
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

Contextual iOS app for MyICPC
with context acquisition for IoT
environments

Vladyslav Gorbunov
Open Informatics, Software Systems

May 2018
Supervisor: Ing. Tomáš Černý, MSc., Ph.D.

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434997Osobní číslo:VladyslavJméno:GorbunovPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové systémyStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Kontextová iOS aplikace pro MyICPC se sběrem contextu v IoT prostředí

Název bakalářské práce anglicky:

Contextual iOS app for MyICPC with context acquisition for IoT environments

Pokyny pro vypracování:
Prozkoumejte možnosti sběru signálu a meta-informací o síti na WiFi a Bluetooth v mobilní platformě iOS.
Věnujte pozornost WiFi Channel State Information a meta-informacím o dalších zařízení na síti. Dále amplitudě a fázovému
posunu [2,3].
- Prozkoumejte systém MyICPC [4] a interakci s mobilním zařízením pro účel interakce a účasti ve hře Quests s možností
zaslání videa a obrázku.
- Prozkoumejte zabezpečení proti kompromitaci skrze Trusted Execution Environments (TrustZone) [5] či podobné.
- Implementujte prototyp mobilní aplikace komunikujicí s MyICPC a otestujte použití.

Seznam doporučené literatury:
[1] Michals Trnka, Martin Tomasek, and Tomas Cerny. Context-aware security using internet of things devices. In Kuinam
Kim and Nikolai Joukov, editors, Information Science and Applications 2017: ICISA 2017, pages 706?713, Singapore,
2017. Springer Singapore.
[2] Cong Shi, Jian Liu, Hongbo Liu, and Yingying Chen. Smart user authentication through actuation of daily activities
leveraging wifi-enabled iot. In Proceedings of the 18th ACM In- ternational Symposium on Mobile Ad Hoc Networking and
Computing, Mobihoc ?17, pages 5:1?5:10, New York, NY, USA, 2017. ACM.
[3] Ioannis Agadakos, Per Hallgren, Dimitrios Damopoulos, Andrei Sabelfeld, andGeorgios Por- tokalidis. Location-enhanced
authentication using the iot: Because you cannot be in two places at once. In Proceedings of the 32Nd Annual Conference
on Computer Security Applications, ACSAC ?16, pages 251?264, New York, NY, USA, 2016. ACM.
[4] Smetana Roman, Next generation of Second-Screen, Realtime application MyICPC, 2016,
https://dspace.cvut.cz/handle/10467/62711
[5] Claudio Marforio, Nikolaos Karapanos, Claudio Soriente, Kari Kostiainen, and Srdjan Capkun. Smartphones as practical
and secure location verification tokens for payments. In NDSS, 2014.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Tomáš Černý, MSc., Ph.D., laboratoř inteligentního testování softwaru FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 25.05.2018Datum zadání bakalářské práce: 13.12.2017

Platnost zadání bakalářské práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Tomáš Černý, MSc., Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

First and foremost, I would like to
thank my supervisor Ing. Tomáö �ern ,̋
MSc., Ph.D. for interesting thesis topic,
his guidance and advices. Furthermore,
this thesis would not be possible without
a support of my family and friends.

I hereby declare that I have elabo-
rated this Bachelor Thesis on my own
and I have mentioned all used informa-
tion sources and literature according to
Methodological guidance to ethical prin-
ciples in the preparation of university
theses.

Prague, 23. 5. 2018

. .

iii

Abstrakt / Abstract

Systém MyICPC byl navrûen, aby
podpo�il informovanost a zájem ú�ást-
ník� a zam�stnanc� b�hem programova-
cích sout�ûí ACM-ICPC. Zatímco v�t-
öina modul� MyICPC slouûí primárn�
pro prezentaci sout�ûních v˝sledk� v
reálném �ase, existuji taktéû moduly
pro podporu zájmu o sociální aktivity,
sdílení fotek a textové zp�tné vazby.
Quest je jedním z n�kolika interaktiv-
ních modul� navrûen˝ch obzvláöt�, aby
probudily zájem ú�ástník� o ICPC,
historii ICPC a po�ádající univerzitu.

Cílem této bakalá�ské práce je
zp�ístupnit Quest öiröímu publiku
prost�ednictvím nativní aplikace pro
mobilní za�ízení s opera�ním systémem
iOS. Sou�ástí implementace je taktéû
podpora pro sb�r kotextov˝ch informací
o za�ízení, které budou v budoucnosti
pouûité pro v˝zkum ICPC zam��en˝ na
bezpe�nost autentizace.

Klíčová slova: MyICPC Quest; mo-
bilní aplikace; iOS; Swift; IoT kontext.

Překlad titulu: Kotextová iOS apli-
kace pro MyICPC se sb�rem kontextu
v IoT prost�edí

MyICPC system was developed
to support awareness and interest of
contestants and sta� during the ACM-
ICPC programming contests. While
most MyICPC modules are responsible
for real-time contest data presentation,
there are several modules to support
user social activities, sharing photos
and user feedback. Quest is one of such
interactive modules designed specifi-
cally to encourage participants to learn
something more about ICPC, ICPC
history and hosting university.

This thesis aims to make Quest ac-
cessible to wider audience via native ap-
plication for mobile devices running on
iOS operating system. Also, part of the
implementation is support for contex-
tual device data acquisition, which will
be used in future ICPC research on Au-
thentication Security.

Keywords: MyICPC Quest; mobile
application; iOS; Swift; IoT context.

iv

Contents /

1 Introduction .1
1.1 MyICPC Quest, motivation

for mobile clients1
1.2 Thesis goals .1
1.3 Structure of the thesis2

2 Related Work .3
2.1 Current solution3
2.2 Inspected applications3

2.2.1 Medium .3
2.2.2 Reddit .4
2.2.3 Twitter .5

3 Analysis and Design6
3.1 Programming Language6
3.2 Dependency Management7

3.2.1 CocoaPods7
3.2.2 Carthage7

3.3 App architecture, MVVM
vs. Apple-MVC7
3.3.1 MVC: Model-View-

Controller7
3.3.2 MVVM: Model-View-

ViewModel8
3.4 Threading and synchroniza-

tion, motivation for reactive
approach .9
3.4.1 Grand Central Dispatch . . .9
3.4.2 Reactive Programming9

3.5 View creation and graphic
elements . 10
3.5.1 Interface Builder vs Al-

ternatives 10
3.5.2 Graphics. 11

3.6 Functional and Non-
Functional requirements 12
3.6.1 Functional require-

ments . 12
3.6.2 Non-functional re-

quirements 12
3.7 OpenID Connect and Quest

REST API . 13
3.7.1 Quest API. 13
3.7.2 OpenID Connect 13

3.8 Motivation behind Context
Acquisition . 13

3.9 Context Acquisition and Re-
strictions . 13

3.9.1 Device-specific infor-
mation . 14

3.9.2 Device location. 14
3.9.3 Connected network 14
3.9.4 Available networks 15
3.9.5 Local network devices . . . 15
3.9.6 Bluetooth devices 15

4 Implementation 16
4.1 Project Environment 16
4.2 Application Design and Nav-

igation use-cases 17
4.3 User managment, Keychain

managment and Application
settings . 18

4.4 API description and interac-
tor . 18

4.5 Repository Pattern 19
4.6 Context Repository 19

4.6.1 App source, Times-
tamp, Device info,
Connected Network
Info . 20

4.6.2 Device location. 20
4.6.3 Network devices 20
4.6.4 BLE devices 21
4.6.5 Pack it all together 22

4.7 A closer look at ViewModels
with RxSwift 23

4.8 Assembling pieces, Depen-
dency Injection and Coordi-
nators. 25
4.8.1 Dependency Injection. . . . 25
4.8.2 Coordinators 26

4.9 Notifications and Challenges . . 28
4.10 Leaderboards 30
4.11 Input view. 31
4.12 Other views . 32
5 Testing . 33
5.1 User Testing . 33

5.1.1 Test progress 33
5.1.2 Evaluation. 33

5.2 Unit tests . 34
6 Conclusion . 36

References . 37
A Abbreviations . 41
B CD contents . 42

v

Tables / Figures

3.1. Primary QoS classes summary . 10
4.1. Example context data sent

to MyICPC . 22
5.1. User Testing. Participants

feedback. 34

2.1. MyICPC Quest web client
interface .3

2.2. Medium iOS client4
2.3. Reddit iOS client4
2.4. Twitter iOS client5
3.1. MVC .8
3.2. MVVM architecture diagram9
3.3. Xcode Interface Builder Ex-

ample . 11
3.4. Sketch workspace example 12
4.1. Navigation map for challenge

list tab . 17
4.2. Notification list design 29
4.3. Challenge list design 29
4.4. Error state mapping design 30
4.5. Leaderboard list design 30
4.6. Input view design 31
4.7. Login and Profile views design . 32

vi

Chapter 1
Introduction

ACM-ICPC is a multitier, team-based, programming contest. The contest involves a
global network of universities hosting regional competitions whose teams are then being
advanced to the ACM-ICPC World Finals. With an active involvement of worldwide
known universities, ACM-ICPC is an event with a wide public interest.

1.1 MyICPC Quest, motivation for mobile clients
MyICPC was developed 4 years ago for the purpose of gathering large amounts of
contest-related data and serving these data in real-time using an adaptive web interface
[1]. However, MyICPC is not just about ICPC contest. Apart from real-time result
presentation, there are also di�erent modules to support social activity.

Quest is one of such modules. It is a unique way to encourage contest participants
to get to know more information about ICPC, hosting university city or even other
participants. All that is achieved through Quest challenges. Challenge is a task that
the participant should be able to solve by posting a submission with either text, image or
video. Quest game typically starts before contestants arrival to hosting university and
ends after final results being announced. For each submission, if accepted, participant
receives points which will a�ect participant positioning in a leaderboard.

Motivation for mobile clients is mainly influenced by vague user submission flow.
First, user finds a specific Quest challenge to participate in. To make a Quest submission
user is then required to post to Twitter with a unique challenge hashtag. Given that vast
majority of challenges is an outdoor activity, navigating between multiple applications
is rather cumbersome. With the emerging amount of mobile clients, a decision was
made to elaborate on mobile application for both iOS and Android which will result in
more pleasant user and ICPC contest experience. Android version of Quest, as well as
REST API for mobile clients are part of Filip Ryöav˝ diploma thesis [2–3].

1.2 Thesis goals
This thesis aims to fulfill following tasks:

. Solve the problem of unnecessary navigation between multiple applications, while
achieving same task, by introduction of mobile application prototype. Such prototype
will facilitate navigation between contest timeline, leaderboards, list of challenges and
will enable easy and straightforward media files submission.. Comply with the requirement on device information and contextual network data
acquisition for future research.. Design and implement a prototype of mobile application for iOS with respect to
current trends in iOS development. Place emphasis on user experience.. Integrate mobile client with the provided REST API.

1

1. Introduction .
1.3 Structure of the thesis

The chapter Related Work presents current Quest web interface for mobile devices. Also,
influences a�ected final graphical design proposal are explained. Next, the chapter
Analysis and Design focuses on main design decisions made before implementation,
such as selection of programming language, application architecture, synchronization
techniques. This chapter also addresses restrictions on contextual data acquisition. The
chapter Implementation takes a closer look at implementation specifics, topics such
as navigation delegation, authentication state management and authentication state
persistence across application relaunch are discussed. In the chapter Testing there are
presented some user and unit tests. Finally, chapter Conclusion covers achieved goals
and possible issues to be resolved in the future.

2

Chapter 2
Related Work

2.1 Current solution
Current Quest implementation uses adaptive web interface to present a list of challenges
as well as latest submissions. An example from ACM-ICPC World Finals 20171 is
depicted on Figure 2.1.

Figure 2.1. MyICPC Quest interface for web clients.

While following best practices on mobile web client design and displaying all necessary
information, web client lacks an important feature: user submission support. Instead,
Twitter is used to perform submissions, as shown on Figure 2.4. Submissions are then
queried by MyICPC using contest specific hashtags.

2.2 Inspected applications
Here I list some examined mobile clients which influenced the final user interface design.

2.2.1 Medium
Medium2 is a popular blogging platform with mobile clients playing crucial role in
company’s business. Medium home tab displays user stories with title, ellipsized story
description and story thumbnail, see Figure 2.2. List item contents also have informa-
tion about user and day posted. Unfortunately, this is not a suitable way to display
1 http://myicpc.icpcnews.com/World-Finals-2017/quest
2 https://itunes.apple.com/us/app/medium/id828256236?mt=8

3

http://myicpc.icpcnews.com/World-Finals-2017/quest
https://itunes.apple.com/us/app/medium/id828256236?mt=8

2. Related Work .

Figure 2.2. Medium for iOS.

Quest submission as it may contain both image and a video. However, it may be a
choice to go with for displaying a challenge list, as challenges may have a thumbnail
picture.

2.2.2 Reddit

Reddit1 is one of the most popular discussion websites. Reddit app is not particularly
relevant for Quest, but it is still worth to examine since it displays small portion of
information, often with a thumbnail image. As can be seen on Figure 2.3, application
uses di�erent layout for list items with expanded thumbnails. This, however, is not the
best fit, since Quest application needs to display a lot of information about user and
challenge.

Figure 2.3. Reddit for iOS.

1 https://itunes.apple.com/us/app/reddit-official-trending-news/id1064216828?mt=8

4

https://itunes.apple.com/us/app/reddit-official-trending-news/id1064216828?mt=8

. 2.2 Inspected applications

2.2.3 Twitter
Twitter1 is a social network Quest was originally built upon. The identifying applica-
tion feature is the way how information is displayed, see Figure 2.4. A single list item
contains a lot of information, which, being well arranged, are easily readable. Addi-
tionally, stacking text with image and video can allow multiple media file display in
the future. With the current solution in mind, I have decided to adopt Twitter design
concepts to preserve user experience.

Figure 2.4. Twitter for iOS.

1 https://itunes.apple.com/cz/app/twitter/id333903271?mt=8

5

https://itunes.apple.com/cz/app/twitter/id333903271?mt=8

Chapter 3
Analysis and Design

This chapter covers demands placed on application, analysis and design decisions which
had to be made before implementation. Some common trends in iOS development
are investigated, best practices and alternative approaches are examined before final
decision whether specific technology, framework or architectural approach will be used
in final project. Some decisions were influenced by prior experience with Android
development.

3.1 Programming Language
There is a variety of languages available when it comes to iOS development. The
most popular ones have proven to be ReactNative from Facebook, Xamarin from Mi-
crosoft, Swift and Objective-C from Apple. I am still very skeptical when it comes to
cross-platform development, mainly due to maintenance, and, given the requirement
to collect contextual device data, thus using system frameworks extensively, I have
made a choice to go with native approach, meaning I had to choose either Swift or
Objective-C. Objective-C is rather old language, based on C and Smalltalk. Its vague
syntax made me quickly turn my attention to other, more modern alternative. Swift,
unlike Objective-C, is a modern, multi-paradigm language developed with existing Ap-
ple frameworks compatibility in mind. It immediately seemed like a good candidate,
given its popularity1 and many attractive features.

The following list stresses the most significant ones:. Protocol oriented. In most modern languages protocols are known as interfaces. One
of the Swift’s protocols most powerful features is protocol extension, which allows
existing third party classes to conform to user-defined protocols.. Powerful enums and pattern matching. This feature is especially handy when using
the Result Pattern2. A user-defined enum with associated values can represent a
stateful operation state, using pattern matching we then match the returned value
against predefined conditions.. Swift introduces an important concept of optional types, referred as Null Safety in
other languages. This type-system feature aims to eliminate null-pointer errors by
Optional enumerations which can be either .none or .some with backing value of
original type.. Introduction of variable scope (and immutability) with var and let.. Functions, as well as objects and structs, are now first-class citizens.. Swift is a very rich language in terms of syntax. With an implicit support for weak
variables, lazy loading and concise semantic keyword meaning a well structured Swift
code implies good code readability.
At the time of development used Swift versions are 4.0 and 4.1, more on Swift in

[4–5].
1 http://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/
2 https:// fsharpforfunandprofit.com/posts/recipe-part2/

6

http://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/

. 3.2 Dependency Management

3.2 Dependency Management
For third party libraries integration I have decided to use dependency management
tools. Dependency management tool helps keeping specific dependency versions and
updating them easily to newer ones. My attention was drawn by two most used ones,
Carthage and CocoaPods, both of which are very similar, key di�erence is the method
of integration.

3.2.1 CocoaPods
CocoaPods is an open-source command line tool highly managed by community [6]. Its
task is to download specified dependencies and create a new Xcode (Apple’s IDE for iOS
developers) workspace with all linked dependencies. Created workspace then has to be
used for further development. Main drawback of this approach is that all dependencies
are linked directly into project and thus not only application code is compiled, but all
dependencies.

This will be used as a secondary dependency management tool for dependencies
unavailable with Carthage.

3.2.2 Carthage
Carthage is an open-source command line tool originally developed by Github [7]. Its
task is to download specific dependency versions defined within Cartfile and compile
dependency source code into frameworks. User is then responsible for linking compiled
frameworks into project. This is a preferred approach as it does not require depen-
dencies to recompile each time we run application code. To improve compile time user
can specify preferred platform (macOS, iOS, tvOS, watchOS) dependency code to be
compiled for. Dependency contributors may also include pre-compiled binaries, which
are then downloaded and linked directly into project. Pre-compiled dependencies need
be written in same Swift version, however. Otherwise, users will not be able to link
frameworks into project. This typically happens only when migrating to newer Swift
version, which in my case was Swift update from 4.0 to 4.1.

This will be used as a main dependency manager, largely because of faster build
times and more straightforward usage.

3.3 App architecture, MVVM vs. Apple-MVC

3.3.1 MVC: Model-View-Controller
Since the very first release of iOS in 2007 Apple suggests developers to use a Model-
View-Controller (MVC) design pattern [8].

Model represents objects which define application data-logic. This can be both Data
Transfer Objects (DTOs) and objects containing logic responsible for data retrieval.
This tier is typically represented by remote service interactor or local database access
objects.

View contains all the necessary logic for intercepting user interaction and displaying
data from Model tier. It is typically composed with hierarchy of other View objects.

Controller acts as a middleman between View and Model. Its job is to process in-
coming user interaction events, manipulate data using Model and present data to View
to render the final output.

7

3. Analysis and Design .
Despite MVC being a common way to organize code for reusability, support exten-

siveness and decoupling between business and UI logic, that is not the case with iOS
projects. Apple’s definition of MVC uses combined roles variation by coupling a View
with a Controller class resulting in a so called ViewController, which is then supposed
to handle both logic for user interactions as well as calls and result delivery from Model
tier.

The diagram 3.1 shows the architecture.

ViewController

ModelView

Owns Owns

View interactions Notifications / KVO

Figure 3.1. MVC architecture

The above implies tight coupling between View and Controller. Mobile applications
often contain Views with complex behavior and animations which have to be managed
by Controller, thus resulting in what is often called Massive View Controller [9], which
is generally hard to test and mock.

3.3.2 MVVM: Model-View-ViewModel
The MVVM design pattern tries to solve the above drawbacks by introduction of View-
Model tier. This design pattern was originally proposed by Microsoft for .NET frame-
works specifically to simplify event-driven programming of user interfaces.

ViewModel is an object owned by ViewController, its task is to deal with persistence
changes and to ensure data retrieval and preparation for View. In other words, View-
Model’s responsibility is performing actions initiated by user interactions intercepted
by ViewController. Possible data updates triggered by such actions are then served
again by ViewModel to ViewController for display. Architecture behavior can be seen
on diagram 3.2.

ViewController responsibility is dynamically decreased with introduction of addi-
tional ViewModel layer when compared to MVC. At first glance, change might not
seem like a big advantage, this change however allows easier testing as View layer does
not have to be created, same behavior can be achieved by calling ViewModel interface
methods directly.

Apart from MVC, there is an extra relation. ViewModel does not have reference to
ViewController, thus we need to specify a mechanism of notifying View layer about
data changes. This can be solved using Key-Value-Observable (KVO), a standard way
supplied with core Apple frameworks. KVO allows to observe data changes of observed
objects. Typically, ViewController intercepts user events to ViewModel, then gets no-
tified about data change. Unfortunately, this approach does not allow synchronization

8

. 3.4 Threading and synchronization, motivation for reactive approach

ViewModel

Model

Owns

Notifies
View ViewController

Owns

Data binding

Figure 3.2. MVVM architecture

with main thread for view updates. Instead, reactive approach will be used, which is
explained in the next section.

3.4 Threading and synchronization, motivation for
reactive approach

Mobile applications di�er a lot from desktop and web alternatives primarily in a variety
of input methods. An input method can be a device location or even device orientation.
One can easily imagine an application driven solely by accelerometer sensor: a compass
application.

For this reason, mobile applications often need to process a lot if incoming events
asynchronously to avoid main thread overtasking, which may result in irresponsive UI.

3.4.1 Grand Central Dispatch
Provided with iOS SDK, Grand Central Dispatch (GCD) is a standard approach to
synchronize background operations with main thread. GCD was developed to optimize
application support on multi-core processors. GCD, backed by a thread pool, man-
ages available system resources for particular installation, completely abstracting the
underlying manipulation with threads.

To distribute scheduling priority in a DispatchQueue instance user supplies an ap-
propriate Quality of Service class (QoS), see Table 3.1 for further explanation.

While being very flexible, dispatch queues only work with first class functions
(clojures), which cannot be chained. This functionality is available when using
OperationQueue, where single work item is represented with an instance of Operation
subclass. Individual tasks can be prioritized.

3.4.2 Reactive Programming
Reactive programming addresses a propagation of change using data streams. As it is
most frequently used to implement user interfaces, a typical scenario is to react on user
input events.

Functional reactive programming is paradigm of reactive programming which uses
functional programming techniques. Similar to lists in functional programming, data
streams are taken as immutable. If a stream of values needs to be transformed, then

9

3. Analysis and Design .
QoS class Work type Work duration

User-interactive Operations on the main thread, Instantaneous
refreshing the user interface, or
performing animations.

User-initiated Work, required to continue user Nearly instantaneous,
interaction such as opening few seconds or less.
a photo or a document.

Utility Work that may take some time A few seconds to a
to complete and doesn’t require few minutes
an immediate result, such as
downloading or importing data.

Background Work that operates in the background Significant time,
and isn’t visible to the user, such as minutes or hours.
indexing, synchronizing, and backups.

Table 3.1. Primary QoS classes summary, taken from [10].

a new stream must be created. Operators like map, filter, flatMap are also inspired by
functional programming.

There are plenty of example use-cases from UI programming to performing network
requests. For example, one would like to enable or disable a ”Send” button based on
values contained in 3 distinct input fields. Another example is observing a stream of
local database table changes for seamless UI update.

While there are several reactive Swift implementations available, chosen for this
project is one from ReactiveX1 called RxSwift [11]. This implementation of Swift reac-
tive streams contains a lot of extensions for binding values to UIKit classes properties
and has familiar API with another ReactiveX projects. A more detailed look at Re-
activeX implementation of reactive streams in Swift refer to [12]. The rules on GCD
scheduling priorities imply here as well.

Purpose of this section is not to justify the usage of a particular approach. RxSwift
is used because it allows easier data mapping, filtering and general modifications. On
the other hand, using DispatchQueue may be used in places where creating custom
RxSwift extensions would not make sense due to simplicity of the given task and easier
implementation using standard libraries.

3.5 View creation and graphic elements
Here I take a closer look at options available for defining user interfaces in Xcode
projects. Additionally, I present tooling which was used to modify graphic elements.

3.5.1 Interface Builder vs Alternatives
A standard way to define user interfaces is the Interface Builder supplied with Xcode.
Interface Builder editor allows user to compose full view hierarchy with defined navi-
gation behavior between views. All standard ViewControllers which come with UIKit
framework are supported, as well as creating support for user defined views. The whole
project view hierarchy and navigation is typically stored within a .storyboard file. An
example editor workspace can be seen on Figure 3.3.
1 http://reactivex.io/

10

http://reactivex.io/

. 3.5 View creation and graphic elements

Figure 3.3. Interface Builder example, source: https://developer.apple.com/xcode/
interface-builder/.

One of the most powerful components to define view positioning is Auto Layout1.
Auto Layout is a mechanism of constraining UIView object descendant properties to
properties of a container window or other UIView descendants. Interface Builder comes
with direct support of Auto Layout, which can alert user when defined constraints result
in a conflict.

It is worth noting that if a view defined with Auto Layout contains variable child
view count, the defined constraints should be turned o� for proper view stacking. This
requires either storing a reference to Interface Builder defined constraint object or as-
sembling whole constraints programmatically.

One of the common issues with Interface Builder defined views is that whole project
UI definition is contained within a single .storyboard file. A .storyboard is essentially
an XML file, containing almost non-human-readable Interface Builder data. This may
not seem like a problem at first, however, one should imagine the source control change
logs when multiple developers are working on a project. It is also worth mentioning
that huge .storyboard files a�ect view inflation speed and build times.

For these reasons I have decided to use an Auto Layout Domain-Specific-Language
(DSL) library. A DSL used in this project is a relatively popular open-source implemen-
tation called SnapKit [13]. SnapKit will allow us to manage dynamic data in single view
component easily. A good example is a timeline list with each list item as a reusable
view component where image and video thumbnail presence may vary.

3.5.2 Graphics

Application theming plays important role in mobile applications. For purposes of this
project I have decided to use default system font to preserve native user interface look.
All used graphics were downloaded freely and then exported using Sketch 2. Sketch is
powerful tool for prototyping and designing user interfaces. Additionally, can be used
to modify imported graphics and export for specific mobile operating system to support
di�erent screen resolutions. An example Sketch workspace can be seen on figure 3.4.

1 https://developer.apple.com/ library/content/documentation/UserExperience/Conceptual/
AutolayoutPG/
2 https://www.sketchapp.com/

11

https://developer.apple.com/xcode/interface-builder/
https://developer.apple.com/xcode/interface-builder/
https://www.sketchapp.com/

3. Analysis and Design .

Figure 3.4. Sketch workspace with application graphics.

3.6 Functional and Non-Functional requirements
To ensure successful project completion I also had to analyse functional and non-
functional requirements. Functional requirements are those directly reflected on ap-
plication functionality. Non-functional requirements are application demands which
are not necessary related to specific application functions.

3.6.1 Functional requirements

. Application can persist authorization state across application relaunch, as well as
user profile, first retrieved making request to user endpoint.. Application allows user to browse through contest timeline, latest Quest submissions,
list of available challenges, Quest leaderboards.. Application allows user to send media submissions. Either image, video or both can
be sent with additional text.. Every submission contains specific hashtags that uniquely identify contest and Quest
challenge.. Application has support for image display and video playback.. Application has support for contextual device data acquisition.. Application allows user to turn on or o� device data retrieval.

3.6.2 Non-functional requirements

. Specific installation refers to specific contest, thus contest needs to be specified before
application distribution.. Application supports OpenID Connect credentials store provided by ICPC.. Application supports Quest API 1.0 [2].. Application user interface is based on present solution.. Supported iOS versions are 10.3 and above.

12

. 3.7 OpenID Connect and Quest REST API

3.7 OpenID Connect and Quest REST API

3.7.1 Quest API
Quest API for mobile clients has support for necessary data retrieval and submission.
Deployed as a separate module it also manages retrieved contextual device data for
later research. This module also handles verification of all incoming request using
authorization framework.

3.7.2 OpenID Connect
For security reasons every request made on Quest back-end must be authorized. This is
achieved using an authorization framework, which verifies user identity using uniquely
assigned token. OpenID Connect (OIDC)1 is an authentication layer on top of OAuth
2.0 authorization framework. From a mobile developer perspective all needed to be
taken care of is:. Authorization endpoint. Token exchange endpoint. Registered client id. Redirect URL. Logout endpoint

For the purpose of this project AppAuth is used, a library that implements OIDC
specification [14]. This library follows modern practices for performing authorization
requests in native clients, such as displaying request web page in SFSafariViewCon-
troller instead of UIWebView [15]. Also, a big advantage of this library is automatic
token exchange, meaning user only needs to react on authorization state changes.

3.8 Motivation behind Context Acquisition
Context acquisition is motivated by several studies addressing authentication secu-
rity and identity verification by utilizing surrounding WiFi and BLE enabled devices.
Article [16] discusses an approach to user authentication process by capturing user
activities and behavioral patterns, which can be uniquely represented by surrounding
WiFi-enabled devices meta-data. In [17] location-based authentication approach is de-
scribed using information from nearby IoT devices. Potential treats of surrounding
devices and services intervention is described in [18]. With respect to Apple restric-
tions and limitations of available API the most promising approach might be to make
extensive use of surrounding devices conforming to Apple-developed iBeacon protocol
as described in [17].

The purpose of context acquisition feature is to introduce a prototype of an iOS
application capable of collecting surrounding device information and sending such data
to MyICPC for analysis. Context acquisition is implemented with respect to data
predefined and expected by MyICPC REST API for mobile clients [2].

3.9 Context Acquisition and Restrictions
For the purpose of future ICPC research Quest client has to support functional require-
ment on context data acquisition.
1 http://openid.net/connect/

13

http://openid.net/connect/

3. Analysis and Design .
Contextual data are defined as:

. information about the device;. device location;. connected network;. available networks;. local network devices;. Bluetooth devices;

Unfortunately, not everything is accessible, as Apple has always been strict about its
security policy. Some of the data listed above may be gained using private libraries,
these are intended to be used by Apple applications only. Given that the most conve-
nient way to distribute this project would be the App Store, the only o�cially supported
way, some of the requested data are ignored.

Next sections describe whether information can be retrieved.

3.9.1 Device-specific information

. source. timestamp. operating system. device brand. device model. device serial number

Source indicates application the context is being sent from. Timestamp can be easily
gained using Foundation framework classes, the later correspond to information easily
retrievable using UIDevice class from UIKit framework [19].

3.9.2 Device location
Device location should include:

. latitude. longitude. timestamp

All of the listed above is easily retrievable using Core Location framework [20]. A
user permission needs to be granted.

3.9.3 Connected network
Information about connected network:

. SSID. BSSID. RSSI. link speed. frequency. IP address

This requires looping through supported system interfaces and using SystemCon-
figuration framework to copy interface data using CNCopyCurrentNetworkInfo [21].
However, only SSID and BSSID are accessible this way. There is an option to request
entitlements and use NEHotspotHelper class, which is discussed in next subsection.

14

. 3.9 Context Acquisition and Restrictions

3.9.4 Available networks
This requirement violates Apple security policy. This functionality is primarily accessi-
ble to Apple applications only as it requires either private library or special entitlements.
Entitlements need to be requested for NetworkExtension framework, specifically one
would need to use NEHotspotHelper class, this option requires paid Apple Developer
account [22].

3.9.5 Local network devices
Network device should contain:

. IP address. MAC address

This task requires a classic network scanner which will ping every host available in
network in order to build the ARP table. ARP table is then used to obtain MAC
address and a host name. For this purpose an open-source library is used [23]. It
should be taken into account that MAC address and host name retrieval will only work
on devices running iOS 10.3 and below, as Apple restricts this functionality in iOS 11
due to API misuse, which enabled mobile clients to track users [24].

3.9.6 Bluetooth devices
Bluetooth device is supposed to contain:

. name. MAC address

Apple devices running iOS support only discovery of Bluetooth Low-Energy (BLE)
devices and only those, transmitting limited number of services [25]. Core Bluetooth
framework does not guarantee proper name retrieval. A specific device name can be
retrieved after device pairing, this may, however, drain device battery significantly.
MAC address is unavailable, Core Bluetooth assigns specific device a UUID number,
which is then used as unique device identifier.

15

Chapter 4
Implementation

For more detailed look at implementation refer to application sources at [26].

4.1 Project Environment

Project is set up to support 2 schemes: Development and Production. Each scheme
has its own property list, a .plist file. A proporty list defines all application permissions
as well as scheme-specific constants. In my case, these are: contest id, Authentica-
tion endpoints, API base URL, contest rules link and application version for context
submissions. A convenience enum is declared as shown:

public enum Environment {

fileprivate static let plist: [String: Any] = Bundle.main.infoDictionary!

enum Contest {
static var code: String { return plist["contestCode"] as! String }

}

enum Auth {
fileprivate static let authDict = plist["auth"] as! [String: Any]

static var authEndpoint: String { return authDict["AuthEndpoint"] as! String}
/* other OIDC settings */

}

enum API {
fileprivate static let apiDict = plist["api"] as! [String: Any]

static var baseURL: String { return apiDict["BaseUrl"] as! String }
}

enum External {
fileprivate static let linksDict = plist["external"] as! [String: Any]

static var rulesLink: String { return linksDict["RulesLink"] as! String }
}

enum Context {
static var appVersion: String { return plist["appVersion"] as! String }

}
}

Next, project is preconfigured to support di�erent localizations, the base one is En-
glish. To simplify work with localized strings, assets and colors I have opted to use
SwiftGen which generates convenient enums based on resource declaration names [27].

With the dependency managers installed and build target specified, project is con-
figured for development.

16

. 4.2 Application Design and Navigation use-cases

4.2 Application Design and Navigation use-cases

Having project set up, I have started designing a navigation map with screen pro-
totypes. One of the functional requirements is to display 4 distinctive information
types (timeline, recent submissions, challenges, leaderboards). For this reason, 4 views
should be accessible form the top application level. To achieve such view composition,
a TabBarController is used, as suggested by Apple Design Guidelines [28]. Implemen-
tation of specific screens is described in later sections.

Part of the navigation map for challenge list tab can be seen on Figure 4.1.

Challenges

100%9-41 AMSketch

Leaderbo
ards

Challeng
es

FeedTimeline

Leaderbo
ards

Challeng
es

FeedTimeline

SendChallengeBack

100%9-41 AMSketch

Back

100%9-41 AMSketch

RejectedAccepted

Whats happening…

#HASHTAG

SendProfileCancel

100%9-41 AMSketch

ProfileClose

100%9-41 AMSketch 100%9-41 AMSketch

LoginChallenge ListProfile

Challenge detail

Challenge submissions

Submission input

Figure 4.1. Navigation map for challenge list tab.

17

4. Implementation .
4.3 User managment, Keychain managment and
Application settings

Components necessary for application state management (including state persistence
across application relaunch) are decomposed to several Manager classes.

AppSettingsManager is a manager responsible for persisting application settings valid
for particular installation. Later, we would like to display a dialog asking user for a
permission to send contextual data on the very first application start. We will simply
store a Bool property indicating whether permission was requested as well as whether
context data fetch is allowed. These properties will be stored in UserDefaults, a
transactional key-value store for saving application small data.

KeychainManager is an abstraction over generic wrapper [29] performing read/write
operations in Keychain, a secure storage to persist application sensitive data, such
as current authorization state with latest tokens. Data stored in Keychain are safely
persisted even after application uninstall, AppSettingsManager is then used to check
whether it is a very first run of a particular installation, appropriate action will then
be taken: either delete everything on first run or use stored data for token exchange.

UserManager is a wrapper around AppAuth and abstracts token exchange and au-
thentication requests. Instance of this class is then provided as a dependency to other
application components, as I demonstrate in section Dependency Injection [ref].

4.4 API description and interactor

All available networking operations are defined within ApiDescription class. To per-
form API requests a popular HTTP networking library is used called Alamofire with
community extensions for RxSwift [30–32]. ApiDescription class contains definition of
all used endpoints and specific return type mapping. Following example shows endpoint
for fetching timeline items.

func getTimeline(contestCode: String, token: String) -> Observable<[Notification]> {
return RxAlamofire.requestData(

.get,
Environment.API.baseURL + "timeline/\(contestCode)",
headers: ["Authorization": "Bearer \(token)"]

)
.map(to: [Notification].self)

}

ApiInteractor class is then defined to tie ApiDescription with UserManager and
perform authorized API requests. Following the reactive programming principles we
observe a stream of exchanged tokens, which is a single emission, and another stream,
based on original token stream, is created to perform the actual HTTP request to server
and emit a value of a mapped type.

func getTimeline(contestCode: String) -> Observable<[Notification]> {
return userManager.observeFreshToken()

.flatMap { token in
self.apiDescription.getTimeline(contestCode: code, token: token)

}
}

18

. 4.5 Repository Pattern

4.5 Repository Pattern
REST APIs are not always the only data source in mobile applications. A data source
can be represented as a local storage which can be used to cache data for o�ine usage.
Despite having single source, I mask data retrieval using Repository pattern1.

Regardless of having single data source, here I am showing another benefit of using
Repository on a very simple example.

Incoming data are not always defined in a way suitable for presenting in View layer,
sometimes developer may want to alter incoming objects. Repositories are a perfect
place for the job. One of the functional requirements is to display leaderboard types
and a specific leaderboard rows. API defines an endpoint for retrieving dynamic list
of leaderboard types and en endpoint for retrieving leaderboard rows with points [2].
However, there is also a separate endpoint to fetch team leaderboard rows, which is
always available (does not have to be permitted by MyICPC administrator). Does it
require us to adopt View layer to access same data is di�erent ways? Well, turns out
no. Instead, we use LeaderboardRepository to transform data to be later displayed
in appropriate way.

enum LeaderboardType {
case generic(Leaderboard)
case team

}

class LeaderboardRepository: LeaderboardRepositoring {
private let apiInteractor: ApiInteracting

init(apiInteractor: ApiInteracting) {
self.apiInteractor = apiInteractor

}

func observeLeaderboards() -> Observable<[LeaderboardType]> {
return apiInteractor.getLeaderboardTypes()

.map { $0.map { LeaderboardType.generic($0)} + [LeaderboardType.team] }
}

}

This way, all available leaderboard types are displayed within a single list, no other
special view needs to be created to navigate to team leaderboard. For future leaderboard
rows loading, again a LeaderboardType enum is used to distinguish a requested type
and which endpoint to use.

Following the single responsibility principle, each of Repository object will be re-
sponsible for particular resource type: Notification, Leaderbord, Challenge and
Context.

4.6 Context Repository
In this section I describe the implementation of application’s key feature: context ac-
quisition. This Quest version is designed to fetch device and network data on every
user submission. This way, context fetch is triggered after verifying submission is not
empty. Network and BLE devices are then scanned for specified time interval.

Fetching di�erent data types asynchronously and combining results may seem like
a troublesome task. However, with reactive approach it is a matter of couple lines of
code, the important thing is a concept, which I shall demonstrate next for each context
data type.
1 https://martinfowler.com/eaaCatalog/repository.html

19

https://martinfowler.com/eaaCatalog/repository.html

4. Implementation .
4.6.1 App source, Timestamp, Device info, Connected Network
Info

These are the easiest context types to retrieve, as they do not require heavy logic to
produce the output. For each type I create a stream emitting a single entity.

An example is shown for App source:
private func observeAppSource() -> Observable<String> {

return Observable.just(Environment.Context.appVersion)
}

4.6.2 Device location
To obtain device location CoreLocation framework is used with open-source reactive
extensions on CLLocationManager class [33]. A separate Provider class is used to
allow future system sensor functionality mock in unit tests.

class RxLocationProvider: RxLocationProviding {
private let locationManager = CLLocationManager()

func observeLocation() -> Observable<Location?> {
locationManager.requestWhenInUseAuthorization()
locationManager.startUpdatingLocation()
return locationManager.rx.location

.take(1)

.map { $0?.toLocation() }

.do(onDispose: { self.locationManager.stopUpdatingLocation() })
}

}

4.6.3 Network devices
MMLanScan library is used to scan local network devices [23]. RxLanScanner class
abstracts library functionality and provides a stream emitting every found device. An
instance of PublishSubject is used to act both as an Observer and a cold Observable
(emits only objects available after subscribing to the stream).

class RxLanScanner: NSObject, MMLANScannerDelegate, RxLanScanning {
private let deviceSubject: PublishSubject<MMDevice> = PublishSubject<MMDevice>()
private var scanner: MMLANScanner!

override init() {
super.init()
scanner = MMLANScanner(delegate: self)

}

func lanScanDidFindNewDevice(_ device: MMDevice!) {
deviceSubject.on(.next(device))

}

func lanScanDidFinishScanning(with status: MMLanScannerStatus) {
deviceSubject.on(.completed)

}

func lanScanDidFailedToScan() {
deviceSubject.on(.error(LanScanError.failedToScan))

}

// MARK: RxLanScanning
func observeLANDevices() -> Observable<MMDevice> {

return deviceSubject.asObservable()
.do(onSubscribe: { self.scanner.start() })
.do(onDispose: { self.scanner.stop() })

}
}

20

. 4.6 Context Repository

With a stream of found devices, we would now want to satisfy a requirement to scan
for certain amount of time. Plus, we need to create a new stream which will emit a list
of all found devices, all this is easily achieved using reactive operators.

1. all emissions are mapped to defined DTO object accepted by Quest back end.
2. using take(duration:, scheduler:) a time interval is specified, as well as scheduler

timeout event is to be triggered from. Stream is completed on timeout.
3. all emissions are mapped to a single emission of LANDevice array.
4. if RxLanScanner emits an error, a stream of single empty array is returned.

class RxLANDeviceProviderImpl: RxLANDeviceProvider {
private let lanScanner: RxLanScanning = RxLanScanner()

func observeLANDevices(timeInterval: RxTimeInterval) -> Observable<[LANDevice]> {
return lanScanner.observeLANDevices()

/* 1 */ .map { LANDevice(ipAddress: $0.ipAddress, macAddress: $0.macAddress)}
/* 2 */ .take(

timeInterval,
scheduler: ConcurrentDispatchQueueScheduler(qos: .utility)

)
/* 3 */ .toArray()
/* 4 */ .catchErrorJustReturn([LANDevice]())

}
}

4.6.4 BLE devices

Scan for BLE devices is performed using CoreBluetooth framework and an open-source
reactive abstraction [25, 34]. Again, strategy is same as for scanning network devices.
First, observe the state of CentralManager of CoreBluetooth framework. Once Blue-
tooth sensor is powered on, we shall start the actual device scan. Device scan is per-
formed within duration of specified time interval and then transformed into a stream of
device array. Passing nil as parameter of scanForPeripherals(withServices:) indicates
that scan should be performed for all supported BLE services. Empty array is returned
on error.

class RxBLEDeviceProviderImpl: RxBLEDeviceProvider {
private let centralManager = CentralManager(queue: .global())

func observeBLEDevices(timeInterval: RxTimeInterval) -> Observable<[BTDevice]> {
return centralManager.observeState()

.startWith(centralManager.state)

.filter { $0 == .poweredOn }

.timeout(
timeInterval,
scheduler: ConcurrentDispatchQueueScheduler(qos: .utility)

)
.take(1)
.flatMap { _ in

self.centralManager.scanForPeripherals(withServices: nil)
.map { BTDevice(name: $0.peripheral.name) }
.take(

timeInterval,
scheduler: ConcurrentDispatchQueueScheduler(qos: .utility)

)
.toArray()

}
.catchErrorJustReturn([BTDevice]())

}
}

21

4. Implementation .
4.6.5 Pack it all together

With streams for each individual context item, it is time to provide a mechanism
blending all emissions into a Context DTO which is then sent to MyICPC. This is again
done easily using reactive operator combineLatest(source:, combiner:) which combines
latest emissions from all supplied streams and produces a stream of entities composed
in combiner closure.

func observeContext() -> Observable<Context?> {
guard appSettings.contextPermissionGranted else {

return Observable.just(nil)
}

return Observable.combineLatest(
observeAppSource(),
observeTimestamp(),
locationProvider.observeLocation(),
deviceProvider.observeDevice(),
networkProvider.observeConnectedNetwork(),
bleDeviceProvider.observeBLEDevices(timeInterval: Values.bleScanTimeout),
lanDeviceProvider.observeLANDevices(timeInterval: Values.lanScanTimeout)

) { source, timestamp, location , device, connectedNetwork,
bleDevices, lanDevices in
Context(

source: source,
timestamp: timestamp,
device: device,
location: location,
connectedNetwork: connectedNetwork,
bleDevices: bleDevices,
lanDevices: lanDevices

)
}

}

We are now ready to observe context emissions and provide data to MyICPC. An
example of data fetched during development is shown in Table 4.1.

Type Data
Source MyICPC Quest 1.0 dev (iOS)
Timestamp 2018-04-29 21:11:16 +0000
Device operatingSystem: iOS, version: 11.2.6,

deviceBrand: Apple,
deviceModel: Vlad Gorbunov’s iPhone,
serial: Optional(1217A859-0D53-43A1-BBA5-F6C4B7246C6D)

Location Optional(timestamp: 2018-04-29 21:11:02 +0000,
latitude: 50.053771412977994, longitude: 14.42745745183381)

Connected Network ssid: Optional(BOHEMIA), bssid: Optional(8:60:6e:5f:6a:44)
BLE devices name: Optional(Vlad’s MacBook Pro)

name: Optional(Vlad’s iPad)
name: Optional(JBL Flip)

LAN devices ipAddress: 192.168.1.1, macAddress: 02:00:00:00:00:00
ipAddress: 192.168.1.22, macAddress: 02:00:00:00:00:00
ipAddress: 192.168.1.87, macAddress: 02:00:00:00:00:00

Table 4.1. Example of possible context submission.

22

. 4.7 A closer look at ViewModels with RxSwift

4.7 A closer look at ViewModels with RxSwift
With data sources set up, it is time to tie a ViewController with ViewModel and describe
data loading state propagation. For the sake of simplicity, an example is shown for user
profile view.

To represent loading operation states a generic enum with associated values is used:
enum State<T> {

case idle
case empty
case error(Error)
case loading
case loaded(T)
case reloading

}

ProfileViewModel, in its simplified form, contains RxSwift Variable property pro-
ducing stream of resource loading states and a computed property indicating whether
context acquisition is allowed by user. During initialization step, occurance of stored
User object is checked in application storage and passed immediately to userVariable
if present, otherwise requested from MyICPC. Stream of User loading operation states
is exposed by observeUser() method.

class ProfileViewModel: ViewModel {
private let userVariable = Variable(State<User>.idle)
/* -- omitted private properties -- */

init(/* -- ViewModel dependencies -- */) {
/* -- omitted sets -- */
if let user = userManager.user {

userVariable.value = .loaded(user)
} else {

loadUser()
}

}

var isContextSettingEnabled: Bool {
get { return appSettings.contextPermissionGranted }
set { appSettings.contextPermissionGranted = newValue }

}

func loadUser() {
userVariable.value = .loading
repository.observeUser()

.subscribeOn(ConcurrentDispatchQueueScheduler(qos: .utility))

.subscribe { event in
switch event {
case .next(let user):

self.userManager.user = user
self.userVariable.value = .loaded(user)

case .error(let error):
self.userVariable.value = .error(error)

}
}
.disposed(by: disposeBag)

}

func logout() {
userManager.logout()

}

func observeUser() -> Observable<State<User>> {
return userVariable.asObservable()

}
}

23

4. Implementation .
ViewModel is provided to ViewController using composition. Once ViewController

descendant instance is created, it needs to be passed for presentation. Once passed
for presentation, there are several lifecycle events needed to be reacted on. First, a
loadView() method is called. Here we declare child view components and specify how
they should be layouted. Next, we request data, prepare UI bindings and subscribe for
data load states, all in viewDidLoad method. This method is called only once when
ViewController’s view property is lazily initialized. Once ViewController’s view is deat-
tached from UIWindow container, it and all its properties are deinitialized (unless strong
reference to ViewController exists). Reactive stream subscriptions must be disposed to
prevent potential memory leaks caused by reference cycles. In case of RxSwift, we pro-
vide a reference to a DisposeBag which disposes all subscriptions on deinitialization.

class ProfileViewController: UIViewController {
// omitted private properties

init(viewModel: ProfileViewModel) {
self.viewModel = viewModel
super.init(nibName: nil, bundle: nil)

}

// MARK: lifecycle methods
override func viewDidLoad() {

super.viewDidLoad()
viewModel.observeUser()

.observeOn(MainScheduler.instance)

.subscribe(onNext: { state in
// display user and load profile pic

})
.disposed(by: disposeBag)

contextOnSwitch.setOn(viewModel.isContextSettingEnabled, animated: false)

contextOnSwitch.rx.value
.skip(1)
.subscribe(onNext: { value in

self.viewModel.isContextSettingEnabled = value
})
.disposed(by: disposeBag)

}

// MARK: private methods
@objc private func didSelectRules() {

let controller = SFSafariViewController(url:
URL(string: Environment.External.rulesLink)!)

navigationController?.present(controller, animated: true)
}

// MARK: view definition
override func loadView() {

super.loadView()
navigationItem.title = L10n.Navigation.profile
// -- omitted view creation code --

}
}

24

. 4.8 Assembling pieces, Dependency Injection and Coordinators

4.8 Assembling pieces, Dependency Injection and
Coordinators

4.8.1 Dependency Injection
To prevent singletons and allow easier maintenance I have decided to adopt a concept of
Dependency Injection1. The DI container in this project is represented by Swinject, a
DI framework for Swift [35]. In the below explanation I am using terminology provided
by Swinject documentation2:

. Service: A protocol defining an interface for a dependent type.. Component: An actual type implementing a service.. Factory: A function or closure instantiating a component.. Container: A collection of component instances.

First, we start by registering a Service. Service is registered by providing a type of
a defining protocol and providing protocol conforming implementation inside factory
closure.

class AppContainer {

static let container = Container() { container in

container.register(KeychainManaging.self) { _ in
KeychainManager()

}.inObjectScope(.container)

/* -- other services --*/

container.register(UserManaging.self) { resolver in
UserManager(

keychainManager: resolver.resolve(KeychainManaging.self)!,
settingsManager: resolver.resolve(AppSettingsManaging.self)!

)
}.inObjectScope(.container)

container.register(ApiServicing.self) { resolver in
ApiInteractor(

userManager: resolver.resolve(UserManaging.self)!,
apiDescription: ApiDescription()

)
}.inObjectScope(.container)

/* -- other services -- */

container.register(ChallengeListViewModel.self) { r in
ChallengeListViewModel(repository: r.resolve(ChallengeRepositoring.self)!)

}
}

}

In the above example, concrete implementation may have its own dependencies,
these have to be resolved using a Resolver provided by .register(Service.Type, factory:
(Resolver, args..)) method. Swinject then finds registered Services of requested type in
dependency graph and provides an instance valid in assigned object scope. By specifying
.inObjectScope(.container) we are telling Swinject to use a single instance for current
container, as well as for child containers.
1 https://www.martinfowler.com/articles/injection.html
2 https://github.com/Swinject/Swinject/blob/master/Documentation/DIContainer.md

25

https://www.martinfowler.com/articles/injection.html
https://github.com/Swinject/Swinject/blob/master/Documentation/DIContainer.md

4. Implementation .
The tricky part comes when we need to assemble ViewController nested dependencies

before presentation. Since I have opted not to use Storyboards for view creation and
navigation, all navigation logic is handled manually. In the above example we assume
every Service is provided using a Component – the actual implementation of a ser-
vice. Suppose we have a ViewController displaying list of items and we want to display
item detail by presenting an item detail ViewController. Supplying instance of detail
ViewController will not do the trick, as it will require us to use some sort of method
injection to specify list item we want to display and, based on lifecycle methods, we
would then reload view for the up-to-date data. This is conceptually wrong as MVVM
architecture suggests that displayed data should be owned by ViewModel. Instead, we
provide a factory for the detail ViewController which will assemble all necessary depen-
dencies managed within Swinject Container. In the below example, a specific challenge
is passed as a factory argument and is then used to resolve ChallengeViewModel with
underlying dependencies.

typealias ChallengeViewControllerFactory =
(_ coordinator: ChallengeCoordinator, _ challenge: Challenge)
-> ChallengeViewController

container.register(ChallengeViewControllerFactory.self) { r in
return { coordinator, challenge in

let controller = ChallengeViewController(
viewModel: r.resolve(ChallengeViewModel.self, arguments: challenge)!

)
controller.navigationDelegate = coordinator
return controller

}
}

4.8.2 Coordinators
Coordinators are special types of controllers which mask navigation controllers
(UINavigationController, UITabBarController, ...)1 functionality.

It is an iOS-specific adoption of an Application Controller. In Patterns of Enter-
prise Application Architecture it is described as a ”centralized point for handling screen
navigation and the flow of application” [36], page 379. Coordinator’s key responsibil-
ity is to allow easier navigation flow and perform tasks too general for the scope of
particular ViewController. Navigation logic is delegated to responsible Coordinator by
Coordinator conformation to protocols supported by ViewControllers, which are be-
ing ”coordinated”. Combination of this pattern with MVVM is often referred to as
MVVM-C

2, however, with emerging cross-app functionality and adoption of deep linking
in mobile applications, Coordinators have become an essential part of a good MVVM
implementation.

In my implementation each coordinator is assembled with provided ViewController
factories and is backed by supported UIKit navigation controller. Once navigation flow
is started, Coordinator is supplied to ViewController before presentation using property
injection. Coordinator is then stored as a weak reference to prevent reference cycle.

An example is shown for AppCoordinator, responsible for authorization state flow
and managing top level UITabBarController.

1 https: / / developer . apple . com / library / content / documentation / WindowsViews / Conceptual /
ViewControllerCatalog/Chapters/NavigationControllers.html
2 https://tech.trivago.com/2016/08/26/mvvm-c-a-simple-way-to-navigate/

26

https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/NavigationControllers.html
https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/NavigationControllers.html
https://tech.trivago.com/2016/08/26/mvvm-c-a-simple-way-to-navigate/

. 4.8 Assembling pieces, Dependency Injection and Coordinators

// AppCoordinator is started once application finished launching
class AppDelegate: UIResponder, UIApplicationDelegate {

func application(/* -- omitted params -- */) -> Bool {
let appCoordinator = AppContainer.container.resolve(

AppCoordinator.self, argument: UIWindow(frame: UIScreen.main.bounds)
)!

appCoordinator.start()
return true

}
}

final class AppCoordinator: NSObject {

init(/* -- provided factories -- */) {
}

func start() {
window.makeKeyAndVisible()
if userManager.isAuthorized {

showMain()
} else {

window.rootViewController = loginFactory(self)
}

userManager.observeAuthChanges()
// -- subscribe to auth changes to switch main view to login view
.disposed(by: disposeBag)

}

private func showLogin() {
window.rootViewController = loginFactory(self)

}

private func showMain() {
/*

init tabBarController with child coordinators
*/
tabbarController.viewControllers = [timelineCoordinator.rootViewController,

feedCoordinator.rootViewController,
questsCoordinator.rootViewController,
leaderboardCoordinator.rootViewController]

window.rootViewController = tabbarController

// check if context dialog was shown
if !appSettings.contextPermissionRequested {

// show dialog asking to send context for research
}

}
}

// confirm to protocol accepted by LoginViewController
extension AppCoordinator: LoginNavigationDelegate {

func didSelectLogin() {
// perform auth request

}
}

27

4. Implementation .
4.9 Notifications and Challenges

Notifications list is implemented using UITableViewController with support for dif-
ferent UITableViewCell types: NotificationCell and SystemNotificationCell. It
is a generic view used with several display modes:

. timeline – all notifications produced by users and system notifications of MyICPC;. whatsHappeningNow – latest Quest submissions;. accepted(Challenge) – accepted Quest submissions for particular challenge;. pending(Challenge) – pending submissions for specified challenge;. rejected(Challenge) – list of rejected Quest submissions for challenge.

An important thing here worth pointing out is that both NotificationCell and
SystemNotificationCell have a variable height due to multiline text, image and video
presentation. This may result in a UI glitch on scroll, unless correctly implemented.

To prevent layouting problems, a property of UITableView indicating variable row
height has to be set with accurate estimate.

tableView.rowHeight = UITableViewAutomaticDimension
// estimate is computed using defined cell insets and constraints
tableView.estimatedRowHeight = 300

UIKit does not provide an automatic mechanism for hiding views and switching o� its
constraints. This behavior is only available with UIStackView. UIStackView computes
child view positioning attributes during the actual drawing, thus it is not applicable in
our case. Instead, we need to switch constrains on and o� and hide redundant views
manually. This is where AutoLayout DSL comes into play. With SnapKit we can easily
remake existing constraints to adopt a cell for specific data.

Each cell instance is a reusable view object contained withing the object pool it
was registered in. To minimize possible glitch and achieve maximum e�ciency I am
registering each possible cell type data configuration with its own object pool.

// register a cell configuration in a specific object pool
tableView.register(NotificationCell.self,

forCellReuseIdentifier: NotificationCell.Identifiers.withText)

// deque cell later using identifier
tableView.dequeueReusableCell(withIdentifier: NotificationCell.Identifiers.withText,

for: indexPath)

Notification image and video thumbnails are expanded on click for presentation us-
ing SKPhotoBrowser [37] and AVPLayerViewController from standard AVFoundation
framework.

Same rules to achieve smooth scrolling are applied in challenge list view.
Final design of challenge and notification lists can be seen on Figures 4.2 4.3.
Application also comes with user-friendly error and empty states as depicted on

Figure 4.4

28

. 4.9 Notifications and Challenges

Figure 4.2. Final design of notification list.

Figure 4.3. Final design of challenge list and challenge detail.

29

4. Implementation .

Figure 4.4. Error state mapping.

4.10 Leaderboards
Original LeaderboardRowResponse entity comes from API with 2 properties: name
and points. To make an overall leaderboard appearance more attractive, a maximum
of provided row points is found and is used to transform original row list into new
LeaderboardRow entities containing additional maxPoints field. This property is used
later to display a horizontal bar chart indicating current progress using Charts library
[38].

Final leaderboards design can be seen on Figure 4.5.

Figure 4.5. Final design of leaderboard list.

30

. 4.11 Input view

4.11 Input view
Input view is a crucial part of application. As in every other app which is aimed at data
retrieval, the better input method we provide, the better input data we get. In my case
input view is presented as an UITextView for multiline text and a UICollectionView
for horizontal collection of picked images and videos. InputViewController is designed
to support any number of picked media files and in this version is explicitly restricted
to exactly one of each media file type. There I also observe a keyboard opening event
using KVO to adjust positioning of bottom bar from which image and video picker is
accessed. Media picker used in this project is an open-source library called Gallery [39].

Interesting part here is also how user inputs are observed to enable/disable ”Send”
button using reactive extensions which come with RxCocoa (provided as part of
RxSwift).

let isTextPresent = viewModel.message.asObservable()
.map { !$0.isEmpty && self.messageTextView.textColor != self.textViewHintColor }

let isMediaPresent = viewModel.observeMedia()
.map { !$0.isEmpty }

let isLoading = viewModel.observeInputState()
.map { $0 == .uploading }

let isPostEnabled = Observable.combineLatest(isTextPresent,
isMediaPresent,
isLoading) {

($0 || $1) && !$2
}

isPostEnabled.bind(to: navigationItem.rightBarButtonItem!.rx.isEnabled)
.disposed(by: disposeBag)

Same strategy is applied to observe media files submission limits and enable/disable
media picker buttons.

Final input view design can be seen on Figure 4.6.

Figure 4.6. Final input view design.

31

4. Implementation .
4.12 Other views

Here I present some views which are not in scope of previous sections.
There is nothing particularly interesting that would be worth pointing out. Final

designs are presented for completeness and can be seen on Figure 4.7.

Figure 4.7. Final design of Login and Profile views.

32

Chapter 5
Testing

5.1 User Testing

5.1.1 Test progress
Apart from testing on di�erent virtual devices to ensure application views are displayed
correctly on all available screen resolutions, I have conducted a simplified user testing.
User testing is particularly useful when it comes to mobile applications, particularly in
situations when a developer is not within an app target group. A user target group
and application use conditions dramatically a�ect interface design. That is why tested
participants and conditions should be selected accordingly to provide relevant feedback.

Participants were selected to achieve best possible dispersion in user age and user
familiarity with mobile devices. Task had to be performed on 2 devices: iPhone SE
and iPhone 6s Plus. Below I present the table of key information about participants as
well as received positive and negative feedback 5.1. Test task was performed with local
MyICPC installation using fake data. Test assignment was defined as:
1. Sign in using provided credentials.
2. Open Quest rules.
3. In a timeline, find a submission with attached image.
4. Select same challenge in challenges tab.
5. Try to find out if there is some submission rejected for this challenge.
6. Post a submission for this challenge with attached image.
7. Check if your submission was posted.
8. Find your position in leaderboard, given that your role is Sta�.

None of the participants struggled when executing the test task, all 3, however,
pointed out inconvenient rules link placement in profile screen. Optionally, participants
had a chance to explore application as they wished and give a feedback on overall
appearance.

5.1.2 Evaluation
It can be seen that some negative points occur with several participants. While most
of the negative feedback was resolved, there are still points missing due to lack of such
functionality in current version of REST API.

Resolved points:. Profile tab is removed from tab bar component, instead a button is placed in navi-
gation bar.. Submission usernames and names are inlined horizontally with profile image (origi-
nal implementation displayed user profile image with name in a vertical stack with
adaptive font size, thus long usernames could not be seen).. Custom icons for video playback and media file types with adjusted background
transparency were created.

33

5. Testing .
Participants Positives Negatives

Participant 1

Age: 29 1. Nice, intuitive input design. 1. Redundant 5th profile tab,
Work: Project Manager 2. Nice challenge list. use button in navbar.
Experience: High 3. User friendly error states. 2. Missing notification

detail on tap.
3. Missing other user profiles.
4. Missing user management.

Participant 2

Age: 24 1. Nice error display. 1. Can’t see long usernames
Work: Node.js Developer 2. Good input view. 2. Can’t see all my submissions
Experience: Middle 3. Presence of reload. 3. Can’t delete a submission

4. Too big profile image on
iPhone SE in notification list.

Participant 3

Age: 21 1. Nice icons. 1. Bad video playback icon.
Work: FEE student 2. Nice reload gesture. 2. Can’t click on notification
Experience: Low 3. Nice input view. to see detail.

3. Can’t view other user
profiles.

Table 5.1. User Testing. Participants feedback.

5.2 Unit tests
Unit tests in iOS projects play crucial role in potential bug reveal as well as in any
other area of software development. This is a relatively small project and provided unit
tests have more of informative character.

Unit tests for Xcode projects are defined using XCTest framework. To run the tests
an individual build target needs to be created and all tests and test dependency classes
need to be specified in compile sources.

A basic test is defined using XCTestCase class.

class ExampleTest: XCTestCase {
override func setUp() {

super.setUp()
// Method is called before the invocation of each test method.

}

override class func tearDown() {
// Method is called before the invocation of each test method.
super.tearDown()

}

func exampleUnitTest() {
XCTAssertEqual(3 + 1, 5, "Your math skills are not so great")

}
}

There are several ways how to test asynchronous code. Given that majority of classes
from Model tier return RxSwift Observable<T> types, I will adopt the simplest ap-

34

. 5.2 Unit tests

proach and convert asynchronous calls to blocking ones using operators supplied with
RxBlocking. An example is shown for LeaderboardRepository tests.

class LeaderboardRepositoryTest: XCTestCase {
var repository: LeaderboardRepositoring!

// prepare
override class func setUp() {

super.setUp()
let api = MockedApiService()
repository = LeaderboardRepository(apiService: api)

}

// Expected: original types + team leaderboard
func testLeaderboardTypes() {

do {
let types = try repository.observeLeaderboards()

.toBlocking().first()!!

XCTAssertTrue {
types.count == 3
&&
types.contains { $0 == LeaderboardType.team }

}
} catch {

XCTFail(error.localizedDescription)
}

}
}

35

Chapter 6
Conclusion

Application prototype was successfully implemented. While current version of MyICPC
Quest API was fully adopted, some of the contextual device and network data is missing.
With an option to use private API, a preference was given to leave out a portion of
data to prevent API misuse problems when distributing app in the future.

During the implementation phase I was trying to give as much attention to appli-
cation architecture as possible. Some parts were completely rewritten several times.
A non-standardized architectural approach made the resulting implementation easily
adoptable for future enhancements. User tests have proven to be useful, even though
none of the participants was involved in ICPC.

Applying reactive programming principles was also a challenge, since I did not have
much of FRP background. However, I am sure that FRP have made a lot things easier,
especially context data fetch.

As for future enhancements, I would like to point out some that seem necessary:

. extend REST API to provide more functionality;. use onboarding1 to present app functionality and usage instead of displaying a PDF
file with Quest rules;. make use of continuous delivery tools for easier development cycle, especially when
single installation is provided for specific ICPC contest;. make use of service like HockeyApp2 which will allow pre-release app distribution for
main MyICPC team;. release functional version on AppStore.

1 https://usabilitygeek.com/mobile-user-onboarding-examples/
2 https://hockeyapp.net

36

https://usabilitygeek.com/mobile-user-onboarding-examples/
https://hockeyapp.net

References

[1] Roman Smetana. Next Generation of Second-Screen - Realtime application My-
ICPC . 2016.
https://dspace.cvut.cz/handle/10467/62711.

[2] Filip Ryöav˝. MyICPC 2.0 with API for Android App .
https://bitbucket.org/frysavy/myicpc-2.0/src/myicpc-quest-app-backend/.

[3] Filip Ryöav˝. MyICPC Quest Android App .
https://bitbucket.org/frysavy/myicpc-android-app/src/master/.

[4] Jon Ho�man. Masering Swift 4 - Fourth Edition. Packt Publishing, Ltd., 2017.
ISBN 9781788477802.

[5] Apple Inc. The Swift Programming Language (Swift 4.1). Apple Inc., 2018.
https://itunes.apple.com/us/book/the-swift-programming-language/id881256329?
mt=11.

[6] CocoaPods. The Cocoa Dependency Manager .
https://cocoapods.org/.

[7] Carthage by Github. A simple, decentralized dependency manager for Cocoa.
https://github.com/Carthage/Carthage.

[8] Model-View-Controller, Apple Developer documentation.
https://developer.apple.com/library/content/documentation/General/Conceptual/
CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html.

[9] Soroush Khanlou. Massive View Controller.
http://khanlou.com/2015/12/massive-view-controller/.

[10] Apple Developer documentation, Prioritize Work with Quality of Service Classes.
https: / / developer . apple . com / library / content / documentation / Performance /
Conceptual/EnergyGuide-iOS/PrioritizeWorkWithQoS.html.

[11] ReactiveX, Reactive Programming in Swift.
https://github.com/ReactiveX/RxSwift.

[12] Navdeep Singh. Reactive Programming with Swift 4 . Packt Publishing, Ltd., 2018.
ISBN 9781787128781.

[13] SnapKit, A Swift Autolayout DSL for iOS and OS X.
http://snapkit.io/.

[14] AppAuth. Native App SDK for OAuth 2.0 and OpenID Connect implementing mod-
ern best practices.
https://appauth.io/.

[15] OAuth 2.0 for Native Apps, RFC 8252 .
https://tools.ietf.org/html/rfc8252.

[16] Cong Shi, Jian Liu, Hongbo Liu, and Yingying Chen. Smart User Authentication
through Actuation of Daily Activities Leveraging WiFi-enabled IoT.

37

https://dspace.cvut.cz/handle/10467/62711
https://bitbucket.org/frysavy/myicpc-2.0/src/myicpc-quest-app-backend/
https://bitbucket.org/frysavy/myicpc-android-app/src/master/
https://itunes.apple.com/us/book/the-swift-programming-language/id881256329?mt=11
https://itunes.apple.com/us/book/the-swift-programming-language/id881256329?mt=11
https://cocoapods.org/
https://github.com/Carthage/Carthage
https://developer.apple.com/library/content/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/content/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
http://khanlou.com/2015/12/massive-view-controller/
https://developer.apple.com/library/content/documentation/Performance/Conceptual/EnergyGuide-iOS/PrioritizeWorkWithQoS.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/EnergyGuide-iOS/PrioritizeWorkWithQoS.html
https://github.com/ReactiveX/RxSwift
http://snapkit.io/
https://appauth.io/
https://tools.ietf.org/html/rfc8252

References .
[17] Ioannis Agadakos, Per Hallgren, Dimitrios Damopoulos, Andrei Sabelfeld, and

Georgios Portokalidis. Location-enhanced authentication using the IoT: because
you cannot be in two places at once.

[18] Claudio Marforio, Nikolaos Karapanos, Claudio Soriente, Kari Kostiainen, and
Srdjan Capkun. Smartphones as Practical and Secure Location Verification Tokens
for Payments.

[19] UIDevice, Apple Developer documentation.
https://developer.apple.com/documentation/uikit/uidevice.

[20] Core Location, Apple Developer documentation.
https://developer.apple.com/documentation/corelocation.

[21] SystemConfiguration, Apple Developer deocumentation.
https://developer.apple.com/documentation/systemconfiguration.

[22] NetworkExtension, Apple Developer documentation.
https://developer.apple.com/documentation/networkextension.

[23] MMLanScan by Michael Mavris, An iOS LAN Network Scanner library.
https://github.com/mavris/MMLanScan.

[24] The Mac Observer, Thanks to Misuse, Apps Can’t View MAC Addresses on iOS
11 .
https://www.macobserver.com/news/product-news/apps-cant-view-mac-addresses-
on-ios-11/.

[25] Core Bluetooth, Apple Developer documentation.
https://developer.apple.com/documentation/corebluetooth.

[26] Vladyslav Gorbunov. MyICPC Quest iOS.
https://bitbucket.org/kompotmalinovy/myicpc-quest-ios/.

[27] SwiftGen, The Swift code generator for your assets, storyboards, Localiz-
able.strings,...
https://github.com/SwiftGen/SwiftGen.

[28] Tab Bars, Human Interface Design, Apple Developer Documentation.
https://developer.apple.com/ios/human-interface-guidelines/bars/tab-bars/.

[29] Locksmith, A powerful, protocol-oriented library for working with the keychain in
Swift.
https://github.com/matthewpalmer/Locksmith.

[30] Alamofire. Elegant HTTP Networking in Swift.
https://github.com/Alamofire/Alamofire.

[31] AlamofireImage. An image component library for Alamofire.
https://github.com/Alamofire/AlamofireImage.

[32] RxAlamofire. RxSwift wrapper around the elegant HTTP networking in Swift Alam-
ofire.
https://github.com/RxSwiftCommunity/RxAlamofire.

[33] RxCoreLocation, Reactive abstraction to manage Core Location.
https://github.com/RxSwiftCommunity/RxCoreLocation.

[34] RxBluetoothKit, iOS and OSX Bluetooth library for RxSwift.
https://github.com/Polidea/RxBluetoothKit.

[35] Swinject, Dependency injection framework for Swift with iOS/macOS/Linux.
https://github.com/Swinject/Swinject.

38

https://developer.apple.com/documentation/uikit/uidevice
https://developer.apple.com/documentation/corelocation
https://developer.apple.com/documentation/systemconfiguration
https://developer.apple.com/documentation/networkextension
https://github.com/mavris/MMLanScan
https://www.macobserver.com/news/product-news/apps-cant-view-mac-addresses-on-ios-11/
https://www.macobserver.com/news/product-news/apps-cant-view-mac-addresses-on-ios-11/
https://developer.apple.com/documentation/corebluetooth
https://bitbucket.org/kompotmalinovy/myicpc-quest-ios/
https://github.com/SwiftGen/SwiftGen
https://developer.apple.com/ios/human-interface-guidelines/bars/tab-bars/
https://github.com/matthewpalmer/Locksmith
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/AlamofireImage
https://github.com/RxSwiftCommunity/RxAlamofire
https://github.com/RxSwiftCommunity/RxCoreLocation
https://github.com/Polidea/RxBluetoothKit
https://github.com/Swinject/Swinject

. .
[36] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley

Professional, 2002. ISBN 0321127420.
https://www.martinfowler.com/books/eaa.html.

[37] SKPhotoBrowser. Simple PhotoBrowser/Viewer inspired by facebook, twitter photo
browsers written by swift.
https://github.com/suzuki-0000/SKPhotoBrowser.

[38] Charts. Beautiful charts for iOS/tvOS/OSX! The Apple side of the crossplatform
MPAndroidChart.
https://github.com/danielgindi/Charts.

[39] Gallery. Your next favorite image and video picker.
https://github.com/hyperoslo/Gallery.

39

https://www.martinfowler.com/books/eaa.html
https://github.com/suzuki-0000/SKPhotoBrowser
https://github.com/danielgindi/Charts
https://github.com/hyperoslo/Gallery

Appendix A
Abbreviations

ICPC International Collegiate Programming Contest
API Application Programming Interface
IDE Integrated Development Environment
DSL Domain Specific Language
SDK Software Development Kit

REST Representational State Transfer
FRP Functional Reactive Programming

MVC Model-View-Controller
MVVM Model-View-ViewModel

DTO Data Transfer Object
KVO Key-Value-Observable

UI User Interface
GCD Grand Central Dispatch
QoS Quality of Service
FRP Functional Reactive Programming
XML Extensive Markup Language
SSID Service Set Identifier

BSSID Basic Service Set Identifier
RSSI Received Signal Strength Indication

IP Internet Protocol
MAC Media Access Control
ARP Address Resolution Protocol

UUID Universally Unique Identifier
HTTP Hypertext Transfer Protocol

BLE Bluetooth Low Energy
URL Uniform Resource Locator

DI Dependency Injection

41

Appendix B
CD contents

root
/doc – TeX sources
/src – Project sources
/vids – Demo videos
/sketch – Sketch file with application icons and graphics used in thesis

42

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	MyICPC Quest, motivation for mobile clients
	Thesis goals
	Structure of the thesis

	Related Work
	Current solution
	Inspected applications
	Medium
	Reddit
	Twitter

	Analysis and Design
	Programming Language
	Dependency Management
	CocoaPods
	Carthage

	App architecture, MVVM vs. Apple-MVC
	MVC: Model-View-Controller
	MVVM: Model-View-ViewModel

	Threading and synchronization, motivation for reactive approach
	Grand Central Dispatch
	Reactive Programming

	View creation and graphic elements
	Interface Builder vs Alternatives
	Graphics

	Functional and Non-Functional requirements
	Functional requirements
	Non-functional requirements

	OpenID Connect and Quest REST API
	Quest API
	OpenID Connect

	Motivation behind Context Acquisition
	Context Acquisition and Restrictions
	Device-specific information
	Device location
	Connected network
	Available networks
	Local network devices
	Bluetooth devices

	Implementation
	Project Environment
	Application Design and Navigation use-cases
	User managment, Keychain managment and Application settings
	API description and interactor
	Repository Pattern
	Context Repository
	App source, Timestamp, Device info, Connected Network Info
	Device location
	Network devices
	BLE devices
	Pack it all together

	A closer look at ViewModels with RxSwift
	Assembling pieces, Dependency Injection and Coordinators
	Dependency Injection
	Coordinators

	Notifications and Challenges
	Leaderboards
	Input view
	Other views

	Testing
	User Testing
	Test progress
	Evaluation

	Unit tests

	Conclusion
	References
	Abbreviations
	CD contents

