
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Master’s thesis

Deep Reinforcement Learning in Complex

Structured Environments

Bc. Adam Volný

Supervisor: Mgr. Viliam Lisý, MSc., Ph.D.

25th May 2018

iii

iv

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work for non-profit purposes only, in any way that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on 25th May 2018 .

Acknowledgements

I would like to kindly thank my family and close friends for their tolerance
and support during writing this thesis and for standing by me during the
difficult times in my life. I would like to thank my alma mater, Czech Tech-
nical University and Faculty of Electrical Engineering for providing me with
exceptional education. And last but not least, I would like to thank my super-
visor, for all the time he invested in me, for giving me the direction I so much
needed and for the many thought provoking conversations that have enriched
my worldview for years to come. I truly am deeply grateful to all of you.

Czech Technical University in Prague
Faculty of Electrical Engineering
c© 2018 Adam Volný. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Volný, Adam. Deep Reinforcement Learning in Complex Structured Environ-
ments. Master’s thesis. Czech Technical University in Prague, Faculty of
Electrical Engineering, 2018.

Abstrakt

Vytvářeńı obecných agent̊u schopných naučit se užitečné rozhodovaćı strate-
gie v prostřed́ıch reálného světa je obt́ıžný úkol. Posilované učeńı je oblast,
která se snaž́ı tento problém vyřešit. Poskytuje obecný, rigorózně definovaný
framework, ve kterém lze navrhovat algoritmy pro řešeńı problémů. Kom-
plexńı prostřed́ı reálného světa mı́vaj́ı strukturu, které lze využ́ıt. Lidé jsou
v tomto ohledu vyj́ımečně schopńı. Protože r̊uzná prostřed́ı mı́vaj́ı r̊uznou
strukturu, vytvářeńı agent̊u schopných tuto strukturu objevit a využ́ıt j́ı, bez
předchoźıch znalost́ı o daném prostřed́ı, je stále nevyřešený problém posilo-
vaného učeńı. Hierarchické posilované učeńı je podobor, který se zabývá
nalezeńım a využit́ım hierarchické struktury prostřed́ı. V této práci implemen-
tujeme a studujeme dvě metody hierarchického posilovaného učeńı, Strategic
Attentive Writer a FeUdal Networks. Představ́ıme modifikaci modelu FeU-
dal Networks a ukážeme, že funguje lépe, než p̊uvodńı model v komplexńım
prostřed́ı, navrženém na mı́ru pro testováńı hierarchických agent̊u.

Kĺıčová slova Hierarchické posilované učeńı, hloubkové učeńı, umělé neu-
ronové śıtě, makro akce, options.

ix

x

Abstract

Creating general agents capable of learning useful policies in real-world en-
vironments is a difficult task. Reinforcement learning is the field that aims
to solve this problem. It provides a general, rigorously defined framework
within which algorithms can be designed to solve various problems. Com-
plex real-world environments tend to have a structure that can be exploited.
Humans are extremely proficient at this. Because the structure can vary dra-
matically between environments, creating agents capable of discovering and
exploiting such structure without prior knowledge about the environment is
a long-standing and unsolved problem in reinforcement learning. Hierarchical
reinforcement learning is a sub-field focused specifically on finding and exploit-
ing a hierarchical structure in the environment. In this work, we implement
and study two hierarchical reinforcement learning methods, Strategic Atten-
tive Writer and FeUdal Networks. We propose a modification of the FeUdal
Networks model and show that it performs better than the original model on
a complex, customly designed environment.

Keywords Hierarchical reinforcement learning, deep learning, artificial neu-
ral networks, macro-actions, options.

Contents

Introduction 1

Motivation and Objectives . 1

Problem Statement . 2

1 Background 3

1.1 Markov Decision Process . 3

1.2 Artificial Neural Networks . 7

1.3 Reinforcement Learning Methods 19

2 Related Work 25

2.1 Options . 25

2.2 Strategic Attentive Writer . 25

2.3 Training . 31

2.4 FeUdal Networks . 31

2.5 Training . 34

3 Used Methods 39

3.1 A2C . 39

3.2 Strategic Attentive Writer . 44

3.3 FeUdal Networks . 46

3.4 Learning Environments . 48

3.5 Statistical Tests . 53

4 Experimental Evaluation and Discussion 55

4.1 A2C Variants . 55

4.2 Strategic Attentive Writer . 57

4.3 Feudal Networks with Structured Exploration 59

4.4 Future Work . 64

Conclusion 67

xi

xii CONTENTS

Bibliography 69

A Experiment Details 73
A.1 LSTM Architecture . 73
A.2 A2C Experiments . 73
A.3 Strategic Attentive Writer Experiments 74
A.4 FeUdal Networks MazeRooms Experiments 76
A.5 FeUdal Networks Atari 2600 Experiments 79

B Contents of DVDs 81

List of Figures

1.1 Artificial neural network topology with the first layer as an input
and then two densely connected layers where the second one could
be used as an output. 8

1.2 Illustration of the 1D convolutional filter for 2D input. The filter
has size of 3 and stride of 1. The input’s second dimension is 3
(rows are the second dimension) so the weight matrix has shape
3×3. All the illustrated connections that share the same color and
style also share the same weight. Note that only one third of the
connections is shown, there should also be analogous connections
from the second and third rows of the input but those are omitted
for clarity. However, even if those were included, the output units
still would be arranged in just one dimension. To retain the orig-
inal two dimensions, we would have to include in the illustration
multiple filters. 10

1.3 An extension of Figure1.2. As we can see, now the number of
output units match the input’s first dimension exactly. Thus if we
stacked multiple such layers, the number of units (within the first
dimension) would always remain the same. 11

1.4 Illustration of single-step graph unrollling. 12

1.5 LSTM schematic, source: [1]. 14

2.1 FeUdal Networks scheme, source: [2]. 33

3.1 An example of a maze in the GridMaze environment, red cell rep-
resents the goal and the blue cell represents the agent’s location. . 49

3.2 The starting screen of Montezuma’s Revenge for Atari 2600. 50

xiii

xiv List of Figures

3.3 The MazeRooms environment with 3 obstacles generated in every
room, on the left is the global overview of the whole maze which
the agent doesn’t see. In the top right corner is the agent’s 3 × 3
map, where the gray cells correspond to existing rooms, white cells
to non-existent rooms, red cell is the room with the goal and the
blue cell is the one agent’s in. Below, is the agent’s local view of
the room it is in. 52

3.4 The CartPole environment. 52
3.5 The Enduro Atari 2600 environment. 53

4.1 Results of the 20 experiments in total, displayed is the mean and
sample standard deviation bands of the 5 56

4.2 Welch’s t-test results (fixed vs. variable batch size) against the
p = 0.05 line. 56

4.3 Welch’s t-test results (fixed vs. variable batch size with learning
rate scaling, s = 1) against the p = 0.05 line. 56

4.4 Welch’s t-test results (fixed vs. variable batch size with learning
rate scaling, s = 0.5) against the p = 0.05 line. 57

4.5 Comparison of the STRAW model and the LSTM baseline. 58
4.6 The average plan length of the agent. 59
4.7 Comparison of the means of both populations along with sample

standard deviation bands (n is the sample size for each experiment). 60
4.8 Welch’s t-test results against the p = 0.05 line. 60
4.9 Comparison of the means of all the populations along with sample

standard deviation bands (n is the sample size for each experiment). 61
4.10 Welch’s t-test results against the p = 0.05 line. 61
4.11 Welch’s t-test results against the p = 0.05 line. 62
4.12 Individual runs of all the experiments presented here. 62
4.13 Comparison of the structured exploration and the LSTM baseline

(n is the sample size for each experiment). 63
4.14 Comparison of the structured exploration and the original model. . 64

B.1 The directory structure of the first DVD 81
B.2 The directory structure of the second DVD 81

List of Tables

A.1 The run IDs of the A2C experiments. 74
A.2 The hyper-parameters used for the four LSTM experiments. 74
A.3 The run IDs of the STRAW experiments. 75
A.4 The STRAW hyper-parameters. 75
A.5 The hyper-parameters for the LSTM baseline. 76
A.6 The run IDs of the FeUdal MazeRooms experiments. 77
A.7 The hyper-parameters for the four FeUdal Networks configurations. 78
A.8 The hyper-parameters for the LSTM baseline. 79
A.9 The run IDs of the FeUdal Atari experiments. 79
A.10 The hyper-parameters for the two FeUdal Networks configurations. 80

xv

Introduction

Motivation and Objectives

The field of Artificial Intelligence (AI) and more specifically Deep Learning
(DL) is today in a state of rapid expansion. The recent successes have flooded
the media which lead to a widespread interest in the field. Due to the nature
of media to misinterpret information in favor of delivering exciting titles and
controversies, the public image of DL is misleading. Despite the tremendous
advancements in the narrow AI [3, 4, 5], there is much to be discovered in
the field of Artificial General Intelligence (AGI). That can be vaguely summa-
rized as an effort to create machines capable of thinking similarly to humans,
including understanding of abstract concepts and common sense. The key
ingredients of such machine would have to be strong language and conceptual
skills, as language and abstract thinking are closely tied together [6]. If the
endeavor were to succeed, that would probably mean another fundamental
revolution of human civilization. Hopefully, not in the direction of dystopian
societies depicted in many works of art but rather in the direction of usefulness
and general prosperity.

This work’s main focus is exploring the possibilities of abstraction in Deep
Learning models. Recent developments of Convolutional Neural Networks
(CNNs)[7] have lead to quite a successful reproduction of spatial abstraction
patterns in neural networks (NNs), however, there is one more powerful tool
that humans have at their disposal, temporal abstraction. Both work closely
together to empower creation of a mental model of the world that, among
other things, let’s us reason about our actions and their consequences. The
common scenario of supervised learning on dataset is by design not suitable
for researching temporal abstractions.

That’s why the Reinforcement Learning (RL) setup has been chosen for
this work. It provides useful tools for modeling the real-world in the context
of an effort to create intelligent agents. The agent-environment interaction
happens in iterative steps and as such it simulates a sequence of events which

1

Introduction

breeds a useful framework for learning both spatial and temporal abstractions
in conjunction. Also the environment can be chosen arbitrarily to provide an
advantage to agent that learns and utilizes meaningful spatial and temporal
abstractions. Building agents that are able to learn to take advantage of the
intrinsic hierarchical structure of complex environments falls into the field of
Hierarchical Reinforcement Learning (HRL).

Problem Statement

In this work we focus on studying hierarchical deep reinforcement learning
methods. We implement and study two recent approaches, Strategic Attentive
Writer (STRAW)[8] and FeUdal Networks [2]. We design a novel complex
environment that is easily scalable to the complexity of the agent and allows
for computationally cheap evaluation. We aim to present an improvement
of one of the methods and show, in a statistically rigorous manner, that it
outperforms the original in the novel complex environment. Furthermore, we
perform ablative analysis on a standard benchmarking reinforcement learning
environment in an attempt to qualitatively validate the result.

2

Chapter 1

Background

In this chapter, we build the necessary theoretical and practical foundation
for this work.

1.1 Markov Decision Process

For the sake of notational clarity and consistency, for reinforcement learning,
we are using the mathematical notation, including most of the definitions,
used in the second edition of [9].

In order to reason about agent-environment interaction, we first need a
rigorous framework in which we can precisely define and describe it. The
most widely used way in reinforcement learning is the Markov Decision Process
(MDP). The interaction happens in a sequence of time-steps t = 1, 2, 3, . . .,
where at time-step t the agent receives the state of the environment St ∈ S and
based on that produces an action At ∈ A(s), where s ∈ S. In turn, the agent
receives a reward Rt ∈ R ⊂ R that depends on its action and the present
state of environment. Semantically the reward reflects agent’s performance
(the higher the better) in the context of a given problem. The next state of
the environment St+1 depends only on the present state St and the agent’s
action At.

The end of the interaction sequence (an episode) is marked by reaching
a terminal state sterminal, the following relation holds, S+ = S ∪ {sterminal}.
Note that St, At and Rt are random variables. In this work we further consider
only a finite MDP, in which all the sets S,A(s) and R are finite, we will still
call it MDP for the sake of brevity.

Trajectory is a sequence of states, actions and rewards that describe an
interaction between the agent and the environment:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (1.1)

3

1. Background

The dynamic of the environment can be described by a function p : S × R ×
S×A(s)→ [0, 1], defined as follows,

p(st, rt|st−1, at−1) = Pr{St = st, Rt = rt|St−1 = st−1, At−1 = at−1} (1.2)

Where s′, s ∈ S, r ∈ R and a ∈ A(s). Then, the state-transition function is,

p(st|st−1, at−1) =
∑
r∈R

p(st, r|st−1, at−1) (1.3)

Note that both aforementioned functions are well defined discrete probability
distributions because we are considering only the finite MDP case.

The adjective Markov in the name is due to the next reward and the next
state following a Markov Property. In plain words it means that they are
both conditioned solely on the present state and action and not on any of the
previous ones. Formally we could express this as,

Pr(St = st|St−1, At−1) = Pr(St = st|St−1, At−1, St−2, At−2, . . .) (1.4)

Pr(Rt = rt|St−1, At−1) = Pr(Rt = rt|St−1, At−1, St−2, At−2, . . .) (1.5)

A system that satisfies the Markov property is often called memoryless.

1.1.1 Expected Return

The quantity that we are seeking to maximize in solving a problem described
by MDP is an expectation of a random variable called return. At time-step t
for a sequence of rewards, return is quite intuitively defined as,

Gt = Rt+1 +Rt+2 +Rt+3 + . . .+RT (1.6)

Where T is the index of a last step. That brings up an important notion;
many problems solved by reinforcement learning are so called episodic tasks,
which means that they are carried on in episodes consisting of a finite number
of steps 1 (an exemplary task would be chess where each game ends in a finite
number of turns with one winning player or a tie).

We call the last state in a trajectory a terminal state, let’s denote it as
sterminal. It’s useful to differentiate two possibilities for the set of states, S

and S+, where S+ = S ∪ {sterminal}, allowing us to distinguish a set of all
non-terminal states from a set of all states.

We consider a single terminal state because there is no need to have more.
No decision is made based on it, thus its value is purely nominal and the
outcome of the task may be reflected by the reward accompanying the final
state. The initial state can be same in every episode or it can be sampled
according to some distribution, let’s define a set of all the possible initial
states as Sinit and the distribution over them as p(sinit) = Pr(Sinit = sinit).

1All the tasks studied in this work are episodic

4

1.1. Markov Decision Process

Some tasks, however, are not episodic in nature, consider controlling a
valve in an automated industrial process, such task might require an indefinite
control thus having an infinite horizon. Then we could encounter a problem
as Gt could possibly be infinite and therefore we wouldn’t be able to compute
its expectation.

To resolve this, a discount factor γ ∈ (0, 1) is introduced. It discounts
each subsequent reward by increasing amount, reflecting an assumption that
present reward is more valuable than reward in the future. The return at
time-step t is then defined as,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1 (1.7)

Two key observations here are that the coefficients form a geometric series
and that the reward is bounded (it comes from a finite set, every finite subset
of real numbers is bounded). Those together imply that Gt will indeed be
finite. Proof is straightforward, let M ∈ R be the upper bound of the set R,

∞∑
k=0

γkRt+k+1 ≤
∞∑
k=0

γkM =
1

1− γ
M (1.8)

Using the formula for computing the sum of a geometric series which holds
because |γ| < 1. Therefore Gt will always be bounded and thus we can
maximize its expectation in an attempt to solve the task underlying the MDP.

Even though we are not going to be focusing on tasks with infinite horizon
in this work, the notion of discounted return is still going to be very useful
later on, even in the finite horizon case.

1.1.2 Policy

In order to formalize the agent’s decision process, we introduce a function
called policy which maps the present state s to each possible action a and its
probability, formally π : S×A→ [0, 1],

π(a|s) = Pr(At = a|St = s) (1.9)

An important observation here is that the action of the agent is only
conditioned on the present state. It might not be immediately clear why that
would be complete. However, due to the Markov property, the dynamic of the
MDP is entirely decided by its current state, therefore, considering previous
states adds no relevant information whatsoever. This means that the policy
also follows the Markov property but rather as a consequence.

Now, that we have defined the notion of policy, we need a measure of
quality for a given policy, otherwise we wouldn’t be able to compare it to
other policies and decide which one is best suited to solve our task. For that

5

1. Background

purpose, we will reintroduce the expected return but this time we’ll call it
value function vπ : S→ R, defined as,

vπ(s) = Eπ[Gt|St = s] (1.10)

It denotes the expected return in state s for given policy π. Now, we can
finally formalize the problem we are trying to solve:

π∗ = argmax
π:S×A→[0,1]

E[vπ(sinit)|Sinit = sinit]

s.t.
∑
a∈A(s)

π(a|s) = 1,∀s ∈ S

π(a|s) ≥ 0, ∀s ∈ S, ∀a ∈ A(s)

(1.11)

Where π∗ denotes optimal policy which is such that it maximizes the expected
value function of initial state given the distribution over initial states. Also,
the policy π itself must be a probability distribution.

It is generally intractable to find the optimal policy analytically, iterative
dynamic programming methods can be employed (value iteration, policy it-
eration and their extensions [9]). When even those cannot be used (due to
their space and time complexity), the problem is solved using approximation
methods. That is the approach we take in this work.

1.1.3 Partially Observable MDP

The framework we introduced relies on one very strong assumption; that the
state of the environment can be fully observed by the agent. Even though
this is the case in some environments (fully observable games as chess, tic-tac-
toe etc.), it does not hold for many real-world environments. In the partially
observable case we assume that the environment’s state is a latent variable
that cannot be observed by the agent at all. The agent then receives observa-
tions according to a conditional probability distribution, conditioned on the
present state of the environment. This is called Partially Observable MDP
(POMDP). To define it formally, let S be the latent state space and X the
space of observations, we can then write,

p(xt|st) = Pr{Xt = xt|St = st} (1.12)

Where Xt ∈ X and St ∈ S. It then makes sense to define the agent’s policy
with respect to the whole history of seen observations as all those carry useful
information about the environment. We could express it as follows,

π(at|xt, xt−1, . . .) = Pr{At = a|Xt = xt, Xt−1 = xt−1, . . .} (1.13)

No matter which framework, MDP or POMDP, we are going to use, we
will always talk about observations and denote them as xt, in the case that

6

1.2. Artificial Neural Networks

we would be dealing with MDP, we can simply set X = S and trivially express
MDP as POMDP.

We have laid a formal foundation for defining the problems we will be solv-
ing, the interface of agent itself and also ways of measuring its performance.
However, we have not yet talked about how to devise its inner workings in a
way that would let us find sufficiently good solution. For that we will be using
artificial neural networks which are the subject of the next section.

1.2 Artificial Neural Networks

Artificial neural networks are a class of biologically inspired general purpose
approximators. They consist of many interconnected units that perform local
computations. The units are called neurons and connections between pairs of
neurons are weighted. The weight decides how much and in which direction
(excitatory or inhibitory) will given neuron influence its descendant. For a
network with a given topology, tuning those weights is crucial in modifying
the internal dynamics and behavior of the network. The key question is how
to find such configuration of weights that makes the neural network behave as
we would like. The answer is not straightforward and is still an objective of a
very active research.

The neural network fits into our context as the component that actu-
ally provides the specific policy for the agent based on the observations from
environment. Let’s describe the neural networks formally (we always mean
artificial neural networks, unless stated otherwise).

1.2.1 Artificial Neuron

A single neuron in the network is a function, that maps inputs from multiple
neurons to a single output. Let xi be the i-th input of a neuron, for i =
1, 2, 3, . . . , n, wi be the weight of the connection from the i-th neuron and bias
b. We can then compute a so called potential as,

ξ =
n∑
i=1

wixi + b (1.14)

The potential is then fed through a so called activation function ϕ : R → R
to obtain the neuron’s output,

y = ϕ(ξ) (1.15)

The activation function is the central computational element in a neural net-
work and by tuning the weights we change what the neuron computes in
relation to other neurons.

The commonly used activation functions are linear, tanh, logistic sigmoid,
rectified linear unit.

7

1. Background

1.2.2 Network Topology

The neurons are usually organized in multiple layers, where each neuron is
connected to every other neuron in the preceding and descending layer. The
first layer is fed inputs whereas the last layer provides the output of the net-
work. Such architecture is called fully connected and the individual layers
can be called dense. Note that there are endless possibilities for different
topologies.

Because each neuron is essentially a function, when they are stacked to-
gether, the whole neural network is a function. If the input layer takes n inputs
and the output layer gives m outputs, then the network can be described as
a function f : Rn → Rm. This is the most general definition we can assume,
as a parametrized mapping between input and output.

1.2.2.1 Dense Layer

Dense layers are the most basic of types. They assume an input vector x ∈ Rn,
all the inputs are connected to all the units in the layer, thus the name dense.
The computation of the layer can be described by dot product,

y = f(W Tx+ b), (1.16)

where W ∈ Rn×m is a weight matrix with W(i,j) being the weight of connection
between i-th input and j-th unit. b ∈ Rm is a bias vector and f : Rm → Rm
is the activation function for given layer (for linear layer this would be an
identity function).

Figure 1.1: Artificial neural network topology with the first layer as an input
and then two densely connected layers where the second one could be used as
an output.

8

1.2. Artificial Neural Networks

1.2.2.2 Convolutional Layer

Convolutional layers let us take advantage of the fact that some information
in the input may be invariant to its location in the input vector. An example
of this would be an image classification task, it usually doesn’t matter where
the object we are trying to classify is located in the image, what matters is its
presence. The dense layer is not the best tool for this as all the weights are
fixed on specific input point.

The convolutional layer introduces spatial parameter sharing between units.
Each convolutional layer is composed of so called filters (or kernels), which
are tensors of weights that have the number of dimensions as the input but
not the same shape. For illustration, let us consider 1D convolutional layer
(See Figure1.2). That assumes 2D input tensor, so the weight tensor will be a
matrix. The last dimension is always matched in the weight tensor, whereas
the rest is smaller than the input tensor. The first dimensions are chosen ar-
bitrarily based on the task, so let us consider e.g. filter size of 3. If we had an
input matrix X ∈ Rm×n, then our weight tensor would have shape W ∈ R3×n.

The way output of the layer is computed is that the filter is slid over the
input over all but the last dimension with given stride. For each position of
the filter, we simply multiply each element in the input with its corresponding
weight (this will cover only a small portion of X), then we sum those weighted
inputs up and add bias. This way we have obtained potential of our neuron
now what remains is to apply the activationfunction to obtain our output.
The most commonly used one is the Rectified Linear Unit (ReLU) for its
computational simplicity, yet sufficient expressiveness (it is still non-linear)
[3].

What was described above is the case for a single output unit and for a
single filter. In order to compute the output of the same filter but for the
rest of the units, the filter is slid over the input dimensions with the step
size given by stride (it is defined for each dimension separately so the step
sizes in different dimensions can vary). For our example, let’s select stride of
1 which means that the convolutional filter is always slid by one in the first
dimension. However, if we use only a single filter, notice that our output is
only a one-dimensional tensor while we started with a two-dimensional one.
This might be a desired property in some cases but for most applications we
want the output have the same number of dimensions as the input because
that means that we could stack multiple convolutional layers on top of each
other.

To get the output with the same number of dimensions as the input, we
simply use multiple filters of identical size and then stack them over the last
dimension. This way the number of dimensions is retained.

If we consider an input tensor with N dimensions, we can notice that
by applying the N − 1 dimensional convolutional layer, our output is always
shrunk in the first N − 1 dimensions because we apply the filters only where

9

1. Background

1.2 -0.7 3.2 1.1 2.1 -1.7 -0.2

3.1 1.0 -4.5 -0.3 -1.7 -0.4 0.5

2.2 -4.2 2.1 0.9 -0.1 -1.1 3.0

Figure 1.2: Illustration of the 1D convolutional filter for 2D input. The filter
has size of 3 and stride of 1. The input’s second dimension is 3 (rows are the
second dimension) so the weight matrix has shape 3 × 3. All the illustrated
connections that share the same color and style also share the same weight.
Note that only one third of the connections is shown, there should also be
analogous connections from the second and third rows of the input but those
are omitted for clarity. However, even if those were included, the output units
still would be arranged in just one dimension. To retain the original two
dimensions, we would have to include in the illustration multiple filters.

they are covering the input completely. However, in some applications we
want to retain not only the number of dimensions but also the size in the first
N − 1 dimensions as well. To do that we use zero− padding. Essentially, we
put the filter over a position in the input that normally would not be valid
and we fill all the absent values with zeros. See Figure1.3. [10]

1.2.2.3 Recurrent Layer

An option we have not yet talked about are recurrent neural networks (RNNs).
The notion of a neural network so far assumed a stateless system. We have a
function that takes input data and outputs some vector, however, the present
output only depends on the present input and not on any of the previous
ones. This may be desirable for, let’s say, classifying images where each image
is unrelated and evaluated separately (i.e. data points presented are i.i.d.).
However, when we wish to use our neural network on a task that is sequential
and where remembering the previous input points helps getting the right out-
put in the future, a recurrent architecture is much more suitable. Example of
such task could be speech recognition [11], where the probability of different

10

1.2. Artificial Neural Networks

1.2 -0.7 3.2 1.1 2.1 -1.7 -0.20.0 0.0

3.1 1.0 -4.5 -0.3 -1.7 -0.4 0.5

2.2 -4.2 2.1 0.9 -0.1 -1.1 3.0

0.0

0.0 0.0

0.0

Figure 1.3: An extension of Figure1.2. As we can see, now the number of
output units match the input’s first dimension exactly. Thus if we stacked
multiple such layers, the number of units (within the first dimension) would
always remain the same.

syllables and sounds is strongly shaped by what has been already said. Such
problem calls for an architecture that maintains and evolves its internal state
in some sense and is able to remember.

You can think of a recurrent layer as being a common dense layer but
on top of the connection to the previous and next layer it is also connected
to its own output but from the previous time-step. This means that state
is maintained between time-steps and therefore the previous inputs influence
the future outputs. The schema of the time-lagged connections could be each
neuron only feeding itself its previous state but a more common approach is
to connect the previous state to the present densely, i.e. each unit influences
all the units in the next time-step. This makes the model more expressive.

Because the internal state of the network evolves during computation, we
have to maintain the entire history for training the network. Handling the
lagged signal in a dynamic manner can be troublesome and prone to imple-
mentation bugs. That’s why a common approach is to prepare an unrolled
model of the recurrent neural network. If we fix time horizon, which we treat
as the maximum number of steps the network can remember to the past,
we can create a large feed forward network that repeats its blocks for each
time-step until the time horizon. The weights are completely shared between
blocks which means that it indeed is equivalent to recurrently feeding past
values through a single layer. An illustration of a single step unroll can be
seen in Figure1.4, Figure1.4a depicts the network with recurrent connections,
1.4b shows how would a single unroll step look.

11

1. Background

It can also sometimes be difficult to imagine or grasp how to treat recurrent
neural network in terms of data, learning, etc. For this, thinking about the
unrolled version of the network can be of a great help.

(a) Recurrent layer (b) Unrolled recurrent layer

Figure 1.4: Illustration of single-step graph unrollling.

A popular activation function for recurrent networks used to be the logis-
tic sigmoid function. However, there are some serious issues with it in the
context of RNNs. Details of training neural networks are discussed later but
in principle, after the network was used for inference an error in the estimate
is computed. Then this error is distributed through the network through all
the previous time-steps. However, the way sigmoid function behaves has a
consequence of diminishing the error signals. The more steps in the past, the
weaker the learning signal is. Therefore, such vanilla RNNs have difficulties
with long-term dependencies in the data. They can operate only within a
moderate time-lag. The issue is called the vanishing gradient problem.

1.2.2.4 LSTM Layer

To solve the vanishing gradient problem a novel architecture was devised in
1997 by Hochreiter and Schmidhuber [1]. So far, every neuron simply com-
puted dot product between the input vector and the weight vector, added
bias term and then fed the value through some mostly non-linear activation
function. LSTM units, however, are more complicated.

For a time-step t, LSTM unit consists of a cell state ct, input, output and
forget gate that control the input into the cell state, the output of the unit
and the persistence of the cell state respectively. The unit processes input
vector xt, previous output ht−1 and previous cell state ct−1 into the current
output ht and the current cell state ct. The parameters of LSTM unit are
eight weight matrices and four bias terms, Wq, Uq and bq), for q ∈ {i, o, f, c}
which stand for input, output, forget gate and cell state respectively. The

12

1.2. Artificial Neural Networks

precise dynamics of the LSTM unit are as follows:

ft = σg(Wfxt + Ufht−1 + bf) (1.17)

it = σg(Wixt + Uiht−1 + bi) (1.18)

ot = σg(Woxt + Uoht−1 + bo) (1.19)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (1.20)

ht = ot ◦ σh(ct) (1.21)

σg =
1

1 + exp−x
(1.22)

σc = σh =
1− exp−2x

1 + exp−2x
(1.23)

For h LSTM units in a layer and d size of the input, the dimensions are:

Wf ,Wi,Wo,Wc ∈ Rh×d (1.24)

Uf , Ui, Uo, Uc ∈ Rh×h (1.25)

bf , bi, bo, bc ∈ R (1.26)

xt ∈ Rd (1.27)

ft, it, ot, ct, ht ∈ Rh (1.28)

We can see that the activation function for all the gates is logistic sigmoid and
for the cell and output state, its hyperbolic tangent. That means that all the
gate values ft, it, ot are bounded by 0 and 1, so in a sense, they approximate
boolean logic flow and gates in a continuous and differentiable manner. The
cell output ht is then bounded by -1 and 1 while the cell state ct does not have
an obvious bound due to its incremental nature.

The rationale behind the name Long-Short Term Memory comes from the
fact that the model approximates short term memory which can persist for
long periods of time. The information is maintained and encoded in the activ-
ity of the network, not in the connection weights, which is intuitively analogous
to the short term and the long term memory in the brain, respectively.

The basic model has several modifications but none of them significantly
outperforms the vanilla version that was introduced here, therefore it is what
we will use in this work. [12]

LSTM networks were successfully applied to tasks such as natural language
translation and image captioning (describing images by sentences) [13] and
continue to be widely used.

One of the fundamental reasons why LSTM architecture works so well in
practice is that it solves the vanishing and exploding gradients problem [1].
That enables the learning algorithm discover and take advantage of long-term
dependencies in the input sequence.

13

1. Background

Figure 1.5: LSTM schematic, source: [1].

1.2.2.5 Softmax Layer

In machine learning it is necessary to meaningfully cope with uncertainty. The
world we are approximating is stochastic. Therefore, when we train a classifier
it is often not quite enough to just consider the best guess of the classifier but
it is crucial to also know its confidence. If the classifier were just a little bit
more sure about one choice than the other, the output would be the same as
if it were the sure choice.

For this purpose, the softmax function works well. It takes a real vector
z ∈ Rn and squashes its values in such a way that they are all positive and
the vector sums up to 1.

SoftMax(zi) =
exp(zi)∑n
j=1 exp(zj)

(1.29)

Those two properties together mean that the softmax of a vector can be
interpreted as a probability distribution. In the neural network, the softmax
layer is simply a densely connected layer that uses the softmax function as the
activation function. Note that this activation function stands apart from all
the other commonly used activation functions. The output of each softmax
unit depends not only on the input but also on the output of all the other
softmax units in the layer, because of the normalizing term

∑n
j=1 exp(zj).

Therefore, when gradient flows through one of the softmax units, it flows
through all of them. The output of the softmax layer for input x, weights W
and bias b, is then given as,

14

1.2. Artificial Neural Networks

y = SoftMax(Wx+ b) (1.30)

The probability distribution on the network output can be interpreted
as approximation of the conditional Pr(Y = y|X = x, θ) for different label
vectors y and model parameters θ. X is the input random variable, Y is the
random variable for one-hot encoded label vector sampled according to the
distribution given by the softmax output. Then, for the classification task,
one can maximize the likelihood of sampling the correct labels w.r.t. the
model parameters.

If we consider n classes, training samples (x1, y1), (x2, y2), . . . , (xN , yN)
(where yi ∈ Rn is one-hot encoded correct label), and a model parameter
vector θ, we can express the likelihood of classifying the samples correctly as
follows,

L =

N∏
i=1

Pr(Y = yi|X = xi, θ) (1.31)

(1.32)

The sum simply chooses the probability of the softmax unit that corresponds
to the correct label. Now in order to find the optimal parameters we would
like to maximize this value. Because the natural logarithm is monotone in-
creasing function, minimizing the negative log-likelihood instead preserves all
the solutions.

− lnL = − ln
N∏
i=1

Pr(Y = yi|X = xi, θ) (1.33)

=

N∑
i=1

− lnPr(Y = yi|X = xi, θ) (1.34)

(1.35)

This is where categorical cross-entropy loss function comes from. Categorical
because the support of the distributions is discrete. Cross-entropy is a term
from information theory that describes relationship between two distributions,
specifically the average number of bits needed to identify an event drawn from
a set. Therefore we can express the optimal parameter vector as,

θ∗ = argmin
θ

(− lnL) (1.36)

(1.37)

15

1. Background

1.2.3 Learning Weights

To be clear, the purpose of using a neural network is approximating a func-
tion. In practice, usually some complicated high-dimensional function that is
not known explicitly. Let θ be a vector of all parameters of a given neural
network. In order to be able to reason about a relative quality of θ we intro-
duce an objective function, in machine learning often called loss function. It
is a function that maps the parameter vector to a single real value which we
are trying to minimize. Finding the global minimum analytically in a closed
form might not be possible and in vast majority of cases it is intractable. One
of the common solutions to this are iterative optimization algorithms, namely
gradient descent and stochastic gradient descent.

1.2.3.1 Gradient Descent

The Gradient Descent algorithm is based on an assumption that for a func-
tion f , in a sufficiently small neighborhood of a point, we can approximate
the function by a hyperplane. If the function f is then well behaved in the
neighborhood, taking a small step in the direction of the steepest descent on
the hyperplane will also decrease the value of the function f . Therefore, if
we wish to find the minimum of the function f , repeated small decreases will
converge (when the step size decreases) to a local minimum.

In order to find the approximating hyperplane, we use derivatives, which
by definition give us the slope of the hyperplane,

f ′x0(x) = lim
x→x0

f(x)− f(x0)

x− x0
(1.38)

If we consider a single valued real function for simplicity, we can see that in
the fraction, we take a ratio between the difference of values on the y-axis and
the difference of values on the x-axis and that is by a very definition a slope of
line that crosses both points on a real plane (x, f(x)) and (x0, f(x0)). In the
limit, those points are moved infinitely close and that gives us the notion of
the tangent of a function. This concept generalizes naturally to multivariate
functions and hyperplanes.

Let J(θ) be a single valued loss function for the network given by parameter
vector θ, differentiable w.r.t. θ. D = (x1, y1), (x2, y2), . . . , (xN , yN) is the
dataset of samples that we are trying to correctly classify. Then, we propose
trivial parameter update rule using step size α,

θt = θt−1 − α∇θJ(θ,D) (1.39)

This can be devised into a simple algorithm called Batch Gradient Descent
(Algorithm 1), as detailed below. The batch adjective is used because we
compute the gradient over the whole dataset, so we do all the updates in a
single batch. Another way to think of this is that we compute the gradient

16

1.2. Artificial Neural Networks

for each sample from D separately and accumulate them. After iterating
over the whole dataset, we perform a single parameter update and reset the
accumulators.

Algorithm 1 Batch Gradient Descent

Input: dataset D, classifier parametrized by θ, loss J(θ,D) differentiable
w.r.t. θ, step size α, maximum training epoch tmax

1: initialize epoch counter t← 1
2: θ0 ← sample N(0, 1) . arbitrary random initialization
3: repeat
4: θ ← θ − α∇θJ(θ,D)
5: possibly decay the learning rate α
6: t ← t+ 1
7: until t > tmax or J(θ,D) converges

1.2.3.2 Stochastic Gradient Descent

Stochastic Gradient Descent (Algorithm 2) is a different flavor of the previous
algorithm as here we update the parameters right after iterating over a sample.
Therefore, we perform many little updates. The term stochastic comes from
the fact that we are approximating the true direction of the gradient by using
only separate samples. However, it is clear that a single sample drawn is
not a very stable estimator of the true gradient, therefore the approximation
variance is likely to be large.

To avoid bias from encountering some arbitrary ordering of data (due to
factors such as the way the data were collected and organized), the samples are
shuffled. Either once at the beginning of the training, or after every epoch, or
the samples may be drawn randomly at every step. We present here a generic
version that does not specify shuffling.

1.2.3.3 Mini-Batch Gradient Descent

Last version of the Gradient Descent algorithm we present here is the Mini-
Batch Gradient Descent (Algorithm 3). It is a compromise between the Gra-
dient Descent and Stochastic Gradient Descent algorithms. It aggregates up-
dates into larger batches but still updates frequently, therefore it has reason-
ably low variance while still maintaining higher speed of convergence. Once
again, it is advisable to shuffle the batches before/during the training to avoid
pathological cases.

The dataset comprises of batches D = B1, B2, . . . , B|D| and each batch of

samples Bi = (x1, y1), (x2, y2), . . . , (x1, y|Bi|).

17

1. Background

Algorithm 2 Stochastic Gradient Descent

Input: dataset D, classifier parametrized by θ, loss J(θ, x, y) differentiable
w.r.t. θ, step size α, maximum training epoch tmax

1: initialize epoch counter t← 1
2: θ0 ← sample N(0, 1) . arbitrary random initialization
3: repeat
4: for (xi, yi) ∈ D do
5: θ ← θ − α∇θJ(θ, xi, yi)

6: possibly decay the learning rate α
7: t ← t+ 1
8: until t > tmax or J(θ,D) converges

Algorithm 3 Mini-Batch Gradient Descent

Input: dataset D, classifier parametrized by θ, loss J(θ,B) differentiable
w.r.t. θ, step size α, maximum training epoch tmax

1: initialize epoch counter t← 1
2: θ0 ← sample N(0, 1) . arbitrary random initialization
3: repeat
4: for Bi ∈ D do
5: θ ← θ − α∇θJ(θ,Bi)

6: possibly decay the learning rate α
7: t ← t+ 1
8: until t > tmax or J(θ,D) converges

This version of the Gradient Descent algorithm is the one used for training
neural networks and as such we use it in this work as well.

18

1.3. Reinforcement Learning Methods

1.3 Reinforcement Learning Methods

In this section we will introduce the basic reinforcement learning approaches
used to solve MDPs.

1.3.1 Action Value Methods

First class of RL algorithms are action-value methods. They are built on es-
timating the expected return with respect to given state and actions available
in this state. Then, usually the action maximizing expectation is selected and
carried on in the environment, this approach is called greedy policy. Let us
define function q : S×A→ R that expresses our expectation for a given action
in a given state,

Qπ(s, a) = E[Gt|St = s,At = a]. (1.40)

Then, the greedy policy can be expressed as,

π(a|s) = argmax
a

q(s, a). (1.41)

In order to support exploration of the whole state space in a more uniform
fashion, an ε-greedy policy can be utilized. Which means that with probability
ε, where ε ∈ (0, 1), a random action is selected instead of the greedy one.

There are many methods used to approximate Q(s, a) but none is used
in this work therefore discussing it is beyond the scope, for details about
action-value methods, see [9].

More useful to us is an entity called the value-function which is the ex-
pected return in a given state over all the actions, weighted by the policy,

vπ(s) =
∑
a

π(a|s)Q(s, a). (1.42)

Value function is crucial to all the methods used here.

1.3.2 Basic Policy Gradient Methods

Policy gradient methods differ from the action value methods in that they
provide meaningful stochastic policies (as action-value methods don’t have
a meaningful way of producing stochastic policies) and that mostly means
stronger theoretical guarantees [9].

Let us consider a policy π parametrized by the vector θ,

π(a|s, θ) = Pr(At = a|St = s, θt = θ) (1.43)

In order to achieve such policy that solves our task we need some performance
measure J(θ) that is differentiable with respect to the parameter vector θ.

19

1. Background

Then to maximize the performance, an approximate gradient descent can
be used.

θt+1 = θt + α ˆ∇J(θt), (1.44)

where ˆ∇J(θt) stochastically estimates the gradient w.r.t. θ. How to approxi-
mate it is discussed closely in upcoming sections.

Methods discussed here also approximate the value function v(s, w), where
w is the parameter vector of the value function approximation. Such methods
are called actor-critic methods. The actor is the policy and the critic is the
value function.

Because we are considering the case of discrete time and discrete actions,
our performance measure is the expected return in the initial state (at the
start of the episode).

J(θ) = vπθ(s0) (1.45)

In order to compute the derivative of J(θ) we take advantage of the policy
gradient theorem, which applies to our case as,

∇J(θ) = ∇vπθ(s) = Eπ

[∑
a

qπ(St, a)∇π(a|St)

]
(1.46)

= Eπ

[∑
a

π(a|St)qπ(St, a)
∇π(a|St)
π(a|St)

]
(1.47)

= Eπ

[
qπ(St, At)

∇π(At|St)
π(At|St)

]
(1.48)

= Eπ

[
Gt
∇π(At|St)
π(At|St)

]
(1.49)

This entity intuitively makes sense. Vector ∇π(At|St) is the direction in the
parameter space that leads to the steepest increase of the probability of action
At on future visits of state St. Now it is scaled by the return Gt which
intuitively results in reinforcing the actions that lead to better results. It
is also inversely scaled by the present probability of given action in a given
state. Without it, actions that are performed more often than others would
have more according parameter updates of the same magnitude than others.
That could lead to a scenario, where low-return, high-probability action is
eventually reinforced over a high-return low-probability action, which would
be incorrect. The correct way would be to reinforce the high-return action
and increase its probability. The proof of policy gradient theorem is beyond
scope of this work and is presented in [9].

1.3.2.1 REINFORCE

REINFORCE [14] is a policy-gradient algorithm that approximates (1.49) for
its the parameter updates.

20

1.3. Reinforcement Learning Methods

Algorithm 4 REINFORCE [9]

Input: π(a|s, θ) policy differentiable w.r.t. its parametrization, learning rate
α

1: function learn(θ)
2: generate episode S0, A0, R1, . . . , ST−1, AT−1, RT using π(·|·, θ)
3: for i← 1 to T − 1 do
4: G ←

∑T
k=t+1 γ

k−t−1Rk
5: θ ← θ + αG∇ lnπ(At|St, θ)

The routine is repeated until convergence. In this algorithm the gradient
is approximated by using an eligibility trace from an episode generated using
the policy π(a|s, θ).

1.3.2.2 REINFORCE with Baseline

Even though the algorithm 4 is correct and will converge to a local minimum,
it might take a long time [9]. In order to improve this we will reduce the
variance of the gradients using a so called baseline. Let us follow up on and
modify (1.46),

∇J(θ) = Eπ

[∑
a

(qπ(St, a)− b(St))∇π(a|St)

]
(1.50)

= Eπ

[∑
a

qπ(St, a)∇π(a|St)

]
− Eπ

[∑
a

b(St)∇π(a|St)

]
(1.51)

= Eπ

[∑
a

qπ(St, a)∇π(a|St)

]
− Eπ

[
b(St)∇

∑
a

π(a|St)︸ ︷︷ ︸
∇1=0

]
(1.52)

= Eπ

[∑
a

qπ(St, a)∇π(a|St)

]
− 0 (1.53)

We can see that the baseline can be any function, even a random variable,
it just has to be independent from a. As long as it is, expectation of it’s
contribution to the gradient is zero, therefore the equation remains consistent.
What it changes is the variance of the gradients. It makes even good intuitive
sense because the figure qπ(St, a)−b(St) describes the advantage of performing
action a against the baseline.

From this follows a natural choice for the baseline function; the value
function vw(St), where w is the parameter vector that describes the estimator
of the true value function as expected return from state St, the choice of the
estimator will be discussed in the next subsection.

21

1. Background

What is interesting is that as the policy πθ(a|s) changes according to the
gradient updates, the true underlying value function vπθ(s) changes as well,
so it is called for to try to adapt w continuously in order to keep the approx-
imation as close as possible. Therefore we expand the original REINFORCE
algorithm by the w parameter update, as can be seen in Algorithm 5.

Algorithm 5 REINFORCE with baseline [9]

Input: π(a|s, θ) policy differentiable w.r.t. θ, v(s, w) value function approxi-
mation differentiable w.r.t. w, learning rates α,β

1: function learn(θ)
2: generate episode S0, A0, R1, . . . , ST−1, AT−1, RT using π(·|·, θ)
3: for i← 1 to T − 1 do
4: G ←

∑T
k=t+1 γ

k−t−1Rk
5: δ ← G− v(St, w)
6: θ ← θ + αδ∇ lnπ(At|St, θ)
7: w ← w + βδ∇v(St, w)

1.3.3 Actor-Critic Methods

Actor-critic methods are an extension of the REINFORCE with baseline al-
gorithm, where the value function is used also as a critic. That means that
it is used to provide a biased estimate of the expected return for some future
state. For a given horizon, instead of completing the whole episode we just fin-
ish steps until the horizon (e.g. 10 steps) and estimate the rest of the episode
using our learned value function. The important part is that no gradient is
passed through the estimate. That’s why the term critic is used, as it judges
the current state and its predicted return is used to adjust the policy.

1.3.3.1 A3C

In a work by Mnih et al. [15] a modification of the REINFORCE with base-
line algorithm was introduced, Asynchronous Advantage Actor Critic (A3C).
It is devised as an algorithm suited for multi-core systems thanks to its asyn-
chronous nature. It is meant to be used for learning deep neural policies but
can be used for any differentiable approximator. However, in this work we are
preoccupied primarily with deep neural networks, therefore, we will consider
them only.

The main concept is that each thread runs a single instance of the MDP
environment and also one local instance of the model. After the episode is
over, the eligibility trace is used to accumulate parameter updates (according
to the gradients from the local model) and then the global model is updated.
At the start of each episode, each thread synchronizes its local model with

22

1.3. Reinforcement Learning Methods

the global model. It is assumed that it is not a problem to update the global
parameters based on a local model because the local models are synchronized
very frequently, therefore the gradients are still mostly correct and it doesn’t
affect the convergence.

This algorithm is fit for deployment in large data-centers, as it takes ad-
vantage of the server grade multi-core CPUs and also naturally allows for
distributed training across multiple nodes.

Algorithm 6 Asynchronous Advantage Actor-Critic (A3C) [15]

Input: π(a|s, θ) policy differentiable w.r.t. θ, v(s, w) value function approxi-
mation differentiable w.r.t. w, learning rate α, global step counter T

1: initialize thread step counter t← 1
2: repeat
3: reset gradients: dθ ← 0 and dw ← 0.
4: synchronize local and global parameters θ′ = θ, w′ = w
5: tstart = t
6: get state st
7: repeat
8: perform at according to policy π(at|st, θ′)
9: receive reward rt and new state st+1

10: t ← t+ 1
11: T ← T + 1
12: until terminal st or tstart == tmax
13: if terminal st then
14: G = 0
15: else
16: G = v(st, w)

17: for i ∈ {t− 1, . . . , tstart} do
18: G ← ri + γG
19: dθ ← dθ +∇θ′ lnπ(ai|si, θ′)(G− v(st, w

′))
20: dθ ← dθ + ∂(G− v(st, w

′)2/∂w′

21: perform asynchronous update of θ, w using dθ, dw
22: until T > Tmax

1.3.4 A2C

A2C is a synchronous version of the A3C algorithm. In its simplest form it
can be thought of as A3C on a single thread [16]. More efficient version runs
multiple agents but aggregates the updates into batches [17]. In this case there
is no need to maintain multiple sets of parameters, we only need one because
the agents are synchronous. It means that the gradients are always correct, the

23

1. Background

policy that generated the episode is the policy that is being updated (unlike
in A3C).

A natural question arises, whether we should expect one version of the
algorithm outperform the other. One could argue that the asynchronous up-
dates of A3C introduce some noise that could potentially serve as a regular-
ization. However, in practice, the opposite trend has been observed. The
synchronous version performs slightly better [18]. It is probably due to the
fact that in A2C, the gradients are always correct and valid, in turn for A3C,
the gradients are almost in all cases a little off. That is because agents finish
episodes at different times and only copy the global parameters at the start of
each episode, therefore the agent’s local parameters used to compute gradients
differ from the global parameters that are being updated.

The A2C algorithm has a different set of advantages from A3C. It lets us
take advantage of another powerful computation tool, the GPU. Because we
maintain only a single set of parameters, we can run the policy and its updates
in a single instance all on the GPU. The GPU chip is designed in such a way
that it supports massively parallel computation. That is very suitable for deep
neural networks but also for our multi-agent concept; we can aggregate not
only the batch updates but also the policy evaluation during the episode runs.

24

Chapter 2

Related Work

2.1 Options

In this work we study hierarchical reinforcement learning methods. A widely
studied approach to creating hierarchical agents is the options framework
[9, 19]. Options are sub-policies that are executed until satisfying a terminat-
ing condition, they take observations and output actions as regular policies
introduced earlier. The agent then executes the sub-policies as if they were
elementary actions.

Most of the research in this area in the past focused on either designing
the options by hand or by providing explicit sub-goals and auxiliary rewards
to the agent [9, 20, 19]. The agent can be then trained using the common
methods for regular reinforcement learning setting, because the options can
be treated as elementary actions. A recent work has shown that providing
predefined sub-goals to the agent combined with deep learning show promise
in a Minecraft environment [21].

However, the difficult question is; how to discover options or even sub-goals
automatically. That is a long standing question in the hierarchical reinforce-
ment learning [22, 23, 24]. A recent work presents a method of learning the
options’ internal policies along with the terminating conditions and also the
agent’s policy-over-options in an end to and manner, using policy gradient
methods [25]. Two contemporary approaches to solving this problem of auto-
matic discovery are presented in detail in the following sections.

2.2 Strategic Attentive Writer

Strategic Attentive Writer is a method published in 2017, by Vezhnevets et
al. [8]. The options approach has proven in the past that macro-actions can
be very useful abstractions. A macro-action is a relaxation of option, simply
a sequence of elementary actions. This naturally raises a question of how
to discover macro-actions that are useful in terms of achieving return. The

25

2. Related Work

past approaches relied on hand engineered options, while the modern efforts
strive to learn those. A significant obstacle is posed by the fact that it is not
clear of how many elementary actions a macro-action should be composed.
Vezhnevets et al. propose a new deep recurrent neural network architecture
that attempts to solve this problem.

The central idea is that the model is creating (using differentiable at-
tention) and maintaining an explicit multi-step action and commitment-plan.
While the action-plan decides what the agent’s policy looks like, the commitment-
plan decides when does the action-plan gets re-planned. This let’s the model
discover useful macro-actions of varying lengths, where hypothetically a single
macro-action corresponds to a plan segment executed between two re-planning
steps. The attention read and write methods used for plan creation are based
on [26].

2.2.1 The Model

STRAW is a deep recurrent neural network. It can be broken down to 3 mod-
ules. A feature detector that learns useful spatial abstractions, an action-plan
module which takes the feature representation from the feature detector and
turns it into a plan (during the re-planning steps) and finally a commitment-
plan module which produces a plan that decides the re-planning steps.

2.2.1.1 State of the Network

The action-plan and the commitment-plan are maintained in matrices At ∈
R(A+1)×T and ct ∈ (0, 1)1×T , respectively. A is a number of possible actions
and T is a maximum planning horizon (a hyper-parameter). The reason why
the action-plan matrix has A + 1 rows is that the value function estimate
is also planned ahead, therefore, simply a row to the matrix is added. The
elements Ata,τ for a = 1, 2, 3, . . . , A are proportional to the probability of
selecting the action a at time t+ τ (in fact, the policy of the model is softmax
of the first column, πt = SoftMax(At1:A,1)). Once again, the elements AtA+1,τ

represent the value function estimate at time t+ τ . The commitment-plan is
used to trigger the re-planning steps as follows, qt is a binary random variable
sampled from Bernoulli distribution qt ∼ ct−11 (Pr(qt = 1) = ct−11). In re-
planning steps qt = 1 and in commitment steps qt = 0. take note that the
values in the commitment-plan are always positive and less than one, therefore
valid probability values (note: in the original paper [8], the random variable
is denoted by gt, here we use a different letter to avoid collision and confusion,
as the letter g is also present in the second paper studied by this work where
it refers to goals).

With this in mind, we can define a macro-action as a sequence of actions
at1 , at1+1, at1+2, . . . , at2−1, where qt1 = qt2 = 1 and qt′ = 0 for t1 < t′ < t2.
Naturally, the plans are not stationary, they are rolled in each time-step using

26

2.2. Strategic Attentive Writer

the roll operator ρ : Rm×n → Rm×n, it takes a matrix and shifts it to the left,
dropping the first column and padding with zeros on the right. We can illus-
trate it as ρ(M) =

[
M•,2:n 0

]
, where 0 ∈ Rm is a column vector of zeros that

is concatenated behind the shifted matrix to retain its original dimensions.
This operator is applied both to the action-plan and the commitment-plan.
When qt = 1, re-planning occurs.

2.2.1.2 Attentive Planning

We have made clear that the network re-plans only in some of the steps.
An important part of the design is that there are no typical recurrent units
in the network, the only temporal dependence is through the matrices At

and ct. Therefore, when qt = 1 the network has only so much available
information. It reads out a part of the action-plan (using attention filters
that are described below) and it has the current input observation available.
Therefore, we have to assume that the current observation contains sufficient
information to generate a useful plan for the several next steps. Because the
network also has control over the re-planning horizon, it is safe to assume
that. If it doesn’t hold, the network inevitably receives punishment and has
the opportunity to adjust and identify that the commitment horizons should
shorten. It can even re-plan right in the next step, emulating the behavior of
a typical feedforward or recurrent network.

The attention is realized using arrays of Gaussian filters. It is used in
the form of two basic functions, read and write. The read operation takes an
input matrix (in this case the action-plan At) and parameters for the Gaussian
array, and returns a patch that correspond to readout from the matrix using
the array. Analogously works the write function, it also takes a matrix and
the parameters but also a write patch and this time it uses the parameters
to write the patch into the matrix and return it. The inspiration for this
approach comes from [26], where the authors use 2D Gaussian arrays in order
to iteratively generate images. Here, the arrays are defined only over the
temporal dimension (over columns in At, ct), therefore could be regarded as
1D. However, we apply the same operation to all the rows alike, so the whole
matrix is involved.

Let K be the number of filters in the array for the read, write operations
on the matrix At, it can be seen as the temporal resolution of the patch.
The filter array is defined by three parameters, the array mean µ, the filter’s
variance σ2 and the filter’s stride δ (the filters are spaced uniformly).

The mean of a specific filter i can be expressed as,

µi = µ+ (i−K/2− 0.5)δ (2.1)

27

2. Related Work

The filterbank matrix for the single dimension F ∈ RK×T is,

Fi,a =
1

Zi
exp

(
− (a− µi)2

2σ2

)
(2.2)

Zi =
T∑
a=1

exp

(
− (a− µi)2

2σ2

)
(2.3)

Where i is the index of given filter and a is the temporal index in our matrices.
Z is a normalization constant that ensures that

∑T
a=1 Fi,a = 1. For matrix

M ∈ Rm×T and array parameters ψ = (µ, σ2, δ), the read operation can be
then written as,

read(M,ψ) = MF T (2.4)

Clearly, the resulting matrix will have shape m×K which means that we have
used the K filters we have to read K values for each row separately. Each
filter can therefore be seen as a single pixel in the resulting patch, and each
filter is identically applied to each row.

For a write patch P ∈ Rm×K , the write operation is then,

write(M,P, ψ) = M + PF (2.5)

The resulting matrix has shape m × T which is correct if we want to use it
to update the matrix M (notice that F is not transposed for write like it is
for read). A key point here is that both of the read and write operations are
fully differentiable, the parameters are generated using a linear densely con-
nected layer (the details are in the next chapter) and the policy is extracted
exclusively on the matrix At (which is modified only using the write opera-
tion). That means, that the write operation has to be differentiable w.r.t. the
parameters of the model.

In the model, two sets of parameters are generated, ψAt and ψct , using the
linear embeddings fψ and f c, respectively, that take some vector on input.
The former for the read and write on the action-plan and the latter for the
write on the commitment-plan. Those parameters are obviously needed only
in the re-planning steps (where qt = 1). Take note, that the Gaussian filter
array ψAt for the action-plan has K Gaussian filters, while the array for the
commitment-plan has only a single filter (we want to define a single point
in the future where new plans are produced, the commitment-plan will get
re-written so there is no point in using multiple filters).

2.2.1.3 The Plan Updates

The action-plan is updated using the following algorithm.
In Algorithm 7, the function h represents an embedding of two hidden

layers (64 units each), fA is a linear embedding that produces the write patch

28

2.2. Strategic Attentive Writer

Algorithm 7 Strategic Attentive Writer, Plans Update, source:[8],

Input: zt, A
t−1, ct−1

Output: At, ct, at, vt

1: qt ∼ ct−11

2: if qt = 1 then
3: Compute attention parameters ψA = fψ(zt)
4: Attentively read the current action-plan βt = read(At−1, ψAt)
5: Compute intermediate representation ξt = h([βt, zt])
6: Update At = ρ(At−1) + qt · write(fA(ξt), ψ

A
t)s

7: Compute attention parameters ψc = f c([ψAt , ξt])
8: Update ct = Sigmoid(b̂+ write(e, ψc))
9: else . qt = 0

10: Update At = ρ(At−1) . Only roll the plans
11: Update ct = ρ(ct−1)

12: Sample an action at ∼ SoftMax(At0:A,0)

13: vt = Att+1

when re-planning, b̂ ∈ RT is a vector filled with a shared learnable bias b ∈ R
that provides a prior of sorts for the re-planning probability (especially for re-
planning in a step earlier than defined by ψc). e ∈ R1×1 is a constant (chosen
by authors as 40), that represents the write patch for the commitment plan.
The reason for using a constant is simple, we want to define a certain sure
horizon in which the re-planning will happen for sure. Notice, that we are
using the Sigmoid function, so providing a sufficiently large constant will
result in a value very close to 1 at the mean of the filter (the bias b is usually
small) which is equivalent to ensuring re-planning at some future step. Notice
that we are sampling qt from the commitment plan from the previous step.
This makes sense, as the element ct−11 would become ct0 if we just rolled the
plan (it is natural to sample the first value as we do the same thing with the
actions and the value function). But it’s necessary to realize, that when we
are re-planning, the commitment-plan is completely overwritten, therefore, we
sample according to what would become the first element in the commitment-
plan in this time-step.

An important feature of this model is that in the commitment steps there
is no need to execute the policy network. We are not re-planning, therefore, it
is not necessary to compute any of the values of the network in those steps. We
only need to roll the plans one step forward and that can easily be done with-
out engaging with the model itself. This saves computation. This feature is
implemented using the multiplicative gate qt. Because qt is a random variable,
we wouldn’t be able to pass gradient through it, therefore we approximate the
gradient as ∇qt ≡ ∇ct−11 .

29

2. Related Work

Also, for stability of the learning, no gradient is passed from the commit-
ment module to the planning module through ψAt and ξt

2.2.1.4 Structured Exploration

Finding ways of ensuring consistent and meaningful exploration of the state
space during training is one of the key topics of today’s reinforcement learning.
Aside from the commonly used entropy regularization (It has been shown to
be closely related and similar to the ε-greedy exploration in Q-learning [27]),
STRAW introduces a novel approach to exploration using methods used in
Variational Auto-Encoders [28]. Instead of connecting directly the feature
vector output from the feature detector (vector zt) to the planning module, it
introduces a noisy communication channel. The vector zt is fed into a linear
embedding that regresses the parameters of a multivariate normal distribution,
specifically the means µt = µt1, µ

t
2, . . . , µ

t
n and a single σt. The distribution is

then given as N(µt, σtIn). n is the exploration dimension, take note, that we
regress individual mean µti for each dimension, but the σt is shared.

In each time-step t and for the feature vector ẑt produced by the fea-
ture detector (when not using structured exploration zt = ẑt), we regress the
parameters µt, σt and sample the actual feature vector as zt ∼ N(µ, σIn).

The reason, why this produces structured exploration is following, each
plan can be interpreted as a single macro-action, between the re-planning
steps, the agent carries on with the plan it already has. Therefore, if we
randomize slightly the feature vector zt, the neural network will have a slightly
skewed idea of the environment state and it will produce an action-plan (a
macro-action) that does not completely correspond to the actual observation
but is randomized. However, the plan produced from the noisy information
is going to be carried out for several steps, therefore, the agent is forced
to experience the outcome of this semi-exploratory step. We are using the
macro-actions to meaningfully explore the environment, therefore we can call
this structured exploration.

The vanilla exploration schemes (such as ε-greedy and entropy regulariza-
tion) do not usually have this property, as the the agent can make a correcting
step in the next step.

The parameters of the Gaussian are shaped using KL divergence. The
prior distribution was selected as N(0, 1), obviously with the same number of
dimensions as n. The KL divergence of two normal distributions is,

DKL(N0||N1) =
1

2

(
tr(Σ−11 Σ0) + (µ1 − µ0)TΣ−11 − n+ ln

(det(Σ1)

det(Σ0)

))
(2.6)

In our case N1 = N(0, 1), and Σ0 = σtI. That simplifies the general equation

30

2.3. Training

as follows (we omit the index t from µt, σt for simplicity),

DKL(N(µ, σ)||N(0, 1)) =
1

2

(
nσ2 + (−µ)T (−µ)− ln(σ2n)

)
(2.7)

=
1

2

(
nσ2 − n lnσ2 +

n∑
i=1

µi

)
(2.8)

In order to pass gradient through the noise embedding, we utilize so called
re-parametrization trick where instead of sampling our distribution directly,
we sample a proxy distribution and use it in such a way that our output is
identical to if we sampled N(µt, σt). Let e ∈ Rn be a vector with values
sampled from e ∼ N(0, 1). Then,

zt = µt + e · σt (2.9)

is equivalent to,

zt ∼ N(µt, σ) (2.10)

But with the difference that 2.9 is differentiable w.r.t. θ.
For the rest of this work we will call the noise embedding a noise layer.

2.3 Training

In order to train the whole model, we have to construct a loss function that will
represent the objective we are trying to achieve. The authors have designed
the loss function to be as follows,

Jt = Jout(At) + 1gt · αKL
(
N(µt, σt) ||N(0, 1)

)
+ λct−11 (2.11)

Jout = lnπ(at|xt; θ)Ãt +
1

2
Ã2
t + βπ(at|xt; θ) lnπ(at|xt)) (2.12)

Ãt = Gt − v(xt; θ) (2.13)

Where Ãt is the advantage function, Jout is the standard loss function for
advantage actor critic, α is the coefficient of the KL divergence loss, and
λct−11 is a term that penalizes re-planning (if this term wasn’t present, the
model would have zero incentive to produce longer plans, it would converge
to re-planning in every step which would be counterproductive) with the λ as
a coefficient.

The training is done using the A3C [15] algorithm.

2.4 FeUdal Networks

The central model studied in this work is called FeUdal Networks (FuN) [2].
It is a hierarchical deep reinforcement learning model.

31

2. Related Work

2.4.1 Feudal Reinforcement Learning

Feudal Reinforcement Learning is a work of Dayan and Hinton, 1993 [20],
that is the main inspiration for FeUdal Networks. The driving idea is that it
is meaningful to use hierarchy in policy in order to solve most of the problems
that we are interested in solving with reinforcement learning. Dayan and
Hinton introduced a hierarchy of managers, where each manager has a single
super-manager and several sub-managers. Only the managers at the lowest
level act directly upon the environment. All the managers above select actions
too, but they are appointed to their sub-managers in order to be carried out.
Thus each such manager has two points of decision; which action to carry out
and which sub-manager will be appointed.

The core philosophy of the paper is feudal control. Each manager has
absolute control over all the sub-managers and can punish them or reward
them as it seems fit. Also, each manager is accountable to its own super-
manager. These principles are promoted by reward hiding and information
hiding. In reward hiding, each sub-manager receives a reward for achieving
goals set by its manager despite of the goals of the manger. So if sub-manager
achieves its sub-goal but it doesn’t help the manager in achieving the goal set
by its super-manager, it still receives reward. On the other hand, if a sub-
manager fails to reach its sub-goal but it helps the manager satisfy its goal, it
still receives negative reward. In information hiding, each manager observes
the environment only at the granularity scale at which it operates.

In practice they demonstrated the above principles in a simple 2D maze
environment. The hierarchical division is created by repeated division to four
parts. There is one highest-level manager that has 4 sub-managers, each man-
aging one quarter of the maze. Each of those managers has 4 sub-managers,
each minding its own sixteenth of the maze and so on, and so forth.

In the model studied here (FuN), the hierarchy is between a manager and
a worker, where manager sets goals for the worker and the worker is in turn
rewarded if it’s able to fulfill the goals. The manager evolves an internal
representation of the environment and the goals take shape of directions in
the space of the internal representations (a latent state space). To maintain
the separation between manager and worker, the gradient doesn’t flow from
the worker to the manager directly but rather the manager is trained using an
extension of the policy gradient theorem where its goals are treated as actions.
Furthermore, the worker maintains several sub-policies and when it receives
a goal from manager, it turns it into weights for the sub-policies. Those are
then combined and the resulting policy is fed through a SoftMax layer.

2.4.2 The Model

The neural network comprises of three main parts: feature detector, worker
and manager.

32

2.4. FeUdal Networks

Feature detector receives the observation from the environment xt and
turns it into a feature representation vector zt. In our case it is always going
to be a 2-layer convolutional neural network because it is the suitable choice
for all of the tested environments.

The worker uses a recurrent neural network (RNN), namely Long Short-
Term Memory (LSTM) [1], to transform zt into a policy matrix Ut ∈ R|a|×k
that represents k different sub-policies. It also receives a pool of recent goal
vectors gt from the manager. It then transforms the goal vectors using a linear
embedding into a weight vector wt ∈ Rk×1 which assigns weight to each policy
in Ut. Naturally, the worker’s policy is then proportional to Utwt.

Figure 2.1: FeUdal Networks scheme, source: [2].

The manager first takes zt and through a non-linearity layer produces man-
ager’s internal feature vector, sMt it is then passed through a dilated LSTM
(dLSTM) layer. dLSTM is a new design of LSTM that lowers the time gran-
ularity at which the manager operates. This lets the manager focus more
on the big picture and improves long term credit assignment. The details of
the dLSTM architecture are explained below. However, it produces a nor-
malized goal vector gt, that is then pooled with other goal vectors. A key
design decision is that no gradient flows through any of the goal vectors. The
goals are assigned semantic value as directions in the manager’s latent state
space. This leads us to an important constant for the model, c, it defines the
time horizon for the direction of a given goal. So goal gt is then considered
fulfilled if gt = sMt+c − sMt , the measure of goal fulfillment was selected as
dcos(gt, s

M
t+c − sMt) (which scores the similarity of the two vectors in a natural

way), where dcos(α, β) = αTβ/(||α|| ||β||). The worker is rewarded or punished
in every step based on its ability to fulfill the goals of the manager. Keep in
mind that the latent state space representation evolves through time as well,

33

2. Related Work

that’s why it’s crucial to sever the gradient flow from worker to manager be-
cause otherwise we would be only left with a homogeneous model where no
meaning could be assigned. The manager is then trained using a modified
version of the policy gradient. It assumes the goals as actions.

The whole scheme can be described by following formulas (sourced from
[2]):

zt = fpercept(xt) (2.14)

sMt = fMspace(zt) (2.15)

hMt , ĝt = fMrnn(sMt , h
M
t−1) (2.16)

gt = ĝt/||ĝt|| (2.17)

wt = ϕ(
t∑

i=t−c
gi) (2.18)

hWt , Ut = fMrnn(zt, h
W
t−1) (2.19)

πt = SoftMax(Utwt) (2.20)

Where hMt , h
W
t are the hidden states of the dLSTM and LSTM layers re-

spectively. fMrnn represents the dLSTM layer, fWrnn represents the worker’s
LSTM layer. ϕ is the learned linear embedding. fpercept is the feature detector
and fMspace is the transformation into the manager’s latent state space. The
function names correspond to the Figure2.1.

2.4.2.1 Goal Embedding

The worker produces as its output a policy matrix Ut that is then multiplica-
tively turned into a singular policy. The weight vector wt is produced using
linear embedding ϕ, without biases. Because ϕ has no biases, the embedding
can never produce a constant non-zero vector. The consequence of this is that
the worker can never fully ignore the manager’s output (if the weight vector
were always close to zero, no policy could be learned, therefore this situation
is highly unlikely). A noteworthy property of the goals is also that they vary
smoothly, due to the multi-step pooling

2.5 Training

The setting is similar to our already introduced reinforcement learning frame-
work, the agent receives observations and reward xt, rt and makes decisions
based on them with the aim to maximize the discounted reward in the current
state Gt =

∑∞
k=0 γ

krt+k+1. The FuN model was trained using the A3C [15]
algorithm (as well as all the other models used in this work). The algorithm
has to be modified because the manager is trained using a modified version of

34

2.5. Training

the policy gradient theorem (in accordance with the feudal control, manager’s
goals are treated as its actions). Furthermore, the worker receives intrinsic
reward based on its ability to fulfill the manager’s goals (also in accordance
with the feudal control philosophy), however, unlike in Feudal Reinforcement
Learning [2], the worker receives also the regular reward from environment rt,
so this property is weaker than as introduced in the original work.

As we said, the manager is trained using a separate loss function, which is
not common. If we allowed the gradient flow from worker to manager through
gt, we could train the model monolithically using the actions from the worker.
This, however, the manager’s goals would lose any semantic meaning and
would just be a part of the network. Instead, the goal of this paper is to train
the manager independently, that’s why no gradient flows from the worker
through gt. The manager learns to predict directions in its latent state space
where it expects favorable returns, as the training goes on, the latent state
space is adapted over time to be more useful as a representation and in turn,
the manager learns to give better goals to the worker. We can formalize this
into a following rule for the manager,

∇gt = AMt ∇θdcos(st+c − st, gt) (2.21)

Once again, c is the time granularity parameter of the manager. The intrinsic
reward encouraging worker to follow the manager’s direction is computed as,

rIt = 1/c
c∑
i=1

dcos(st − st−i, gt−i) (2.22)

We can see that the intrinsic reward is simply a sum over the horizon of the
manger, looking at the c previous goals, computing how well is the worker
fulfilling the goals that are presently active.

An advantage of the directional nature of the goals lies in the fact that
the worker is not required to understand the absolute nature of the manager’s
latent state space, it only needs to be able to navigate it in terms of direc-
tions, which is supposedly easier to understand to the worker. Another strong
point is that if we use directional goals, the same directional goal may be
useful in many different locations of the state space, e.g. a goal with semantic
meaning evade enemy is useful in any position of the environment where the
enemy is encountered. Therefore it helps the generality of the model and its
components.

For the worker, the gradient is similar to what we have seen so far,

∇πt = AWt ∇θ lnπ(at|xt; θ) (2.23)

35

2. Related Work

2.5.1 Loss Function

The resulting loss function for the worker can be formalized as follows,

JWt = AWt lnπ(at|xt; θ) +
1

2
(AWt)2 + βπ(at|xt; θ) lnπ(at|xt; θ) (2.24)

AWt = Gt + αGIt − vW (xt; θ) (2.25)

GIt =
∞∑
k=0

γkW r
I
t+k+1 (2.26)

Gt =
∞∑
k=0

γkMr
I
t+k+1 (2.27)

Where GIt is the intrinsic return and α is the coefficient that decides how much
is the worker focused on maximizing the internal reward as opposed to the
regular environmental reward.

For the manager, the loss function is,

JMt = AMt dcos(st+c − st, gt) +
1

2
(AMt)2 (2.28)

AMt = Gt − vM (xt; θ) (2.29)

2.5.2 Architecture

The feature detector is dependent upon the environment, fMspace is 256 units
big hidden layer with ReLU nonlinearity. fWrnn is a 256 units LSTM recurrent
layer and fMrnn is a 256 units dLSTM layer, k = 16 and c = 10.

2.5.2.1 dLSTM

Another contribution of the FuN paper is a new LSTM architecture. One
that partially alleviates the problem of long term credit assignment by pooling
states over several time-steps. This essentially results in the manager having
a different time resolution than the worker, therefore enabling it to spot more
long term dependencies than with just regular LSTM. The idea of dilation is
based on dilated CNN architecture [29].

The dLSTM layer is in most ways similar to LSTM layer with one ex-
ception, it maintains a pool of hidden states and outputs and updates them
one by one maintaining the others. The parameter that decides the extent of
pooling is called radius and is denoted by r. The whole state of the layer then
consists of a set of hidden states ht = {ĥit}ri=1 (note that in h we include both
the LSTM hidden vectors h and c, as described in the previous sections, using
a single letter simplifies the notation).

At time t, the update rule is as follows,

ĥt%rt , gt = LSTM(st, ĥ
t%r
t−1; θLSTM) (2.30)

36

2.5. Training

Where % denotes the modulo operator. At each time-step one hidden state
is updated. Notice that this way, every state is updated only once every r
time-steps, this means the LSTM essentially operates on a different time scale
to the regular LSTM. Take note that the parameters θLSTM are invariant of
t%r, the parameters are shared for all of the pooled values.

37

Chapter 3

Used Methods

3.1 A2C

In a previous chapter, the A2C algorithm has been introduced. It is a syn-
chronous version of the policy gradient method A3C [15], suitable for evalu-
ation on a single machine with multi-core CPU and a single GPU. Here, we
discuss the implementation details and challenges.

Due to their good affordability and the lowering cost of computation in
general, GPUs have become prevalent in deep learning. Neural network al-
gorithms are implemented in such a way that they take advantage of the
massively parallel architecture which leads to a significant speedup compared
to even optimized CPU implementations. That is also what we use in this
work, particularly a general computation framework called TensorFlow (TF).

All the methods studied in this work were trained using the A2C algorithm,
so the implementation developed here is general.

If we have a recurrent model, probably the easiest and most efficient way to
handle backpropagation through time and also the monte-carlo evaluations of
the policy, is to maintain two separate TensorFlow graphs that share parame-
ters. For a recurrent model that can be unrolled, if we consider the recurrent
connections simply as additional inputs, only feed-forward graph remains, let
us call it a single graph layer. In the monte-carlo evaluation, only a sin-
gle graph layer is sufficient for computation. We do not do backpropagation,
therefore, we can maintain all the previous hidden states in a variable on RAM
and feed it to the graph in every step. This is an efficient way to do it, as our
graph is relatively small. For the training phase, we need an unrolled graph
with more than one graph layer. The number of graph layers determines how
many steps into the past is the backpropagation through time going to run.
Therefore, if we want to do backpropagation with 20 steps into the past, we
would construct a graph with 20 graph layers. A convenient way to do this is to
prepare a function for each model, that simply takes as an input all the input
tensors and hidden variables from previous step, and outputs all the output

39

3. Used Methods

tensors and all the hidden variables for the next step. This way, constructing a
graph with arbitrary many graph layers is quite straightforward. However, one
still has to be cautious because writing the code is very prone to errors, such
as off-by-one errors and invalid handling of boundary conditions for initial hid-
den states, first and last graph layers. The loss function is then built upon the
outputs of the last graph layer, which represents the current time-step. When
training, the gradient is propagated through the unrolled graph and because
all the parameters are shared, the gradient accumulates at each parameter.

3.1.1 RMSProp

The optimizer used for training in all the experiments in this work was RM-
SProp [30] which is a first order method with first order momentum that is
widely used because it strikes a good balance between speed of convergence,
computation demands and memory demands. For each parameter θi we main-
tain a momentum variable MeanSquare(θi, t) at time-step t, with following
update rule,

MeanSquare(θi, t)← 0.95MeanSquare(θi, t− 1) + 0.05
∂J

∂θi
(3.1)

The learning rate is then modified using an inverse square root of theMeanSquare
value as follows,

θi ← θi −
α√

MeanSquare(θi, t) + ε
(3.2)

Where α is the selected global learning rate and ε is a small positive constant
that serves both to prevent division by zero and also to bias the effective
learning rate essentially giving it a ceiling, because the denominator can only
get so small. A value used here was ε = 10−5. The update rule implies that if
the gradients are consistently bigger, the learning rate is going to be reduced
whereas when the gradients are getting smaller, the learning rate is increased.

It is fast enough because it is a first order method, it has good convergence
in practice because of individual learning rates for each parameter but that
also implies the requirement of an additional variable per graph parameter
(still, some other methods require two additional variables). However, the
additional variables are required only during training, in deployment, only
the model parameters are required.

3.1.2 Episode handling

One of the crucial aspects of the A2C implementation is the way episodes and
their sizes are handled. A concept that is fixed for all the variants is that we
run multiple agents at once. This takes advantage of the GPU architectures,

40

3.1. A2C

which run code in 32-thread quanta called warps. So if we use 32 agents, we
can expect the evaluation time on GPU (for the monte-carlo part, not the
training) be a lot shorter than run time for a single agent repeated 32 times.

3.1.2.1 Variable Batch Size

First variant we present is having a fixed number of agents and running each
agent from start to the terminal state. Then we take all the eligibility traces
created this way (eligibility trace is a history of the agent’s way through the
environment in a single episode, i.e. a sequence of observations, actions and
rewards) and construct a single batch from them. Then we train the network
on this batch. Because the episodes vary in length, each batch is going to
have a different size. If we assume, that for a given batch size, the gradient
has some fixed variance, during the training, the gradient estimates are going
to have different variances.

Let us discuss two cases of environments, one in which if the agent doesn’t
have a proper policy, the episode is likely to end soon (e.g. the CartPole
environment, if the agent’s control is not good enough, the pole is going to
fall very soon and the episode terminates) and the second in which if the
agent doesn’t have a good policy, the episodes are going to be drawn out
until the episode time-step limit and the episode is terminated (e.g. a maze
environment, where each episode has a maximum number of steps and if the
agent doesn’t reach the goal fast enough, it automatically terminates).

In the first type, the batches are at first going to be small and get larger,
as the agent’s policy gets better, because the episodes are getting longer and
longer. In the second type, the batches are large at first and get smaller as
the agent learns to reach the goal faster, thus the episodes are getting shorter.

Now, first disadvantage of the described approach is that it behaves dif-
ferently under different environment types (in terms of the gradient estimate
variance). Furthermore, we measure and compare the temporal progress of
training using the number of processed samples, in other words, the number of
steps in the environment all the agents made in all of the episodes, and for this
method, the number of batches during training does not linearly correspond
to the number of batches. In fact it is not at all obvious, how those two values
correspond to each other, as the evolution of the batch size depends on the
environment that is being run. But in the end, what we are interested in is
the sample efficiency, not the batch efficiency. We want to know, how many
iterations of the environment simulation had to be run, in order to train a
given model. Another disadvantage is that we are updating the parameters
with a fixed learning rate while the variance of the estimates varies. This is
quite unpredictable as the notion of learning rate is tightly connected to the
gradient variance. In effect, when we are using large batch size, the variance
of our gradient estimate is going to be smaller than when using a small batch
size. This means that when we arrive at some estimate of the gradient, our

41

3. Used Methods

confidence in it being close to the true gradient depends on the batch size and
in a way, based on this expected variance, we choose our learning rate (this is
not very true in practice, as the learning rate is being often chosen manually,
based on what works well, or is sampled from some distribution with limited
range of values and the experiments are repeated with different learning rates).
Therefore, it is not really possible to meaningfully reason about the choice of
our learning rate, independently of the environment and the model that we
use. That’s why this method is not really optimal.

3.1.2.2 Variable Batch Size with Learning Rate Scaling

A naive way of trying the solve the problem of connection between batch
size and learning rate, while still executing full episodes with each agent is to
change the learning rate based on the batch size. This would reflect our belief
about the connection of selecting appropriate learning rate for given gradient
estimate variance. The most simple way would be to reason as follows, we
select a batch size and a learning rate that we expect to perform well if we had
batches of given fixed size, then if we receive a batch that has size differing
from our prior batch size, we compute the ratio of the real and prior batch
size and then scale the learning rate accordingly. Let bp be the prior batch
size, b be the batch size of the actual batch and α the learning rate. Then the
update rule can be expressed as,

θ ← θ − b

bp
α∇θJ (3.3)

This makes sense in theory but might be troublesome as the relationship
between the gradient variance based on batch size and the optimal learning
rate is probably not linear and also depends on the task that is currently being
learned. Varying the learning rate too much might destabilize the process of
training. In order to dampen this effect, we propose raising the coefficient to
the scaling power 0 < s < 1 which will bring the coefficient values closer to 1.

θ ← θ −
(b
bp

)s
α∇θJ (3.4)

However, this method still suffers from all the other problems mentioned in
the previous method. The number of processed samples still doesn’t really
correspond to the number of processed batches, or in other terms, the number
of performed parameter updates.

One more problem of both mentioned methods is in computational effi-
ciency. When we start a new episode for all the agents, let’s say we have 32 of
them, we are fully using the parallelism of the GPU, however, as the episodes
progress, some of the agents begin terminating, therefore we send to the GPU
more and more requests with fewer agents. That lowers the overall efficiency
of the training.

42

3.1. A2C

3.1.2.3 Fixed Batch Size

The solution to all the above problems is to fix the batch size. Let’s say we
run 16 agents and we set the batch size to 320. That means that each agent
will contribute to the batch with exactly 20 samples, which corresponds to 20
steps in the environment. So in each time-step, we always evaluate the action
of all the agents, therefore utilizing the full bandwidth of our GPU model.
Though, we have the additional implementation complexity of handling the
ends of episodes and providing correct hidden states on the input.

In the previous two cases, the model always started from its initial state
(we are talking about the initial hidden state of a recurrent architecture) and
ended in a terminal state. In this case it gets more complicated, because the
batch can be full mid-episode (in fact it is very likely that most of the agents
will be somewhere in the middle of their episode after taking the 20 steps),
therefore, when evaluating the agents for the next batch, the last hidden state
from the previous batch has to be saved and used as an input to the next
batch. Second complication arises from the fact that agents are likely to end
their episodes mid-batch, e.g. after only 10 steps. In the previous cases, we
would have terminated the agent and continued with the rest but here we want
to have a constant batch size. What we do is simply save the information that
the episode was terminated, compute the expected return estimate from our
value function when the final state is not terminal and then initialize all the
hidden states of the model for the next episode.

Even though all the mentioned methods are valid (they are all using correct
gradient estimation and all are on-policy), some of them are more fit for
application than others. Namely, the last introduced method is the best one
to use as it has consistent batch size and thus removes unpredictable factors.
Also, one might think that partitioning the episodes into fixed chunks may
reduce the speed of convergence (as we are using recurrent architectures and
cutting the episode in half means that the gradient cannot be propagated
through the first part of the episode that was performed using the previous
policy).

In the evaluation chapter, we will present results of experiments with the
three approaches introduced here and compare their convergence on a stan-
dard benchmark, the CartPole environment.

3.1.2.4 The On-Policy Pitfall

A notion that was not entirely clear when the author was implementing the
A2C algorithm for the first time was the concept of on-policy and off-policy
algorithms. The first implementation was running all the agents at the same
time, in that it was similar to the fixed batch size approach but it collected
the agent’s samples for training only once their episode was terminated. The
agent immediately continued with next episode, therefore all the agents ran

43

3. Used Methods

at the same time, saving computation. Once enough samples were collected
(understand more than the batch size) a batch was constructed with constant
size, and the extra samples were offloaded to another batch that was ready
for the next round of training. There are 2 problems that make this approach
fundamentally incorrect.

First of all, once the batch was filled, the agents that contributed to it
early were already in the middle of their next episode which means that once
the batch was trained, the agents all of a sudden ran a different policy than in
the first part of the episode. This means that the eligibility trace that would
be generated for the next batch, was started with the previous policy and at
some point continued with the current one. That means that the gradients
computed from such eligibility trace are mathematically invalid as the trace
was generated using a different policy than the one that we are trying to
optimize. This approach was modified into the first method that doesn’t fix
the batch size and always waits for all the agents to finish the episode to train
and then start another one.

Second of all, the samples that overflew the first batch remained in the
batch for the next policy but the same logic follows. It was the previous policy
that generated these samples, therefore it is incorrect to try to estimate the
gradient of the current using the samples of the previous policy.

This boils down to a concept of on-policy and off-policy algorithms. The
former refers to algorithms that are only able to optimize a policy using eli-
gibility traces generated by it (this is the case for A3C and A2C). The latter
refers to algorithms that are able to update their policy also using experience
from other policies (e.g. Q-learning).

Even though one would expect, that using only a one-train-batch-old traces
would have only a small impact and that the model would learn the task in the
end, even if more slowly, the reality was different. The incorrect model failed
to converge on any of the slightly non-trivial tasks. That is a useful lesson to
remember when implementing the reinforcement learning algorithms. Even
though some of the algorithms can be realized in multiple possible ways, it is
crucial to be sure that the algorithm is still mathematically valid. This mistake
was not obvious to the author at all, as his experience with implementing
reinforcement learning algorithms was small prior to this work and it took
almost 2 months to realize this and fix it.

3.2 Strategic Attentive Writer

One of the goals of this work was successfully re-implementing the Strategic
Attentive Writer [8] method. Here we discuss some specific details.

As mentioned in the first chapter, the model creates multi-step plans using
arrays of Gaussian filters. The array has three parameters, µ, σ2 and δ, which
correspond to the mean of the array, the variance of each filter and the stride.

44

3.2. Strategic Attentive Writer

The filters are spaced equally, according to δ, therefore, µ is the only locating
parameter we need.

3.2.1 Action-Plan

The parameters for the action-plan array, which uses 10 Gaussian filters, are
regressed from a linear embedding and are assumed to be generated in the
form of (µ̃, lnσ2, ln δ), value of µ is then obtained as,

µ =
K

2
(µ̃+ 1) (3.5)

The reason, why the parameters are not regressed directly lies in the fact, that
we want to have a meaningful initial functionality (also, σ and δ have to be
positive). Because the values are regressed from values of a linear layer, due
to zero-symmetric initialization (the symmetry is present in virtually all used
initialization methods), the expected value of each output initially is zero.
Therefore, the initial expectation for values δ and σ is 1, which results in a
well-behaved configuration. Furthermore, if µ was used directly, mass of the
half of the filters would lie outside of the action-plan (left from the zeroth
element). Therefore, we compute it in such a way that its initial expectation
is half the filter count (K is the number of Gaussian filters in an array). This
results in a desirable initial behavior because we are writing into the first 10
steps of the plan with each filter approximately covering one step (because of
unit stride and unit variance).

3.2.2 Commitment-Plan

Because the commitment-plan uses only a single Gaussian filter to write (we
want to specify a single horizon for re-planning since the commitment-plan
gets re-written completely during the re-planning steps, unlike the action-
plan), we need only two parameters, µ and σ2. The parameters are once
again regressed from a linear layer in the form (µ̃, lnσ2). What differs is the
way we compute the mean,

µ = 20 · Sigmoid(µ̃) (3.6)

There are multiple reasons for this difference. Firstly, it is absolutely crucial
that the µ is positive because otherwise the single Gaussian filter lies out-
side of the commitment plan and even though the values are normalized, it
still results in a very long re-planning horizon (potentially forever). Secondly,
giving the re-planning horizon an upper bound serves the method well too,
because we avoid unreasonably long plans (it is unlikely that the model would
learn to utilize meaningfully such long plans). Another important reason is
once again the initial expectation. The initial expected re-planning horizon is
10 steps which fits really well with the above initial conditions for the action

45

3. Used Methods

plan (which initially will be 10 steps long). What those three reasons have in
common is that they greatly increase the stability of the model. Author of this
work has spent a great deal of time implementing, modifying and debugging
the STRAW algorithm with little to no luck. The model was simply too unsta-
ble, sometimes it would behave well but most of the time the behavior would
be pathological. Luckily, the authors of the STRAW paper were contacted
and they provided some crucial details into their original implementation (es-
pecially the above expression with the sigmoid) which were not mentioned in
their original paper. Without these specific details, the author of this work
would fail to successfully implement the STRAW method despite working on
it fully for several months.

3.3 FeUdal Networks

Another goal of this work was to take some state-of-the-art methods and
attempt to improve them. The structured exploration in the STRAW model
is a really interesting feature that helps to solve one of the toughest problems
in reinforcement learning (at least for the STRAW model).

The central effort of this work was to use similar noise injection to aid the
structured exploration in the FeUdal Networks model. In the STRAW model,
there are two main modules, the feature detector and the planning module.
The noise layer is inserted between them. In the FeUdal Networks, we have
three modules, the feature detector, the manager and the worker. In addition
to obvious connection flow from the feature detector to the manager and from
the feature detector to the worker, there is also a connection between the
manager and the worker. This gives us three possible locations to put the
noise layer in. Furthermore, we can also apply the noise layer to the feature
detector output directly, affecting both the manager and the worker, that
results in four options.

In the end, all of those could not be tested (due to heavy computational
demands of this research area) so the author has selected to properly evaluate
the option of injecting the noise layer before the manager compared against
not using the noise layer at all.

The theoretical rationale why it makes sense to put the noise layer right
before the manager is following, let us consider a simple LSTM model with
some feature detector and a single hidden LSTM layer and an output layer
that produces an action and a value function estimate. The question is, does
it make sense, in terms of aiding meaningful exploration, to put the noise
layer between the feature detector and the hidden layer? The answer in this
case would be no, because the model has a chance to counteract the noisy
information from the last step in the next one (technically, its internal state is
influenced by the noise and experiences the results of the noisy information,
but there is no structure to this exploration, the agent doesn’t utilize any

46

3.3. FeUdal Networks

macro-actions to explore, or if it does internally, it is very weak and cannot be
assigned semantically like in the more structured models, STRAW and FuN).
Same goes for why the common exploration means are not sufficient (namely ε-
greedy and entropy regularization), they influence the model only very locally
(in terms of exploring new states) and if it makes a random step, it can trace
back in the next step and continue in its regular policy. On the other hand, the
noise layer makes sense in the STRAW model as the model is re-planning only
every couple steps and is forced to experience the outcome of the macro-action
produced based on information that is slightly off. So the crucial element is
whether the model is forced or not to experience some states in the future that
are based on some noisy information from the past. That’s where the manager
in FeUdal Networks fits in. It uses the novel dLSTM architecture to operate
over longer time spans, the dLSTM pools several hidden states and updates
only one of them in each step, that way it enables credit assignment over
really long time spans. Precisely because the states and goals are pooled over
multiple steps, we can use the structured exploration scheme. If we insert the
noise layer right before manager input, the manager will receive information
about the environment that are slightly off, therefore it will have a slightly
skewed internal representation (or in other words, an idea about the world)
and based on it it will produce slightly skewed goals. Because those goals are
pooled over multiple steps, the worker will attempt to fulfill those goals based
on slightly misleading information thus forcing the whole model to experience
some novel states. Because the goals are used to regress the weighting wt of
the worker’s policies, skewed goals mean that different sub-policies than usual
are going to be used. This is why this is in fact a structured exploration and
not only noise regularization, because the workers sub-policies are used to
experience the full outcome of a skewed goal, this corresponds to the STRAW
model having to experience its plan that it’s currently committed to.

The empirical rationale is that the author has performed few ablative
experiments that confirmed, that the manager noise option is indeed the most
promising of the four mentioned options and is worth exploring fully.

To train the noise layer we add the KL-divergence term as present in Eqn.
2.12 to the loss function of the agent.

3.3.1 Value Function Estimators

In the original paper, no information is shared about how the authors regressed
the estimate of the value functions for the manager and the worker. The author
of this paper has taken inspiration in a publicly available implementation of
the FeUdal Networks model, where they simply add a hidden ReLU layer after
the manager’s and worker’s last layers and on top a single linear neuron whose
output is the value function estimate.

47

3. Used Methods

3.4 Learning Environments

A crucial aspect of reinforcement learning is the environment in which given
method is tested. There are endless possibilities of environments and many
different ones used in research in practice. The ones worth mentioning the
most are the Arcade Learning environment [31] which are emulations of many
of the Atari 2600 games, DeepMind Control Suite [32] which is a 3D environ-
ment, where the agent controls a body with multiple joints, OpenAI Gym [33]
which is a suite of many various environments suitable for reinforcement learn-
ing and last but not least the DeepMind Lab [34] which is a 3D maze-based
environment with different tasks. All the mentioned projects are bundles of
many environments usable for reinforcement learning research (in fact, the
OpenAI Gym contains implementations of many of the Atari 2600 games).
Each environment has its specifics and likely will fit some agents better than
others. Take as an example two Atari 2600 games, Breakout and Ms. Pac-
Man. Breakout is an environment well fit for a simple reactionary agent and
more complex models might have trouble beating simple feed-forward base-
lines while Ms. Pac-Man requires deeper understanding of the game and
requires planning ahead, a task in which a simple agent might fail while ideal
for some hierarchical methods (example: [8]). Therefore, it is healthy to have
a wide range of environments available, where the agents and algorithms can
be tested and evaluated against each other.

The OpenAI Gym [33] has the added benefit that its Python API is very
straightforward and unified across all the different environments. This means,
that code running a simple reinforcement learning agent in a given environ-
ment can be easily reused for a different environment with minimal overhead.
Furthermore, it is straightforward to implement new environments in the for-
mat they came up with, thus the OpenAI Gym has been used as an interface
for the environments created by the author of this work. This works well,
because all the environments used in this work that were not implemented by
the author are already present in the OpenAI Gym framework. It implements
two simple functions, reset and step, that are used to reset the episode and to
make a step while returning the current observation, reward and information
about whether the encountered state is terminal or not.

3.4.1 GridMaze

One of the aims of this work is to design or select a complex RL environment
that is scalable and allows fast evaluation. In the end two custom environments
are used in this work. GridMaze environment that was used in the Strategic
Attentive Writer [8] and MazeRooms that was designed by the author which
will be discussed in the next section

In the STRAW paper, the authors use a simple grid maze to demonstrate
some properties of their agent. For this reason it was used as the primary

48

3.4. Learning Environments

development and environment for the STRAW agent here.

The maze is given by a grid m × n where both m and n are odd. The
reason for this is that some of the cells cannot have walls placed on them. If
we consider a grid G ∈ {0, 1}m×n, where Gi,j = 0 means there is a wall on i-th
row and in j − th column, while Gi,j = 1 means free space. The boundary is
always made of walls, therefore G•,1 = G•,n = G1,• = Gm,• = 0. Furthermore,
Gi,j = 0, for i = 2k + 1 and j = 2l + 1, k, l ∈ N and Gi,j = 1 for i = 2k and
j = 2l, k, l ∈ N. All the cells not covered with the mentioned conditions may
or may not have walls. However, each free cell has to be reachable from any
other free cell and also, the maze contains no cycles.

The agent has available 4 actions, to move up, down, left and right. The
agent receives a reward of −0.01 for each step to the free cell and −0.02 for
an invalid step to the wall. When it reaches the goal, a reward of 0.01 is
received. The increased punishment for hitting the walls is a slight reward
shaping (injecting domain specific knowledge), however, the environment can
be scaled in such a way to still pose a significant challenge for the agent.

In each episode for each agent a new maze was generated using the Wilson’s
algorithm [35] which has the property of producing all the possible mazes that
satisfy the above conditions with equal probability. The agent observes the
environment fully.

Figure 3.1: An example of a maze in the GridMaze environment, red cell
represents the goal and the blue cell represents the agent’s location.

The environment is scalable (because the maze size can be adjusted) and
can be evaluated rapidly because it is dealing with only small matrices. Also,
it is suitable for testing complex agents as the maze always contains only a
single shortest path and finding it is not straightforward for an agent without
any domain knowledge. Therefore it fits the required criteria.

For the models trained on this environment, the feature detector is a two-
layer convolutional neural network, with 3 × 3 kernels and stride of 1. The
first layer contains 16 kernels and the second 32 layers.

49

3. Used Methods

3.4.2 MazeRooms

One of the goals of this work was to design a new complex reinforcement learn-
ing environment fit for developing and training hierarchical agents, is scalable
and allows for computationally fast evaluation. We introduce a novel maze-
based environment called MazeRooms. The inspiration for this environment
comes from the Atari 2600 game Montezuma’s Revenge. In this game a player
has to walk through different rooms, collect keys, unlock doors and avoid en-
emies. It is considered as one of the toughest environments in reinforcement
learning and to the author’s best knowledge and to this date (May 2018) there
has been no model that would be able to solve this environment in a purely
general manner without some prior domain-specific knowledge inserted into it.
The game is very difficult for agents because one has to understand concept
of keys, doors, enemies and their interaction between different rooms.

Figure 3.2: The starting screen of Montezuma’s Revenge for Atari 2600.

The idea behind the MazeRooms environment is to extract the essence
of the complexity of Montezuma’s Revenge and create an environment that
emulates it in a highly controlled manner. The goal is to have an environment
that can be scaled and fine tuned according to the complexity of the model
we are testing.

The MazeRooms environment is again a 2D maze environment but this
time it is only partially observable. It is defined by a grid of adjacent rooms
that have equal dimensions and corridors between each other. The agent then
doesn’t observe the whole maze but sees only the room it is currently in and
a map of the layout of the rooms. The map is a zoomed out version of the
environment, each cell corresponds to one room and the agent sees which
rooms it can walk through, in which room the agent is and also in which room

50

3.4. Learning Environments

the goal is. Then it has a second map that is local to the room, so it sees the
layout of the room with all the corridors to adjacent rooms and also the goal
if it is placed in the same room as the agent. If the agent enters a corridor, it
is registered as entering the next room.

The rooms themselves can either be empty, contain a fixed number of
randomly generated obstacles or a maze generated by the Wilson’s algorithm
mentioned above. The obstacles are generated in such a way that no unreach-
able spots are created. This makes the learning easier as it eliminates the
cases when the agent would spawn in a part of the maze separate from the
goal. The way it is done is that for each room, a random location is generated
and it is tested if all the free cells are reachable from all the other free cells.
If it is not, new location is generated. This is repeated for a finite number of
times and it is possible that no obstacle is placed.

The agent can move up, down, left and right. The reward scheme is
identical to the previous environment. Therefore −0.01 for a valid step, −0.02
for a step to the wall and 0.01 for reaching the goal.

In order to successfully solve the problem, the agent has to learn that the
map works on another hierarchical level than the view of the room and it has
to be able to integrate information from both levels of abstraction together to
produce an optimal policy. Due to this necessity of aggregating information
from different levels this is a useful environment for testing hierarchical agents.

Because the size of observations is very small, the environment can be eval-
uated rapidly and as mentioned. Furthermore, the environment can contain
any number of rooms of any size, containing mazes, any number of obstacles
or even be empty. Therefore, the environment is scalable according to the
complexity of the agent, thus fulfilling the goal of the work.

For the models trained on this environment, the feature detector is also
a two-layer convolutional neural network, with 3 × 3 kernels and stride of 1.
The first layer contains 16 kernels and the second 32 layers.

3.4.3 Cart Pole

Another environment used in this work is Cart Pole. It is a simple task of
balancing an inverse pendulum on a cart. The environment is 2D, the agent’s
actions are move left and move right, if the pendulum falls over the episode
ends. For each step in which the agent keeps the pendulum from falling over,
the agent receives a reward of 1. Each episode is terminated after 200 steps.

The feature detector for this environment is a single densely connected
layer with 100 units and with ReLU nonlinearity.

3.4.4 Enduro, Atari 2600

The last environment tested in this work is the game Enduro for Atari 2600.
It is an endurance racing game where the player has to try and stay in the race

51

3. Used Methods

Figure 3.3: The MazeRooms environment with 3 obstacles generated in every
room, on the left is the global overview of the whole maze which the agent
doesn’t see. In the top right corner is the agent’s 3 × 3 map, where the gray
cells correspond to existing rooms, white cells to non-existent rooms, red cell
is the room with the goal and the blue cell is the one agent’s in. Below, is the
agent’s local view of the room it is in.

Figure 3.4: The CartPole environment.

52

3.5. Statistical Tests

as long as possible. Time passes in the game and the player has to overtake
200 cars during the first day and 300 cars every other day otherwise the game
ends. All the Atari 2600 games have 5 controls, 4 directional actions from the
joystick and the action button, therefore the agent has 5 actions available. In
the Enduro game the player has to hold the button to accelerate to overtake
other cars but if they crash into a car in front of them, the player’s car loses
speed for short amount of time and has to accelerate again. The player is
rewarded for remaining in the race.

The observations from the environment are scaled down to 1/4 of their
original size and stacked in groups of 4 frames and each agent’s action is
repeated 4 times in the following 4 frames. The reward is clipped between -1
and 1. This setup was used in [36] (except they used slightly different scaling
due to limiting nature of their implementation).

This environment was selected because it was a part of the experimental
evaluation in FeUdal Networks [2] and it was the task that had the largest
difference between the performance of FuN and LSTM baseline. Therefore we
test our modifications of the FuN on it.

The feature detector for the Enduro environment is a convolutional neural
network with 2 layers, first with 16 filters, kernel size 8× 8 and stride 4, and
the second with 32 filters, kernel size 4× 4 and stride 2.

Figure 3.5: The Enduro Atari 2600 environment.

3.5 Statistical Tests

In order to evaluate the results of our experiments we use the Welch’s t-test
[37]. It is a statistical test that can be used to verify whether two populations

53

3. Used Methods

are generated from distributions with identical mean. It is an extension of
the common Student’s t-test but it is fit for the cases when the two popula-
tions have unequal variance and unequal sample size. The advantage of the
Student’s t-test over confidence intervals lies in the fact, that Student’s t-test
works even for very small sample sizes, unlike confidence intervals. Due to the
nature of our problems and the models we use to solve them, each experiment
is highly demanding in terms of time and computation (each experiment took
from several hours to multiple days), thus, only a limited sample size could
be chosen. Therefore the Welch’s t-test is fit for the purpose.

54

Chapter 4

Experimental Evaluation and
Discussion

All the trained models and their configuration files (containing all hyper-
parameters) are located on DVD 2 (see Appendix B). The code used to train
them is present on DVD 1. All the hyper-parameters used in the following
experiments are presented in Appendix A.

4.1 A2C Variants

In order to compare the different A2C implementations, we have devised an
experiment comparing all the approaches, namely, fixed batch size, variable
batch size with fixed learning rate, variable batch size with learning rate scal-
ing with s = 1 and variable batch size with learning rate with s = 0.5 (the
parameter s was introduced in Eqn. 3.4). For each variant we have executed
5 runs with identical hyper-parameters (aside from the ones tested).

The hypothesis that is being tested is that the fixed batch size approach
will converge to better solutions.

The results displayed in Figure4.1 seem to support our hypothesis, as the
fixed batch size version has a significant margin over all the other methods
in the last 10 epochs. However, to further show that our hypothesis seems
correct, the different experiments were compared using the Welch’s t-test [37].
We compare the fixed batch size version against all the other versions to
see, whether with statistically significant probability, the two distributions
underlying the populations have different means. Each time-step is treated as
a separate population for the statistical test, each population has sample size
of 5 (we ran 5 experiments). Even though the populations in different time-
steps are clearly not uncorrelated, assuming that only makes the statistical
test stronger.

From Figures 4.2, 4.3, 4.4 it is apparent that there indeed is an indication

55

4. Experimental Evaluation and Discussion

0 10 20 30 40 50
epochs (millions samples)

40

60

80

100

120

140

160

180

200

av
er

ag
e

re
wa

rd

Comparison of A2C Implementations (CartPole Environment)

fixed bs
variable bs, fixed lr
variable bs, variable lr, s=1
variable bs, variable lr, s=0.5.5

Figure 4.1: Results of the 20 experiments in total, displayed is the mean and
sample standard deviation bands of the 5

0 10 20 30 40 50
training epochs (millions samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

id
en

tic
al

 m
ea

ns
 p

ro
ba

bi
lit

y

Fixed vs. Variable Batch Size (fixed learning rate), Probability of Identical Means
p-values
p = 0.05

Figure 4.2: Welch’s t-test results (fixed vs. variable batch size) against the
p = 0.05 line.

0 10 20 30 40 50
training epochs (millions samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

id
en

tic
al

 m
ea

ns
 p

ro
ba

bi
lit

y

Fixed vs. Variable Batch Size (learning rate scaling, s=1), Probability of Identical Means
p-values
p = 0.05

Figure 4.3: Welch’s t-test results (fixed vs. variable batch size with learning
rate scaling, s = 1) against the p = 0.05 line.

56

4.2. Strategic Attentive Writer

0 10 20 30 40 50
training epochs (millions samples)

0.0

0.2

0.4

0.6

0.8

id
en

tic
al

 m
ea

ns
 p

ro
ba

bi
lit

y

Fixed vs. Variable Batch Size (learning rate scaling, s=0.5), Probability of Identical Means
p-values
p = 0.05

Figure 4.4: Welch’s t-test results (fixed vs. variable batch size with learning
rate scaling, s = 0.5) against the p = 0.05 line.

that in the last 15 epochs our hypothesis is correct with p < 0.05. In order to
fully prove it, more experiments would have to be carried out. However, due
to the computation time required to run each experiment, acquiring a larger
sample size was outside of the author’s capability give.

These experiments were performed mostly as an ablative analysis, so rig-
orous outcome was not the goal. However, the results demonstrate what has
been said in the previous chapter, that the fixed batch size version is the most
stable one with the fewest problems. Also the fixed batch size variant is the
scheme most commonly used in practice (e.g. in the A2C implementation in
OpenAI Baselines [38].

As a result of this, the fixed batch size variant has been selected for all the
subsequent experiments performed in this work.

4.2 Strategic Attentive Writer

One of the goals of this project was to implement an existing RL method as is
on the complex environment that has been selected or designed by the author.
We test the implementation of the agent on the GridMaze environment, which
was used in the original paper [8].

To show, that our implementation is correct, we ran it on a 7 × 7 maze
and compared it to a LSTM baseline, as seen in Fig. 4.5. The aim of this
experiment was purely qualitative, to show, that the implementation indeed
converges. To further prove the point, in Fig. 4.6 is shown the average length
of commitment in steps in any given time of the training. The average is
computed only over a some recent history, not the entire history (it is a moving
average). In the Fig. 4.6 we can see, that the agent is indeed initialized to
creating 10-step plans, as described in Section 3.2, then during training, it
eventually shortens the macro-actions up until an average length of 5.5. This

57

4. Experimental Evaluation and Discussion

means that the model indeed does learn to create useful macro-actions that
enable it to successfully solve the environment.

Let us discuss the possible reasons, why the STRAW agent takes so much
longer to converge than the LSTM baseline. First of all, the initialization.
The agent starts with re-planning every 10 steps, without having any prior
knowledge about the environment. Notice, that after the training is finished,
the average re-planning horizon is 5.5 steps, which strongly suggests that for
this environment shorter re-planning horizons are better than longer ones.
It takes time for the agent to discover this and eventually reduce the plan
length, as seen in Fig. 4.6. A second argument we present, is that unlike the
LSTM agent, the STRAW agent has to discover useful macro-actions. If we
considered only purely deterministic policies, with 4 possible actions and av-
erage re-planning horizon of 5, this gives us 45 = 1024 possible 5-step plans or
macro-actions. Clearly, the agent has to deal with this combinatorial explosion
and it does so successfully, however, at the cost of speed of convergence.

Even though the agent takes longer to converge, it has been shown by
the authors, that indeed those learned macro-actions can lead to much higher
average rewards in later stages of training (when this discovered structure can
be fully exploited) in more complex environments where the LSTM model
doesn’t cope well. The complex environments in question are several Atari
2600 games, unfortunately, due to the overwhelming computational demands
to perform thorough quantitative analysis on such environments (in the paper
they did 200 experiments per model, per environment), it is beyond scope of
this work.

0 10 20 30 40 50
training epochs (millions samples)

0.6

0.5

0.4

0.3

0.2

0.1

m
ea

n
re

wa
rd

STRAW vs. LSTM Baseline

STRAW
LSTM

Figure 4.5: Comparison of the STRAW model and the LSTM baseline.

58

4.3. Feudal Networks with Structured Exploration

0 10 20 30 40 50
training epochs (millions samples)

0

2

4

6

8

10

st
ep

s

Avarege Commitment Length

Figure 4.6: The average plan length of the agent.

4.3 Feudal Networks with Structured Exploration

Another goal of this work was to take one of the implemented methods and
suggest a meaningful modification in attempt to improve the original method.
This modified agent is then tested on the novel MazeRooms environment thor-
oughly, and we also perform a basic qualitative the analysis on the standard
Enduro Atari 2600 environment. As introduced in the previous chapter, the
specific modification is introducing the structured exploration feature from
STRAW model. The noise layer is placed between the feature detector and
manager.

4.3.1 MazeRooms

The hypothesis that we are testing is that the agent which uses the structured
exploration will have better convergence rate on the MazeRooms environment
than the one which doesn’t use it. Furthermore, we claim that this improve-
ment is not simply due to an increased number of parameters, neither is it
due to an additional nonlinearity but thanks to using the noise layer.

In order to check the hypothesis, four different experiments have been
devised. All test the FeUdal Networks agent on the MazeRooms environment
(specifically a setup with 3×3 map, containing all the rooms, with each room
being 5× 5 and containing 2 randomly generated obstacles) but with slightly
different architectures. To test the first part of our hypothesis we execute an
agent that uses the noise layer and as a baseline we execute an agent that
corresponds to the original version of the model. In order to test the second
part of the hypothesis, we train an agent that replaces the noise layer with a
linear layer (because the noise layer can be seen as a linear layer with added
noise from N(0, σ) as is illustrated in Eqn. 2.9, therefore one of the tests is
to remove the noise and just use the generated means), we call it a linear
dummy agent. And to test the last part, that it is not just any non-linearity

59

4. Experimental Evaluation and Discussion

that brings increase in performance, we execute an agent similar to the linear
dummy, but this time we put the ReLU non-linearity behind it.

0 10 20 30 40 50
training epochs (millions samples)

1.2

1.0

0.8

0.6

0.4

0.2

m
ea

n
re

wa
rd

Structured Exploration vs. Original Model
Structured exploration, n=15
Original model, n=20

Figure 4.7: Comparison of the means of both populations along with sample
standard deviation bands (n is the sample size for each experiment).

0 10 20 30 40 50
training epochs (millions samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

id
en

tic
al

 m
ea

ns
 p

ro
ba

bi
lit

y

Structured Exploration vs. Original Model, Probability of Identical Means
p-values
p = 0.05

Figure 4.8: Welch’s t-test results against the p = 0.05 line.

Fig. 4.7 suggests that indeed the first part of our hypothesis is true, to
rigorously test this, once again, we use the Welch’s t-test, with the result in
Fig. 4.8. Clearly, only after 5 epochs, the hypothesis is true with p < 0.05, in
fact, after 10 epochs, it holds true even with p < 0.01. This confirms that the
structured exploration indeed improves the performance of the model.

In Fig. 4.9 we can see a comparison of the baselines used for validating the
second part of our hypothesis. Once again, the plots are strongly indicative,
that it holds true. To rigorously confirm this, we once again use the Welch’s
t-test [37], to compare the means of the structured exploration agent and the
linear dummy agent (Fig. 4.10), and to compare the means of the structured
exploration agent and the ReLU dummy agent (Fig. 4.11). Both figures once
again tell us, that the means of the underlying distributions of the populations

60

4.3. Feudal Networks with Structured Exploration

are different with p < 0.05 (once again even p < 0.01 holds). This confirms
the second part of our hypothesis.

Let us deem the hypothesis as confirmed. The structured exploration
scheme indeed improves the performance of the FeUdal agent on the Maze-
Rooms environment with statistical significance. Furthermore, we have con-
firmed that this improvement is not due to the increased number of parame-
ters, neither is it due to additional non-linearity but really can be assigned to
the structured exploration scheme.

0 10 20 30 40 50
training epochs (millions samples)

1.2

1.0

0.8

0.6

0.4

0.2

m
ea

n
re

wa
rd

Structured Exploration vs. Linear Dummy and ReLU Dummy
Structured exploration, n=15
Linear dummy, n=11
ReLU dummy, n=14

Figure 4.9: Comparison of the means of all the populations along with sample
standard deviation bands (n is the sample size for each experiment).

0 10 20 30 40 50
training epochs (millions samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

id
en

tic
al

 m
ea

ns
 p

ro
ba

bi
lit

y

Structured Exploration vs. Linear Dummy, Probability of Identical Means
p-values
p = 0.05

Figure 4.10: Welch’s t-test results against the p = 0.05 line.

For the sake of completeness, Fig. 4.12 displays all the individual runs of
the four different configurations studied here. We ran 15 experiments with
the structured exploration agent, 20 experiments with the original model, 11
experiments with the linear dummy model, and 15 experiments with the ReLU
dummy model. An interesting phenomenon that can be seen in the Fig. 4.12
is, that the agents often reach certain levels of performance that are similar

61

4. Experimental Evaluation and Discussion

0 10 20 30 40 50
training epochs (millions samples)

0.0

0.1

0.2

0.3

0.4

0.5

id
en

tic
al

 m
ea

ns
 p

ro
ba

bi
lit

y

Structured Exploration vs. ReLU Dummy, Probability of Identical Means
p-values
p = 0.05

Figure 4.11: Welch’s t-test results against the p = 0.05 line.

between runs and improve in quick qualitative leaps. This can be attributed
to the structure of the environment. Recall, that the environment is composed
of a 3× 3 grid of rooms. These levels can probably be assorted to agents that
learn to walk through different parts of the environment, the basic level could
be an agent that can reach the goal only if it spawns in the same room as the
agent, next level might be an agent that can reach goals only in the adjacent
rooms, etc.

0 10 20 30 40 50
training epochs (million samples)

1.2

1.0

0.8

0.6

0.4

0.2

re
wa

rd

Structured Exploration Runs, n=15

(a) Structured exploration runs.

0 10 20 30 40 50
training epochs (million samples)

1.2

1.0

0.8

0.6

0.4

0.2

re
wa

rd

Original Model Runs, n=20

(b) Original model runs

0 10 20 30 40 50
training epochs (million samples)

1.2

1.0

0.8

0.6

0.4

0.2

re
wa

rd

Linear Dummy Baseline Runs, n=11

(c) Linear dummy runs.

0 10 20 30 40 50
training epochs (million samples)

1.2

1.0

0.8

0.6

0.4

0.2

re
wa

rd

ReLU Dummy Baseline Runs, n=14

(d) ReLU dummy runs.

Figure 4.12: Individual runs of all the experiments presented here.

62

4.3. Feudal Networks with Structured Exploration

In addition to the validation of our hypothesis, we also ran experiments
on the same MazeRooms environment but with an LSTM agent, that has the
same number of parameters as the structured exploration model.

Last but not least, as a part of the qualitative analysis of the algorithm,
we also ran experiments with an LSTM model on the same MazeRooms envi-
ronment, as a baseline for the general performance of the agent. The results
are displayed in Fig. 4.13 along with the mean of the structured exploration
agent runs. We can see that in fact, the LSTM baseline on average outper-
forms our best agent quite significantly. A possible explanation is that the
FeUdal Networks model doesn’t scale down in a linear fashion (in terms of
its performance). Because the authors were using the A3C [15] algorithm,
which utilizes only CPU, they could provide the agent a lot more memory.
We used a GPU implementation, and GPUs are quite limited in this aspect.
Therefore, in order to use models with reasonable unroll lengths and batch
sizes, we had to scale down the model significantly; we reduced the number of
units in each layer by the factor of 4 (another crucial reason for the scale-down
was achieving a reasonable computation time). It might be, that this reduces
the capabilities of the model in a non-linear manner. This was not a problem
in our experiment as we compared only slightly modified versions of a single
agent to each other.

0 10 20 30 40 50
training epochs (millions samples)

1.2

1.0

0.8

0.6

0.4

0.2

m
ea

n
re

wa
rd

Structured Exploration vs. LSTM Baseline

Structured exploration, n=15
LSTM, n=6

Figure 4.13: Comparison of the structured exploration and the LSTM baseline
(n is the sample size for each experiment).

4.3.2 Enduro, Atari 2600

Last goal of this work was to perform a qualitative analysis of our improved
method on a standard benchmarking reinforcement learning domain. As was
mentioned earlier, we selected the game Enduro for Atari 2600 because the
FeUdal Networks agent performed exceptionally well on it, in the original
paper [2].

63

4. Experimental Evaluation and Discussion

The Atari 2600 environments are quite computationally demanding (in
comparison to our simpler environments) which poses a significant challenge
for the implementation. Unfortunately, the implementation, that was used for
all the other experiments presented in this work was not efficient enough to fit
the whole model into GPU memory, while maintaining a reasonable batch size
and unroll length, thus, both the A2C algorithm and the FeUdal Networks
algorithm had to be re-implemented for this particular experiment. This was
problematic and took a long time to debug as it required a different approach
to unrolling and forming batches. In the end, the author was successful in the
implementation but not a lot of time remained to perform the experiments
(combined with the fact, that the Atari experiments took from 3 to 20 times
longer than the other ones, and required a lot more computational resources).
Therefore, the author managed to perform only two experiments. One with
the structured exploration agent and one with the original model. The re-
sults are displayed in Fig. 4.14, and seem inconclusive, neither of the agents
significantly outperforms the other, more experiments would have to carried
out.

5 10 15 20 25
training epochs (millions samples)

0

20

40

60

80

m
ea

n
re

wa
rd

Structured Exploration vs. Original Model
Structured exploration
Original model

Figure 4.14: Comparison of the structured exploration and the original model.

4.4 Future Work

Integration of the structured exploration scheme from Strategic Attentive
Writer into the FeUdal Networks model is a promising direction. We have
only tested inserting the noise layer before manager but in Section 3.3 we
have presented three more options to where the noise layer could be added.
Furthermore, it is also possible to put the noise layer into the model on multi-
ple locations at once. We have shown an undeniable increase in performance
only for a scaled-down version of the original model and on a custom environ-

64

4.4. Future Work

ment, naturally it would be interesting to explore the structured exploration
scheme in FeUdal Networks but with a full-sized model and on multiple games
in the Atari 2600 domain (which is considered a benchmarking standard in
reinforcement learning).

The structured exploration scheme as presented in STRAW [8] draws its
inspiration from Variational Auto-Encoders [28], which utilize the noise layer
in the middle of the model. The application of noise in Auto-Encoders is based
on strong mathematical reasoning. This work’s aim was mainly empiric and
even though many things were explained in terms of deeper intuitive concepts,
rigorous theoretical reasoning on why the structured exploration scheme works
well, is beyond the scope of this work. Studying this phenomenon theoretically
could potentially bring new insight into the exploration-exploitation dilemma.

In the noise layer, we used a normal distribution and for the KL-divergence
prior we used a normal distribution with zero mean and unit variance. It would
be interesting to study, whether different distributions would work as well or
how would a different prior affect the performance.

65

Conclusion

In this work, we studied hierarchical reinforcement learning methods. First, we
have discussed two contemporary approaches, the Strategic Attentive Writer
and FeUdal Networks. We have proposed a complex structured environment,
MazeRooms, that emulates some elements of difficult environments such as
Montezuma’s Revenge, also it is highly scalable and adjustable and allows for
cheap evaluation of the reinforcement learning agents.

We have implemented both of the mentioned methods. We have tested the
STRAW model on the GridMaze environment. We proposed using a struc-
tured exploration scheme from STRAW in order to improve the performance
of FeUdal Networks. We have shown, that the structured exploration scheme
significantly improves performance of the FuN agent on the MazeRooms en-
vironment. We have performed a basic qualitative analysis of the proposed
method on a standard reinforcement learning benchmarking domain, Atari
2600, specifically on the game Enduro. The results of this analysis were not
conclusive and require further study.

Deep reinforcement learning today is a rapidly growing area. As computa-
tion is getting cheaper, larger and more powerful models than ever are being
conceived and tested. Because of the scarred and bumpy history of AI (the
two AI winters) a lot of researchers were careful about voicing their excitement
and realizing their visions, afraid of funding cuts and ridicule. Today, however,
this is changing, people are openly and systematically tackling the problem
of developing AGI and real measurable progress is being made. Let us hope,
that the people and the organizations, that might successfully develop such
systems use them for the benefit of us all and not just for their selfish agenda.
Let us hope, that the future won’t bring autonomous warfare, or personalized
surveillance and censorship, but rather systems capable of solving humanities’
toughest problems for the universal good.

67

Bibliography

[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[2] Tom Schaul Nicolas Heess Max Jaderberg David Silver Alexander
Sasha Vezhnevets, Simon Osindero and Koray Kavukcuoglu. Feudal net-
works for hierarchical reinforcement learning, 2017.

[3] Ilya Sutskever Alex Krizhevsky and Geoffrey E. Hinton. Imagenet classi-
fication with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

[4] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition, 2014.

[5] Chris J. Maddison Arthur Guez Laurent Sifre George van den Driess-
che Julian Schrittwieser Ioannis Antonoglou Veda Panneershelvam Marc
Lanctot Sander Dominik Grewe John Nham Nal Kalchbrenner Ilya
Sutskever Timothy Madeleine Leach Koray Kavukcuoglu Thore Graepel
David Silver, Aja Huang and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[6] Lila Gleitman and Anna Papafragou. Relations Between Language and
Thought. 2005.

[7] Jason Kuen Lianyang Ma Amir Shahroudy Bing Shuai Ting Liu Xingx-
ing Wang Jiuxiang Gu, Zhenhua Wang and Gang Wang. Recent advances
in convolutional neural networks. CoRR, abs/1512.07108, 2015.

69

Bibliography

[8] John Agapiou Simon Osindero Alex Graves Oriol Vinyals Alexander
Sasha Vezhnevets, Volodymyr Mnih and Koray Kavukcuoglu. Strategic
attentive writer for learning macro-actions, 2016.

[9] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An
Introduction. MIT Press, 1998.

[10] Andrej Karpathy and Justin Johnson. Cs231n convolutional neural net-
works for visual recognition.

[11] Andrew Senior Haşim Sak and Françoise Beaufays. Long short-term
memory based recurrent neural network architectures for large vocab-
ulary speech recognition, 2014.

[12] Jan Koutńık Bas R. Steunebrink Klaus Greff, Rupesh Kumar Srivastava
and Jürgen Schmidhuber. Lstm: A search space odyssey. 2015.

[13] John Berkowitz Zachary C. Lipton and Charles Elkan. A critical review
of recurrent neural networks for sequence learning, 2015.

[14] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn., 8(3-4):229–256, May
1992.

[15] Mehdi Mirza Alex Graves Timothy P. Lillicrap Tim Harley David Silver
Volodymyr Mnih, Adrià Puigdomènech Badia and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. 2016.

[16] Dhruva Tirumala Hubert Soyer Joel Z Leibo Remi Munos Charles Blun-
dell Dharshan Kumaran Jane X Wang, Zeb Kurth-Nelson and Matt
Botvinick. Learning to reinforcement learn, 2016.

[17] Prafulla Dhariwal Alec Radford John Schulman, Filip Wolski and Oleg
Klimov. Proximal policy optimization algorithms, 2017.

[18] OpenAI. Openai baselines: Acktr & a2c, Nov 2017.

[19] Martin Stolle and Doina Precup. Learning options in reinforcement learn-
ing. In Sven Koenig and Robert C. Holte, editors, Abstraction, Refor-
mulation, and Approximation, pages 212–223, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[20] Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In
Advances in Neural Information Processing Systems 5, [NIPS Confer-
ence], pages 271–278, San Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

70

Bibliography

[21] Tom Zahavy Daniel J. Mankowitz Chen Tessler, Shahar Givony and Shie
Mannor. A deep hierarchical approach to lifelong learning in minecraft.
CoRR, abs/1604.07255, 2016.

[22] Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals
in reinforcement learning using diverse density. In Proceedings of the Eigh-
teenth International Conference on Machine Learning, ICML ’01, pages
361–368, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

[23] Shie Mannor Ishai Menache and Nahum Shimkin. Basis function adapta-
tion in temporal difference reinforcement learning. Annals of Operations
Research, 134(1):215–238, 2005.

[24] David Silver and Kamil Ciosek. Compositional planning using optimal
option models, 2012.

[25] Jean Harb Pierre-Luc Bacon and Doina Precup. The option-critic archi-
tecture. CoRR, abs/1609.05140, 2016.

[26] Alex Graves Danilo Jimenez Rezende Karol Gregor, Ivo Danihelka and
Daan Wierstra. Draw: A recurrent neural network for image generation,
2015.

[27] Xi Chen John Schulman and Pieter Abbeel. Equivalence between policy
gradients and soft q-learning, 2017.

[28] Diederik P Kingma and Max Welling. Auto-encoding variational bayes,
2013.

[29] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions, 2015.

[30] T. Tieleman and Geoffrey E. Hinton. Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 2012.

[31] Joel Veness Marc G. Bellemare, Yavar Naddaf and Michael Bowling. The
arcade learning environment: An evaluation platform for general agents.
2012.

[32] Alistair Muldal Tom Erez Yazhe Li Diego de Las Casas David Budden
Abbas Abdolmaleki Josh Merel Andrew Lefrancq Timothy Lillicrap Yu-
val Tassa, Yotam Doron and Martin Riedmiller. Deepmind control suite,
2018.

[33] Ludwig Pettersson Jonas Schneider John Schulman Jie Tang Greg Brock-
man, Vicki Cheung and Wojciech Zaremba. Openai gym, 2016.

71

Bibliography

[34] Denis Teplyashin Tom Ward Marcus Wainwright Heinrich Küttler An-
drew Lefrancq Simon Green Vı́ctor Valdés Amir Sadik Julian Schrit-
twieser Keith Anderson Sarah York Max Cant Adam Cain Adrian Bolton
Stephen Gaffney Helen King Demis Hassabis Shane Legg Charles Beattie,
Joel Z. Leibo and Stig Petersen. Deepmind lab, 2016.

[35] David Bruce Wilson. Generating random spanning trees more quickly
than the cover time. In Proceedings of the Twenty-eighth Annual ACM
Symposium on Theory of Computing, STOC ’96, pages 296–303, New
York, NY, USA, 1996. ACM.

[36] David Silver Alex Graves Ioannis Antonoglou Daan Wierstra
Volodymyr Mnih, Koray Kavukcuoglu and Martin A. Riedmiller. Playing
atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[37] B. L. WELCH. The generalization of ‘student’s‘ problem when several
different population variances are involved. Biometrika, 34(1-2):28–35,
1947.

[38] Oleg Klimov Alex Nichol Matthias Plappert Alec Radford John Schul-
man Szymon Sidor Prafulla Dhariwal, Christopher Hesse and Yuhuai Wu.
Openai baselines. https://github.com/openai/baselines, 2017.

72

https://github.com/openai/baselines

Appendix A

Experiment Details

Here we share specific architecture details, paths to iPython notebooks used
to generate all plots, run IDs and hyper-parameter tables. The run IDs are
internal IDs used in the framework developed as a part of this work. Those
can be used to identify specific runs in the folder src/fs-learning/runs or
to test the specific models using the script src/fs-learning/fs_learning/

test.py. For example running python -m fs_learning.test -r 1551 -b

-nc 2 -m 0.33 -g 0 -re executes the test script that loads the best model
(-b) from the run 1551 (-r), using the GPU with id 0 (-g), assigning 2 cores
to TensorFlow (-nc) and running the test script in render mode (-re), which
runs just a single agent and displays output of environments. The render
mode works only for the GridMaze and MazeRooms environment.

An important remark is that in all of our experiments we are using a linear
learning rate decay schedule from the initial value to zero.

A.1 LSTM Architecture

All the LSTM baselines in this work use the same architecture. A feature
detector connected to the input (which is environment-specific, the details of
each feature detector are presented in Chapter 3) a single LSTM layer on top
and then an output layer consisting of a single linear neuron for the value
function estimation and several SoftMax units for the policy (their number
naturally is given by the number of available actions in a given environment).

A.2 A2C Experiments

The iPython notebook used to evaluate the runs and extract the plots is lo-
cated in src/fs-learning/fs_learning/notebooks/a2c_comparison.ipynb.

73

A. Experiment Details

A.2.1 Run IDs

Table A.1: The run IDs of the A2C experiments.

Experiment Run IDs

Fixed batch size 1551, 1556, 1560, 1568, 1572

Variable batch size, fixed learning
rate

1553, 1555, 1558, 1561, 1563

Variable batch size, variable learn-
ing rate, s = 1

1552, 1564, 1571, 1573, 1574

Variable batch size, variable learn-
ing rate, s = 0.5

1554, 1557, 1559, 1562, 1567

A.2.2 Hyper-Parameters

Table A.2: The hyper-parameters used for the four LSTM experiments.

Hyper-Parameter Value Comment

environment name CartPole-v1 Code for OpenAI gym

max episode steps 200 Number of steps be-
fore episode terminates
(Tmax in A3C 6)

gamma 0.99

RMSProp decay 0.95

learning rate 0.001

entropy regularization
loss weight

0.001

LSTM units 50

unroll steps 20 Depth of the unrolled
recurrent graph (BPTT
steps)

number of agents 16

batch size 320 This is also the refer-
ence batch size used in
the learning rate scaling
experiments

A.3 Strategic Attentive Writer Experiments

The iPython notebook used to evaluate the runs and extract the plots is
located in src/fs-learning/fs_learning/notebooks/straw.ipynb.

74

A.3. Strategic Attentive Writer Experiments

A.3.1 Run IDs

Table A.3: The run IDs of the STRAW experiments.

Experiment Run IDs

STRAW 4450

LSTM baseline 4454

A.3.2 Hyper-Parameters

Table A.4: The STRAW hyper-parameters.

Hyper-Parameter Value Comment

environment name GridMaze7x7-v0 Code for OpenAI gym
(the custom environ-
ments are using it too)

max episode steps 50 Number of steps be-
fore episode terminates
(Tmax in A3C 6)

gamma 0.99

use structured explo-
ration

True

noise layer units 128

RMSProp decay 0.95

learning rate 0.001

re-plan penalty loss
weight

5 · 10−5 λ from 2.12

KL-divergence loss
weight

10−6

entropy regularization
loss weight

0.001

STRAW hidden units
(in the embedding h)

256

plan size 64 steps T

bias b initial value 0

action-plan filters 10 K

unroll steps 20 Depth of the unrolled
recurrent graph (BPTT
steps)

number of agents 16

batch size 512

75

A. Experiment Details

Table A.5: The hyper-parameters for the LSTM baseline.

Hyper-Parameter Value Comment

environment name GridMaze7x7-v0

max episode steps 100 Number of steps be-
fore episode terminates
(Tmax in A3C 6)

gamma 0.99

RMSProp decay 0.95

learning rate 0.001

entropy regularization
loss weight

0.001

LSTM units 32

unroll steps 10 Depth of the unrolled
recurrent graph (BPTT
steps)

number of agents 16

batch size 160

A.4 FeUdal Networks MazeRooms Experiments

The iPython notebook used to evaluate the runs and extract the plots is lo-
cated in src/fs-learning/fs_learning/notebooks/feudal_mgrnoise_vs_

nonoise.ipynb

76

A.4. FeUdal Networks MazeRooms Experiments

A.4.1 Run IDs

Table A.6: The run IDs of the FeUdal MazeRooms experiments.

Experiment Run IDs

Structured exploration 3206, 3209, 3211, 3213, 3215,
1471, 1473, 1475, 1477, 1479,
1481, 1484, 1485, 1489, 1492

Original model 3207, 3208, 3210, 3212, 3214,
3216, 3235, 1470, 1472, 1474,
1476, 1478, 1480, 1482, 1483,
1486, 1487, 1488, 1490, 1491

Linear dummy 3223, 3243, 3246, 3251, 1501,
1512, 1515, 1518, 1538, 1540, 1544

ReLU dummy 3224, 3236, 3241, 3245, 3249,
1500, 1513, 1516, 1519, 1522,
1530, 1535, 1539, 1543

LSTM baseline 3228, 3237, 3242, 3248, 3252, 3254

77

A. Experiment Details

A.4.2 Hyper-Parameters

Table A.7: The hyper-parameters for the four FeUdal Networks configurations.

Hyper-Parameter Value Comment

environment name MazeRooms
Obstacle4-v0

This environment is also
integrated into the Ope-
nAI Gym API

max episode steps 100 Number of steps be-
fore episode terminates
(Tmax in A3C 6)

manager gamma 0.99

worker gamma 0.95

intrinsic reward weight 0.1

RMSProp decay 0.99

learning rate 0.001

entropy regularization
loss weight

0.001

KL-divergence loss
weight

10−5

noise layer units 128

manager fMspace units 64

manager dLSTM fMrnn

units
64

worker fWrnn units 64

worker sub-policies
count

8

manager value function
hidden layer units

32

worker value function
hidden layer units

32

dLSTM radius 6 c, r

unroll steps 50 Depth of the unrolled
recurrent graph (BPTT
steps)

number of agents 8

batch size 400

78

A.5. FeUdal Networks Atari 2600 Experiments

Table A.8: The hyper-parameters for the LSTM baseline.

Hyper-Parameter Value Comment

environment name MazeRooms
Obstacle4-v0

max episode steps 100 Number of steps be-
fore episode terminates
(Tmax in A3C 6)

gamma 0.99

RMSProp decay 0.99

learning rate 0.001

entropy regularization
loss weight

0.001

LSTM units 105 This number was chosen
to match the number of
parameters of the struc-
tured exploration agent

unroll steps 50 Depth of the unrolled
recurrent graph (BPTT
steps)

number of agents 8

batch size 400

A.5 FeUdal Networks Atari 2600 Experiments

The iPython notebook used to evaluate the runs and extract the plots is
located in src/fs-learning/fs_learning/notebooks/atari.ipynb

A.5.1 Run IDs

Table A.9: The run IDs of the FeUdal Atari experiments.

Experiment Run IDs

Structured exploration 1603

Original model 1602

79

A. Experiment Details

A.5.2 Hyper-Parameters

Table A.10: The hyper-parameters for the two FeUdal Networks configura-
tions.

Hyper-Parameter Value Comment

environment name Enduro-v0 The OpenAI Gym envi-
ronment ID

max episode steps 1200 Number of steps be-
fore episode terminates
(Tmax in A3C 6)

manager gamma 0.99

worker gamma 0.95

intrinsic reward weight 0.1

RMSProp decay 0.99

learning rate 0.0001

entropy regularization
loss weight

0.001

KL-divergence loss
weight

3.3 · 10−6

noise layer units 128

manager fMspace units 64

manager dLSTM fMrnn

units
64

worker fWrnn units 64

worker sub-policies
count

8

manager value function
hidden layer units

32

worker value function
hidden layer units

32

dLSTM radius 10 c, r

unroll steps 100 Depth of the unrolled
recurrent graph (BPTT
steps)

number of agents 2

batch size 200

80

Appendix B

Contents of DVDs

Here we describe the basic directory structure of the two attached DVDs. The
first one contains all the source code and some of the trained models along
with their configuration files. The second DVD contains the rest of the trained
models along with configuration files used for each run. In order to use the
framework, the folders from both DVDs have to be merged together.

src

fs-learning..............................the project root directory
fs_learning...........................the source code directory
config...............................global config files directory
runs.............some of the trained models and configs directory
*.csv.............the experiments’ data used for generating plots
conda_list_packages........the list of python packages required

text

thesis.pdf..the thesis
thesis................folder containing LaTeX sources for the thesis

Figure B.1: The directory structure of the first DVD

src

fs-learning..............................the project root directory
runs..................the rest of the models and configs directory

Figure B.2: The directory structure of the second DVD

81

	Introduction
	Motivation and Objectives
	Problem Statement

	Background
	Markov Decision Process
	Artificial Neural Networks
	Reinforcement Learning Methods

	Related Work
	Options
	Strategic Attentive Writer
	Training
	FeUdal Networks
	Training

	Used Methods
	A2C
	Strategic Attentive Writer
	FeUdal Networks
	Learning Environments
	Statistical Tests

	Experimental Evaluation and Discussion
	A2C Variants
	Strategic Attentive Writer
	Feudal Networks with Structured Exploration
	Future Work

	Conclusion
	Bibliography
	Experiment Details
	LSTM Architecture
	A2C Experiments
	Strategic Attentive Writer Experiments
	FeUdal Networks MazeRooms Experiments
	FeUdal Networks Atari 2600 Experiments

	Contents of DVDs

