
ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

420410Osobní číslo:FilipJméno:RyšavýPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Mobilní aplikace pro MyICPC se sběrem contextu v IoT prostředí

Název diplomové práce anglicky:

Mobile app for MyICPC with context acquisition for IoT environments

Pokyny pro vypracování:
- Prozkoumejte možnosti sběru signálu a meta-informací o síti na WiFi a Bluetooth v mobilních platformách Android,
případně iOS.
- Věnujte pozornost WiFi Channel State Information a meta-informacím o dalších zařízení na síti. Dále amplitudě a fázovému
posunu [2,3].
- Prozkoumejte systém MyICPC [4] a interakci s mobilním zařízením pro účel interakce a účasti ve hře Quests možností
zaslání videa a obrázku.
- Prozkoumejte zabezpečení proti kompromitaci skrze Trusted Execution Environments (TrustZone) [5].
- Navrhněte způsob komunikace mezi mobilním zařízením a MyICPC, tak aby byli mimo jiné předány kontextové informace
jako je GPS, a okolní zařízení.
- Implementujte prototyp mobilní aplikace, rozšiřte komunikační část MyICPC a otestujte použití.

Seznam doporučené literatury:
[1]Michals Trnka, Martin Tomasek, and Tomas Cerny. Context-aware security using internet of things devices. In Kuinam
Kim and Nikolai Joukov, editors, Information Science and Applications 2017: ICISA 2017, pages 706?713, Singapore,
2017. Springer Singapore.
[2] Cong Shi, Jian Liu, Hongbo Liu, and Yingying Chen. Smart user authentication through actuation of daily activities
leveraging wifi-enabled iot. In Proceedings of the 18th ACM In- ternational Symposium on Mobile Ad Hoc Networking and
Computing, Mobihoc ?17, pages 5:1?5:10, New York, NY, USA, 2017. ACM.
[3] Ioannis Agadakos, Per Hallgren, Dimitrios Damopoulos, Andrei Sabelfeld, and Georgios Por- tokalidis. Location-enhanced
authentication using the iot: Because you cannot be in two places at once. In Proceedings of the 32Nd Annual Conference
on Computer Security Applications, ACSAC 16, pages 251?264, New York, NY, USA, 2016. ACM.
[4] Smetana Roman, Next generation of Second-Screen, Realtime application MyICPC,
2016,https://dspace.cvut.cz/handle/10467/62711
[5] Claudio Marforio, Nikolaos Karapanos, Claudio Soriente, Kari Kostiainen, and Srdjan Capkun. Smartphones as practical
and secure location verification tokens for payments. In NDSS, 2014."

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Tomáš Černý, MSc., Ph.D., laboratoř inteligentního testování softwaru FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 25.05.2018Datum zadání diplomové práce: 16.10.2017

Platnost zadání diplomové práce:
do konce letního semestru 2018/2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Tomáš Černý, MSc., Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s Thesis

Mobile application for MyICPC with context acquisition for
IoT environments

Bc. Filip Ryšavý

Supervisor: Ing. Tomáš Černý, MSc., Ph.D.

Study Programme: Open Informatics, Master’s degree

Field of Study: Software Engineering

May 24, 2018

iv

v

Aknowledgements
I would like to thank my supervisor Ing. Tomáš Černý, MSc., Ph.D. and his colleagues for
their continuous guidance and advices. I would also like to thank to all who supported me
during studies.

vi

vii

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Prague on May 24, 2018 .

viii

Abstract

This thesis targets to create a mobile application that will acquire the contextual information
like a date, a location, network devices and others to support a research of context aware
authentication using Wi-Fi enabled IoT devices. Next, this thesis aims to take this applica-
tion and integrate it with some application from real environment in order to obtain data
for the research. In a case of this thesis the integration is with MyICPC that is used during
the ACM International Collegiate Programming Contest. This thesis presents a design and
an implementation of the solution in a form of a context acquisition application, a MyICPC
mobile application and an extension of the current version of MyICPC. The solution pre-
sented in this thesis is ready for the deployment during regional contest later this year.

Keywords: Android, context, context acquisition, ICPC, mobile applications, second screen

Abstrakt

Cílem této práce je vytvořit mobilní aplikaci, která dokáže sbírat kontextové informace jako
datum, lokace, zařízení v síti a jiné za účelem podpoření výzkumu kontextu uvědomělé aut-
entizace s využitím IoT zařízení využívajících Wi-Fi. Dále je cílem vzít tuto aplikaci a inte-
grovat ji s nějakou aplikací z reálného prostředí za účelem získání dat pro výzkum. V případě
této práce se jedná o integraci s aplikací MyICPC, která se používá během ACM Interna-
tional Collegiate Programming Contest. Tato práce představuje návrh a implementaci řešení
v podobě aplikace pro sběr kontextu, mobilní aplikace pro MyICPC a rozšíření současné
verze MyICPC. Řešení představené v této práci je připraveno pro nasazení během regionál-
ních soutěží konajících se později tento rok.

Klíčová slova: Android, kontext, sběr kontextu, ICPC, mobilní aplikace, second screen

Překlad názvu: Mobilní aplikace pro MyICPC se sběrem kontextu v IoT prostředí

ix

x

Contents

1 Introduction 1
1.1 Usage of acquired context in research . 1
1.2 International Collegiate Programming Contest 2
1.3 MyICPC . 2
1.4 The Great Firewall of China . 2
1.5 Proposed solution . 3
1.6 Structure of thesis . 3

2 Analysis 5
2.1 Context . 5

2.1.1 Context awareness . 6
2.1.2 Context-aware security . 6

2.2 Wi-Fi channel state information . 6
2.3 Trusted execution environments . 6
2.4 Mobile application . 6

2.4.1 Platforms analysis . 7
2.5 MyICPC . 8

2.5.1 Timeline . 9
2.5.2 Quest . 10

2.6 Related work . 10
2.7 Requirements . 11

3 Design 13
3.1 Android design guidelines . 13

3.1.1 Context acquisition service . 13
3.1.2 MyICPC activities . 14
3.1.3 Navigation . 17

3.2 Server application architecture . 17
3.2.1 Domain model . 18
3.2.2 REST API endpoints . 20
3.2.3 Changes in MyICPC . 20

4 Implementation 21
4.1 Development environments . 21

4.1.1 Android SDK . 21

xi

xii CONTENTS

4.1.2 Java Platform, Standard Edition . 21
4.1.3 Keycloak . 22
4.1.4 WildFly . 22
4.1.5 PostgreSQL . 22

4.2 Development tools . 22
4.2.1 Integrated development environments 22
4.2.2 Apache Maven . 23
4.2.3 Version control system . 23

4.3 Third-party libraries . 23
4.3.1 AppAuth for Android . 23
4.3.2 Spring framework . 23
4.3.3 Others . 24

4.4 Context acquisition implementation . 24
4.4.1 Date . 24
4.4.2 Location . 24
4.4.3 Information about device . 25
4.4.4 Connected Wi-Fi network . 25
4.4.5 Available Wi-Fi networks . 26
4.4.6 Devices in network . 26
4.4.7 GSM signal strength . 28
4.4.8 Bluetooth devices . 28
4.4.9 User identity . 28

4.5 Android application implementation . 28
4.5.1 Integration of context acquisition . 29
4.5.2 OpenID Connect authentication with Keycloak 29
4.5.3 Communication with MyICPC . 29

4.6 Server applications implementation . 30
4.6.1 Endpoints . 30
4.6.2 Securing application with Keycloak . 31
4.6.3 Uploading images and videos to Google Drive 33

5 Testing 35
5.1 Unit testing . 35

5.1.1 JUnit . 35
5.2 Stress testing . 35

5.2.1 JMeter . 35
5.3 Usability testing . 36

5.3.1 Cognitive walkthrough . 36
5.3.2 User description . 36
5.3.3 Tested use cases . 36

6 Evaluation 39
6.1 Requirement fulfillment . 39

6.1.1 Heavy load of network device discovery 39
6.1.2 Quality of uploaded video . 40
6.1.3 Downloading media files from storage 40

CONTENTS xiii

6.2 Testing results . 40
6.2.1 Unit testing results . 40
6.2.2 Stress testing results . 40
6.2.3 Usability testing results . 41

6.3 Deployment . 41
6.3.1 Collected context . 42
6.3.2 Android application . 42
6.3.3 Server application . 42

7 Conclusion 43
7.1 Summary . 43
7.2 Future work . 43

Bibliography 46

A Nomenclature 47

B Content of included CD 49

C Example of acquired context 51

D Deployment guide 53

xiv CONTENTS

List of Figures

2.1 Usage of Android versions on May 7, 2018. 7
2.2 Usage of iOS versions on April 22, 2018. 8
2.3 Deployment of MyICPC as a single node application. 9
2.4 Deployment of MyICPC as a single node application. 9
2.5 Example of the MyICPC Timeline in existing application. 10
2.6 Example of the Quest Timeline in existing application. 10
2.7 Example of challenges in the Quest game in existing application. 11

3.1 Design of activities: a sign in, a timeline, a post detail and a new post. 15
3.2 Design of activities: a challenge detail and a leader board. 16
3.3 Design of a navigation drawer. 16
3.4 Deployment of MyICPC with REST API. 18
3.5 Domain model of the acquired context. 19
3.6 Domain model of the REST API configuration. 19

6.1 Response time graph. 41
6.2 MyICPC mobile application. 42

xv

xvi LIST OF FIGURES

List of Tables

3.1 REST API endpoints developed for this thesis. 20

6.1 Results of the usability testing. 41

D.1 Overview of all REST API endpoints. 54

xvii

xviii LIST OF TABLES

List of Listings

4.1 Implementation of the date acquisition. 25
4.2 Checking if IP address is reachable using ping command. 26
4.3 Checking if IP address is reachable using pure Java. 27
4.4 Obtaining of the hardware address. 27
4.5 Dynamically adding the certificate to keystore. 30
4.6 Obtaining user’s principal from Keycloak introspection endpoint. 31
4.7 Implementation of the REST API security. 32
C.1 Example of the acquired context. 51
D.1 Example of API configuration. 54

xix

xx LIST OF LISTINGS

Chapter 1

Introduction

Today there is already a huge number of mobile devices and technologies overall. There is
also a lot of demands on applications to provide a personalized content in this case based on
user’s context[1]. This property of applications is called a context awareness. Besides that,
the context can be used in a context-aware security that is done only by a few applications
nowadays[1]. The goal of this thesis is to create a mobile application that will acquire such
context and then integrate it in a real mobile application as proof of concept.

This chapter provides an overall description of this thesis. First, this chapter describes
a motivation of the context acquisition and how the acquired context will be used in the
research dealing with a context-aware authentication using Wi-Fi enable Internet of Things
(IoT) devices[2]. Next, this chapter describes an opportunity where the context acquisition
can be applied in. The opportunity opens itself during the ACM International Collegiate
Programming Contest[3] and consists of using the application called MyICPC[4] and creating
a mobile application for it which integrates the context acquisition. Finally, this chapter
describes issues that led to the creation of the mobile application and thus opened the
opportunity for the context acquisition proof of concept.

1.1 Usage of acquired context in research

The research deals with a context-aware authentication using Wi-Fi enabled IoT devices
and it proposes a method that addresses a problem of gathering a contextual information[2].
Every IoT device is by the definition connected to the Internet usually through a computer
network. Such devices can serve as a data source of the contextual information which includes
some information about network itself[2]. The acquired context needs to be tied to a specific
user and the relationship between users and devices can be mapped in various forms[2]. The
research is limited to a situation when a device is owned permanently by a single user and
focuses on user’s virtual location[2].

A large data set of gathered data should be analyzed using data science techniques
to determine the security risk level[2]. Then, there should be determined devices that do
not change for a given network in the given time and other devices that are tied with the
user[2]. A context is acquired and stored during every action performed by the user and

1

CHAPTER 1. INTRODUCTION

then compared with historical values[2]. If devices present at the given time differ greatly
from the devices present at the same time on previous days, it is flagged as suspicious[2].

First, this thesis aims to create a mobile application that can acquire user’s context. The
context acquired by the application will be used for purposes of the research.

1.2 International Collegiate Programming Contest

The ACM International Collegiate Programming Contest (ACM-ICPC) is a multi-tiered,
team-based and programming competition[3]. The contest involves a global network of
universities hosting regional competitions that advance teams to the ACM-ICPC World
Finals[3]. The closest event is the 42nd Annual World Finals of the ACM-ICPC this year
in April that takes place in Beijing, China. The next contests are regional competitions in
autumn of this year.

The opportunity to use the context acquisition in a real mobile application is to create
one for additional activities of the ACM-ICPC. These activities have been so far handled
solely by a web application called MyICPC. The deployment of this mobile application is
then expected during one of the closest events.

1.3 MyICPC

MyICPC is a web application that was deployed during all World Finals of the ACM-
ICPC during the last few years[4]. The goal of MyICPC is to enhance the experience of
the audience and thus it aggregates information from several ACM-ICPC sources and ap-
plications such as a social data from Twitter or some analytics of a contest, teams and
submissions[4]. Thus, it eases the work of the user. MyICPC consists of several components
such as the home page called Timeline, the main contest page called Scoreboard, the Quest
game, the schedule, the poll and the gallery[4].

The second goal of this thesis aims to create a mobile application that will be able to
send messages directly to the MyICPC home page and to the Quest game. At the same time,
the mobile application will integrate the context acquisition, and the acquired context will
be used for research purposes motioned in the section 1.1. This will also require designing a
communication between the mobile application and MyICPC and since MyICPC does not
provide any application programming interface (API), a creation of the API will be required
as well.

1.4 The Great Firewall of China

The Great Firewall of China is a colloquial term for mainland China’s internet censorship
system[5]. It blocks foreign websites, apps, social media, emails, instant messages and other
online resources deemed inappropriate or offensive by authorities[5]. The best option how
to get around the firewall is to use a virtual private network (VPN), but even some of them
are blocked by authorities[5].

2

1.5. PROPOSED SOLUTION

This is the main motivation of creating a mobile application for the MyICPC home page
and the Quest game because both are using a social data from Twitter that is blocked by
the Great Firewall of China. The MyICPC servers run in the United States and they are
accessible from China. The mobile application will be useful especially because this year
World Finals takes place in Beijing, China as mentioned in the section 1.2. The idea of the
mobile application is to be easier to use than setting up some VPN.

1.5 Proposed solution

The solution proposed by this thesis consists of the context acquisition, the mobile ap-
plication for the MyICPC home page and the Quest game, and the extensions of MyICPC
in the form of a REST API for a communication with the mobile application.

First, the mobile application that acquires a context will be created. It will be a tool which
can be later integrated with other applications. It will collect a contextual information like
a date, a location, some information about the device, a connected Wi-Fi network, available
Wi-Fi networks, network devices, a signal strength, Bluetooth devices and user identity.
It will mainly focus on the Wi-Fi networks and the network devices to support research
described in the section 1.1.

The second step will be to create the mobile application for MyICPC itself. It will serve
as front-end for the MyICPC home page and the Quest game. It will replace the usage
of a Twitter and thus the concept of it will be quite like the Twitter mobile application.
Basically, there will be a sing in screen, a wall of posts and screen with a new post. It will
also integrate the context acquisition.

Finally, the MyICPC web application will need some modifications. It will require a
REST API to transfer information to and from the mobile application. The REST API will
provide functionality of the MyICPC home page and the Quest game. It also will need to
handle user’s authentication and storing of the acquired context and media files which will
be sent by the mobile application instead of using Twitter.

1.6 Structure of thesis

The following part of this thesis is divided into chapters Analysis, Design, Implementa-
tion, Testing, Evaluation and Conclusion as follows:

• The chapter Analysis will explain what is the context and where the context can
be used. The chapter will then analyze mobile platforms and existing MyICPC solu-
tion. The chapter will also describe Wi-Fi channel state information, trusted execution
environments and some related work.

• The chapter Design first describes a design of the mobile application that will be
acquiring the context and fulfilling the MyICPC functionality. The chapter then de-
scribes changes in the MyICPC web application.

• The chapter Implementation will describe the development environment, tools and
the implementation of the mobile application and the server application.

3

CHAPTER 1. INTRODUCTION

• The chapter Testing will describe a testing of the MyICPC server application and the
MyICPC mobile application. The testing consists of a unit testing of the persistence
and the service layer, a stress testing of the MyICPC server application and an usability
testing of the MyICPC mobile application.

• The chapter Evaluation will describe results of the implementation and the testing
of both applications. It will also describe a deployment of the applications.

• The chapter Conclusion will summarize this thesis, the applications that were created
in it and the overall results.

This thesis contains following appendices: the nomenclature, the content of the included
CD that contains the complete source code of this thesis, the deployment guide of the
modified MyICPC server application.

4

Chapter 2

Analysis

First, this chapter explains what the context is and how it is related to the context
awareness. This chapter continues the explanation with examples and usages of the context
and context awareness mainly in the context-aware security. Then, this chapter describes
the context in the mobile environment and analyzes requirements for the context acquisition.
This chapter also explains what is the Wi-Fi channel state information, trusted execution
environments and some related work.

Second, this chapter describes and compares mobile platforms like Android and iOS.
Then, this chapter explains a choice of the mobile platform for the MyICPC mobile appli-
cation and analyses requirements for it.

Finally, this chapter provides a description of the architecture of MyICPC and describes
the MyICPC timeline and the Quest game. Then, this chapter analyses requirements for an
extension of MyICPC.

2.1 Context

The context can be understood as an information that characterizes a state of an entity[6].
The entity is an object that is relevant to the interaction between the application and the
user[6]. The context can be classified as a computing context, an environmental context, a
user context or a physical context.

A computing context can be a network connectivity, a communication cost, a communi-
cation bandwidth or nearby resources. An environmental context can be a light intensity,
a noise level, traffic conditions or a weather. A user context can be user’s identity like his
profile, his preferences, his mood, his behavior or his pressure. Physical context can be a
time, a date or a location. Note that a computing context like a network information is the
most important for purposes of this thesis.

Today’s mobile devices are equipped with GPS, Wi-Fi, a gyroscopic sensor and based on
a device with various other sensors. The mobile devices are used on a daily basis by many
people and thus they are great opportunity for collecting a contextual information. The
mobile devices are suitable for collecting the computing context, the environmental context,
the user context and the physical context.

5

CHAPTER 2. ANALYSIS

2.1.1 Context awareness

A context-aware system uses a context to provide a relevant information to the user[6]. In
other words, the context awareness (CA) is an ability of the system to gather an information,
process it and adapt to it. Many applications use the CA to a certain degree today. These
applications are usually social applications, health care applications or navigational services
usually based on a user physical location.

For example, if a user has left his office and his phone starts ringing in his office, the
system would detect user’s location and redirect the call to his mobile phone and so on.
Another usage of the CA is in the context-aware security.

2.1.2 Context-aware security

Applications are usually secured by the traditional ways like Mandatory Access Control,
Discretionary Access Control or Role-Based Access control[7]. Only a few applications have
the security based on the contextual information[1, 8]. The context-aware security (CAS)
is using the context to improve security decisions. The CAS results in less obstructive
applications and allows to use different authentication methods based on the context[1, 8].
In other words, the CAS is more personalized, fine-grained and dynamic.

An example of the CAS can be an extra authentication method forced on a change of
a location. Another example can be a usage of a different authentication method when
accessing from a company network and when accessing from another network. This can go
even further as a system can process a bio-metric data and if the user would do some critical
operation and his bio-metric data would be abnormal, the system may force addition security
features. CAS is suitable in use for IoT devices where it is based on trusted devices[9].

2.2 Wi-Fi channel state information

The Wi-Fi channel state information or just channel state information (CSI) are channel
properties in wireless communications that describe how a signal propagates from the trans-
mitter to the receiver[10, 11]. A user can be accurately identified by extracting representative
features from CSI measurements of Wi-Fi signals and further processing[10].

2.3 Trusted execution environments

System-wide trusted execution environments (TEEs) are used to secure mobile ser-
vices despite a mobile operating system compromise[12]. An example of TEEs is ARM
TrustZone[12]. TEEs provide an isolate execution of applications and a secure storage of
credentials[12].

2.4 Mobile application

The current solution of the MyICPC application is done only as a web application.
Nowadays, every mobile device like phones or tablets is equipped with some Internet browser

6

2.4. MOBILE APPLICATION

and thus displaying a web application is not an issue. It has, however, several disadvantages.
The most important disadvantage is that a web application cannot access to the mobile
device and its sensors. Another disadvantage is a user experience because a web application
may not follow design guidelines for a specific mobile platform.

2.4.1 Platforms analysis

Today there are several mobile platforms or operating systems. The two most widely
spread system are Android[13] and iOS[14].

The latest version of Android is version 8 called Oreo and it is used approximately by
5.7% of devices[13]. The most used versions of Android are version 6 called Marshmallow and
version 7 called Nougat with approximately 25.5% and 31.1% usage respectively[13]. It is
not recommended using the latest version as a minimal supported version as the application
will target only a small portion of devices. It is also not recommended using the first versions
as minimal supported version because the application would require tremendous backward
support across all newer versions. For example, there was significant change of the permission
system and policy between versions 5 and 6.

Figure 2.1: Usage of Android versions on May 7, 2018.

The latest version of iOS is version 11 which is used by approximately by 76% devices[13].
Principles about selecting a minimal supported version are like Android. A benefit of using
iOS is that most devices are using the latest version of system and its features. However,

7

CHAPTER 2. ANALYSIS

iOS is stricter with the security and restrictions of applications. For example, it limited the
information that can be obtained like a device information or a network information.

Figure 2.2: Usage of iOS versions on April 22, 2018.

This thesis will use Android as it is more accessible than iOS and it allows to acquire
all contextual information specified in this chapter. This thesis will use version 6 as it is a
compromise of amount of targeted devices and supported features.

2.5 MyICPC

MyICPC is a web application. The application uses the standard layered architecture[4].
The application consists of persistence layer, service layer, controller layer and presentation
layer[4]. The application doesn’t contain any API[4]. The application is built using Spring
Framework[4]. The persistence layer uses Java Persistence API (JPA) and Hibernate[4].
The presentation layer uses JavaServer Pages (JSP) and JavaScript including AngularJS
framework[4].

The application can be run as a single node application on one server as displayed in
the figure 2.3[4]. The application can be also run as cluster by running each execution
environment on a separate server and by multiplying a node with the application as shown
in the figure 2.4[4].

The application consists of several components like the homepage called Timeline, the
main contest page called Scoreboard, the Quest game, schedule, poll and gallery[4]. This
thesis works with the Timeline and the Quest game.

The MyICPC application can be also classified as a second-screen application[4]. A
second-screen application usually involves a device equipped with a screen and access to

8

2.5. MYICPC

Figure 2.3: Deployment of MyICPC as a single node application.

Figure 2.4: Deployment of MyICPC as a single node application.

Internet. Such device enhances user’s experience and allows the user to perceive an event
from various angles[15]. For example, a second-screen application can be a sport event
application that provides current score board etc[4].

2.5.1 Timeline

Timeline is a home page of every contest in the MyICPC server application[4]. It helps to
follow what is happening in the contest[4]. It consists of various notifications like the stream
of social conversations, contest events or the announcement of a Quest challenge organized
in a timeline[4]. The MyICPC timeline is shown in the figure 2.5 and its subset in form of
the Quest timeline is shown in the figure 2.6.

9

CHAPTER 2. ANALYSIS

Figure 2.5: Example of the MyICPC Timeline in existing application.

Figure 2.6: Example of the Quest Timeline in existing application.

2.5.2 Quest

MyICPC contains a game called Quest that consists of challenges and reward in form of
points for every solved challenge[4]. The user can participate in the Quest game using social
networks like Twitter[4]. The Quest timeline is shown in the figure 2.6 and an example of
the challenge is shown in the figure 2.7.

2.6 Related work

Several second screens or second-screen applications exists nowadays[15]. They re used
to enhance and to support various activities like augmenting TV screens by augmenting a
tradition TV program, enhancing sport event experience with overlapping program or usage

10

2.7. REQUIREMENTS

Figure 2.7: Example of challenges in the Quest game in existing application.

in museums and galleries to bring an interactive experience to the audience[15].
There are several libraries, framework or API that focus on the context acquisition.

For example, Google Awareness API works with 7 signals including time, location, places,
beacons, headphones, activity and weather[16]. These libraries, framework or API usually
looks like puzzle pieces that do not fit well together[16]. This means that it is difficult
to combine them and thus most of such libraries, framework or API focus on one context
information. In case of context information about networks, there are some tools like network
scanners but there is no tool that would use the context in term of the context awareness.

2.7 Requirements

The requirements are mainly based on the thesis assignment. The requirements for the
acquisition of the contextual information are also based on the context described in this
chapter and the research described in the section 1.1. The requirements are as follow:

• Create a mobile application that will acquire the context. The contextual information is
a date, a location, a device information, connected network, available Wi-Fi networks,
devices in a network, a signal strength, Bluetooth devices and a user identity.

• The context acquisition mainly focuses on network information as described in this
chapter.

• The context acquisition should be created as a component that is easy to integrate to
other applications as it will be used in a MyICPC mobile application.

• Create a mobile application for MyICPC that will display the MyICPC timeline and
posts, challenges and leader boards of the Quest game. It will also allow the user to
send messages to the Myicpc timeline and submissions to the Quest game.

• The mobile application will be created for Android version 6.

11

CHAPTER 2. ANALYSIS

• The mobile application will integrate the context acquisition described in this chapter
and it will send the acquired context with the messages and submissions.

• Create a REST API for communication of with the mobile application. Solve authen-
tication and storage of the context and media files.

• Creating new components in MyICPC is preferable than modifying the existing com-
ponent due to backward compatibly.

12

Chapter 3

Design

First, this chapter describes a design of the mobile application for Android devices that
will acquire the context as well as take care of the MyICPC functionality. The mobile
application will be designed with respect to Android design guidelines. This chapter describes
which and how Android components like activities and services will be used in the mobile
application as well as which screens the mobile application will use.

Second, this chapter explains changes of MyIPCP. The goal of the changes is to add new
components rather than changing existing components. These changes consist of following
things: an expansion of the domain model by adding the acquired context and an addition
configuration of new components, a description of REST API endpoints that are required
for the communication with the MyICPC mobile application and some small or cosmetic
changes in MyICPC views.

3.1 Android design guidelines

The users of mobile devices with Android operating system expect applications to behave
and look in a way that is consistent with the platform[13]. Google provides guidelines for
application developers to design applications in a proper way. These guidelines consist of
Material Design Guidelines and App Quality Guidelines[13]. Material Design Guidelines
describes visual and navigational patterns and App Quality Guidelines contains information
about compatibility, performance, security and more[13].

3.1.1 Context acquisition service

In Android applications, services are one of the essential application components that can
perform long-running tasks in the background and services do not provide a user interface[13].
Services can be started by another application components[13]. This description fits the
requirements for the context acquisition component.

The context acquisition service will be started at the start of the mobile application.
The service will continuously perform the context acquisition in the background. On a
request, the service will take a snapshot of the acquired context a send it to a component

13

CHAPTER 3. DESIGN

that requested the context. The service will be stop when the mobile application will be
terminated The service will acquire following information:

• Date - It is represented as a Java time stamp that gives the number of milliseconds
since the epoch (midnight of January 1st 1970).

• Location - It consists of a latitude, a longitude and a time stamp representing a date
when the location was obtained.

• Information about user’s device - User’s devices is identified by an operating
system an its version, a brand and a modele of the device and a serial.

• Connected Wi-Fi network - It consists of SSID, BSSID, a state, RSSI, a link speed,
a frequency and an IP address.

• Available Wi-Fi networks - It is a list of Wi-Fi networks. Each Wi-Fi network is
represented by SSID, BSSID, capabilities, frequencies, a channel width, a level and a
time stamp.

• Devices in the network - It is a list of network devices. Each device is represented
by an IP address and a MAC address.

• GSM signal strength - It is a value in dBm units.

• Bluetooth devices - It is a list of Bluetooth devices. Each device is represented by
a name and a MAC address.

• User identity - It consists of an ID, a first name, a last name, social media user names
and a profile picture URL.

3.1.2 MyICPC activities

In Android applications, activities are one of the essential components[13]. The Android
operating system initiates code in an instance of an activity by invoking specific callback
methods that correspond to specific stages of its life cycle[13].

The mobile applications will consist of following activities: a sign in, a timeline, a post
detail and a new post. A design of these activities is illustrated in the figure 3.1. The mobile
application will also have activities that will display the Quest game posts, their details
and allow the user to make a new submission. A design of these activities is more or less
identical to a design of the timeline activity, the post detail activity and a new post activity
respectively.

After application launch in the sign in activity, there is a sign in button that initializes
a sign in processes typically by opening an external dialog, an activity or a browser. After
the user signed in, the timeline activity is shown with a list of posts. The detail of a post
including an image or a video if there is any is shown after clicking on it. The user will
create a new post by cling on a floating action button with a plus sign and then by filling
a message and optionally attaching a photo or a video. The user can also agree to provide
the acquired context for the research purposes.

14

3.1. ANDROID DESIGN GUIDELINES

Figure 3.1: Design of activities: a sign in, a timeline, a post detail and a new post.

15

CHAPTER 3. DESIGN

Figure 3.2: Design of activities: a challenge detail and a leader board.

Figure 3.3: Design of a navigation drawer.

16

3.2. SERVER APPLICATION ARCHITECTURE

The mobile application will next have following activities: a list of challenges, a challenge
detail activity, a list of leader boards, a leader board activity and a team leader board activity.
A list of challenges and a list of leader boards are simple lists, a design of a team leader board
is more or less identical to a design of leader board and a design of rest of these activities is
illustrated in the figure 3.2.

The user can select a challenge from a list of challenges by clicking on it. Then the user is
presented with a challenge detail containing a name and a hashtag of a challenge, a number
of points, an information if a photo or a video is required, a remaining time, a challenge
image and a challenge description. The user can participate in a challenge by clicking in a
participate button that shows him a new submission activity that is more or less identical
to a new post activity.

The user can choose a leader board from a list of leader boards by clicking on it. Then
the user is presented with a leader board detail that contains a list of contestants each with
a rank, a name and a number of points. The team leader board activity is more or less
identical to a leader board detail except it displays a name of a team instead of a name of a
contestant.

3.1.3 Navigation

The Android guidelines provide several patterns for a navigation. The mobile application
will mainly use a pattern called a navigation drawer[13]. The navigation drawer is a user
interface panel that show a main navigational menu of an application[13]. The navigation
drawer is hidden when it is not used and it is displayed when the user swipes a finger from
the left side of the screen or when the user clicks the drawer button in the application bar[13].
A design of the navigation drawer is illustrated in the figure 3.3. The mobile application will
also use patterns called Up navigation[13] and Back navigation[13]. Up navigation refers to
a navigation in the application hierarchy by clicking on the Up button in the application
bar[13]. Back navigation refers to a navigation in the history of screens by clicking the
Android back button[13]. Because the mobile application has relatively small number of
activities, both of these navigation pattern appears to be the same.

3.2 Server application architecture

MyICPC does not have any REST API[4] so the first step is to add another layer to
its architecture. The layer will contain all REST API endpoints for communication with
the mobile application and data transfer objects. This layer will use the service and the
persistence layer in a same fashion as the controller layer[4]. Because MyICPC is divided
into module this can also be perceived as modifying the controller layer.

The whole idea is to remove usage of Twitter. Because of that an authentication and a
storage was removed from the process as well. The second step is to provide new means of
an authentication and a storage. The authentication will be provided by an authentication
server that uses OpenID Connect, for example Keycloak, and Google Drive will be used as
a storage. This deployment is shown in the figure 3.4.

This change preserves the ability of MyICPC to run as a single node application as well
as a cluster. In a single node application with one instance of MyICPC, every execution

17

CHAPTER 3. DESIGN

Figure 3.4: Deployment of MyICPC with REST API.

environment can run on a single device with exception of Google Drive or each execution
environment can run on separate devices. In a cluster of MyICPC instances, a device running
it can by horizontally scaled.

3.2.1 Domain model

This thesis does not modify the existing domain model[4]. This thesis only expands it
with the acquired context and the additional configuration of MyICPC.

The acquired context consists of a date, a location, an information about user’s device,
a connected Wi-Fi network, available Wi-Fi networks, devices in the network, a GSM signal
strength, Bluetooth devices and a user identity. This is shown in the figure 3.5.

The additional configuration of MyICPC consists of the configuration of REST API. The
domain model consists of true or false value indicating if REST API is enabled in a contest,
a Keycloak introspection endpoint, a Keycloak client ID, a Keycloak client secret, a Google
APIs service account ID (e-mail), a Google APIs service account private key, a Google APIs
service account private key ID, a Google APIs token server encoded URL, a Google APIs
service account project ID, a Google Drive parent folder ID and a contest ID. This is shown
in the figure 3.6.

18

3.2. SERVER APPLICATION ARCHITECTURE

Figure 3.5: Domain model of the acquired context.

Figure 3.6: Domain model of the REST API configuration.

19

CHAPTER 3. DESIGN

3.2.2 REST API endpoints

The endpoints are used for communication with the mobile application and they are
described in the table 3.1. URL of all endpoints is prefixed with api/{contestCode} where
contestCode is an identifier of a contest.

Endpoint Method Description
user GET Gets a user, status 200.
timeline GET Gets timeline posts, status 200.
timeline POST Posts a new post, status 201. Other-

wise status 400.
quest/whats-happening-now GET Gets quest posts, status 200.
quest/challenges GET Gets challenges, status 200.
quest/challenges/{hashtagSuffix} GET Gets a challenge, status 200. A chal-

lenge is identified by hashtagSuffix.
quest/leaderboards GET Gets leader boards, status 200.
quest/leaderboards/{urlCode} GET Gets a leader board, status 200. A

leader board is identified by urlCode.
quest/team-leaderboard GET Gets a team leader board, status 200.

Table 3.1: REST API endpoints developed for this thesis.

All http requests to the endpoints require Authorization header with "Bearer $accessTo-
ken". The endpoints return HTTP status code 401 if user isn’t authenticated, 403 if user if
authenticated but isn’t in MyICPC, 404 if a contest is not found or REST API is disabled.
Bodies of all request and responses are in a JSON format.

3.2.3 Changes in MyICPC

The MyICPC contains several notification types and none of them fits the message from
the mobile application. Fist change is to add a new notification type called mobile app. This
step also includes to modify views and services to work with this type usually by adding if
statement.

Because this thesis extends the domain model with context information there needs to
be added new JPA entities, repositories and services for the context.

20

Chapter 4

Implementation

This chapter first describes development environments and development tools. Then,
this chapter describes an implementation of the context acquisition. It explains how in-
dividual context information are obtained in the Android environment using version 6 of
Android. This chapter also describes an implementation of the MyICPC mobile application.
It explains how the mobile application uses the OpenID Connect (OIDC) authentication
with Keycloak and how it communicates with the MyICPC server application. Finally, this
chapter describes an implementation of changes in the MyICPC server application like ex-
panding the domain model, adding REST API, securing the application with Keycloak and
uploading media files to Google Drive.

4.1 Development environments

This thesis uses several development environments. First, it uses Android Software Devel-
opment Kit (SDK) to develop the context acquisition and the MyICPC mobile application.
Then, it uses Java Platform, Standard Edition (Java SE) to expand the MyICPC server
application. Finally, there are several small environments like an authentication server, an
application server and a database.

4.1.1 Android SDK

The Android SDK[13] contains various tools that are used to develop mobile applications
on the Android platform. It contains components like SDK tools, SDK build tools and SDK
platform tools. SDK tools include development and debugging tools for Android. SDK
build tools are required for building Android applications. SDK platform tools include tools
that interface with the Android platform and that are required for Android application
development. The Android SDK is used through the Java programming language to develop
Android applications.

4.1.2 Java Platform, Standard Edition

Java[17] is both a programming language and a platform. The Java programming lan-
guage is a high-level and object-oriented language. Java SE is one of the Java programming

21

CHAPTER 4. IMPLEMENTATION

language platform. The other platform is for example Java Platform, Enterprise Edition.
Each platform consists of a Java Virtual Machine (JVM) and an API. JVM is a program
that runs Java applications. An API is a set of components that you can use to develop
Java applications. Java SE’s API provides the core functionality of the Java programming
language. The most known implementation of Java SE are Oracles’s Java Development Kit
(JDK) and OpenJDK.

4.1.3 Keycloak

Keycloak[18] is an open source Identity and Access Management solution. Keycloak uses
Single Sign On (SSO). SSO mean that the user authenticates with Keycloak rather than
individual applications and that the application do not have to deal with any login forms,
authenticating users and storing them because it is all provided by Keycloak. Keycloak
supports standard protocols like OIDC, OAuth 2.0 and Security Assertion Markup Language
(SAML) 2.0 and various other features.

4.1.4 WildFly

WildFly[19] is a lightweight, flexible and managed application server that runs appli-
cations written in the Java programming language. WildFly implements the latest Java
standards. WildFly can be run in two different modes called standalone mode and domain
mode. The standalone mode allows the application server to run in single JVM. The domain
mode allows the application server to run in multiple JVM, in other words in a cluster.

4.1.5 PostgreSQL

PostgreSQL[20] is an open source, object-relational database, structured query language
(SQL) database. PostgreSQL has a proven architecture, a reliability, a data integrity, a ro-
bust feature set and an extensibility. PostgreSQL successfully conforms most of the manda-
tory features of the SQL standard.

4.2 Development tools

Development tools are used by software developers to implement, test and debug their
software solutions that they are developing. The developers can develop software without
the development tools, but the process would consume significantly more time to achieve
the same results as with usage of the development tools. Development tools consist of an
integrated development environment (IDE), a build tool and a version control system. In
this thesis, there were used different development tools for the mobile applications and the
server application.

4.2.1 Integrated development environments

Android Studio[13] was used to develop the context acquisition and the MyICPC mobile
application on the Android platform. Android Studio is the official IDE for developing

22

4.3. THIRD-PARTY LIBRARIES

Android applications provided by Google. Android Studio is based on IntelliJ IDEA[21].
IntelliJ IDEA is the commercial IDE for developing applications in the Java programming
language developed by the company called JetBrains s.r.o. IntelliJ IDEA itself was used to
develop the MyICPC server application.

4.2.2 Apache Maven

Apache Maven[22] is a build tool as well as a software project management tool. Apache
Maven uses configuration file called pom.xml to describe project properties, dependencies
and build information. Apache Maven uses the pom.xml file to download these dependencies
from a central repository and to build project based on its properties. This thesis use it to
build the MyICPC server application.

4.2.3 Version control system

Version control systems are used by the developers to store changes of the source code
over time. Version control systems allows the developers to recall a specific version later.
Version control systems are not limited by the text information only and other types like
graphics or multimedia can be stored as a version as well. This thesis uses version control
system called Git and its web based repository called BitBucket.

4.3 Third-party libraries

This thesis uses several third-party libraries in both the MyICPC mobile application and
the MyICPC server application. These libraries are developed by some third party and are
used for a specific function like OIDC authentication, bootstrapping Java application and
others.

4.3.1 AppAuth for Android

AppAuth for Android[23] is a library (SDK in Android terminology) for communication
with OAuth 2.0 and OIDC provides. AppAuth for Android parses the communication with
authentication server into requests and responses and it also provides custom tabs to display
the login form. The MyICPC mobile application uses AppAuth for Android to communicate
and authenticate the user with Keycloak.

4.3.2 Spring framework

The Spring framework[24, 25] is used to build the enterprise or web applications in the
Java programming language. The Spring framework is used to bootstrap the MyICPC server
application.

The Spring core provides Inversion of Control container that makes the initialization
of classes easier by injecting correct dependencies when beans are created. The Spring
framework then consists of Spring Data module that is used to manage JPA entities and
access to the database. Next, the Spring framework contains of Spring MVC which contains

23

CHAPTER 4. IMPLEMENTATION

controllers for REST API and presentation layer. Finally, the Spring framework contains a
security module.

4.3.3 Others

The MyICPC mobile application also uses following third-party libraries to perform some
small tasks: Gson, Jsoup and Apache Commons. Gson is a Java library that is used to
convert JavaScript Object Notation (JSON) in HTTP requests and responses into Java
objects and vice versa. Jsoup is a Java library that is used to display HTML body of
MyICPC notifications as a plain text. From Apache Commons, there is used its Net module
to obtain network information like a range of IP address.

4.4 Context acquisition implementation

The context acquisition is implemented using Android on version 6. This section explains
an implementation of following contextual information on the Android platform: a date, a
location, an information about user’s device, a connected Wi-Fi network, available Wi-
Fi networks, devices in the network, a GSM signal strength, Bluetooth devices and user’s
identity.

The overall context acquisition is implemented as Android service by extending the
Service class. This service in its callback method uses components for collection individual
context information.

4.4.1 Date

Android applications are built in Java and thus the Android SDK contains JDK. The
easiest way to obtain a current date is to create a new instance of the java.util.Date
object. This object is by default created with current date.

4.4.2 Location

The Android SDK contains two methods how the application can obtain a location.
These methods are Location Services from the android.location package and the Google
Play services location API. Note that both methods require permissions to access a location
of the device.

Location Services from the android.location package is an older method. The main
component of this method is the LocationManager. This class is a system service and it
provides the API to determine a location. It supports following location providers: GPS
provider, network provide and passive provider that obtains location from other application.
This method is used via registering a listener.

Google Play services location API is a new method of obtaining a location. It basically
offers the same functionality of Location Services from the android.location package with
some minor implementation and naming changes. However, it is dependent on Google Play
services and its configuration.

24

4.4. CONTEXT ACQUISITION IMPLEMENTATION

The context acquisition application uses Location Services from the android.location
package because it fulfills requirement on the location acquisition and does not have any
dependencies. The context acquisition application implements LocationListener and reg-
isters it in LocationManager. It uses all three providers to obtain the location. The listener
only updated the location if the currently stored location is older than two minutes or if the
new location is more accurate. This implementation is shown in the listing 4.1.

public class Locat ionReso lver implements Loca t i onL i s t ene r {
private Locat ion l o c a t i o n ;

/∗ . . . ∗/

@Override
public void onLocationChanged (Locat ion l o c a t i o n) {

i f (l o c a t i o n != null) {
i f (this . l o c a t i o n == null) {

this . l o c a t i o n = l o c a t i o n ;
return ;

}
i f (Math . abs (l o c a t i o n . getTime () − this . l o c a t i o n . getTime ())

<= 120000) {
i f (l o c a t i o n . getAccuracy () > this . l o c a t i o n . getAccuracy ()) {

this . l o c a t i o n = l o c a t i o n ;
}

} else {
this . l o c a t i o n = l o c a t i o n ;

}
}

}

/∗ . . . ∗/
}

Listing 4.1: Implementation of the date acquisition.

4.4.3 Information about device

In the Androdi SDK, there is the android.os.Build class that contains information
about the device and the current build that are obtained from system properties. The context
acquisition application collects following information: an operating system, a version of the
operating system, a brand of the devices, a model of the device and a serial number of the
device.

4.4.4 Connected Wi-Fi network

The Android SDK contains a class called WifiManager. This class can be used to obtain
the list of configured networks, the currently active Wi-Fi network, results of access point
scans, etc. The context acquisition application uses this class to obtain information about

25

CHAPTER 4. IMPLEMENTATION

the connected Wi-Fi network. Note that this and all following network related information
require permissions to access network and Wi-Fi.

The context acquisition application uses following information: the basic service set
identifier (BSSID) of the current access point, a fine-grained network connectivity state,
the current frequency, the IP address, the current link speed, the received signal strength
indicator (RSSI) of the current 802.11 network in dBm and the service set identifier (SSID)
of the current 802.11 network.

4.4.5 Available Wi-Fi networks

As mentioned in the previous section, the WifiManager class can be used to get results of
access point scans. In other worlds, it can be used to get available Wi-Fi networks. This can
be done by starting scan using the WifiManager class and registering Android component
called a broadcast receiver to receive and process the results.

4.4.6 Devices in network

The Android SDK itself doesn’t contain any method to obtain a list of network devices.
However, Java itself has a few ways how to obtain a list of network devices. The options are
either to use ping command or to use a Java class called InetAddress.

Because Android is an operating system based on Linux, it contains a ping command in
its core. The ping command uses the Internet Control Message Protocol (ICMP) protocol’s
mandatory echo request datagram to elicit an ICMP echo response from a host or gateway.
Next, Java is able to get the operating system run-time and execute commands like ping in
it a get command result. This process is shown in the listing 4.2.

Runtime runtime = Runtime . getRuntime () ;
S t r ing command = Str ing . format ("/ system/bin /ping −q −n −w 1 −c 1 %s" ,

ipAddress) ;
Process p roce s s = runtime . exec (command) ;
int ex i tVa lue = proce s s . waitFor () ;
p roce s s . des t roy () ;

Listing 4.2: Checking if IP address is reachable using ping command.

Java itself can check if an IP address is reachable without using the ping command. Java
contains a class called InetAddress that represents an IP address. This class has a method
to check if the IP address that is represented by the object is reachable. This method also
requires a timeout in milliseconds. This process is shown in the listing 4.3.

The context acquisition application first uses the WifiManager class to get the network in-
formation and estimate available IP addresses range. Then, it tries to use the ping command
method as it is more reliable than the pure Java method. However, the ping command might
not be available on all Android devices. In such case, the context acquisition application
will use the pure Java method.

26

4.4. CONTEXT ACQUISITION IMPLEMENTATION

try {
InetAddress inetAddress = InetAddress . getByName(ipAddress) ;
i f (inetAddress . i sReachab le (1000)) {

/∗ IP address i s r eachab l e ∗/
} else {

/∗ IP address i sn ’ t r eachab l e ∗/
}

} catch (Exception e) {
e . pr intStackTrace () ;

}

Listing 4.3: Checking if IP address is reachable using pure Java.

The final stage of this process is to obtain a hardware address also known as a MAC
address. The context acquisition application is using the fact that Android is based on
Linux to obtain a hardware address. It is using program called Arp or more precisely, it uses
its cache directly. Arp manipulates the kernel’s ARP cache in various ways. The primary
options are clearing an address mapping entry and manually setting up one. This process is
shown in the listing 4.4.

public stat ic St r ing getHardwareAddress (S t r ing ipAddress) {
St r ing r e s u l t = " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 " ;
try {

St r ing regex = St r ing . format (
"^%s \\ s+0x1\\ s+0x2\\ s +([:0−9a−fA−F]+)\\ s+\\∗\\ s+\\w+$" ,
ipAddress . r ep l a c e (" . " , " \\ . ")

) ;
Pattern pattern = Pattern . compi le (regex) ;
BufferedReader br = new BufferedReader (

new Fi leReader ("/proc /net /arp")
) ;
S t r ing l i n e ;
while ((l i n e = br . readLine ()) != null) {

Matcher matcher = pattern . matcher (l i n e) ;
i f (matcher . matches ()) {

r e s u l t = matcher . group (1) ;
break ;

}
}
br . c l o s e () ;

} catch (IOException e) {
e . pr intStackTrace () ;

}
return r e s u l t ;

}

Listing 4.4: Obtaining of the hardware address.

27

CHAPTER 4. IMPLEMENTATION

Note that each of these methods requires one second to execute and it needs to be
executed for each potential IP address. Also, note that network operations like ping cannot
be run on the main thread and they need to be executed on a background thread for example
by using an Android component called AsyncTask.

4.4.7 GSM signal strength

The process of obtaining the GSM signal strength is similar to obtaining the location.
The Android SDK contains a class representing a system service called TelephonyManager.
A listener is registered to this service. The listener is used to update the GSM signal
strength when it is changed. The obtained value needs to be converted to dBm by: (2 ∗
mSignalStrength)− 113.

4.4.8 Bluetooth devices

The Android SDK contains a class BluetoothAdapter that can be used to start a discov-
ery for Bluetooth devices. To get results the context acquisition must register a broadcast
receiver to receive and process the results.

4.4.9 User identity

The context acquisition application uses as the user identity the information about the
user from the MyICPC server application. These pieces of information are obtain from REST
API developed in this thesis. These pieces of information consist of an identifier from ICPC
systems, a fist name, a last name, social media user names and a profile picture uniform
resource locator (URL).

4.5 Android application implementation

The MyICPC mobile application is implemented using Android on version 6. This section
describes an implementation of the application, how the application integrates the context
acquisition, how it uses OIDC authentication with Keycloak thought AppAuth library and
how it communicate with REST API of the MyICPC server application.

All Android applications are built on the concept of activities. An activity is implemented
by extending the Activity class from Android SDK and implementing its callback method.
The MyICPC mobile application implements following activities: the login activity, the main
activity containing the navigation drawer, the post detail activity, the new post activity,
the challenge detail activity, the new quest submission activity and the leader board detail
activity. Finally, each activity is registered in the application manifest file.

Every screen in the MyICPC mobile application is not implemented as an Android ac-
tivity, but some screens are implemented as a fragment. A fragment is another Android
component. It is a view component that can be embedded into an activity. The following
screens are implemented as a fragment embedded into the main activity: the list of chal-
lenges, the list of leader boards, the team leader board detail, the MyICPC timeline and

28

4.5. ANDROID APPLICATION IMPLEMENTATION

the Quest game timeline. The navigation among the fragments is done using the navigation
drawer.

4.5.1 Integration of context acquisition

The context acquisition application is implemented as a simple Android service. The
easiest way to integrate it with the MyICPC mobile application is to add the service to
the MyICPC mobile application and register it in the application manifest file. The ser-
vice is then started and ended when the MyICPC mobile application is started and ended
respectively.

4.5.2 OpenID Connect authentication with Keycloak

The OIDC authentication with Keycloak is realized through the AppAuth for Android
library. The AppAuth for Android library parses authorization requests and responses ac-
cording to the OIDC standard as well as it hadles a token refreshing. The library provides
its functionality through a service. This service needs to be provided with information about
Keycloak server like an authorization endpoint, a token endpoint, a client ID and a redirect
URL.

The authentication server where Keycloak is deployed might use Hypertext Transfer Pro-
tocol Secure (HTTPS). HTTPS is an extension of the Hypertext Transfer Protocol (HTTP)
where the communication protocol is encrypted by Transport Layer Security or by Secure
Sockets Layer. This is the case with production deployment of the authentication server
where Keycloak runs and thus the application requires to know the certificate from the
server where Keycloak is deployed.

In a traditional operating system like Windows or Linux, a certificate can be added
to Java Run-time Environment (JRE) keystore directly by using the keytool command.
However, there is no way how to access JRE keystore in the Android operating system. This
would also require that each user would do this method on his or her device. Such approach
is completely unusable for the Android environment.

The Adroid SDK or more precisely Java that a part of the Android SDK allows the
application to add certificated dynamically to the keystore at the run-time. This process is
shown in the listing 4.5.

4.5.3 Communication with MyICPC

The Android SDK uses the HttpURLConnection class from the Java programming lan-
guage to allow Android applications to communicate over HTTP. The MyICPC mobile
application implements communication with all endpoint of the MyICPC server application
using this class.

Note that this operation requires Internet permissions and if the MyICPC server appli-
cation is deployed on a server that uses HTTPS, it also requires to add the certificate to the
keystore as described in the previous section.

29

CHAPTER 4. IMPLEMENTATION

private stat ic SSLSocketFactory ge tSs lSocketFactory (Context context) {
SSLSocketFactory s s lSocke tFac to ry = null ;
try {

Ce r t i f i c a t eFa c t o r y c e r t i f i c a t e F a c t o r y = Ce r t i f i c a t eFa c t o r y
. g e t In s tance ("X.509 ") ;

InputStream inputStream = context . getResources ()
. openRawResource (R. raw . cmplayecsbayloredu) ;

C e r t i f i c a t e c e r t i f i c a t e = c e r t i f i c a t e F a c t o r y
. g e n e r a t eC e r t i f i c a t e (inputStream) ;

inputStream . c l o s e () ;

S t r ing type = KeyStore . getDefaultType () ;
KeyStore keyStore = KeyStore . g e t In s tance (type) ;
keyStore . load (null , null) ;
keyStore . s e tC e r t i f i c a t eEn t r y ("cmplay" , c e r t i f i c a t e) ;

S t r ing a lgor i thm = TrustManagerFactory . getDefau l tAlgor i thm () ;
TrustManagerFactory trustManagerFactory = TrustManagerFactory

. g e t In s tance (a lgor i thm) ;
trustManagerFactory . i n i t (keyStore) ;

SSLContext s s lContext = SSLContext . g e t In s tance ("TLS") ;
s s lContext . i n i t (null , trustManagerFactory . getTrustManagers () ,

null) ;
s s l Socke tFac to ry = ss lContext . getSocketFactory () ;

} catch (Ce r t i f i c a t eExc ep t i on | IOException | KeyStoreException
| NoSuchAlgorithmException | KeyManagementException e) {

e . pr intStackTrace () ;
}
return s s lSocke tFac to ry ;

}

Listing 4.5: Dynamically adding the certificate to keystore.

4.6 Server applications implementation

The MyICPC server application is already build using the Spring Framework and the
Java programming language. The MyICPC server application is extended with expanding
the domain model, adding REST API, securing the application with Keycloak and uploading
media files to Google Drive.

The domain model is extended with the acquired context and the additional configuration
of the REST API. It is implemented by JPA entities. For each JPA entity there is a repository
generated by the Spring Framework and a service to work with it.

4.6.1 Endpoints

The MyICPC server application implements endpoints according to the table 3.1 using
rest services from the Spring framework. The following endpoints were implemented: the user

30

4.6. SERVER APPLICATIONS IMPLEMENTATION

endpoint, the MyICPC timeline endpoint, the Quest game timeline endpoint, the challenges
endpoint, the leader boards endpoint and the team leader board endpoint.

4.6.2 Securing application with Keycloak

REST API that was written only by using pure Java can be secured by implementing a
HTTP filter that would filter the HTTP requests for example based on the Authorization
header. Even though the Spring framework is for Java application those filter does not work
well with the life cycle of the Spring application.

The Spring framework contains a security module. However, the security module is
already used in the current version of the MyICPC server application. This situation makes
is usage difficult because the already existing security rules does not work with the new
security rules well.

Keycloak provides several ways to integrate it with applications. First, Keycloak provides
several adapters to use with Java applications, the WildFly server or the Spring framework.
The only suitable adapter is the Spring framework adapter, because the production version
of the WildFly server can not be modified. However, it does not work well with already
existing security rules as mentioned above.

public stat ic Pr in c i pa l g e tP r i n c i p a l (S t r ing accessToken ,
Ap iSet t ings ap i S e t t i n g s) {

try {
St r ing c redSt r = St r ing . format ("%s :%s " , ap i S e t t i n g s . g e tC l i en t Id () ,

a p i S e t t i n g s . g e tC l i e n tS e c r e t ()) ;
byte [] credBytes = credSt r . getBytes () ;
byte [] encCredBytes = Base64 . encode (credBytes) ;
S t r ing encCredStr = new St r ing (encCredBytes) ;
S t r ing bas icAuthStr = St r ing . format ("Bas ic %s " , encCredStr) ;

HttpHeaders headers = new HttpHeaders () ;
headers . s e t ("Content−Type" , " app l i c a t i o n /x−www−form−ur lencoded ") ;
headers . s e t (" Author i zat ion " , bas icAuthStr) ;

S t r ing body = Str ing . format (" token=%s" , accessToken) ;

RestTemplate restTemplate = new RestTemplate () ;
HttpEntity<Str ing> reqEnt i ty = new HttpEntity<>(body , headers) ;
ResponseEntity<Pr inc ipa l > re sEnt i ty = restTemplate . exchange (

ap i S e t t i n g s . ge t In t ro spec t i onEndpo int () , HttpMethod .POST,
reqEntity , P r i n c i pa l . class

) ;
return r e sEnt i ty . getBody () ;

} catch (Exception e) {
return null ;

}
}

Listing 4.6: Obtaining user’s principal from Keycloak introspection endpoint.

31

CHAPTER 4. IMPLEMENTATION

public class AuthInterceptor extends Handler InterceptorAdapter {
/∗ . . . ∗/
@Override
public boolean preHandle (HttpServ letRequest req ,

HttpServletResponse res , Object handler) {
St r ing bTokenStr = req . getHeader (" Author i zat ion ") ;
i f (bTokenStr != null) {

St r ing [] bTokenArr = bTokenStr . s p l i t ("\\ s+") ;
i f (bTokenArr . l ength == 2 && bTokenArr [0] . equa l s ("Bearer ")) {

Contest con t e s t = getContest (req . getRequestURI ()) ;
i f (con t e s t == null) {

// Unknown contes t , re turn 404 − Not Found
r e s . s e tS ta tu s (HttpStatus .NOT_FOUND. value ()) ;
return fa l se ;

}

Ap iSet t ings as = asr . f indByContest (con t e s t) ;
i f (as == null | | ! as . i sEnabled ()) {

// API i s d i s a b l e d , re turn 404 − Not Found
r e s . s e tS ta tu s (HttpStatus .NOT_FOUND. value ()) ;
return fa l se ;

}

P r i n c i pa l p r i n c i p a l = Pr i n c i pa l
. g e tP r i n c i p a l (bTokenArr [1] , as) ;

i f (p r i n c i p a l != null && pr i n c i p a l . i sAc t i v e ()) {
Conte s tPar t i c ipant cp = cpr

. f indByContestAndExternalId (contest , p r i n c i p a l . getUid ()) ;
i f (cp != null) {

// Val id token and user i s in con t e s t
return true ;

} else {
// Val id token , but user i sn ’ t in contes t ,
// re turn 403 − Forbidden
r e s . s e tS ta tu s (HttpStatus .FORBIDDEN. value ()) ;
return fa l se ;

}
}

}
}
// In v a l i d or exp i r ed token , re turn 401 − Unauthorized
r e s . s e tS ta tu s (HttpStatus .UNAUTHORIZED. value ()) ;
return fa l se ;

}
/∗ . . . ∗/

}

Listing 4.7: Implementation of the REST API security.

Another option that Keycloak provides is to use its REST API directly. It provides
endpoints according to the OIDC specification like the token endpoint, the authorization
endpoint end the introspection endpoint. The introspection endpoint is used to validate a

32

4.6. SERVER APPLICATIONS IMPLEMENTATION

client tokens from example obtained from the Authorization header of the HTTP request.
The security of the REST API in the MyICPC server application is implemented in a

following way. First, an interceptor is created to filter HTTP request by the token in the
Authorization header. An interceptor is a Spring framework component that works similarly
as HTTP filter except it operates within the life cycle of a Spring framework application.
The interceptor expects the Authorization header to contain bearer token. The interceptor
validates it against Keycloak and tries to get principal from Keycloak. The user request is
accepted or denied based on the result from Keycloak introspection endpoint. This process
is shown in the listing 4.7.

A principal is an information about an entity that is authenticated by Keycloak. This
information is obtained from Keycloak introspection endpoint in exchange for a valid token.
The endpoint is called using a REST client build in the Spring framework and the request
follows the OIDC specification. This process is shown in the listing 4.6.

4.6.3 Uploading images and videos to Google Drive

Google provides a Java library that allows the application to upload files to Google Drive
service. First, the Google service account needs to be set up in Google APIs. The Google
service account contains credentials like a service account ID (e-mail), a service account
private key, a service account private key ID, a token server encoded URL and a service
account project ID. An ID of a Goodle Drive folder where the files will be stored is also
required. Then, an image or a video is uploaded by using the library and an ID is returned
that is stored in the database.

33

CHAPTER 4. IMPLEMENTATION

34

Chapter 5

Testing

In this chapter there will be presented how the MyICPC server application and the
MyICPC server application were tested. The functionality of the persistence layer and
the service layer was tested using unit tests. The overall MyICPC server application was
also stress tested using tool called JMeter. A small usability test of the MyICPC mobile
application was performed using a method called cognitive walkthrough.

5.1 Unit testing

The unit testing aims to split an application into small pieces (units) and test them if
they behave correctly according to a specification. This thesis uses a library called JUnit to
test the persistence layer and the service layer of the MyICPC server application. In those
layers, every repository or service already fits a description of a unit and thus a test was
written for each unit.

5.1.1 JUnit

JUnit[26] is a Java library for unit testing. It consists of a platform serving as a founda-
tion for launching testing and a test engine. It supports annotations, pasteurized tests, an
exception testing and a timeout support.

5.2 Stress testing

Stress testing checks upper limits of applications under heavy loads. Such testing allows
to find potential bottleneck in applications. The MyICPC server application has the biggest
load during a contest event. The MyICPC server application is stress tested using a tool
called JMeter.

5.2.1 JMeter

JMeter[27] is an open source tool designed to load test functional behavior and measure
performance. It supports several applications and protocols, importantly HTTP, HTTPS
and others.

35

CHAPTER 5. TESTING

5.3 Usability testing

Usability testing is a technique verifying that a product is usable. There are qualitative
and quantitative methods and a testing can be done with or without users. This thesis
perform a small usability test in a form of a cognitive walkthrough.

5.3.1 Cognitive walkthrough

Cognitive walkthrough is a qualitative method of usability testing without user. Cogni-
tive walkthrough is used to test a user interface with exactly given scenarios. It tests if the
user is able to complete a scenario and how the user deviates from it. At the beginning a
task-definition question is asked:

• What does the user want to achieve?

After a task-definition question there are three following questions that are asked in each
following step of the scenario:

• Will the correct actions be evident to the users?

• Will the users connect the label of an action with their goals?

• Will the user receive a sensible feedback?

A testing without user requires good knowledge of a user and it is suitable only for non
exotic user interfaces. A testing without user is cheap and easy to set up, however, it does
not provide an observation of real users. This thesis uses a testing without user because the
application is based on usual concept of a social media application and the method is fast
and cheap. I, the creator of this thesis, also participate in events where the application is
used and thus I have a very good knowledge of actual user.

5.3.2 User description

It is required that all users use the Android operating system. The main group of users
consists of university students with computer science specialization. They are expected to
have at least a basic knowledge of using mobile phones and social media applications. They
might have an experience with the competition from previous years. Next user group forms
coaches who are usually teacher of the students. Last users are members of ICPC.

5.3.3 Tested use cases

The cognitive walkthrough is performed with following use cases of the MyICPC mobile
application:

• Sign in - The user will first start the application on his or her mobile phone. The user
will click on the sign in button that shows the user a form. The user will fill in the
form and confirms it. The user will end up on the timeline screen.

36

5.3. USABILITY TESTING

• Post submission - The user start after the sign in. The user will click a button with
plus symbol. The user will fill in a form with a given post and submits it. The user
will end up on the timeline screen.

• Challenge submission - The user start after the sign in. The user will use the
navigation drawer to navigate to the list of challenges. The user will select a given
challenge and make a submission. The user will end up on the timeline screen.

• Displaying the leader board - The user start after the sign in. The user will use the
navigation drawer to navigate to the list of leader boards. Then, the user will select a
give leader board with his given role. The user will end up by finding himself or herself
in the leader board.

37

CHAPTER 5. TESTING

38

Chapter 6

Evaluation

This chapter describes how the requirements were fulfilled and what issues were found
during the evaluation of the context acquisition, the MyICPC mobile application and the
MyICPC sever application. Then, this section presents results of the unit testing, the stress
testing and the usability testing. Finally, this section present resulting application and
describes their deployment.

6.1 Requirement fulfillment

First, the context acquisition application was created using Android 6 as a standalone
application as well as a component that was later integrated with the MyICPC mobile appli-
cation. The context acquisition application collects a date, a location, a device information,
connected network, available Wi-Fi networks, devices in a network, a signal strength, Blue-
tooth devices and a user identity. Then, the MyICPC mobile application was created using
Android 6. It provided the functionality of the MyICPC timeline and the Quest game.
Finally, the REST API was added into the MyICPC server application to allow the commu-
nication with the mobile application.

6.1.1 Heavy load of network device discovery

First issue that was found during evaluation is a heavy load of the network device dis-
covery. Every potential IP address must be checked if there is a device. Every potential IP
address is pinged with minimal timeout of one second. If a network consists of large amount
of IP addresses this process can take several minutes. A solution of this problem might be
a parallelization.

Android supports multi-threaded applications. However, even if the context acquisition is
run in several threads, the load is still great and thus Android operating system will suspend
even the thread that handles a user interface rendering. This results in lags in the user
interface. It solution is thus suitable only for the standalone context acquisition application.
Note, that there is a great amount of various Android devices with different processor units
and each of them is able to run different amount of threads.

39

CHAPTER 6. EVALUATION

6.1.2 Quality of uploaded video

Second issue that was found during evaluation is a quality or a length of uploaded videos.
The current design of the REST API expect JSON messages that contain serialized photo or
video. This method allows to send a media file of a size approximately 5MB. This is suitable
for sending photos, but in a case of sending videos it results in sending a low quality video
of sufficient length or a high quality video of extremely short length.

Android in its core allows to capture a low quality video or a video of a maximal quality
that a device can capture. One solution is to tweak this video control to get a video of
reasonable quality. Second solution is to redesign the REST API to receive media files as
multipart message and thus allowing it to receive larger files.

6.1.3 Downloading media files from storage

Last issue that was found during evaluation is a downloading media files from the Google
Drive storage. The Google Drive is inaccessible from China due to the Great Firewall of
China. An upload of files works fine because all files are first uploaded to the MyICPC server
application that is not blocked by the Great Firewall of China and then the files are sent to
Google Drive from MyICPC. MyICPC serves as a proxy server in this case. However, the
files are downloaded directly from Google Drive.

First solution to this problem might be to set up a proxy server for downloading files
that would work in similar way as MyICPC works during file uploading. Second solution is
to acquire different storage. This would require small modification of the code. There is a
Java interface that is implemented by the class that handles an upload to Google Drive. A
new class needs to be added that implements the interface in a similar way for a new storage
in this case.

6.2 Testing results

The testing of both the server application and the mobile application described in previ-
ous chapter was performed and this chapter summarizes the results of the unit testing, the
stress testing and the usability testing.

6.2.1 Unit testing results

The unit tests for the persistence layer and the service layer of the MyICPC server
application were performed automatically before the compilation. All tests have successfully
passed and the application was successfully build.

6.2.2 Stress testing results

The stress testing was performed using JMeter as described in the previous chapter. The
testing was done using MyICPC running on a single server. There were 1000 HTTP requests
send to MyICPC with maximal response time approximately 4.4 seconds under heavy load.
The production deployment is usually run with multiple servers and a load balancer and
response time in such environment should be smaller under heavy load.

40

6.3. DEPLOYMENT

Figure 6.1: Response time graph.

6.2.3 Usability testing results

The usability test in form of cognitive walkthrough of the MyICPC mobile application
was performed for all use cases according to the previous chapter. The table 6.1 contains all
discovered issues. Each issue has a description, a priority and a proposed fix if such exists.
Priorities are high for issues that break the functionally, medium for issues that complicate
the process or make it difficult, low for small and cosmetic issues.

Description Priority Proposed solution
Challenge submission is accessible by
too many clicks.

Medium Merge challenge detail and submis-
sion.

Almost duplicate screens for two
types of submission.

Medium Merge timeline and quest submis-
sions.

Leader board details are too small Low Redesign leader boards.

Table 6.1: Results of the usability testing.

6.3 Deployment

The new version of MyICPC and the MyICPC mobile application were supposed to be
deployed during this year World Finals. However, due to technical issues caused by the Great
Firewall of China, it was rescheduled to the regional competitions later this year. Thus, the
deployment was only in testing environments.

41

CHAPTER 6. EVALUATION

6.3.1 Collected context

The context acquisition application obtains the context during every submission. The
context is then stored in the database for later usage in the further research of the context-
aware authentication using Wi-Fi enabled IoT devices. An example of the acquired context
is shown in the appendix C.

6.3.2 Android application

The mobile application is replacing need for using Twitter in order to participate in the
Quest game or simple to share contestant’s experience. The resulting application is shown
in the figure 6.2.

Figure 6.2: MyICPC mobile application.

6.3.3 Server application

The majority of changes in the MyICPC server application were additions and thus
amount of work in order to update to the new version is minimal. The new version is also
backward compatible with previous version. The deployment guide of the modified version
of MyICPC is in the appendix D.

42

Chapter 7

Conclusion

This chapter summarizes the work that was done during making of this thesis and the
requirement fulfillment. This chapter also describes several possibilities of the future work
that can be done based on results of this thesis.

7.1 Summary

The first goal of this thesis was to implement a mobile application that would acquire
the contextual information like a date, a location, network devices and others to support a
research of context aware authentication using Wi-Fi enabled IoT devices. The second goal
of this thesis was to take this application and integrate it with some application from real
environment in case of this thesis with MyICPC that is used during the ACM International
Collegiate Programming Contest for secondary activities of the contest. It would also require
extending a current version of MyICPC with REST API.

This thesis presented the design and the implementation of the solution in a form of the
context acquisition application, the MyICPC mobile application and extension of the current
version of MyICPC. The solution was tested and it successfully fulfilled the requirements. It
acquires the context, it allows contestants to post to the MyICPC timeline and the Quest
game and it is easy to upgrade from previous version of MyICPC to the new version created
in this thesis. The solution is ready for the deployment during regional contest later this
year.

7.2 Future work

Even though the context acquisition application is complete at the moment the research
of context aware authentication using Wi-Fi enabled IoT devices is still continuing. The
application might need to adapt to the direction of research for example with a new type of
contextual information that will need to be acquired. There is also possibility of performance
improvements especially in the acquisition of the network devices.

The goal of this thesis was to implement the timeline module and the Quest game module
into the mobile application. However, MyICPC contains other modules like score board,

43

CHAPTER 7. CONCLUSION

schedule or gallery. In the future work, there is possibility to include these modules in the
mobile application too. This thesis was focused on the implementation of the functionality
and even though the design guidelines were fulfilled the future work might be focused on
look and feel of the application to satisfy the user.

44

Bibliography

[1] M. Trnka, M. Tomasek, and T. Cerny, “Context-aware security using internet of things
devices,” in International Conference on Information Science and Applications, pp. 706–
713, Springer, 2017.

[2] M. Trnka, F. Rysavy, T. Cerny, and N. Stickney, “Using wi-fi enabled internet of things
devices for context-aware authentication,” 2018.

[3] “The acm-icpc international collegiate programming contest.” https://icpc.baylor.
edu.

[4] R. Smetana, “Next generation of second-screen, realtime application myicpc,” 2016.

[5] “Great firewall of china - comparitech.” https://www.comparitech.com/
privacy-security-tools/blockedinchina/.

[6] A. K. Dey, “Understanding and using context,” Personal and ubiquitous computing,
vol. 5, no. 1, pp. 4–7, 2001.

[7] R. Ausanka-Crues, “Methods for access control: advances and limitations,” Harvey Mudd
College, vol. 301, p. 20, 2001.

[8] M. Trnka and T. Cerny, “On security level usage in context-aware role-based access
control,” in Proceedings of the 31st Annual ACM Symposium on Applied Computing,
pp. 1192–1195, ACM, 2016.

[9] M. Trnka and T. Cerny, “Authentication and authorization rules sharing for internet of
things,” Software Networking, vol. 2017, no. 1, pp. 35–52, 2017.

[10] C. Shi, J. Liu, H. Liu, and Y. Chen, “Smart user authentication through actuation of
daily activities leveraging wifi-enabled iot,” in Proceedings of the 18th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing, p. 5, ACM, 2017.

[11] I. Agadakos, P. Hallgren, D. Damopoulos, A. Sabelfeld, and G. Portokalidis, “Location-
enhanced authentication using the iot: because you cannot be in two places at once,” in
Proceedings of the 32nd Annual Conference on Computer Security Applications, pp. 251–
264, ACM, 2016.

[12] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun, “Smartphones
as practical and secure location verification tokens for payments.,” in NDSS, 2014.

45

https://icpc.baylor.edu
https://icpc.baylor.edu
https://www.comparitech.com/privacy-security-tools/blockedinchina/
https://www.comparitech.com/privacy-security-tools/blockedinchina/

BIBLIOGRAPHY

[13] “Android developers.” https://developer.android.com.

[14] “Apple developer.” https://developer.apple.com.

[15] T. Cerny and M. Donahoo, “Survey on second screen systems,” in IT Convergence and
Security (ICITCS), 2016 6th International Conference on, pp. 1–5, IEEE, 2016.

[16] “Google awareness api.” https://developers.google.com/awareness.

[17] “Java se at a glance.” http://www.oracle.com/technetwork/java/javase/overview/
index.html.

[18] “Keycloak.” https://www.keycloak.org.

[19] “Wildfly.” http://wildfly.org.

[20] “Postgresql: The world’s most advanced open source database.” https://www.
postgresql.org.

[21] “Jetbrains: Developer tools for professionals and teams.” https://www.jetbrains.com.

[22] “Apache maven project.” https://maven.apache.org.

[23] “Appauth-android: Android client sdk for communicating with oauth 2.0 and openid
connect providers.” https://github.com/openid/AppAuth-Android.

[24] “Spring framework 5.0.” https://spring.io.

[25] C. Walls and R. Breidenbach, Spring in action. Dreamtech Press, 2005.

[26] “Junit 5.” https://junit.org/junit5.

[27] “Apache jmeter.” https://jmeter.apache.org/.

46

https://developer.android.com
https://developer.apple.com
https://developers.google.com/awareness
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.keycloak.org
http://wildfly.org
https://www.postgresql.org
https://www.postgresql.org
https://www.jetbrains.com
https://maven.apache.org
https://github.com/openid/AppAuth-Android
https://spring.io
https://junit.org/junit5
https://jmeter.apache.org/

Appendix A

Nomenclature

ACM Association for Computing Machinery

ACM-ICPC ACM International Collegiate Programming Contest

API Application programming interface

BSSID Basic service set identifier

CA Context awareness

CAS Context-aware security

CSI Channel state information

GSM Global System for Mobile communications

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

IDE Integrated development environment

IoT Internet of Things

Java SE Java Platform, Standard Edition

JDK Java Development Kit

JPA Java Persistence API

JRE Java Run-time Environment

JSON JavaScript Object Notation

JSP Java Server Pages

JVM Java Virtual Machine

47

APPENDIX A. NOMENCLATURE

OIDC OpenID Connect

REST Representational State Transfer

RSSI Received signal strength indicator

SAML Security Assertion Markup Language

SDK Software Development Kit

SQL Structured Query Language

SSID Service Set Identifier

SSO Single Sign On

TEEs Trusted execution environments

URL Uniform resource locator

VPN Virtual private network

48

Appendix B

Content of included CD

|-- context-acquisition-app
| |-- src
| |-- build
|
|-- myicpc-android-app
| |-- src
| |-- build
|
|-- myicpc-2.0
| |-- src
| |-- build
|
|-- rysavfi1-thesis-2018.pdf
|-- rysavfi1-thesis-2018.zip

Context Acquisition App
Source code
Build

MyICPC Android App
Source code
Build

MyICPC 2.0 with API for Android App
Source code
Build

This thesis in PDF
Source code of this thesis

49

APPENDIX B. CONTENT OF INCLUDED CD

50

Appendix C

Example of acquired context

The following listing contains an example of an acquired context. The acquired context
does not contain a user identity as the context was acquired by the standalone context
acquisition application that does not have any user identity provider.

{
" ava i l a b l eWi f i s " : [

{
" bs s id " : " c8 : 3 a : 3 5 : 1 0 : 8 8 : c8 " ,
" c a p a b i l i t i e s " : " [WPA−PSK−CCMP] [ESS] " ,
" centerFreq0 " : 2452 ,
" centerFreq1 " : 0 ,
" channelWidth " : "CHANNEL_WIDTH_40MHZ" ,
" f requency " : 2472 ,
" l e v e l " : −37,
" s s i d " : "Tenda_1088C8" ,
" timestamp " : 1122619758615

}
] ,
" b luetoothDev ices " : [] ,
" connectedWif i " : {

" bs s id " : " c8 : 3 a : 3 5 : 1 0 : 8 8 : c8 " ,
" f requency " : 2472 ,
" ipAddress " : "192 . 168 . 0 . 100" ,
" l inkSpeed " : 72 ,
" r s s i " : −40,
" s s i d " : "\"Tenda_1088C8\"" ,
" s t a t e " : "COMPLETED"

} ,
" dev i ce " : {

"deviceBrand " : "HONOR" ,
"deviceModel " : "FRD−L09" ,
" operat ingSystem " : "Android " ,
" s e r i a l " : "0000000000000000" ,
" ve r s i on " : "6 .0"

} ,
" gsmSignalStrength " : −113,
" l o c a t i o n " : { " l a t i t u d e " : 0 , " l ong i tude " : 0 , " timestamp " : 0 } ,
"network " : {

"gateway " : "192 . 168 . 0 . 1 " ,
" ipAddress " : "192 . 168 . 0 . 100" ,
"macAddress " : "B8 : 0 8 :D7: 3A:AE:46" ,
"netmask " : "255 . 255 . 255 . 0" ,
" networkDevices " : [

{ " ipAddress " : "192 . 168 . 0 . 1 " , "macAddress " : " c8 : 3 a : 3 5 : 1 0 : 8 8 : c8" }
] ,
" scanProgress " : 0 .03543307086614173 ,
" scanStar t " : 1527003220356

} ,
" prov ider " : "Context Acqu i s i t i on App 1 .0" , " timestamp " : 1527003229593

}

Listing C.1: Example of the acquired context.

51

APPENDIX C. EXAMPLE OF ACQUIRED CONTEXT

52

Appendix D

Deployment guide

MyICPC 2.0 with API for Android App

This version of MyICPC 2.0 is extended by API for Android App. The API is used by
MyICPC Android App. The API uses CM5 Keycloak for authentication. The API provides
functionality of Quest module. The API provides lists of quest notifications, challenges,
leaderboards and their details. The API also allows to participate in challenges directly
instead of using Twitter.

Installation

1. Follow MyICPC documentation: https://icpc.baylor.edu/xwiki/wiki/icpcdev/
view/MyICPC2

2. Populate database also with apiSchema.sql.

3. Configure Google API

• Open https://console.developers.google.com
– Create new project, e.g. World Finals 2018
– Enable Google Drive API
– Create credentials and choose service account key

∗ Create service account, e.g. Service Account #01, with role Project -
Editor.

∗ Select JSON key type
– Store downloaded JSON file and note its location

• Open https://drive.google.com
– Create folder to store photos and videos, e.g. World Finals 2018, and note

its ID (you can find it in URL)
– Share the folder with the service account
– Share the folder, choose public on web

4. Configure API per contest, see the listing D.1

53

https://icpc.baylor.edu/xwiki/wiki/icpcdev/view/MyICPC2
https://icpc.baylor.edu/xwiki/wiki/icpcdev/view/MyICPC2
https://console.developers.google.com
https://drive.google.com

APPENDIX D. DEPLOYMENT GUIDE

INSERT INTO a p i s e t t i n g s VALUES(
nextva l (’ ap iSett ings_id_seq ’) ,
true ,
’ ht tps : / / . . . / auth/ realms /cm5/ pro to co l /openid−connect / token/ i n t r o s p e c t ’ ,
’ cm5−backend ’ ,
’ 37 ab5f1d−a3ca−4f f 2−adc4−b3c41e1d848d ’ ,
’ s e r v i c e−account−01@world−f i n a l s −2018−199920. iam . g s e rv i c ea c count . com ’ ,
’ . . . ’ ,
’ 5430 c5bc00a1e84c84f0ca093548626f52bef56b ’ ,
’ https : // accounts . goog l e . com/o/oauth2/ token ’ ,
’ world−f i n a l s −2018−199920 ’ ,
’ 15fP2oLlmyholgcMw3j_KdHEqzyNibbHo ’ ,
1

) ;

Listing D.1: Example of API configuration.

Endpoints

All http requests require Authorization header with "Bearer ${accessToken}". All end-
points return 401 if user isn’t authenticated, 403 if user if authenticated but isn’t in My-
ICPC, 404 if contest is not found or API is disabled. URL of all endpoints is prefixed with
api/{contestCode} where contestCode is an identifier of a contest.

Endpoint Method Description
user GET Response 200.
timeline GET Response 200. Optional headers X-

Offset and X-Count, default values
0 and 30.

timeline/count GET Response 200.
timeline POST Response 201, 400.
quest/whats-happening-now GET Response 200.
quest/challenges GET Response 200.
quest/challenges/hashtagSuffix GET Response 200.
quest/challenges/hashtagSuffix
/accepted-submission

GET Response 200.

quest/challenges/hashtagSuffix
/rejected-submission

GET Response 200.

quest/challenges/hashtagSuffix
/pending-submission

GET Response 200.

quest/leaderboards GET Response 200.
quest/leaderboards/urlCode GET Response 200.
quest/team-leaderboard GET Response 200.

Table D.1: Overview of all REST API endpoints.

54

Changelog

• New things

– Add myicpc-api-android module

– Add myicpc-service-context module

– In myicpc-model:

∗ Add API settings model
∗ Add context models

– In myicpc-persistence:

∗ Add API settings repository
∗ Add context repositories
∗ Add DB create script apiSchema.sql

– In myicpc-webapp:

∗ Add com.myicpc.tags.notification.MobileAppTile

• Modifications

– In myicpc-parent:

∗ Add new modules and their versions to pom.xml
∗ Add this readme

– In myicpc-webapp:

∗ Add new modules to pom.xml in order to compile them to myicpc.war
∗ Add com.myicpc.config.ApiConfig to web.xml
∗ Set Redis address to redis://127.0.0.1:6379 in web.xml
∗ Update com.myicpc.tags.notification.NotificationTag to work with
MOBILE_APP and com.myicpc.tags.notification.MobileAppTile

– In myicpc-model:

∗ Add MOBILE_APP to com.myicpc.enums.NotificationType

– In myicpc-persistence:

∗ Add method findByContestAndContestParticipantExternalId to
com.myicpc.repository.quest.QuestParticipantRepository

∗ Add method findByContestAndExternalId to
com.myicpc.repository.teamInfo.ContestParticipantRepository

∗ Fix problems with scoreboardmodule_05:12:2017.sql

– In myicpc-service:

∗ Add method addMobileApp to
com.myicpc.service.utils.lists.NotificationList

∗ Add MOBILE_APP to TIMELINE_TYPES in
com.myicpc.service.timeline.TimelineService

– In myicpc-service-quest:

55

APPENDIX D. DEPLOYMENT GUIDE

∗ Add MOBILE_APP to QUEST_TIMELINE_TYPES in
com.myicpc.service.quest.QuestService

∗ Add MOBILE_APP switch cases to
com.myicpc.service.quest.QuestSubmissionService

– In myicpc-service-social:

∗ Add MOBILE_APP to GALLERY_TYPES in
com.myicpc.social.service.GalleryService

Notes

• If you want participant to submit using this API, make sure that he has setup CM5
person ID properly. Also it would be nice if profile picture URL was imported.

• Web application does not have user interface for API settings, it need some modifica-
tions.

56

	Introduction
	Usage of acquired context in research
	International Collegiate Programming Contest
	MyICPC
	The Great Firewall of China
	Proposed solution
	Structure of thesis

	Analysis
	Context
	Context awareness
	Context-aware security

	Wi-Fi channel state information
	Trusted execution environments
	Mobile application
	Platforms analysis

	MyICPC
	Timeline
	Quest

	Related work
	Requirements

	Design
	Android design guidelines
	Context acquisition service
	MyICPC activities
	Navigation

	Server application architecture
	Domain model
	REST API endpoints
	Changes in MyICPC

	Implementation
	Development environments
	Android SDK
	Java Platform, Standard Edition
	Keycloak
	WildFly
	PostgreSQL

	Development tools
	Integrated development environments
	Apache Maven
	Version control system

	Third-party libraries
	AppAuth for Android
	Spring framework
	Others

	Context acquisition implementation
	Date
	Location
	Information about device
	Connected Wi-Fi network
	Available Wi-Fi networks
	Devices in network
	GSM signal strength
	Bluetooth devices
	User identity

	Android application implementation
	Integration of context acquisition
	OpenID Connect authentication with Keycloak
	Communication with MyICPC

	Server applications implementation
	Endpoints
	Securing application with Keycloak
	Uploading images and videos to Google Drive

	Testing
	Unit testing
	JUnit

	Stress testing
	JMeter

	Usability testing
	Cognitive walkthrough
	User description
	Tested use cases

	Evaluation
	Requirement fulfillment
	Heavy load of network device discovery
	Quality of uploaded video
	Downloading media files from storage

	Testing results
	Unit testing results
	Stress testing results
	Usability testing results

	Deployment
	Collected context
	Android application
	Server application

	Conclusion
	Summary
	Future work

	Bibliography
	Nomenclature
	Content of included CD
	Example of acquired context
	Deployment guide

