighbourhood Radius Parameter . 32

5.8 Experimental verification with Micro Aerial Vehicles 33

6 Conclusion 37

Appendix A CD Content 45

i

CONTENTS

Appendix B List of abbreviations 47

ii

LIST OF FIGURES

List of Figures

1 Two MAVs mid-flight used in the experimental verification of proposed
method. (Courtesy of Matěj Petrĺık) . 2

2 Search graph with m uniformly sampled headings at each target location
qσi , 0 ≤ i ≤ k. Graph search algorithm over all heading sample combinations
is utilised to find the path with minimal length connecting specified target
locations (qσ1 , . . . , qσk). 22

4 The dependency of the average collected reward and execution time of the
SPR DTOPN solution on the Dubins resolution parameter RD. 28

5 The dependency of the average collected reward and execution time of the
SPR DTOPN solution on the neighbourhood resolution parameter RN . . . 30

6 The dependency of the average collected reward and execution time of the
SPR DTOPN solution on the Dubins radius parameter ρ. 31

7 The dependency of the average collected reward and execution time of the
SPR DTOPN solution on the neighbourhood radius parameter δ. 33

8 Visualisation of hexarotor UAV hardware used in the real-life experiment. . 34

9 UAV 1 hovering above its starting location (marked by a black block on the
ground), taken by onboard camera of UAV 2. 35

10 Image from onboard camera of UAV 1 taken while inspecting a target loca-
tion marked with a coloured block with a reward label. 35

11 Three pre-planned trajectories for the TOP, DTOP and DTOPN with a
visualisation of MAV trajectories flown in real-life experiment based on data
from onboard positioning systems. The axes are shown in meters. 36

iii

LIST OF FIGURES

iv

1 INTRODUCTION

1 Introduction

As the usage of autonomous vehicles in the industry increases, the demand for ef-
fective control of autonomous vehicles rises proportionally. This includes route planning
algorithms, which can increase the productivity of autonomous vehicle deployment when
effective. Since optimisation problems are computationally complex, various algorithms and
heuristics surface and compete in which is closer to an optimal solution and in the eco-
nomical usage of execution time. One of the problem formulations used for route planning
optimisation is the Orienteering Problem (OP), and its generalisations.

The OP features a set of locations each with their assigned score. The starting point
and the ending point are known and fixed. The travel cost needed to travel from location
i to location j is known for all location pairs. The travel budget used to visit locations
is limited by a given parameter. The goal of the OP is to find a single route, limited by
the travel budget parameter, which maximises the total collected score while visiting each
location at most once.

The OP can be described as a variant of the Travelling Salesman Problem (TSP).
However, compared to the TSP, in which the goal is to minimise the travel distance while
visiting all locations, in the OP the goal is to maximise the score collected by visiting
nodes within a limited travel budget. The OP is thus a better way to model situations
where visiting all locations is impossible, for example in applications where the vehicles
used have a limited amount of fuel.

The Team Orienteering Problem (TOP) is an OP that maximises the total score of
multiple routes, each limited by a travel budget. Since the travel budget applies to each
route individually, this allows the total reward collected by all routes to be higher than it
would be possible for only one route. This is very useful in situations where it is possible
to deploy multiple UAVs simultaneously.

The Dubins Orienteering Problem (DOP) is an OP that considers only curvature-
constrained vehicles called Dubins vehicles. This allows us to plan routes for, for example,
unmanned planes, or certain Unmanned Ground Vehicles [UGV] with limited turning ra-
dius.

The Orienteering Problem with Neighbourhoods (OPN) or Close Enough Orienteer-
ing Problem is another variation of the OP. In the OPN, the reward can be collected by
visiting a neighbourhood around each location instead of each location’s exact coordinates.
This allows increasing the collected reward in situations where it is sufficient to visit the
location’s neighbourhood defined by a specific neighbourhood radius.

The Dubins Team Orienteering Problem with Neighbourhoods (DTOPN) is a novel
problem formulation and an algorithm that solves it is the subject of this thesis. It can
be described as a combination of TOP, DOP and OPN, where the goal is to maximise the

1/48

1 INTRODUCTION

collected score of multiple routes by visiting an area around each location, with each path
limited with travel budget and undertaken by a Dubins vehicle. The DTOPN can be used
to model situations where it is required to map an area using multiple Unmanned Aerial
Vehicles (UAVs), the budget being their battery, flight time or maximal travelled distance
and the curvature constraint representing the inability of unmanned planes to change their
direction on a single spot, or a scenario with UAVs remotely collecting sensory data.

A Greedy Randomised Adaptive Search Procedure is introduced as a solution to the
DTOPN. It is a flexible algorithm originally used to solve the TOP extended to consider
the Dubins vehicle’s minimal turning radius requirements and the locations’ respective
neighbourhoods.

The algorithm was tested in a real-life experiment which modelled data-collection
scenario using three Micro Aerial Vehicles (MAVs) (Fig. 1) initially developed for multi-
robot applications [48]. Three trajectories were generated (TOP, DTOP, DTOPN) for the
MAVs to follow. The goal was to visit locations scattered on a field and visually inspect
them with onboard cameras, thus collecting their associated reward.

Figure 1: Two MAVs mid-flight used in the experimental verification of proposed method.
(Courtesy of Matěj Petrĺık)

2/48

2 STATE OF THE ART

2 State of the art

In this section, the two of the relevant problem definitions are explained, together
with their derivatives, the real-life applications and algorithms that were used to solve them
with particular attention to Team Orienteering Problem, Dubins Orienteering Problem
and Orienteering Problem with Neighbourhoods, as they are the foundation of this thesis.
Furthermore, the Greedy Randomised Adaptive Search Procedure with Path Relinking is
introduced.

2.1 Travelling Salesman Problem

The most classical routing problem formulation is the TSP. It is widely studied in
many fields, including computer science, operational research and robotics. The problem is
defined as follows: A salesman wants to visit each of a set of cities exactly once and return
to the starting city with minimal distance travelled [45]. Many algorithms were developed
that solve it, since it is easy to formulate and, as an NP-hard problem [27], is difficult to
solve. For example, the Ant Colony System as proposed by Dorigo et al. in [17] and further
thoroughly described in [16]. It also serves as a basis for other problem definitions that
generalise it by imposing other restrictions that extend its usefulness for many real-life
applications.

One of those is the Dubins Travelling Salesman Problem (DTSP). It was first proposed
by K. Savla et al. in 2005 [49]. Compared to the original (Euclidean) TSP, the DTSP uses
the Dubins vehicle model [18] that features curvature constraints. The applied model allows
planning routes for vehicles with limited turning radius, for example, fixed-wing UAVs,
VTOL UAVs with constant forward speed or specific kinds of ground vehicles. However,
this extension raises the computational capacity requirements, since it is necessary to
calculate the best way to connect different headings for each pair of visited cities.

In [49], K. Savla et al. also proposed a simple solution to the DTSP with their Alter-
nating Algorithm. It is based on the optimal solution of the Euclidean TSP to determine
a sequence of visits to the goals. Dubins vehicle’s headings are then found in the way
that even edges are connected by straight line segments, and the odd edges correspond to
the optimal Dubins manoeuvres. Since it addresses the DTSP in two consecutive steps, it
can be called a decoupled approach. A similar approach has been utilised in the Receding
Horizon Approach by X. Ma and D. A. Castanon in 2006 [35]. Another approach is to
use sampling-based algorithms, in which the possible headings are sampled into a finite
discrete set, and the DTSP is transformed into the Generalized Asymmetric TSP and fur-
ther into Asymmetric TSP by Noon-Bean transformation [37]. The third approach is to
use evolutionary algorithms [66], [67].

Profit-Based TSP is a generalisation of the traditional TSP, where it is not necessary

3/48

2 STATE OF THE ART

to visit all cities. Each city has a pre-defined profit (value). The objective of the Profit Based
Travelling Salesman Problem is to find a tour with a satisfying collected profit (maximised)
and the least travel cost (minimised). One of the specific Profit based generalisations is the
Selective Travelling Salesman Problem (STSP). The objective of STSP is to find a tour
that maximises the profit collected in such a way that the travel cost does not exceed a
predetermined value Tmax. This is also called the Orienteering Problem and will be further
explained in the next section.

For applications where the deployment of multiple salesmen is possible, the Multiple
Travelling Salesman Problem (mTSP) generalisation of the TSP is very useful. It consists
of determining a set of routes for m salesmen whom all start from and turn back to a
home city (depot). Although the TSP has received a great deal of attention, the research
on the mTSP is limited [3]. The mTSP has many specific versions. In single-depot version,
every salesman starts and ends their tour at a single point. In multi-depot version, the
salesmen can either return to their original depot after completing their tour or to any
depot with the restriction that the number of salesmen at each depot remains the same
after the travel. The former is called the fixed-destination case; the latter is named as
the nonfixed-destination case. The number of salesmen also varies. An interesting version
where the number of salesmen is not pre-determined exists. It associates a fixed cost to
every salesman that incurs whenever this salesman is used in the solution. In this case, the
minimisation of the number of salesmen to be activated in the solution is also of concern.

Using multiple salesmen is very useful when applied to modelling real-life situation,
especially in routing and scheduling problems, as using more salesmen at once leads to
an increase in the amount of cities visited in the same amount of time, and in real life
applications, it is often possible to use more than one subject at the same time. Example
applications on which the mTSP and it’s variations can be applied are print press schedul-
ing [25] [54], crew scheduling [31], the school-bus routing problem [1], mission planning
[6] [7], hot rolling scheduling [56] and in the design of global navigation satellite system
surveying networks [46]. Another problem is discussed in [40] that deals with balancing
the workload among salesmen, which is relevant to work scheduling applications. Other
interesting examples are the overnight security service problem, investigated by Calvo and
Cordone [10], or the subproblem in the scheduling of quay cranes in ship operation plan-
ning by Kim and Park [41], where a branch and bound algorithm is used to find tight lower
bounds.

The Dubins Travelling Salesman Problem with Neighbourhoods is also an important
TSP generalisation. The term was first used by Isaacs et al. in 2011 [26], however, the first
to tackle this problem was K. Obermeyer in 2009 [38]. It utilises the Dubins vehicle and
combines it with the idea of neighbourhoods. The neighbourhoods are circular areas around
each city in which the city’s designated reward can be collected. Allowing to collect the
reward from near distance of cities is a very useful extension since if the real-life application
does not require visiting the exact location, travel cost can be minimised more effectively.

4/48

2 STATE OF THE ART

However, this also means that not only headings have to be determined, but also the
particular points of visits can be selected from an infinite set. To tackle this optimisation
problem, the headings and neighbourhoods can be sampled, which results in a finite set of
heading and neighbourhood samples. This is called a sampling-based approach. Similar to
the DTSP, approaches for the Euclidean TSP cannot be used. Obermeyer et al. [38] propose
a genetic algorithm to address the TSPN. The authors further proposed an algorithm based
on a randomised sampling resolution complete approach that transforms the TSPN into a
variant of the Generalized TSP. It is then further transformed into the Asymmetric TSP
that is solved by the LKH algorithm [39].

2.2 Orienteering Problem

The OP is a variation of the Travelling Salesman Problem that features a travel
budget that must be met. This makes it a very useful problem formulation for real-life
scenarios in robotics since it allows to account for travel limitations, such as battery life or
limited fuel amounts. It combines two NP-hard optimisation problems, the Knapsack and
the Travelling Salesman Problem [45]. The similarity of the OP to the Knapsack problem
is in the goal to maximise collected reward by selecting a subset of target locations to be
visited within the budget. This is combined with the TSP, in which the goal is to minimise
the travel cost associated with visiting cities on a route.

The Euclidean OP (EOP), also known as the STSP, was introduced in 1987 by
Golden, Levy and Vohra [24]. Its first application was however mentioned in 1984 by A.
Tsiligirides in [58], using an example of a travelling salesman with not enough time to visit
all possible cities. In [58], Tsiligirides also proposed two heuristics for tackling the Orien-
teering Problem. One is stochastic (S − Algorithm) and the second one is deterministic
(D − Algorithm).

Another mention was in [24] by Golden et al. where a different practical application
is presented, consisting of a fleet of trucks delivering to a large number of customers on
a daily basis. The customer’s fuel inventory level should be maintained at an adequate
level at all times. That is, each customer has a known tank capacity, and its fuel level is
expected to remain above a prespecified critical value which may be called the resupply
point. The deliveries follow a ”push system” in the sense that they are scheduled by the
firm based on a forecast of the customers’ tank levels. Stockouts are costly and are to be
avoided whenever possible. The forecasted inventory level can be considered as a measure
of urgency for each customer. The higher the urgency measure, the more important is it
to service that customer immediately. A primary goal is to select a subset of customers to
visit each day that urgently require service and that are clustered geographically in such
a way as to foster the construction of efficient truck trips. The orienteering problem can
be used to solve the subset selection step in the larger inventory/routing problem when
urgency is replaced with score [24].

5/48

2 STATE OF THE ART

One widely used approach is the branch and bound method proposed by Laporte and
Martello [30] in 1990 and Ramesh et al. in 1992 [44]. The branch-and-bound method later
evolved into branch-and-cut algorithms which allowed to solve more complex instances.
One of the branch-and-cut algorithms was proposed by Fischetti et al. in [23].

In 1996, Chao et al. [12] introduced a five-step heuristic that only considered reachable
nodes and in result outperformed most previously presented approaches. Over the time,
many other algorithms and heuristics were developed, as solving the Orienteering Problem
is a difficult task to optimise effectively, as the computational power required is vast. For
example, artificial neural network approach was proposed in 1995 [64], genetic algorithm
was proposed in 2001 by Tasgetiren et al. [57] and Ant Colony optimization by Liang et
al. [33] in 2002.

From the recently proposed solutions, the Discrete Strengthened Particle Swarm Op-
timization by Sevkli and Sevilgen [50] managed to improve one best known solution. Other
recently proposed solutions are the Multi-Level Variable Neighbourhood Search by Liang
et al. [32] and Greedy Randomised Adaptive Search Procedure with Path Relinking by
Campos et al. [11]. Another proposed solution to the OP is the Variable Neighborhood
Search (VNS) approach. It is a metaheuristic proposed in 1997 for solving combinatorial
optimisation problems. The basic idea behind it is to search the solution space with a
systematic change of neighbourhood [36]. To reduce the computational time required to
solve the problem, Liang et al. [32] developed the Multi-level VNS, which allows solving
certain identical instances concurrently. This lead to significant speed increases.

Other examples of practical applications of the Orienteering Problem can be the
Mobile Tourist Guide, as proposed by Souffriau et al. [52] or even military applications, as
proposed by Wang et al. [65]. In the Mobile Tourist Guide example[52], tourists visiting a
city or a region are often unable to visit everything they are interested in. Thus, they have to
select what they believe to be the most valuable attractions. Making a feasible plan in order
to visit these attractions in the available time span is often a difficult task. These problems
are also called Tourist Trip Design Problems [63]. This application requires high-quality
solutions in only a few seconds of calculation time. A similar Tourist Trip Design Problem
of selecting the most interesting combination of attractions is mentioned by Wang et al. in
[65]. The military application considers a submarine or an unmanned aircraft involved in
surveillance activities. The length of their expedition is limited by a fuel or time constraint,
and the goal is to visit and photograph the best subset of all possible vertices.[65]

The Team Orienteering Problem extends the classical Orienteering Problem by using
multiple subsets of nodes without intersections to maximise the collected reward. It is
similar to the Multiple Travelling Salesmen Problem with the difference of the travel budget
which originates from the Orienteering Problem. It was first introduced by Chao et al. in
1996 [13], even though a similar problem was introduced already by Butt and Cavalier in
1994 called Multiple Tour Maximum Collection Problem [8].

6/48

2 STATE OF THE ART

Chao et al. also proposed a heuristic based on their five-step heuristic used on the EOP
[12]. Instead of selecting the best path, p best paths are selected, and two reinitialisation
steps are applied instead of one. They also introduced benchmark instances for the TOP,
which were partially based on datasets by A. Tsiligirides [58]. In 1999, Butt and Ryan [9]
published an exact algorithm for the TOP that used column generation. Boussier et al. in
2007 used the same column generation approach, but coupled it with branch-and-bound to
produce branch-and-price scheme [5]. They further used acceleration techniques to improve
the performance. In 2010, Bouly et al. proposed a Memetic Algorithm [4] which managed to
improve 5 of the best known solutions. It used GA combined with local search techniques
and used an encoding process based on the Optimal Split procedure by G. Ulusoy [59].
Other algorithms include a branch-and-cut proposed in 2013 by Dang et al. [14], which was
based on a linear formulation with a polynomial number of binary variables and managed
to improve 29 best known solutions, a Particle Swarm Optimization inspired algorithm by
Dang et al. [15], a Multi-start Simulated Annealing by Lin et al. [34] and a Pareto Mimic
Algorithm by Ke et al. [28]. All of these mentioned algorithms were able to improve some
of the existing best solutions.

The practical application of the TOP can be explained on recruitment planning of
athletes from high schools. A recruiter has to visit several schools in a given number
of days. He visits the schools beforehand and rates their recruitment potential. As the
recruiter’s time is limited, he has to choose the schools to visit each day to maximise
the recruiting potential. Another example was proposed by Tang and Miller-Hooks [55] in
which an application of TOP on routing technicians with the goal to service customers was
mentioned. Each path represents a single technician who can only work a limited number
of hours a day. Thus, not all customers requiring service can be included in the technicians’
daily schedules. A subset of customers will have to be selected, taking into account customer
importance and task urgency. The Home Fuel Delivery Problem, as described by Golden
et al. in [24] in relationship with the EOP, is also applicable, since using only one truck to
deliver fuel would provide less satisfied customers than using a fleet.

The Orienteering Problem with Neighbourhoods was first proposed in 2016 by Faigl et
al. [20]. The OPN is a generalisation of the Orienteering Problem in which reward collection
within given non-zero communication range of target locations is possible. Unlike the OP,
the OPN requires to determine the position within the circular neighbourhoods of each
target location and is, therefore, more computationally demanding due to the increased
problem size. In order to be able to solve the OPN with reasonable computational power,
the neighbourhood can be sampled to a finite number of new locations, similar to headings
in the DOP.

In [20], Faigl et al. also proposed the use of Self Organizing Map-based algorithm to
solve the OPN. It was based on the unsupervised learning of Self-Organizing Map used to
solve the Prize-Collecting Travelling Salesman Problem and used neural network approach.
It does not reliably converge to stable results, but it produces feasible solutions every run.

7/48

2 STATE OF THE ART

The practical application of the OPN is in situations where remote data collection is
possible because it allows planning routes through a close vicinity of each location. This
results in a larger collected reward, as the travel price can be lower when it is not necessary
to visit the exact location, thus making it possible to visit more locations. Larger collected
reward then translates to more data collected in the same amount of time.

The Dubins Orienteering Problem, like the Dubins Travelling Salesman Problem,
utilises the Dubins vehicle with limited turning radius. The term was first used in 2017
by Pěnička et al. [42]. Compared to the Dubins Travelling Salesman Problem, the DOP is
better suited for real-life applications in robotics, since it not only considers the curvature
constraints of fixed-wing aeroplanes but also the fuel or battery limits of UAVs.

In [42] an algorithm by Pěnička et al. based on the Variable Neighborhood Search
algorithm originally used on OP was proposed and verified in real-life testing scenarios.
The algorithm iteratively performs shake and local search procedures. The shake routine
randomly changes the best achieved solution to escape from a local maximum. The local
search procedure then improves the solution created by shake. It was also discovered that
the collected reward decreases with increasing Dubins vehicle turning radii.

The Dubins Orienteering Problem with Neighbourhoods (DOPN) combines both the
limited curvature constraint of Dubins vehicle and the ability to measure data within a
predefined circular neighbourhood around each target location. It is also known as the Close
Enough Orienteering Problem with Dubins Vehicle [21]. Because of the neighbourhood
extension, the collected reward is higher than in DOP, even though it uses the same Dubins
vehicle model. It was proposed in 2017 by Pěnička et al. [43] together with a VNS-based
metaheuristic. It produced feasible results with a larger collected reward than in DOP by
saving travel costs and even outperformed the only existing SOM-based approach for non-
overlapping neighbourhoods in the Euclidean Orienteering Problem with Neighbourhoods.

The Dubins Team Orienteering Problem with Neighbourhoods is a new routing prob-
lem formulation that combines the TOP and DOPN. Its objective is to find a set of p
length limited paths between starting and ending locations with maximal sum of collected
rewards containing nodes from a specified set of locations with pre-determined reward.
Because it combines two NP-hard problems, the DTOPN itself is NP-hard. The same sam-
pling procedure, as was used in the DOPN to reduce the number of possible headings and
neighbourhood locations to a finite number, can be applied to the DTOPN.

The practical application can be surveillance missions or remote data collecting sce-
narios using multiple curvature-constrained vehicles, such as fixed-wing or multirotor UAVs
with constant forward speed. This can prove crucial in situations where it is dangerous or
even impossible to slow the aircraft.

8/48

2 STATE OF THE ART

2.3 Greedy Randomised Adaptive Search Procedure

Since great computational power is required to solve the DTOPN, a fast algorithm
providing good results is required. Ideal candidates are algorithms able to solve the TOP
since the Dubins and Neighbourhoods extension only modifies the criteria of path creation.

According to a survey published by P. Vansteenwegen [62], the best scoring TOP
heuristics are Slow VNS by Archetti et al., which managed to have the lowest average gap
between the generated and best-known solution, and Ant Colony Optimization by Ke et
al. (2008), which managed to find the highest number of best solutions.

The first to focus on obtaining good results in only a few seconds of computational
time were Vansteenwegen et al. using a Guided Local Search approach [60] and VNS ap-
proach [61]. Their proposed Skewed Variable Neighbourhood Search reduced the minimal
achieved computational time from 63.6 seconds to 3.8, making it significantly faster than
other heuristics while still managing to provide good results.

Very good results were achieved by the Greedy Randomised Adaptive Search Pro-
cedure with Path Relinking extension by W. Souffriau (2010) [51]. It is capable of two
modes of work, the Fast Path Relinking (FPR) and Slow Path Relinking (SPR). In the
FPR mode, the algorithm ended up the second fastest with an average gap in between the
fast performing SVNS by Vansteenwegen et al. and the good results providing Ant Colony
Optimization by Ke et al.

In the SPR mode, it achieved lower average gap than VNS by Archetti et al. and found
more best solutions found than Ant Colony Optimization by Ke et al. while maintaining
faster execution time than both of them. This makes it a very flexible algorithm that is
well-suited for reliable and fast solving of the NP-hard DTOPN and therefore is proposed
in this thesis as a solution to the problem.

9/48

3 PROBLEM FORMULATION

3 Problem formulation

In this section, the Team Orienteering Problem, Dubins TOP and DTOP with Neigh-
bourhoods are mathematically formulated as optimisation problems together with their
constraints.

3.1 Team Orienteering Problem

The TOP is a combination of the EOP and mTSP. The goal is to determine P paths,
each limited with Tmax, that maximise the total collected reward. Each path is a subset
Spk ⊂ S, where S = {s1, ..., sn} is a set of target locations. The origin and ending locations
are given and represented as s1 and sn. Each considered target location si is defined by
its position denoted as si ∈ R2 and its reward ri. The reward of both the starting and
the ending location is assumed to be zero r1 = rn = 0 and is strictly positive for all other
locations. The goal of the TOP is to determine for each of P paths, p = (1, . . . , P), a set
of k target locations that define the subset Spkp .

The sequence of their visits can be described as a permutation over kp target location
of path p using Σp

kp
= (σp1, . . . , σ

p
kp

), with constraints 1 ≤ σpi ≤ n, σli 6= σmj for i 6= j∧ l 6= m

and σp1 = 1, σpkp = n, where σpi represents the target location index. These ensure that each
node is visited by at most one path and at most once.

For the Euclidean distance Le(sσp
i
, sσp

j
) between two locations sσp

i
and sσp

j
both be-

longing to path p, the TOP can be formulated as the following optimisation problem:

Maximise
Σp

kp
,kp,p∈(1,...,P)

R =
P∑
p=1

kp∑
i=1

rσp
i

s.t.

kp∑
i=2

Le(sσp
i−1
, sσp

i
) ≤ Tmax ∀p ∈ (1, . . . , P) ,

σli 6= σmj for i 6= j ∧ l 6= m ,

σp1 = 1 , σpkp = n ∀p ∈ (1, . . . , P) ,

(1)

where R represents the total collected reward.

10/48

3 PROBLEM FORMULATION

The TOP can also be formulated as an integer problem with these decision variables:
If in a path p a visit to vertex i is followed by a visit to vertex j, xijp = 1. Otherwise,
xijp = 0. If vertex i is visited in path p, yip = 1. Otherwise, yip = 0. The position of vertex
i in path p is represented as uip.

Maximise
P∑
p=1

N−1∑
i=2

riyip, (2)

s. t.
P∑
p=1

N∑
j=2

x1jp =
P∑
p=1

N−1∑
i=1

xiNp = P, (3)

P∑
p=1

ykp ≤ 1;∀k = 2, ..., N − 1, (4)

N−1∑
i=1

xikp =
N∑
j=2

xkjp = ykp; ∀k = 2, ..., N − 1;∀p = 1, ..., P, (5)

N−1∑
i=1

N∑
j=2

tijxijp ≤ Tmax;∀p = 1, ..., P, (6)

2 ≤ uip ≤ N ;∀i = 2, ..., N ; ∀p = 1, ..., P, (7)

uip − ujp + 1 ≤ (N − 1)(1− xijp);∀i, j = 2, ..., N ;∀p = 1, ..., P, (8)

xijp, yjp ∈ 0, 1,∀i, j = 1, ..., N ; ∀p = 1, ..., P. (9)

The objective of the TOP is to maximise the total reward of all vehicle tours, as
shown in (2). In this formulation, constraint (3) ensures that there are p tours starting and
ending at vertex 0. Constraints (4) ensure that each vertex can be visited at most once,
except for vertex 0. The connectivity of the tour is ensured by constraints (5) and limitation
on the total duration for each tour is imposed by constraints (6). Sub-tours are prohibited
by (7). Constraints (8) and (9) set integral requirements on the decision variables.

The TOP formulated in (2)-(9) is NP-hard. This is because when p = 1, the TOP
reduces to a Selective Travelling Salesman Problem, which is NP-hard [30].

11/48

3 PROBLEM FORMULATION

3.2 Dubins Team Orienteering Problem

In the DOP, the state of the Dubins vehicle q = (x, y, θ) consists of its position in
plane s = (x, y) ∈ R2 and its heading (θ ∈ S1), i.e., q ∈ SE(2). The vehicle model is
thus non-holonomic. The minimal turning radius ρ influences the length of the shortest
path between two states. The kinematic model of Dubins vehicle with a constant forward
velocity v and control input u can be described as:

q̇ =

[
ṡ

θ̇

]
=

ẋẏ
θ̇

 = v

cosθsinθ
u
ρ

 , u ∈ [−1, 1]. (10)

For model (10), the shortest path between two states consists only of a straight
line (L-segment) and arcs with the radius ρ (C-segment). The optimal path is then one
of two possible manoeuvres CCC,CLC, where C can be either a left-turning or right-
turning arc [18], resulting in six possible combinations. These are further denoted as Dubins
manoeuvres.

While the Dubins maneuver for any two states qi and qj with its length Ld(qi, qj) can
be determined analytically, in the DOP it is necessary to determine the particular headings
θi and θj of the vehicle at corresponding locations si, sj, respectively.

Each target location si is thus in the DOP considered as the state qi = (si, θi) and
in addition to the determination of the subset Sk of the k locations in the route and the
permutation Σ = (σ1, ..., σk), the DOP intends to find the corresponding heading angles
Θ = (θσ1 , ..., θσk)

The Dubins Orienteering Problem for the model can be then formulated as the opti-
misation problem

Maximise
k,Sk,Σ,Θ

R =
k∑
i=1

rσi ,

s. t.
k∑
i=2

Ld(qσi−1
, qσi) ≤ Tmax,

σ1 = 1, σk = n.

(11)

12/48

3 PROBLEM FORMULATION

In contrast to the Euclidean OP, the DOP considers the Dubins vehicle model and the
path is constructed using the Dubins manoeuvres between the adjacent target locations
(states). The optimisation problem is not only over all possible subsets and respective
permutations of the target locations (k,Σ), but also over all possible heading angles Θ of
the target locations. This makes the problem computationally challenging as the already
NP-hard EOP is extended to optimise over heading angles.

For the DTOP, the described problem formulation must be modified to accommodate
multiple paths. Each of the locations spi is then considered as the state qpi = (spi , θ

p
i) and

the permutation becomes Σkp = (σp1, ..., σ
p
kp

) with corresponding heading angles Θp =

(θσp
1
, ..., θσp

kp
) The optimisation problem is thus:

Maximise
Σp

kp
,Θp,kp,p∈(1,...,P)

R =
P∑
p=1

kp∑
i=1

rσp
i

s.t.

kp∑
i=2

Ld(qσp
i−1
, qσp

i
) ≤ Tmax ∀p ∈ (1, . . . , P) ,

σli 6= σmj for i 6= j ∧ l 6= m ,

σp1 = 1 , σpk = n ∀p ∈ (1, . . . , P) .

(12)

13/48

3 PROBLEM FORMULATION

3.3 Dubins Team Orienteering Problem with Neighbourhoods

In the Dubins Team Orienteering Problem with Neighbourhoods, the reward can be
collected by visiting a circular neighbourhood around each location. The specific neigh-
bourhood is described by the neighbourhood radius parameter δ that defines a δ-radius
disk centred at the respective target location coordinates. It is expected for all target loca-
tions to have the same value of δ, except the starting location s0 and the ending location
sk with zero neighbourhood radius.

In contrast to the DTOP where k,Σ and Θ are determined, the DTOPN also requires
determination of particular locations of the waypoints W ⊆ R2 at which the rewards are
collected, where the waypoints are within δ distance from the respective target locations,
i.e., wσi ∈ W, sσi ∈ Sk and |(wσi , sσi)| ≤ δ. The Dubins Orienteering Problem with Neigh-
bourhoods can be then described as the optimisation problem:

Maximise
k,Sk,W,Σ,Θ

R =
k∑
i=1

rσi ,

s. t.
k∑
i=2

Ld(q)σi−1, qσi) ≤ Tmax,

qσi = (pqσi, θσi , wσi ∈ Wk, θσi ∈ Θ).

(13)

Four important variables must be determined to solve the DTOPN. These are, sim-
ilar to the TOP, Skp and Σkp , where Skp represents the locations in each route and thus
influences the total collected rewards R, and the permutation Σkp that defines the length
of each path p over Skp constrained by the budget Tmax. Furthermore, the DTOPN solu-
tion contains the sequence of heading angles Θkp at the target locations that influence the
length of each path because of the curvature constraints of the Dubins vehicle.

The final path length is also influenced by the neighbourhoods of the respective
target locations implied by ||wσi , sσi|| < δ. This results in additional search among the
waypoints Wkp = (wσ1 , ..., wσkp) and is the reason why the DTOPN is more challenging
than the DTOP or TOP since it adds additional part of the continuous optimisation for
the locations of the waypoints in R2.

14/48

3 PROBLEM FORMULATION

In the DTOPN, the same applies, only modified to accommodate multiple routes.
The variables become wσp

kp
∈ W p

kp
= (wσp

1
, . . . , wσp

kp
), sσp

i
∈ Spkp where |(wσp

i
, sσp

i
)| ≤ δ. The

DTOPN can be described as the optimisation problem:

Maximise
Σp

kp
,Θp,W

p
kp
,kp

R =
P∑
p=1

kp∑
i=1

rσp
i

s.t.

kp∑
i=2

Ld(qσp
i−1
, qσp

i
) ≤ Tmax ∀p ∈ (1, . . . , P) ,

qσp
i

= (wσp
i
, θσp

i
), wσp

i
∈ Wkp , θσp

i
∈ Θkp∀p ∈ (1, . . . , P),

||wσp
i
, sσp

i
|| ≤ δ ∀i ∈ (2, k − 1)∀p ∈ (1, . . . , P),

||wσp
1
, sσp

1
|| = 0, ||wσp

k
, sσp

k
|| = 0,

σli 6= σmj for i 6= j ∧ l 6= m ,

σp1 = 1 , σpk = n ∀p ∈ (1, . . . , P) .

(14)

15/48

4 GRASP WITH PATH RELINKING FOR THE DTOPN

4 GRASP with Path Relinking for the DTOPN

The algorithm (1) consists of four procedures that are repeated indefinitely until the
termination condition is met. The termination condition, in this case, is a number i of
iterations without improvement.

The four procedures are Construct (2), Local Search (3), Link to Elites (4) and Update
Elites (5). Construct and Local Search create and subsequently improve an independent
solution, which is then improved using the best solutions already found by Link to Elites.
Update Elites then updates the elite pool by inserting or replacing existing elites with
worse score than the solution created by (2 - 4).

Algorithm 1 GRASP-PR

1: while Nr of iterations without improvement do
2: Construct
3: Local Search
4: Link to Elites
5: Update Elites
6: end while

4.1 Construct Procedure

The Construct procedure outlined in Algorithm 2 is responsible for generating new
solutions that are subsequently improved. It is characterised by Greediness, a parameter
randomly drawn from uniform distribution < 0, 1 >. Greediness describes the exact ratio
between greediness and randomness of the currently constructed solution. Its random na-
ture helps in generating various distinctive solutions and exploring new possible means to
achieve a higher reward.

Algorithm 2 Construct

1: Draw greediness
2: Candidates = l - infeasible nodes
3: Set hthreshold
4: Discard candidates below htreshold
5: while Candidates left to consider do
6: if Random candidate fits in a route then
7: Insert to a route
8: else
9: Mark candidate as considered
10: end if
11: end while

16/48

4 GRASP WITH PATH RELINKING FOR THE DTOPN

First, all infeasible nodes are discarded. Feasibility is checked by calculating the price
of each node l, which is equal to

tl = til + tlj (15)

where i represents the starting node and j represents the ending node and tl is the travel
distance to visit the node. If tl < budget, the node is feasible and inserted into a candidate
list. Otherwise, it is discarded.

Afterwards, each node’s heuristic value is calculated:

hl =
rl
tl
, (16)

and threshold is set as

hthreshold = (hmax − hmin) · greediness . (17)

The candidates that fulfil the requirement hl > hthreshold are inserted into a restricted
candidate list.

Then, all P paths of current solution are populated by randomly selected nodes from
the restricted candidate list so that the total length of a path p with kp nodes

tptotal =

kp∑
i=2

ti−1,i (18)

does not violate the travel budget. The procedure ends when there are no feasible nodes
left to include and returns P feasible paths of the current solution.

17/48

4 GRASP WITH PATH RELINKING FOR THE DTOPN

4.2 Local Search Procedure

The Local Search procedure summarised in Algorithm 3 tries to improve the solution
using four different ways until finding the local optimum. It alternates between reducing
the total price of the P solution paths and increasing the value by considering non-included
nodes.

Algorithm 3 Local Search

1: while Improvement do
2: Simplified 2-opt
3: Swap
4: Replace
5: Insert
6: end while

First, a simplified 2-opt is applied. If a price of a route can be decreased by exchanging
two locations already present in the route, they are swapped. This ensures that the total
price of all P paths is minimal. The simplified 2-opt is used because of the increased
computational requirements that the Dubins and neighbourhoods extensions pose.

Next, the neighbourhood between paths of the solution is explored in such a way
that minimises the total price. If an improvement in the total price can be achieved by
swapping two locations already present in the solution, they are swapped. This continues
until no possible price improvement can be achieved by exchanging nodes between routes.

Afterwards, Replace tries to improve the total claimed score by replacing nodes cur-
rently in the solution with feasible nodes not included. The algorithm considers all non-
included feasible nodes and finds their cheapest insertion place in the current solution. If
it would violate the travel budget, the node with the lowest score that could be feasibly
replaced is found and replaced. The Replace procedure executes moves that result in the
best collected score increase, and, in case of a tie, the best collected score increase and the
lowest solution price increase.

Finally, Insert tries to insert non-included nodes into the current solution in a way
that would not increase the total price over the travel budget.

The procedure ends when the specified number of iterations without improvement
is reached and returns the local optimum. The specific number of iterations without im-
provement is dependent on the algorithm mode used. It is lower when using the Fast
Path Relinking mode (FPR) than when using the Slow Path Relinking mode (SPR). This
parameter influences the speed and quality of results produced by the algorithm. Higher
number of iterations without improvement leads to slower execution time with better re-
sults provided and vice versa.

18/48

4 GRASP WITH PATH RELINKING FOR THE DTOPN

4.3 Link to Elites Procedure

The Link to Elites procedure described in Algorithm 4 serves as a long-term memory
component which ensures that the complete independence between solutions generated by
Construct and Local Search procedures is avoided.

The procedure takes two solutions as an argument, a starting solution and a guiding
solution, and explores the neighbourhood between them. It is executed for the current
solution as a starting solution and subsequently all members of the elite pool as a guiding
solution and vice versa. Every time the procedure uses an elite as a guiding solution, it’s age
increments by 1. This ensures that the algorithm does not get stuck in the local optimum
and explores as many feasible solutions as possible. The procedure returns the best solution
found.

Algorithm 4 Link to Elites

1: Set intersections = common nodes of starting and guiding solutions
2: Set locationsToAdd = guiding solution minus intersections
3: while locationsToAdd is not empty do
4: while At least one route feasible do
5: Insert locations, allow infeasibility
6: end while
7: while At least one route over budget do
8: Remove locations from infeasible paths
9: Local Search
10: end while
11: end while

The first step is creating a list of intersections between starting and guiding solutions,
which contains all the nodes both solutions have in common. Then, a list of nodes to add is
found by removing all intersection nodes from the guiding solution. This prevents adding
duplicate locations into the solution.

Furthermore, the similarity between the starting solution and the guiding solution is
calculated. If the similarity is above a certain threshold, the procedure does not continue.
This helps to ensure that the resulting solutions improved by the Link to Elites procedure
are new and different from existing elite solutions, which is necessary for discovering new
and better solutions. It also helps to speed up the algorithm by minimising the possibility
of generating a solution identical to one already generated.

While the list of nodes to add is not empty, the procedure considers inserting nodes
from the list of nodes to add to feasible paths. This differs from the way the Construct
procedure works because even moves that would violate the travel budget are considered.

When all m paths are infeasible, the algorithm restores feasibility by removing nodes.

19/48

4 GRASP WITH PATH RELINKING FOR THE DTOPN

For each node, it’s heuristic value

h−1 =
tl
rl

(19)

is calculated. The node with the highest h−1 is then removed. This continues until all paths
are feasible again. The algorithm iterates through all routes of the solution and removes
a node from each infeasible route. The Local Search procedure is then called to optimise
the solution price after iterating through all routes, which helps in preventing unnecessary
location removal. The procedure ends when the list of nodes to add is empty and returns
a list of elite candidate solutions.

4.4 Update Elites Procedure

The Update Elites procedure outlined in Algorithm 5 takes the best solution found
by Link to Elites and compares it to recently best found solutions called Elites. There is a
maximum of 10 Elites which are stored in the Elite Pool.

Algorithm 5 Update Elites

1: for all Elite do
2: if Elite used as a guiding or starting solution then
3: Elite.age+=1
4: end if
5: end for
6: if Elite.age ≥ max age then
7: Remove it
8: end if
9: if Solution == an Elite then
10: Elite.age = 0
11: else if Elite pool not full then
12: Add solution to Elite Pool
13: else
14: Find worst Elite
15: if Solution reward > worst Elite then
16: Replace the Elite
17: end if
18: end if

If any Elite solution reached the age of

max(10,
i

10
)

where i is the number of iterations without improvement, it is removed. If the solution
found is equal to an existing elite solution, the elite’s age is reset to 0. If not, and the

20/48

4 GRASP WITH PATH RELINKING FOR THE DTOPN

elite pool has not reached the maximum number of members (10), the solution is added.
Otherwise, if the solution’s collected score is higher than the worst elite’s, it is replaced.
This populates the Elite Pool, which is necessary for the solutions in order to be at least
partially non-random.

4.5 Dubins Extension

To use the GRASP algorithm for the DTOPN, the algorithm must first be extended
in order to consider the Dubins Vehicle constraints.

The procedure uses a sampling-based approach to create a discrete set of headings
for each location by proportionally sampling possible heading angles with the provided
headings resolution RD. This is necessary because otherwise, the set of different heading
angles would be infinite. The exact number of samples generated this way is given by the
heading resolution parameter RD. Next, the method used to calculate distances between
each location is extended to calculate the distance between every sampled heading of each
location using Dubins manoeuvres with the given minimal turning radius as a parameter.
This ensures that locations requiring sharp turns to visit are now penalised since curved
routes have larger travel cost than straight lines. The procedure is described in Algorithm
6.

Algorithm 6 Calculate DTOP distances

1: for all Pairs of locations, headings do
2: Calculate distance
3: end for

The method responsible for adding locations to routes is modified to use the set of
distances created by the previously mentioned procedure (6). Furthermore, when adding
new locations, the optimal heading sample is calculated based on the travel distance and
based on the entry heading of location. This ensures that the travel cost associated with
Dubins manoeuvres is minimised.

Finding the optimal headings that minimise the travel cost can be described as a
Dubins Touring Problem [22]. To minimise the length of a path, a graph search algorithm
is used to determine the sequence of headings that produce a path with minimal travel
cost. The algorithm is developed to utilise a dynamic programming technique [42] to store
distances ||(qσ1 , qσi)|| and ||(qσi , qσk)|| for every location i to decrease the computational
requirements needed to re-calculate distances when adding, exchanging or removing loca-
tions. The graph is visualised in Fig. 2.

21/48

4 GRASP WITH PATH RELINKING FOR THE DTOPN

Figure 2: Search graph with m uniformly sampled headings at each target location qσi , 0 ≤
i ≤ k. Graph search algorithm over all heading sample combinations is utilised to find the
path with minimal length connecting specified target locations (qσ1 , . . . , qσk).

4.6 Neighbourhoods extension

The neighbourhoods extension is required for the GRASP algorithm to be able to
solve the DTOPN. The neighbourhoods extension utilises sampling-based operation to
reduce the number of samples for each vertex. This is necessary to reduce the number of
neighbourhood samples since it is otherwise infinite.

Using a given neighbourhood resolution parameter RN , the circular radius of location
neighbourhoods is equidistantly sampled into a finite number of points. This results in a
set of new locations, called neighbourhood locations, in a circle of diameter δ around each
of target locations. The method responsible for calculating distances between locations
is then modified to iterate through every newly created neighbourhood location and use
their coordinates to calculate distances in addition to iterating through all locations and all
heading samples. The modified Calculate distances procedure is summarised in Algorithm
7.

Algorithm 7 Calculate DTOPN distances

1: for all Pairs of locations, neighbourhoods, headings do
2: Calculate distance
3: end for

The method responsible for adding locations is then modified to find the neighbour-
hood location and heading with lowest price increase when adding a new location. This
ensures that every constructed solution uses routes with minimised travel costs. It uses
distances calculated by the previously mentioned Algorithm 7.

To find the optimal neighbourhood sample, a similar graph search algorithm used to
find optimal headings is used (Fig. 2). The information about which neighbourhood location
was visited is then stored in the route data, since it is necessary for further optimisation
and to eliminate the need to calculate the best headings and neighbours for every location
when only one has changed.

22/48

5 EXPERIMENTAL RESULTS

5 Experimental Results

In this chapter, the testing instances are presented, and the results of the application
of the GRASP-PR algorithm on the TOP, DTOP and DTOPN are compared, together
with the influence of specific parameters on provided solutions. Furthermore, the real-life
experiment used to verify the performance is presented, and its results are discussed.

In this section, the modes Slow Path Relinking (SPR) and Fast Path Relinking (FPR)
correspond to the parameter number of iterations without improvement, which is set as
300 for SPR and 10 for FPR. These values are based on the results in [51] where they were
found as the best-performing combination.

5.1 Testing Instances

To test the algorithm, the TOP instances by Chao et al. are used. The instance
sets used are Chao 4-7 [13]. Each of the test instance sets contains multiple datasets with
the same locations, but with different travel budget and number of paths parameters.
Every dataset contains a set of location coordinates with their corresponding rewards.
The datasets in Chao 4-7 are geometric (square, diamond). Every dataset name contains
information about the budget, the number of paths used and the set it belongs to. For
example, in dataset p6.2.j, the p6 signifies it belongs to the set Chao 6, 2 means two paths
and the letter j represents the travel budget Tmax, where a is the lowest from the set.

23/48

5 EXPERIMENTAL RESULTS

5.2 Implementation performance

In order to establish a common ground for the results of the DTOPN solutions and
other problem formulations, the results of this implementation of the GRASP-PR algorithm
are compared to the existing computational results of GRASP-PR for the TOP. Table 1
contains results of both a single run of the algorithm and the best result of 10 runs, both
using a sample of datasets from Chao 4-7, compared to the results of GRASP-PR presented
in [51] which are denoted as SPR10 Original and FPR10 Original.

The single-run results in Table 1 have a significant gap between its collected reward
and the reference. However, in situations where it is crucial to produce solutions in a small
amount of time, the results of a single run could be acceptable when exchanged for faster
execution time.

The maximal results obtained after 10 runs of SPR (SPR10) and 10 runs of FPR
(FPR10) still present a noticeable gap, albeit lower, when compared to the best achieved
GRASP results. This is a result of different implementations.

Table 1: Reward collected by the GRASP algorithm used in this thesis compared to results
by W. Souffriau et al.[51].

Dataset FPR10 Original SPR10 Original FPR SPR FPR10 SPR10

p4.2.b 341 341 244 252 224 252
p4.3.j 858 861 658 761 774 785
p4.4.j 732 732 482 486 550 534

p5.2.n 925 925 830 900 910 900
p5.3.n 1070 1070 725 735 735 735
p5.4.p 760 760 675 740 710 740

p6.2.j 942 948 912 918 912 924
p6.3.l 1002 1002 894 942 912 978
p6.4.k 528 528 444 468 462 474

p7.2.j 632 646 559 624 597 628
p7.3.i 480 485 394 432 413 435
p7.4.i 364 366 308 312 293 303

Table 2: Average gap between results in [51] and presented implementation of GRASP-PR.

Gap FPR Gap SPR Gap FPR10 Gap SPR10
17.49% 12.80% 14.83% 12.00%

24/48

5 EXPERIMENTAL RESULTS

5.3 Reward collection

Both the Dubins extension and neighbourhoods extension influence the total col-
lected reward. In Tables 3 and 4, the collected reward and execution times for a sample
of the aforementioned datasets are presented. The parameters used for the DTOP were
Dubins resolution RD = 8 and Dubins radius ρ = 0.5. The same RD and ρ were used for
the DTOPN together with neighbourhood resolution RN = 8 and neighbourhood radius
δ = 0.5. Example TOP trajectory is shown in Fig. 3a, DTOP in Fig. 3b and DTOPN in
Fig. 3c.

As shown in Table 3, the average collected reward in the DTOP instances was lower
than in the TOP. This is due to the curvature constraints of the Dubins vehicle which
increase the length of arcs connecting the locations, thus increasing the travel costs. In
the DTOPN instances, the average collected reward was highest, since the neighbourhoods
extension lowers the travel budget required to visit locations.

The data presented in Table 4 show that the execution time required to solve the
TOP, DTOP and DTOPN instances varies. This is due to the randomised nature of the
algorithm. However, even with the variations, a trend of increasing execution time with
each extension is present. While the DTOPN can save the travel costs expended to visit
locations, thus increasing the collected reward, the execution time required increases as
well, due to the additional neighbourhood samples.

Table 3: Reward collected in TOP, DTOP and DTOPN instances

Dataset FPR TOP FPR DTOP FPR DTOPN SPR TOP SPR DTOP SPR DTOPN
p4.2.b 244 238 247 252 238 259
p4.3.j 713 200 694 785 718 812
p4.4.j 482 15 505 534 488 563
p5.2.n 830 391 920 900 850 950
p5.3.n 725 690 820 735 690 840
p5.4.p 675 655 745 740 700 845
p6.2.j 912 906 1086 924 870 1164
p6.3.l 894 900 978 978 888 1098
p6.4.j 306 282 420 330 312 462
p7.2.j 559 582 543 628 607 656
p7.3.i 394 377 321 435 419 461
p7.4.i 308 273 309 303 273 311

Average 586.8 459.1 632.3 628.7 587.5 701.8

25/48

5 EXPERIMENTAL RESULTS

Table 4: Execution time in seconds used to solve TOP, DTOP and DTOPN instances.

Dataset FPR TOP FPR DTOP FPR DTOPN SPR TOP SPR DTOP SPR DTOPN
p4.2.b 0.14 1.06 4.87 1.35 2.03 30.56
p4.3.j 0.95 0.90 12.25 18.30 32.38 128.52
p4.4.j 0.03 0.28 2.78 1.52 2.34 11.58
p5.2.n 0.62 1.37 54.12 18.82 53.94 468.16
p5.3.n 0.80 2.79 12.50 5.60 16.46 121.47
p5.4.p 0.41 0.80 2.18 2.21 6.90 37.20
p6.2.j 4.37 18.54 39.42 23.76 43.257 674.95
p6.3.l 0.89 7.82 4.10 15.38 33.82 61.08
p6.4.j 0.02 0.42 1.28 0.31 0.60 8.55
p7.2.j 1.50 11.89 10.85 35.17 43.73 524.67
p7.3.i 0.35 0.93 2.65 2.04 3.86 30.56
p7.4.i 0.05 0.57 2.85 0.42 0.53 4.88

Average 0.84 3.95 12.32 10.41 19.99 175.18

5.4 Dubins Resolution Parameter

The Dubins resolution parameter RD specifies how many heading samples are created
for each location. It affects the total collected reward of the DTOPN solution since, with a
higher number of samples, more precise results are computed. This, however, also influences
the computational time required, because the higher number of samples increases the total
number of possible combinations of locations and headings. The collected reward and
computational times obtained for different values of Dubins resolution RD can be seen in
Tables 5 and 6, respectively. The results are for the SPR with Dubins radius ρ = 0.5,
neighbourhood radius δ = 0.5 and neighbourhood resolution RN = 8. The graph in Fig. 4
shows that for higher resolutions, larger average rewards are collected, but with increasing
execution time. However, due to the randomised nature of the algorithm, spikes in execution
time can appear, as visible for RD = 10.

Table 5: Collected reward for different Dubins resolution parameters in the DTOPN.

Dataset RD = 2 RD = 5 RD = 6 RD = 8 RD = 10 RD = 12

p4.2.f 652 737 756 736 735 757
p4.3.j 771 837 818 901 871 848
p4.4.j 478 567 552 568 559 575

p5.2.n 930 1000 1030 1005 1010 1040
p5.4.p 740 820 815 830 840 850

p6.2.j 912 1104 1098 1176 1188 1206
p6.3.l 900 1044 1050 1104 1080 1146

p7.2.j 635 656 646 662 643 675
p7.3.i 439 459 458 466 465 475
p7.4.i 319 329 336 335 347 331

Average 678 755 756 778 774 790

26/48

5 EXPERIMENTAL RESULTS

(a) TOP trajectory of the p6.3.j dataset with total col-
lected reward 804.

(b) DTOP trajectory of the p6.3.j dataset with total col-
lected reward 762, ρ = 0.5, RD = 8.

(c) DTOPN trajectory of the p6.3.j dataset with total col-
lected reward 1008, ρ = 0.5, δ = 0.5, RD = RN = 8.

27/48

5 EXPERIMENTAL RESULTS

Table 6: Execution times in seconds for different Dubins resolution parameters in the
DTOPN.

Dataset RD = 2 RD = 5 RD = 6 RD = 8 RD = 10 RD = 12

p4.2.f 294.97 1653.94 4273.44 6411.86 10805.97 5525.15
p4.3.j 119.36 451.43 259.58 1239.79 1489.73 377.90
p4.4.j 8.48 20.82 22.81 33.75 70.53 63.82

p5.2.n 291.94 745.01 2021.45 2116.62 2810.56 2124.74
p5.4.p 31.24 95.70 82.31 73.27 110.91 82.19

p6.2.j 238.19 2503.63 1939.44 3379.40 9704.51 3753.00
p6.3.l 146.50 235.95 378.42 271.47 503.55 706.72

p7.2.j 286.47 656.73 566.31 1231.43 1474.84 1065.48
p7.3.i 21.66 58.52 55.27 94.00 266.11 218.13
p7.4.i 1.95 6.79 7.39 13.75 36.52 36.26

Average 144.08 642.85 960.64 1486.53 2727.32 1395.34

2 3 4 5 6 7 8 9 10 11 12

Dubins resolution [R
D

]

660

680

700

720

740

760

780

800

A
v
e
ra

g
e
 R

e
w

a
rd

 [
-]

0

500

1000

1500

2000

2500

3000

T
im

e
 [

s
]

Collected Reward

Execution time

Figure 4: The dependency of the average collected reward and execution time of the SPR
DTOPN solution on the Dubins resolution parameter RD.

28/48

5 EXPERIMENTAL RESULTS

5.5 Neighbourhood Resolution Parameter

Similar to the Dubins resolution, the neighbourhood resolution parameter RN speci-
fies the preciseness of neighbourhood sampling. Fig. 5 shows that higher resolution increases
the execution time, but also tends to increase the average collected reward. Results for dif-
ferent neighbourhood resolution parameters can be seen in Tables 7 and 8. The results
are for the SPR with parameters Dubins resolution RD = 8, Dubins radius ρ = 0.5 and
neighbourhood radius δ = 0.5.

Table 7: Collected reward for various neighbourhood resolution parameters in the DTOPN.

Dataset RN = 2 RN = 5 RN = 6 RN = 8 RN = 10 RN = 12

p4.2.f 681 733 735 731 767 748
p4.3.j 785 863 824 885 852 831
p4.4.j 543 556 574 573 565 580

p5.2.n 940 1020 1010 1030 1000 1025
p5.4.p 795 825 840 845 850 840

p6.2.j 1026 1116 1122 1206 1230 1206
p6.3.l 978 1056 1074 1176 1182 1134
p6.4.j 450 474 438 480 462 486

p7.2.j 628 655 667 669 654 644
p7.3.i 441 453 457 469 471 468
p7.4.i 316 326 327 331 351 346

Average 689 734 733 763 762 755

Table 8: Execution time in seconds used for multiple neighbourhood resolution parameters
in the DTOPN.

Dataset RN = 2 RN = 5 RN = 6 RN = 8 RN = 10 RN = 12

p4.2.f 221.21 1790.93 4047.73 3702.72 7750.84 13369.86
p4.3.j 95.96 396.85 730.24 1353.88 957.98 3351.53
p4.4.j 9.45 20.20 582.55 66.67 99.71 168.82

p5.2.n 247.70 1234.80 1073.23 5216.12 2499.61 8669.91
p5.4.p 15.34 67.96 116.01 312.25 270.63 282.32

p6.2.j 153.22 2580.67 2617.67 9061.83 12244.12 7273.73
p6.3.l 65.42 211.78 189.04 987.64 1190.16 791.27
p6.4.j 3.12 13.24 23.25 74.11 42.58 48.60

p7.2.j 99.62 735.87 982.64 3675.43 3968.50 3053.61
p7.3.i 11.32 63.14 105.41 137.28 239.68 249.34
p7.4.i 1.99 13.11 17.74 24.62 36.50 133.95

Average 84.03 648.05 905.56 2237.50 2663.66 3399.36

29/48

5 EXPERIMENTAL RESULTS

2 3 4 5 6 7 8 9 10 11 12

Neighbourhood resolution [R
N

]

680

690

700

710

720

730

740

750

760

770

A
v
e
ra

g
e
 R

e
w

a
rd

 [
-]

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 [

s
]

Collected Reward

Execution time

Figure 5: The dependency of the average collected reward and execution time of the SPR
DTOPN solution on the neighbourhood resolution parameter RN .

5.6 Dubins Radius Parameter

One of the important parameters that influence the results of the algorithm is the
Dubins radius ρ. It represents the minimal turning radius of the Dubins vehicle and is usu-
ally determined by the parameters of the vehicle itself. For larger Dubins radii, the average
collected reward is significantly lower, as seen in Fig. 6. The Dubins radius parameter does
not seem to have a significant impact on the execution time.

Results for different Dubins radii ρ can be seen in Tables 9 and 10 showing the average
collected rewards and computational times for a sample of datasets. The SPR mode of the
algorithm was used with Dubins resolution RD = 8, neighbourhood resolution RN = 8 and
neighbourhood radius δ = 0.5.

30/48

5 EXPERIMENTAL RESULTS

Table 9: Collected rewards for various Dubins radii parameters ρ.

Dataset ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.8 ρ = 1

p4.3.j 873 870 875 848 810
p4.4.j 557 562 552 568 529

p5.4.p 910 905 875 880 885

p6.3.l 1218 1194 1110 1008 1032
p6.4.j 468 486 480 486 462

p7.2.j 652 658 648 646 664
p7.3.i 474 466 458 463 475
p7.4.i 352 355 318 316 319

Average 688 687 665 652 647

Table 10: Execution times in seconds for various Dubins radii parameters ρ.

Dataset ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.8 ρ = 1

p4.4.j 146.58 148.49 181.15 136.75 160.80

p5.4.p 262.94 264.46 212.31 419.12 516.08

p6.3.l 797.03 1202.80 998.29 1086.25 3057.83
p6.4.j 61.74 84.22 116.87 63.35 96.36

p7.2.j 9949.67 7082.09 3159.35 3815.03 8041.03
p7.3.i 402.02 314.71 82.58 512.73 444.57
p7.4.i 59.41 72.57 82.58 58.17 62.87

Average 1781.61 1694.72 807.09 1309.59 1867.04

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dubins radius []

645

650

655

660

665

670

675

680

685

690

A
v
e
ra

g
e
 R

e
w

a
rd

 [
-]

800

1000

1200

1400

1600

1800

2000

T
im

e
 [

s
]

Collected Reward

Execution time

Figure 6: The dependency of the average collected reward and execution time of the SPR
DTOPN solution on the Dubins radius parameter ρ.

31/48

5 EXPERIMENTAL RESULTS

5.7 Neighbourhood Radius Parameter

Similar to the Dubins radius, the neighbourhood radius δ has a large impact on the
produced results. It acts opposite to the Dubins radius in the sense that the higher the
radius, the higher the average reward collected, as seen on Fig. 7. It represents the radius
(size) of the area around each location that must be visited in order to claim the associated
reward. Results for sample datasets with different neighbourhood radii δ are presented in
Tables 11 and 12. The results were obtained using SPR with parameters Dubins radius
ρ = 0.5, Dubins resolution RD = 8 and neighbourhood resolution RN = 8.

Table 11: Collected reward for various neighbourhood radii parameters δ.

Dataset δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.8 δ = 1

p4.4.j 518 535 552 631 643

p5.4.p 775 840 875 1030 1140

p6.3.l 978 1014 1110 1200 1308
p6.4.j 336 342 480 528 624

p7.2.j 612 640 648 681 711
p7.3.i 453 453 458 491 500
p7.4.i 291 330 318 365 379

Average 615 648 634 779 827

Table 12: Execution times in seconds for various neighbourhood radii parameters δ.

Dataset δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.8 δ = 1

p4.4.j 133.26 125.14 181.15 368.44 245.79

p5.4.p 546.25 203.48 212.31 649.77 571.33

p6.3.l 6008.63 2372.39 998.29 1363.49 1166.95
p6.4.j 37.40 32.43 116.87 112.74 176.75

p7.2.j 2796.12 3651.98 3159.35 5975.68 7976.21
p7.4.i 49.18 66.25 82.58 89.69 60.03
p7.3.i 264.37 264.37 82.58 715.74 664.22

Average 1968.26 2286.62 690.45 2839.67 1965.20

32/48

5 EXPERIMENTAL RESULTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Neighbourhood radius []

600

650

700

750

800

850

A
v
e
ra

g
e
 R

e
w

a
rd

 [
-]

500

1000

1500

2000

2500

3000

T
im

e
 [

s
]

Collected Reward

Execution time

Figure 7: The dependency of the average collected reward and execution time of the SPR
DTOPN solution on the neighbourhood radius parameter δ.

5.8 Experimental verification with Micro Aerial Vehicles

The GRASP-PR algorithm for the DTOPN was tested in real-life conditions using a
group of three unmanned hexarotor MAVs, which were initially developed for multi-robot
applications [48, 47, 53]. The MAVs were equipped with relative localisation system, Real
Time Kinematic (RTK) GPS, onboard PC, autopilot and down-facing camera. Figure 8
shows the onboard equipment.

The relative localisation system is used by the onboard Collision Avoidance System
(CAS) to prevent mid-air collisions within the group [29, 19]. They are also equipped with
an onboard Model Predictive Controller (MPC) used for stabilisation using only onboard
sensors [2]. RTK GPS provides an accurate reading of UAVs position, which is necessary
for precision of pre-planned missions.

In the experiment, three different trajectories were prepared (TOP, DTOP and DTOPN),
as shown in Fig. 11. They used locations represented by coloured blocks as seen in Figs. 9
and 10, each with its assigned reward, which were scattered on a field with an area of ap-
proximately 100× 50 meters. The utilised Tmax budget was 90 and it represented maximal
travel distance for each UAV in meters.

The goal was to maximise the reward collected by visually inspecting the locations
of interest using the onboard cameras as seen in Fig. 10. In the TOP instance, the MAVs
could not inspect required locations because of their constant forward speed resulting in

33/48

5 EXPERIMENTAL RESULTS

a non-zero minimal turning radius. In both the DTOP and the DTOPN, the MAVs could
inspect the target locations because of the Dubins extension, but in the DTOPN case, the
number of locations visited was higher.

In all of the instances, the actual trajectories of the MAVs were influenced by the
onboard CAS, which predicted possible collisions on their routes despite the collision-free
pre-planned trajectories. This resulted in inaccurate trajectory following since, because of
the incorrectly predicted collisions, the MAVs were delayed at the start and moved with
reduced speed, resulting in the MPC skipping trajectory waypoints in order to finish the
flight on time.

Table 13: Reward collected in TOP, DTOP and DTOPN instances using FPR with pa-
rameters Tmax = 90 , ρ = 6.15 m, δ = 4 m, amax = 2.6 m · s−2 , vc = 4 m · s−1 .

TOP DTOP DTOPN
78 67 83

Figure 8: Visualisation of hexarotor UAV hardware used in the real-life experiment.

34/48

5 EXPERIMENTAL RESULTS

Figure 9: UAV 1 hovering above its starting location (marked by a black block on the
ground), taken by onboard camera of UAV 2.

Figure 10: Image from onboard camera of UAV 1 taken while inspecting a target location
marked with a coloured block with a reward label.

35/48

5 EXPERIMENTAL RESULTS

Figure 11: Three pre-planned trajectories for the TOP, DTOP and DTOPN with a visu-
alisation of MAV trajectories flown in real-life experiment based on data from onboard
positioning systems. The axes are shown in meters.

36/48

6 CONCLUSION

6 Conclusion

In this thesis, a Greedy Randomised Adaptive Search Procedure with Path Relinking
was proposed as a solution to the Dubins Team Orienteering Problem with Neighbour-
hoods. The algorithm was based on GRASP-PR proposed by W. Souffriau et al., origi-
nally for the TOP. It was extended to consider locations neighbourhoods and curvature
constraints of the Dubins vehicle. This extension significantly increased the total collected
reward while respecting the minimal turning radius of the vehicle in exchange for higher
execution times.

Both the collected reward and computational time depend on four variables. The
Dubins radius ρ is indirectly proportional to the average collected reward. This is due
to larger travel costs when using arcs respecting the curvature constraints of the Dubins
vehicle. The neighbourhood radius δ is directly proportional to the collected reward, since
by allowing the vehicle to collect location’s associated reward from it’s close vicinity instead
of the exact coordinates the travel distance is smaller, which lowers the travel costs. For
higher Dubins and neighbourhood resolution of sampling, the average collected reward
increases, since they increase the preciseness of the algorithm. However, they increase the
average computational times.

The DTOPN is a useful as a problem formulation for data collecting scenarios allowing
remote data collection involving multiple MAVs with limited travel budget and turning
radius. The results of the algorithm were tested in real-life experiment modelling a data-
collection scenario using multiple MAVs. The experiment, albeit influenced by the onboard
collision avoidance system, proved that the MAVs could fly through the generated DTOPN
trajectories while collecting higher reward than in DTOP, while in the TOP the MAVs
missed the target locations.

37/48

6 CONCLUSION

38/48

REFERENCES

References

[1] RD Angel, WL Caudle, R Noonan, and ANDA Whinston. Computer-assisted school
bus scheduling. Management Science, 18(6):B–279, 1972.

[2] Tomas Baca, Giuseppe Loianno, and Martin Saska. Embedded model predictive
control of unmanned micro aerial vehicles. In Methods and Models in Automation
and Robotics (MMAR), 2016 21st International Conference on, pages 992–997. IEEE,
2016.

[3] Tolga Bektas. The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega, 34(3):209–219, 2006.

[4] Hermann Bouly, Duc-Cuong Dang, and Aziz Moukrim. A memetic algorithm for the
team orienteering problem. 4or, 8(1):49–70, 2010.

[5] Sylvain Boussier, Dominique Feillet, and Michel Gendreau. An exact algorithm for
team orienteering problems. 4or, 5(3):211–230, 2007.

[6] Barry L Brumitt and Anthony Stentz. Dynamic mission planning for multiple mobile
robots. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International
Conference on, volume 3, pages 2396–2401. IEEE, 1996.

[7] Barry L Brumitt and Anthony Stentz. Grammps: A generalized mission planner for
multiple mobile robots in unstructured environments. In Robotics and Automation,
1998. Proceedings. 1998 IEEE International Conference on, volume 2, pages 1564–
1571. IEEE, 1998.

[8] Steven E Butt and Tom M Cavalier. A heuristic for the multiple tour maximum
collection problem. Computers & Operations Research, 21(1):101–111, 1994.

[9] Steven E Butt and David M Ryan. An optimal solution procedure for the multiple
tour maximum collection problem using column generation. Computers & Operations
Research, 26(4):427–441, 1999.

[10] R Wolfler Calvo and Roberto Cordone. A heuristic approach to the overnight security
service problem. Computers & Operations Research, 30(9):1269–1287, 2003.

[11] Vicente Campos, Rafael Mart́ı, Jesús Sánchez-Oro, and Abraham Duarte. Grasp
with path relinking for the orienteering problem. Journal of the Operational Research
Society, 65(12):1800–1813, 2014.

[12] I-Ming Chao, Bruce L Golden, and Edward A Wasil. A fast and effective heuristic
for the orienteering problem. European journal of operational research, 88(3):475–489,
1996.

39/48

REFERENCES

[13] I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. The team orienteering problem.
European Journal of Operational Research, 88(3):464 – 474, 1996.

[14] Duc-Cuong Dang, Racha El-Hajj, and Aziz Moukrim. A branch-and-cut algorithm
for solving the team orienteering problem. In International Conference on AI and
OR Techniques in Constriant Programming for Combinatorial Optimization Problems,
pages 332–339. Springer, 2013.

[15] Duc-Cuong Dang, Rym Nesrine Guibadj, and Aziz Moukrim. An effective pso-inspired
algorithm for the team orienteering problem. European Journal of Operational Re-
search, 229(2):332–344, 2013.

[16] Marco Dorigo and Gianni Di Caro. Ant colony optimization: a new meta-heuristic.
In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on,
volume 2, pages 1470–1477. IEEE, 1999.

[17] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on evolutionary
computation, 1(1):53–66, 1997.

[18] Lester E Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of
mathematics, 79(3):497–516, 1957.

[19] Jan Faigl, Tomáš Krajńık, Jan Chudoba, Libor Přeučil, and Martin Saska. Low-
cost embedded system for relative localization in robotic swarms. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages 993–998. IEEE,
2013.

[20] Jan Faigl, Robert Pěnička, and Graeme Best. Self-organizing map-based solution
for the orienteering problem with neighborhoods. In Systems, Man, and Cybernetics
(SMC), 2016 IEEE International Conference on, pages 001315–001321. IEEE, 2016.

[21] Jan Faigl and Robert Pěnička. On close enough orienteering problem with dubins
vehicle. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5646–5652, 2017.

[22] Jan Faigl, Petr Váňa, Martin Saska, Tomáš Báča, and Vojtěch Spurnỳ. On solution
of the dubins touring problem. In Mobile Robots (ECMR), 2017 European Conference
on, pages 1–6. IEEE, 2017.

[23] Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. Solving the orienteer-
ing problem through branch-and-cut. INFORMS Journal on Computing, 10(2):133–
148, 1998.

[24] Bruce L Golden, Larry Levy, and Rakesh Vohra. The orienteering problem. Naval
research logistics, 34(3):307–318, 1987.

40/48

REFERENCES

[25] Samuel Gorenstein. Printing press scheduling for multi-edition periodicals. Manage-
ment Science, 16(6):B–373, 1970.

[26] Jason T Isaacs, Daniel J Klein, and Joao P Hespanha. Algorithms for the traveling
salesman problem with neighborhoods involving a dubins vehicle. In American Control
Conference (ACC), 2011, pages 1704–1709. IEEE, 2011.

[27] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[28] Liangjun Ke, Laipeng Zhai, Jing Li, and Felix TS Chan. Pareto mimic algorithm: An
approach to the team orienteering problem. Omega, 61:155–166, 2016.

[29] Tomáš Krajńık, Mat́ıas Nitsche, Jan Faigl, Petr Vaněk, Martin Saska, Libor Přeučil,
Tom Duckett, and Marta Mejail. A practical multirobot localization system. Journal
of Intelligent & Robotic Systems, 76(3-4):539–562, 2014.

[30] Gilbert Laporte and Silvano Martello. The selective travelling salesman problem.
Discrete applied mathematics, 26(2-3):193–207, 1990.

[31] Jan Karel Lenstra and AHG Rinnooy Kan. Some simple applications of the travelling
salesman problem. Journal of the Operational Research Society, 26(4):717–733, 1975.

[32] Yun-Chia Liang, Sadan Kulturel-Konak, and Min-Hua Lo. A multiple-level variable
neighborhood search approach to the orienteering problem. Journal of Industrial and
Production Engineering, 30(4):238–247, 2013.

[33] Yun-Chia Liang, Sadan Kulturel-Konak, and Alice E Smith. Meta heuristics for the
orienteering problem. In Evolutionary Computation, 2002. CEC’02. Proceedings of
the 2002 Congress on, volume 1, pages 384–389. IEEE, 2002.

[34] Shih-Wei Lin. Solving the team orienteering problem using effective multi-start sim-
ulated annealing. Applied Soft Computing, 13(2):1064–1073, 2013.

[35] Xiang Ma and David A Castanon. Receding horizon planning for dubins traveling
salesman problems. In Decision and Control, 2006 45th IEEE Conference on, pages
5453–5458. IEEE, 2006.

[36] Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers &
operations research, 24(11):1097–1100, 1997.

[37] Charles E Noon and James C Bean. A lagrangian based approach for the asymmetric
generalized traveling salesman problem. Operations Research, 39(4):623–632, 1991.

[38] Karl Obermeyer. Path planning for a uav performing reconnaissance of static ground
targets in terrain. In AIAA Guidance, Navigation, and Control Conference, page 5888,
2009.

41/48

REFERENCES

[39] Karl Obermeyer, Paul Oberlin, and Swaroop Darbha. Sampling-based roadmap meth-
ods for a visual reconnaissance uav. In AIAA Guidance, Navigation, and Control
Conference, page 7568, 2010.

[40] C Okonjo-Adigwe. An effective method of balancing the workload amongst salesmen.
Omega, 16(2):159–163, 1988.

[41] Young-Man Park and Kap Hwan Kim. A scheduling method for berth and quay
cranes. In Container Terminals and Automated Transport Systems, pages 159–181.
Springer, 2005.

[42] Robert Pěnička, Jan Faigl, Petr Váňa, and Martin Saska. Dubins orienteering problem.
IEEE Robotics and Automation Letters, 2(2):1210–1217, April 2017.

[43] Robert Pěnička, Jan Faigl, Petr Váňa, and Martin Saska. Dubins orienteering problem
with neighborhoods. In 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 1555–1562, June 2017.

[44] R Ramesh, Yong-Seok Yoon, and Mark H Karwan. An optimal algorithm for the
orienteering tour problem. ORSA Journal on Computing, 4(2):155–165, 1992.

[45] Julia Robinson. On the hamiltonian game (a traveling salesman problem). Technical
report, RAND PROJECT AIR FORCE ARLINGTON VA, 1949.

[46] Hussain Aziz Saleh and Rachid Chelouah. The design of the global navigation satel-
lite system surveying networks using genetic algorithms. Engineering Applications of
Artificial Intelligence, 17(1):111–122, 2004.

[47] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik, J. Faigl,
G. Loianno, and V. Kumar. System for deployment of groups of unmanned micro
aerial vehicles in GPS-denied environments using onboard visual relative localization.
Autonomous Robots, 41(4):919–944, 2017.

[48] Martin Saska, Vojtěch Vonásek, Tomáš Krajńık, and Libor Přeučil. Coordination
and navigation of heterogeneous mav–ugv formations localized by a ‘hawk-eye’-like
approach under a model predictive control scheme. The International Journal of
Robotics Research, 33(10):1393–1412, 2014.

[49] Ketan Savla, Emilio Frazzoli, and Francesco Bullo. On the point-to-point and traveling
salesperson problems for dubins’ vehicle. In American Control Conference, 2005.
Proceedings of the 2005, pages 786–791. IEEE, 2005.

[50] AİŞE ZÜLAL ŞEVKLİ and FATİH ERDOĞAN SEVİLGEN. Stpso: Strengthened
particle swarm optimization. Turkish Journal Of Electrical Engineering & Computer
Sciences, 18(6):1095–1114, 2010.

42/48

REFERENCES

[51] Wouter Souffriau, Pieter Vansteenwegen, G Vanden Berghe, and DV Oudheusden. A
greedy randomised adaptive search procedure for the team orienteering problem. In
EU/MEeting, pages 23–24, 2008.

[52] Wouter Souffriau, Pieter Vansteenwegen, Joris Vertommen, Greet Vanden Berghe, and
Dirk Van Oudheusden. A personalized tourist trip design algorithm for mobile tourist
guides. Applied Artificial Intelligence, 22(10):964–985, 2008.

[53] Vojtech Spurny, Tomas Baca, and Martin Saska. Complex manoeuvres of heteroge-
neous mav-ugv formations using a model predictive control. In Methods and Models
in Automation and Robotics (MMAR), 2016 21st International Conference on, pages
998–1003. IEEE, 2016.

[54] Joseph A Svestka and Vaughn E Huckfeldt. Computational experience with an m-
salesman traveling salesman algorithm. Management Science, 19(7):790–799, 1973.

[55] Hao Tang and Elise Miller-Hooks. A tabu search heuristic for the team orienteering
problem. Computers & Operations Research, 32(6):1379–1407, 2005.

[56] Lixin Tang, Jiyin Liu, Aiying Rong, and Zihou Yang. A multiple traveling salesman
problem model for hot rolling scheduling in shanghai baoshan iron & steel complex.
European Journal of Operational Research, 124(2):267–282, 2000.

[57] M Faith Tasgetiren. A genetic algorithm with an adaptive penalty function for the
orienteering problem. Journal of Economic & Social Research, 4(2), 2002.

[58] Theodore Tsiligirides. Heuristic methods applied to orienteering. Journal of the Op-
erational Research Society, 35(9):797–809, 1984.

[59] Gündüz Ulusoy. The fleet size and mix problem for capacitated arc routing. European
Journal of Operational Research, 22(3):329–337, 1985.

[60] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk Van Oud-
heusden. A guided local search metaheuristic for the team orienteering problem.
European journal of operational research, 196(1):118–127, 2009.

[61] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk Van Oud-
heusden. Metaheuristics for tourist trip planning. In Metaheuristics in the service
industry, pages 15–31. Springer, 2009.

[62] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The orienteering
problem: A survey. European Journal of Operational Research, 209(1):1–10, 2011.

[63] Pieter Vansteenwegen and Dirk Van Oudheusden. The mobile tourist guide: an or
opportunity. OR insight, 20(3):21–27, 2007.

43/48

REFERENCES

[64] Qiwen Wang, Xiaoyun Sun, Bruce L Golden, and Jiyou Jia. Using artificial neural
networks to solve the orienteering problem. Annals of Operations Research, 61(1):111–
120, 1995.

[65] Xia Wang, Bruce L Golden, and Edward A Wasil. Using a genetic algorithm to solve
the generalized orienteering problem. In The vehicle routing problem: latest advances
and new challenges, pages 263–274. Springer, 2008.

[66] Xin Yu and John Y Hung. A genetic algorithm for the dubins traveling salesman
problem. In Industrial Electronics (ISIE), 2012 IEEE International Symposium on,
pages 1256–1261. IEEE, 2012.

[67] Xing Zhang, Jie Chen, Bin Xin, and Zhihong Peng. A memetic algorithm for path
planning of curvature-constrained uavs performing surveillance of multiple ground
targets. Chinese Journal of Aeronautics, 27(3):622–633, 2014.

44/48

APPENDIX A CD CONTENT

Appendix A CD Content

In Table 14 are listed names of all root directories on CD.

Directory name Description
thesis the thesis in pdf format
thesis sources latex source codes
code sources GRASP-PR for DTOPN source codes

Table 14: CD Content

45/48

APPENDIX A CD CONTENT

46/48

APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

In Table 15 are listed abbreviations used in this thesis.

Abbreviation Meaning
MAV Micro Aerial Vehicle
UAV Unmanned Aerial Vehicle
MPC Model Predictive Controller
CAS Collision Avoidance System
OP Orienteering Problem
TOP Team Orienteering Problem
DOP Dubins Orienteering Problem
DOPN Dubins Orienteering Problem with Neighbourhoods
DTOP Dubins Team Orienteering Problem
DTOPN Dubins Team Orienteering Problem with Neighbourhoods
TSP Travelling Salesman Problem
TSPN Travelling Salesman Problem with Neighbourhoods
mTSP Multiple Travelling Salesmen Problem
DTSP Dubins Travelling Salesman Problem
STSP Selective Travelling Salesman Problem
GRASP Greedy Randomised Search Procedure
PR Path Relinking
FPR Fast Path Relinking
SPR Slow Path Relinking
VNS Variable Neighbourhood Search
GA Genetic Algorithm
SOM Self-Organizing Map

Table 15: Lists of abbreviations

47/48

APPENDIX B LIST OF ABBREVIATIONS

48/48

	Introduction
	State of the art
	Travelling Salesman Problem
	Orienteering Problem
	Greedy Randomised Adaptive Search Procedure

	Problem formulation
	Team Orienteering Problem
	Dubins Team Orienteering Problem
	Dubins Team Orienteering Problem with Neighbourhoods

	GRASP with Path Relinking for the DTOPN
	Construct Procedure
	Local Search Procedure
	Link to Elites Procedure
	Update Elites Procedure
	Dubins Extension
	Neighbourhoods extension

	Experimental Results
	Testing Instances
	Implementation performance
	Reward collection
	Dubins Resolution Parameter
	Neighbourhood Resolution Parameter
	Dubins Radius Parameter
	Neighbourhood Radius Parameter
	Experimental verification with Micro Aerial Vehicles

	Conclusion
	Appendix CD Content
	Appendix List of abbreviations

