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Abstract

Efficient inventory management plays an important role for competitiveness
of all companies that deliver goods to customers. The main goal of this
thesis is to design an inventory optimization model that makes the best
possible ordering policies.

In order to reach this goal, we combine methods of time-series prediction
together with stochastic optimization concepts. We create a flexible inven-
tory control pipeline, which is capable of generating goods ordering decisions
that consider demand uncertainty, goods durability, shortage costs, ware-
housing costs, and both fixed and per-unit ordering costs. The pipeline is
enriched with the progressive hedging decomposition algorithm, which helps
to reduce computation times and improves the capability of our models to
reduce risks of unexpected demand outcomes.

Keywords: Time series forecasting, exponential Smoothing, ARIMA,
inventory control, stochastic optimization, newsvendor model, decomposi-
tion

Abstrakt

Efektivńı ř́ızeńı skladových zásob hraje kĺıčovou roli pro konkurenceschop-
nost podnik̊u prodávaj́ıćıch zbož́ı. Hlavńım ćılem této práce je navrhnout
model tvoř́ıćı objednávky zbož́ı se záměrem optimalizovat vývoj skladových
zásob.

Za účelem dosažeńı tohoto ćıle kombinujeme metody predikce časových
řad s koncepty stochastické optimalizace. Práce popisuje tvorbu modulu,
který plánuje objednávky s ohledem na neurčitost poptávky, životnost pro-
dukt̊u, možné náklady vyplývaj́ıćı z nedostatku zbož́ı, skladováńım zbož́ı
a objednáváńım zbož́ı. Modul je dále vylepšen pomoćı

”
progressive hed-

ging”algoritmu, který snižuje časovou náročnost modulu, a dále vylepšuje
jeho schopnost snižovat rizika spojená s neočekávaným vývojem poptávky.

Kĺıčová slova: Predikce časových řad, exponenciálńı vyrovnáváńı, ř́ızeńı
zásob, stochastická optimalizace, newsvendor model, dekompozice
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1 Introduction

For many companies, inventory management is one of the most complicated
issues in business. Manufacturers, suppliers and retailers need to decide how
many goods they need to prevent stock-outs and avoid excess inventory, all
this under conditions that can change any time. If they don’t meet the
customer’s demand, the customers can leave for competition. On the other
hand, excess inventory can lead to large costs and possible financial loss.
This is definition of the inventory control problem, and the solution of this
problem should provide a policy in a form that answers question of when
and how much goods to order.

Many inventory optimization methods can be used to solve inventory
control and other related problems of the companies, depending on the exact
conditions in which the company operates. One of the most versatile is
the Newsvendor model, which solves the inventory control problem as a
trade off between expected leftover and shortage costs, considering stochastic
demand.

In this thesis, we propose an extension of the Newsvendor model, which
can, based on demand forecast, generate ordering policies for long periods
of time. This model can deal with goods durability, fixed and per-unit or-
dering costs, shortage costs and warehousing costs. All of the costs can
be time-dependent. The model also takes the forecast uncertainty into ac-
count. Multiple ways of how to tackle the forecast uncertainty exists, but
the most promising method is scenario based sampling, which is also used
by the model. The finer the sampling, the more precise are the results.
Unfortunately, the more samples the model obtains, the higher the compu-
tational demands. Therefore we propose a decomposition method for the
original model, which solves only an approximation of the original problem,
but its computation time grows only linearly with the number of considered
demand outcomes. We further evaluate both the original model and the ap-
proximating model on real world data, and we discuss the trade off between
solving the exact problem with less demand scenarios in consideration, or
solving the approximation with much more demand outcomes “in mind”.

None of the above introduced models could work without a demand
forecast, therefore we also study the problem of time series prediction in
this thesis. We develop a demand prediction module, which includes custom
extension of exponential smoothing, and the seasonal ARIMA model. We
evaluate them both using accuracy measures and visually, and we compare
them to another popular forecasting model - the Prophet model. We also
examine other properties of the models and their suitability for generation
of input to the inventory models.
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1.1 Thesis goals

1. Understand the problem of inventory optimization and de-
mand prediction

We provide an overview of demand forecasting in 2.1 and inventory op-
timization in chapter 2.2, we also provide examples of previous related
work in chapter 3. Based our findings we develop demand prediction
and inventory modules in chapter 4.

2. Study various algorithmic approaches to inventory optimiza-
tion and demand prediction.

We study multiple algorithmic approaches to demand prediction in
chapter 2.1 and inventory optimization methods in 2.2. In chapter 3 we
also provide overview of demand prediction and inventory optimization
methods used in previous research and finally in chapter 4 we use our
findings to create a custom solution.

3. Develop an algorithm for demand prediction based on histor-
ical data provided by thesis supervisor.

In section 4.4, we develop an extension of the exponential smooth-
ing algorithm for demand prediction. We also include the seasonal
ARIMA prediction model in our demand forecasting module, as it is
a proven method for time-series prediction. We further develop a de-
mand scenario generation module in subsection 4.5, which generates
possible outcomes of the demand according to the forecasts. These de-
mand scenarios are later used as an input to our stochastic inventory
models.

4. Integrate demand prediction with an inventory optimization
model such that the model considers costs of unavailability,
resupply cost as well as warehousing costs.

We develop a custom extension of stochastic Newsvendor inventory
model in chapter 4.6. This model considers costs of unavailability,
both fixed and per unit resupply costs and warehousing costs. All
of these costs can be time variable and the model considers goods
durability as well. We further develop a custom approximation of this
model, which can work with more demand information than the base
model.

5. Demonstrate the performance of the inventory optimization
model on a set of possibly real-world scenarios.

In chapter 5 we evaluate both the demand forecasting models and the
inventory models using real world sales data provided by the super-
visor. We first inspect the accuracy and properties of the forecasting
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models, we also provide a comparison to another popular forecasting
approach. In the second half of chapter 5 we evaluate the inventory
models using the real world data. We discuss the trade off between an
exact solution with less demand information, and its approximation
form which can exploit more information.
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2 Technical Background

2.1 Time series forecasting

Since the target of this thesis is to create an inventory optimization module,
which contains a demand forecasting module, we dedicate this section to
the field of time series forecasting. Time series is basically anything that is
observed over time sequentially [1], including the demand data that we have
at hand. Time-series forecasting consists of methods which try to predict
future values of a sequence based on historical observations. It is a field with
many applications, including demand prediction [2], but also others such as
unemployment rate prediction [3].

Before we can create time series forecasts, we need to perform multiple
steps. First, we have to gather information about the time series, perhaps
historical records, e.g. data including monthly number of airline passen-
gers (the “Observed” line in figure 1), or other knowledge about the series.
Second, we need to perform analysis of the data. This can include search
for components like trend - a long term increase or decrease in the series,
and seasonality - influence by seasonal factors like week or month or cyclic
behavior (long term patterns without fixed period). Examples of both trend
and seasonality can be seen in figure 1). Third, we need to select or create
a forecasting model, according to the found properties of the time-series.
For example we can select exponential smoothing model or recurrent neural
network (examples of other forecasting models are introduced later in this
section). After training the model, we can finally create forecasts and eval-
uate the model using measures like mean absolute error, or we can evaluate
the model’s performance visually. We can also check the properties (such
as normality) of residuals of the model. Residuals of a model are difference
between a fitted value and the observed value - can be seen in bottom plot
of figure 1. We perform evaluation of forecasting methods in section 5.2.

2.1.1 Exponential Smoothing

Exponential smoothing is a set of methods, which were introduced already in
1950s [2] and have been applied to various problems from many areas such as
retail or energy industry. The smoothing methods are still commonly used
today, as they enable researchers to quickly create simple and relatively well
performing models. It produces forecasts based on weighted averages of
past observations. The name exponential comes from the way this method
weighs the past observations, as the weights of older observations decay
exponentially, which means that more recent observations are associated
with higher weights [1].

The simplest of the exponential smoothing methods is called “simple
exponential smoothing”. It provides forecast only based on weighted aver-
ages of past observations, but it differs from simple weighted average as the
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Figure 1: Decomposition of airline passengers time series

past observations have exponentially decaying weights. We can write the
equations for simple exponential smoothing as follows:

ŷt+1|t = lt

lt = αyt + (1− α)lt−1
(1)

Where lt is the smoothed value of the series as time t, yt is the observed value
at time t, ŷt+1|t is the forecasted value a time t+1. The parameter α may
be selected arbitrarily, or by optimization methods. A common approach
is by minimizing some sort of error, most frequently sums of squared errors
(SSE), which is defined as follows:

SSE =
T∑
t=1

(yt − ŷt|t−1)2 (2)

Although the simple exponential smoothing might provide good forecasts
in some cases, it is not suitable for forecasting time series with trend or
seasonality. To forecast data with trend, simple exponential smoothing was
extended to “double exponential smoothing”. The extension consists of
adding one more equation to the simple method, which is responsible for
smoothing the trend of the series. Double exponential smoothing consists
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of the following equations:

ŷt+h|t = lt + hbt

lt = αyt + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

(3)

Where β is a trend smoothing coefficient, bt is the trend estimate at time
step t and ŷt+h|t is the h steps ahead forecast.

Even though double exponential smoothing provides a model for wider
range of time-series than the simple method, the model does not capture sea-
sonality. Therefore the Holt-Winters method was developed [1], which adds
yet another component to the model - a seasonal component, to improve
forecasting of series with seasonality. Actually two variants of the Holt-
Winters method exist, additive and multiplicative. In this thesis, we use an
extension of the additive method, therefore we can show its formulation:

ŷt+h|t = lt + hbt + st−m+1+(h−1)mod(m)

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m

(4)

Where γ is a smoothing parameter of the the seasonal component, st, m is
the period of the seasonality (e.g. 7 for weekly seasonality and daily data).
As in the case of single and double exponential smoothing, the parameters
α, β, γ can be obtained by minimization. We can see that apart from adding
the seasonality term, the level component was adjusted by subtracting the
seasonal component.

We should remind the reader, that the are many other possible exten-
sions of exponential smoothing methods, but they are based on the general
formulations provided here, a comprehensive list of variants of the exponen-
tial smoothing can be seen in [1]. We show some extensions in section 4.4
as we decided to use a variant of exponential smoothing for our demand
prediction task.

2.1.2 ARIMA

Together with exponential smoothing, ARIMA (Autoregressive Integrated
Moving Average) models are the most widely used approaches to time series
forecasting [1]. ARIMA models are a class of models for which some d-th
difference of series is stationary [4]. A stationary series is a series whose
properties such as mean and variance are not time dependent. For example
some series that have a trend or seasonality component are not stationary,
but a white noise series is stationary [1]. An ARIMA model is actually a
combination of two models with - the AR (autoregressive) and MA (moving
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average) model, with differencing. Both AR and MA models can be used
to model various types of time-series patterns, but they can’t be used for
non-stationary time-series.

There are multiple approaches of making a time-series stationary, such
as the logarithm transformation, or differencing. Differencing, which is a
process of computing differences of consecutive observations, is used by the
ARIMA models. A differenced series can be written as follows:

yt′ = yt − yt−1 (5)

Where yt is the observed value a time t. Sometimes it is needed to difference
the series a second time in order to make it (more) stationary. Second order
differencing is defined as follows:

yt′′ = yt′ − yt−1′ (6)

In some cases, seasonal differencing, which is the difference between the cur-
rent observation and the observation from last seasonality period, is applied:

yt′ = yt − yt−m′ (7)

Where m is the number of seasons. Sometimes it is necessary to do both a
seasonal and first order difference to make a series stationary [1]. The order
of differencing of ARIMA models is denoted with letter d.

Once we have obtained a stationary series, we can use an autoregressive
model of order p - AR(p), which is defined as follows [1]:

yt = c+ φ1yt−1 + φ2yt−2 + φpyt−p + εt (8)

Where c is a constant and εt is an error term. The forecasts of such model
are linear combinations of past observations.

We continue with the definition of a moving average model of order q -
MA(q), which uses past prediction errors et−1, . . . , et−q to create a forecast
[1]:

yt = c+ et + θ1et−1 + θ2et−2 + θqet−q (9)

By combining differencing of order d, AR(p) model of order p, MA(q) of
order q we obtain an ARIMA(p,d,q) model. However ARIMA models are
also capable of forecasting seasonal data [1]. By including additional sea-
sonal autoregressive, differencing and moving average terms in the model, we
obtain a seasonal ARIMA(p, d, q)× (P,D,Q)m (SARIMA) model. Where:

• P is the order of the seasonal autoregressive part

• D is the order of the seasonal differencing

• Q is the order of the seasonal moving average part

7



• m is the seasonality period

Further accuracy improvements can be obtained by combining an ARIMA
model with a model that considers external factors. In retail industry, such
factor could be holidays, price changes or weather. An example of such
model is SARIMAX [5]. In general, its forecast can be written as a multi
linear regression problem:

yt = β0 + β1x1,t + β2x2,t + βkx1,k + ωt (10)

Where x1,t, . . . , x1,k are external variables and ωt is a residual series, which
can be represented as a seasonal ARIMA model.

2.1.3 Neural networks

Neural networks are a class methods of artificial intelligence that allow to
model complex nonlinear relationships between response variables and pre-
dictor [1]. Neural networks also allow forecasting with external factors by
just adding another input. This all makes them highly suitable for task
of time series prediction. We can name multiple applicable neural network
architectures that can be used for the time series forecasting task. From
very simple networks that have no hidden layers and only perform linear
regression on the data, to feed forward networks, which can use lagged val-
ues of the time series to perform auto-regression [1]. Also architectures that
contain Long short-term memory (LSTM) units can be used for this task [6]
as they have the ability to remember and exploit long term dependencies in
data.
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2.2 Inventory optimization

In this section we focus on inventory optimization, which is a field of great
interest of manufacturers, suppliers, retailers and others. Inventory opti-
mization aims to create optimal goods (or e.g. materials, components) or-
dering policies to meet goals such as maximal availability or minimal cost.
To meet such goals, inventory optimization tries to answer questions like
what to order, when the order should be placed and how much goods should
be ordered.

2.2.1 Costs

In order to be able answer the what, when, how much types of questions,
researchers use a wide range of algorithms and models. What many of these
models (and also the approach used in this thesis) have in common, is that
for the determination of the inventory policy they work must with at least
a subset of the following costs[7]:

• Procurement costs. Procurement costs are fixed or variable costs
related to acquisition of the goods. These may include per-order fees,
per-unit purchase cost, transportation or handling costs.

• Shortage costs. Shortage costs are incurred when customer demand
is not met. This can mean lost sales costs, back order costs or even
customer dissatisfaction costs.

• Inventory holding costs. Inventory holding costs are the costs of
storing goods for some period of time. This may include warehousing
costs or opportunity cost - the costs for not investing companies capital
in more profitable way.

• Obsolescence costs. Obsolescence costs are the costs of lost value of
stocked items. This can mean deteriorating food or flower inventories,
clothing items going out of fashion etc.

2.2.2 Modeling

As already stated, researches use many types of models to solve inventory
optimization problems. In this thesis, we don’t focus on deterministic mod-
els such as Economic ordering Quantity [8], where demands, prices etc are
known, even though they have a broad range of applications. Instead, we
mainly focus on the class of stochastic models. In the following lines we
introduce two such models, the Base Stock [9] model and the Newsvendor
model [10].
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2.2.3 Base stock model

The first stochastic inventory model we will introduce is the Base Stock
model, which is a well known model that can provide ordering policy for
infinite number of periods. However, the model is in its base form is very
limited, as it provides only the ordering amount based on random demand
data and expected service level (the probability of not stocking out). It also
assumes that products can be analyzed individually and replenishments have
known lead time (the time required between making an order and receiving
the goods). In addition, only fixed ordering costs are considered by the
model.

The steps of the model can be described as follows [9]:

• First we need to determine the review period (the time between suc-
cessive revisions of the inventory) denoted T :

T =

√
2K

hµ
(11)

Where K is fixed ordering cost, h is daily holding cost(the cost of
keeping one unit of product in inventory) and µ is mean daily demand.

• If we assume the demand during review period T is from normal dis-
tribution with mean µ and variance σ2, the ordering amount S for
given service level α according to base stock model is:

ST = µ+ z(α)µ (12)

Where z(α) is the value of the inverse cumulative distribution function
of standard normal distribution for α.

The model could be theoretically adjusted, so that it considers more inven-
tory aspects like goods durability - by modifying the review period. However,
it is not suitable at all for optimizing orders according to goods ordering (or
other) costs changes. Therefore in the following sections we introduce the
Newsvendor model, which has a very flexible linear programming formula-
tion.

2.2.4 Stochastic programming

Before we introduce another stochastic inventory model - the Newsvendor
model, we should also briefly provide introduction of the area of Stochastic
programming, whose concepts are used by the Newsvendor model [10].

Stochastic programming is an approach for modeling and solving op-
timization problems that involve uncertain parameters [11]. Even though
there are many other ways how to solve problems involving uncertainty,
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stochastic programming has proven its usefulness in many areas such as
telecommunications, economics, energetics or medicine [10] [12] [13] [14]. A
common application of stochastic models is in a setting when a decision must
be made [10], for example in problem of investment portfolio optimization.
If we knew exactly the future value of the possible investments, we could
create a deterministic model that would give us the optimal portfolio. How-
ever in real world scenario we usually don’t have such precise information,
and we have to work (for example) with probability distribution estimates
created from data that have been collected over time (in case of portfolio
optimization problem that would be the investment future value probability
distribution).

In the following lines we introduce some of the basic terms and meth-
ods related to stochastic programming. We will illustrate them using the
stochastic Newsvendor model, which itself serves as a base for solution of
the inventory optimization problem introduced by this thesis.

2.2.5 Newsvendor (Inventory) model

The basic newsvendor model is another stochastic model used to determine
optimal inventory levels. Its goal is maximizing expected profit by finding
an optimal trade-off between risk of over-stocking and the risk of under-
stocking. In the basic setting, the model assumes zero ordering lead time, no
ordering and inventory amount limits and allows inventory shortages. Also
the basic setting only provides ordering policy for one ordering period and for
one product. However, as the model solution also has linear programming
formulation, it can be easily extended. In contrast with the Base Stock
model, the model accounts for cost of goods unavailability [9].

The output of the model is the ordering quantity x, which should satisfy
the demand d. The unit ordering cost is c. If the demand is greater than
the ordered amount of units, a per unit backorder penalty b is incurred. On
the other hand, if the demand is smaller than x, a per unit holding cost
is incurred. The objective is to minimize the total cost G(x,d), which is
defined as follows [11]:

G(x, d) = cx+ b[d− x]+ + [x− d]+ (13)

Where [a]+ denotes the maximum of a and 0.
However in the common real world case, the retailer does not know the
demand d, as e.g. he needs to determine the optimal inventory level before
a sale season with uncertain demand. To cope with this, we can view the
demand D (denoted by D to highlight that we mean the random variable
instead of its particular realization d) as random variable [11]. If we assume
that the distribution of D is known, because we can for example estimate
it from past demand observations, we can define the following optimization
problem, which aims to minimize total cost expected value [11].
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min
x≥0

E[G(x,D)] (14)

The goal of the above mentioned problem is to minimize the total cost
on average, its justification comes from the Law of Large Numbers [11]. In
case of the basic Newsvendor problem, the expected value formulation has
a closed form solution. However, this is not always the case in stochastic
programming problems. One way to tackle this is using scenarios. We can
illustrate the scenario approach using the Newsvendor problem as well [10].

Let’s now suppose that the demand random variable D has a finitely
supported distribution, which means it takes values d1, ..., dk, called sce-
narios, with respective probabilities p1,..., pk. In such case we can model
the stochastic program as deterministic optimization problem and write the
expected cost as the following sum:

E[G(x,D)] =
K∑
k=1

pkG(x, dk) (15)

And to obtain the ordering quantity x, that minimizes the expected cost,
we can use to solution of the following linear program:

min
x,t1...tk

K∑
k=1

pktk

s.t. (c− b)x− tk ≤ −bdk, k = 1, ...,K

(c+ h)x− tk ≤ hdk, k = 1, ...,K

x ≥ 0

(16)

Using the concept of scenarios we obtained the “extensive” form of the
problem, which is a tractable approximation of the expected value problem.
The scenarios can be obtained in very diverse ways, they can be samples
from a known discrete probability distribution, or they can be result of
discretization or simulation, the source can of scenarios can also be some
limited sample information, and others. This kind of model is also called
the a two stage stochastic programming model, as in the first stage we make
some decision (orders) that has some cost, and in the second stage we deal
with the consequences of the decision and we “pay” the costs related to the
consequences.

So far we have introduced only a relatively limited version of the Newsven-
dor problem (and stochastic programming problems in general), where only
one decision is being made at one point in time. However it is quite common
that we want to solve a problem where decisions (e.g. order amount) will
be made sequentially at certain periods of time, and each decision should
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Figure 2: Scenario tree example

be made using the knowledge of outcomes of previous decisions (e.g. left-
over inventory). This type of problems are called Multi-stage stochastic
problems.

In the multistage Newsvendor problem, we suppose that the retailer
has a finite planning horizon of T periods, and the demand is modeled as a
random process Dt indexed by the time t = 1, ..., T [10] At each stage t = 1,
..., T, the retailer observes the current inventory level yt, and replenishes the
inventory to level xt by ordering xt − yt units. Then the starting inventory
level at time t+1 yt+1 is obtained from equation yt+1 = xt − dt, where dt is
a particular demand realization at time t. The objective is to minimize the
expected total cost over the planning horizon, which we can write as follows
[10]:

min
xt≥yt

T∑
t=1

E{ct(xt − yt) + bt[Dt − xt]+ + ht[xt −Dt]+}

s.t. yt+1 = xt −Dt, t = 1, .., T − 1

As in the simple (single stage) model, we can again employ the concept
of scenarios, or more precisely, scenario trees. If we consider the random
process ξ1, ..., ξT has a finite number (K) of realizations (ξ1, ..., ξk), we can
depict the possible sequences in a form of a scenario tree (see example in
figure 2). In general, nodes at each level t of the tree represent all possible
values of ξt. The tree has only one node at level t = 1, which branches in
nodes at level t = 2, the branching continues up to level t = T. However the
branching factor does not have to be same for all nodes, as the reader can
see in the example. Numbers along arcs between nodes represent conditional
probabilities of moving to next node. Each scenario is represented as a path
from the root at level t = 1 to some node at the last level t = T. The
probability of the scenario can be computed by multiplying the transition
probabilities written along the path segments. As an example we can take
scenario ws = (ξs1, ξs2 ξ

s
3) = (1, 3, 5), which has the probability ps = 0.25 ·1.

Finally, we can write the following linear program, which enables us to
find optimal ordering amounts under each scenario and time stage t xk,t,
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where k is the number of scenarios and k is the number of stages.

min
xk,t

K∑
k=1

pk

T∑
t=1

zk,t

s.t. zk,t ≥ (ct − bt)xk,t + btdk,t − ctyk,t, k = 1, . . . ,K, t = 1, . . . , T

zk,t ≥ (ct + ht)xk,t − htdk,t − ctyk,t, k = 1, . . . ,K, t = 1, . . . , T

xk,t ≥ 0

yk,t+1 ≥ xk,t − dk,t

(17)

Where ct, ht, bt are the per unit ordering, holding and shortage costs at time
stage t, dk,t is the demand at time stage t under scenario k, pk is probability
of scenario k, xk,t is the inventory level at time stage t under scenario k, yk,t
is leftover inventory from stage t-1 under scenario k, zk,t is expected cost at
time stage t under scenario k.

However, such model does not make sense, because it allows different
decisions for scenarios with common history, and also allows the decision
to be adjusted according to future stochastic realizations. Therefore non-
anticipativity constraints need to be added to the linear program, ensuring
that each decision xk,t depends only on information known up to stage t
under scenario k. The non-anticipativity constraints look as follows [10]:

xkt = xlt, ∀k, l for which ξk[t] = ξl[t], t = 1, . . . , T (18)

Where ξk[t] denotes the scenario history up to time t. For example if

ξk = (2, 3, 4), then its subsequence until t = 2 is ξk2 = (2, 3).
So far, we have shown how to create a multi stage stochastic linear

program. However, with increasing number of stages or scenarios, such
linear program can easily become untractable in some way. It can happen
that the model does not fit in computer’s RAM or it is very computationally
demanding. To overcome this, researches can use simple techniques such as
limiting the number of scenarios, for example by decreasing the branching
factor from some later stage, or by grouping the stages [11], e.g. in the case
of Newsvendor, weekend days can be grouped with Fridays if orders can’t
be made during weekend. Researchers can also employ more sophisticated
approaches, such as:

• Sample average approximation
This method uses a Monte Carlo simulation to obtain a problem of a
manageable size. It approximates the original stochastic expectation
function by generating iid samples ξ1, ..., ξN of random vector ξ,
and for this sample it solves the deterministic equivalent problem (the
sample is used as a set of scenarios). By sampling and solving the
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deterministic problem, it obtains a set of candidate solutions, which
are later compared by computing the optimality gap [10].

• Benders decomposition Benders decomposition [15] is one of the
decomposition approaches often employed in context of stochastic pro-
gramming. In general, it decomposes linear programs in a relaxed
master problem and subproblems by fixing some of the variables in
the linear program. The master and subproblems are being solved
iteratively. By solving the subproblems, we obtain feasibility and op-
timality constraints for the master problem. In multi stage setting,
the master problem is always represented by decision at some node of
the scenario tree, the subproblems are represented by decisions at its
children nodes.

• Progressive hedging algorithm Progressive hedging algorithm (PHA)
is another decomposition method often used in context of stochastic
programming. It was introduced by Rockafellar et al. [16].In contrast
with Benders decomposition, it decomposes the original problem by
whole scenarios, not by each decision in the scenario tree. We will
further introduce this decomposition method in following sections.
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3 Related work overview

In this chapter we offer a brief overview of related previous work. The
chapter is divided in two sections, one covers previous work related to de-
mand and general time series forecasting, the second provides a summary of
previous work related to inventory optimization.

3.1 Time series forecasting

The field of time series forecasting was strongly influenced by book of Box
and Jenkins [4], where they offer a guide to ARIMA model identification, es-
timation and verification [17]. Popularity of their approach most likely arises
from the versatility of the guide along with the ability of ARIMA models to
fit various types of data. Hyndman et al. [17] provide a list with examples
of research papers dedicated to time series forecasting, 9 of them used an
ARIMA model, for instance to predict truck sales (in [18]) or telecommu-
nications traffic ([19]). More recently, researchers use ARIMA models as a
benchmark model, e.g. in Zhang et al.[20], or they use hybrid approaches
of modeling, which combine ARIMA models with other approaches, such as
Neural Networks [21].

Another commonly used forecasting method is exponential smoothing
and its extensions. Exponential smoothing, was first introduced under the
name in exponential smoothing [2], where the author used the method for
demand forecasting. This exponentially weighted average method was later
updated by Holt [22], who added a trend component to the model. Later
Winter [23], in a research paper dedicated to sales forecasting, updated the
model with a seasonality component, and thus created the Holt-Winters
forecasting method. The model was further extended by multiple authors,
for example with components helping in prediction of time series with mul-
tiple seasonalites [24].

In general, researchers apply many other approaches than just extended
exponential smoothing models or ARIMA based models. With the massive
popularity of deep neural networks in recent years, it is no surprise that
researchers have also applied its concepts to time series forecasting. For
instance in [25] the authors apply a deep model to taxi demand predic-
tion, or in [26] they develop a model, which they benchmark on tide height
prediction.

3.2 Inventory optimization

To our own knowledge, there are no previous works on the topic of multi-
period Newsvendor with time-variable costs and deteriorating items, but
in general, there are many works solving various other extensions of the
Newsvendor problem. However, we should mention that not all research
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work focuses on the case with stochastic demand, even though some studies
on the topic of inventory problem with stochastic demand date back to
1958 [27]. Other researchers also focus on models which ignore some of the
relevant costs.

A lot of research work focuses only on the inventory optimization part
of the problem introduced in this thesis, however some works try to solve
both the demand forecasting problem and the inventory problem as in this
work. For instance Levina et al. [28] propose an online algorithm for the
Newsvendor problem, which can be used in case no prior demand distribu-
tion information is known. Also Oroojlooyjadid et al. [29] provide an end
to end solution for the newsvendor problem. They propose a deep neural
network based approach, which, using previous demand data and observed
features, directly outputs future ordering policy. Ning et al. [30] also use
neural networks to predict warehouse customers’ demands based on which
they create ordering policies. Sachs et al. [31] focus on Newsvendor prob-
lem adjusted for the problem of censored demand. Censored demand occurs
in case the demand is greater than the available inventory, as in such case
we don’t know the exact demand, which can further affect future demand
predictions.

After reading the previous paragraphs the reader might think that most
solutions of inventory optimization problems revolve around application of
mixed integer programming or neural networks. However the range of tech-
niques is wider. As an example we can name Daniel et al.[32], which combine
a simulation and genetic algorithm approach to optimize a supply chain in-
ventory costs.

We can also name a few authors, that solved a more closely related
problem to the optimization part of this thesis, we can start with Kim et
al. [33]. Kim et al. focus solely on the inventory problem and provide
solution to multi period Newsvendor problem with transhipments. They
provide an MILP formulation of the problem, which they try to solve more
efficiently with the Progressive hedging decomposition method. They work
also includes a table with comparison of works of other authors related to
topic of (extended) Newsvendor problem. We can also mention Levi et al., as
[34] they solve the regular multi period Newsvendor problem by the Simple
Average Approximation approach. They also provide formal proofs of how
many samples are required to guarantee that the sampling approach solution
is close to optimal solution with arbitrary precision.

Finally, we can state that (to our knowledge) none of the previous works
proposes a model of retailer that would be suitable for purposes of this
work, as our approach provides ordering policies for multiple steps ahead,
considers demand uncertainty, fixed ordering costs, goods durability, disal-
lows back orders (back-order means that part of customer demand from one
period can be satisfied in next periods). Also to our knowledge, none of the
works suggests to use progressive hedging decomposition approach in order
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to significantly increase the number of demand scenarios considered by the
model.
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4 Solution approach

4.1 Motivation

Inventory control plays an important role for competitiveness of any com-
pany that provides goods for its customers. An example of such company
could be an online store, which both delivers and distributes groceries.
Goods shortages cause lower profits and they can easily lead to customer
dissatisfaction. On the other hand excess inventory may force the store to
sell goods at lower prices, or even worse it can lead to inventory write offs.
Higher inventory levels also increase warehousing costs.

A module that would be able to forecast demand with high accuracy,
combined with a precise inventory model, that accounts for possible errors
of the forecasting module and considers all inventory related costs and goods
durability, would be of great use for such companies. In this thesis we aim to
create such module, with the focus on precise modeling of an online grocery
store.

4.2 Assumptions

During the preparation of the solution approach used in this thesis, we had to
make a few assumptions as it helped us to overcome technical difficulties, e.g.
in case we did not know some parameters. The list of the most important
assumptions with brief justification follows:

• Censored demand: Our models don’t take censored demand into ac-
count. Censored demand occurs when demand is greater than the
available stock. In such case, we only know that the demand was
greater than the stock level, but we do not know the exact demand.
Some research on this topic has been done by other authors e.g. [31].

• Product class prediction/ordering: During the initial research phase,
we have found it very difficult to predict single product class demand.
There are many possible reasons. One reason could be variance in
product availability, or product sale discontinuation, e.g. because of
new product. Therefore we focus on prediction and generation of in-
ventory policies of product classes, instead of single products. This
means, for example, that we predict the demand for all bananas, in-
stead of single brand of bananas.

• Product class policy: Our models currently provide only product class
ordering policies instead of per-product policies or whole multi-item
policies.

• Expired products: We assume that expired products are removed im-
mediately after expiration and older products are sold before new prod-
ucts.
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• Zero order lead time (the time between making an order and receiving
the order): During the preparation of this thesis we did not have access
to length of order lead time so we do not consider it in our models.

4.3 Preprocessing

During initial research phase we have studied the influence of preprocessing
methods on the accuracy of the demand forecasts. First we tried remove
outliers from the historical data by smoothing methods, later we also tested
the Hampel filter [35], which measures deviation of time series samples from
median of their surrounding samples, and removes those samples that differ
significantly from the median. However, the best results were obtained by
simply replacing values that coincided with non-working holidays, as these
samples were unnecessary outliers in the series, which can potentially harm
the fitting process of the forecasting models.

4.4 Demand prediction

Even though the inventory model presented in section 4.6 can account for
possible errors of the forecasting module that precedes it, the accuracy of
the demand forecasts still plays a crucial role for its performance. Therefore
we use the ARIMA and exponential smoothing methods which have many
times proven its ability to provide accurate forecasts.

4.4.1 ARIMA model

The first model we decided to include is the seasonal ARIMA(p, d, q) ×
(P,D,Q)m as it was many times successfully used for forecasting time-series
from various areas. Because our inventory pipeline is expected to work
automatically, we had to create an automated method of the model order
selection. Our approach is based on a grid search approach, which tests
various model order configurations. The final model order is selected by
minimizing the Bayesian information criterion (BIC) [1]:

BIC = AIC + (log(T )− 2)(p+ q + k + 1) (19)

Where AIC is the Akaike information criterion, which is defined as follows:

− 2log(L) + 2(p+ q + k + 1) (20)

and L is the value of maximum likelihood function of the model, k is the
number of parameters of the model, p is the autoregressive order and q is
the moving average order of the model, T is number of observed samples.

To narrow down the number tested model configurations, we investigated
some basic properties of the series. An example of the provided time series
data can be seen in figure 3. The top plot shows scaled demand data, it
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Figure 3: An example of the provided time-series data, together with corre-
lation plots

is clear that the series is not stationary - it has increasing trend and likely
time-changing variance (heteroscedasticity). Also the autocorrelation plots
suggests the series is not stationary. Therefore at least one of regular or
seasonal differencing terms have to be included. The seasonality period
of this daily demand data series is likely to be 7 days, which we can also
support by applying a seasonal differencing with m = 7. After differencing,
we can evaluate the Augmented Dickey-Fuller test of stationarity, The test
has the hypothesis that the series is not stationary. Clearly, the seasonal
differencing has made the series stationary, as the test returned an almost
zero p-value and we have to reject the null hypothesis.

Finally, we have decided to limit all parameters p,d,q to values 0,1 or
2, the P,D,Q values to 0 or 1, and m to 7. We prefer lower order values to
prevent over-fitting.
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4.4.2 Exponential smoothing model

The second model we decided to include in our prediction module is the ex-
ponential smoothing model, as it is easily interpretable and the parameter
selection is straightforward and fast. In the exploratory analysis section,
we have shown that the provided data contain signs of weekly seasonality
and has increasing trend. Therefore it might seem that the Holt-Winters
method as introduced in section 2.1.1 might be suitable. However, instead
of using the regular Holt-Winters method, we initially decided to use mul-
tiple seasonality extension of the method similar to the one used in [24]
so that the model could account for weekly, monthly and yearly seasonali-
ties. After we have performed some preliminary benchmarks, we found out
that the monthly seasonality component did not improve the results, so the
final model is based on “double seasonal additive exponential smoothing
method”, and is formulated as follows:

ŷt+h|t = lt + hb
(hφ)
t + wt−m1+h + rt−m2+h

lt = α(yt − wt−m1 − rt−m2) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

wt = γw(yt − lt−1 − rt−m2) + (1− γw)wt−m1

rt = γr(yt − lt−1 − wt−m1) + (1− γr)rt−m2

(21)

Where ŷt+h|t is the h steps ahead forecast from time step t, lt denotes the
level component at time step t, bt is the trend estimate at time step t, wt
is the weekly seasonality component at time step t, r the yearly seasonal
component, α is the level smoothing coefficient, β is a trend smoothing
coefficient, γw, γr are smoothing parameter of the weekly and seasonality
components. The parameters m1, m2 denote the periodicity of the seasonal
components, so m1 = 7 is the periodicity of the weekly component, m2 =
365 of the yearly component. Another parameter is φ, which is a trend
damping parameter. We decided to include it, so that it prevents longer
term forecast to be strongly affected by the last trend estimate, which often
happened in the preliminary phase of research.

The initial values of l0 is selected as the first value in the time-series
training data, b0 is selected as the difference between the first two values in
the series, w0 r0 are set to the mean difference between the first value and
the values in the first period of the seasonality component.

For the coefficient selection, we use L-BFGS [36] method, which is a
optimization algorithm for parameter selection. During the training, for
every parameter set, the SSE error is computed for forecasting in last three
periods from the end of the training series, each period has the same length
as the future forecasting period, each time all data before the period is used
to tune the model components.
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4.5 Scenario generation

So far, we have described the used demand forecasting algorithms. In this
section we describe our scenario generation procedure for our stochastic
inventory models.

Once we have fitted any model described in section 4.4, we obtain the
following:

• The forecasts x1, . . . , xT where xi is a forecast for future timestep i
and T is the forecasting horizon

• The model residuals {e1, . . . , eL}. Where each residual value is ob-
tained from the difference ej = yj− ŷj , which is the difference between
the actual values at time step j denoted yj and the fitted values ŷj ,
and L is the number of time steps in training data.

From the residuals, we compute their standard deviation estimate σ, and
we sample “errors” from N (0, σ2) which are added to the forecasts.

4.6 Inventory control

In previous sections, we have shown the proposed demand predictors and
instructions on how to generate set of demand scenarios from these predic-
tions. In this section we describe our inventory model, whose input is the
set of scenarios and the output is the ordering policy for next periods.

We will formulate our solution using stochastic programming as we ex-
pect our models to account for demand uncertainty. More specifically, the
solution will be based on the Multi period Newsvendor model, as the for-
mulation is very flexible and allows us to further extend it to create more
precise model for purposes of our task.

In section 2.2 we have provided an introduction to multi stage stochastic
models, which are built on the assumption that we can make the decision
for each time stage right before the time stage. However, our solution is
based on multi period modeling approach, which differs from multi stage
models by its assumption that all decisions are made already before the first
stage.

4.6.1 Base linear program

As we have already stated, our solution is based on the stochastic Newsven-
dor model. The uncertainty of the solution is represented by a set scenarios
and their respective probabilities and the set of decisions is obtained by
solving a linear program. In section 2.2 we have shown the linear program
for the base multi stage Newsvendor model. Considering the differences be-
tween the assumptions of the multi stage and multi period models, we can
state the linear program for the multi-period Newsvendor as follows:
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min
xt

K∑
k=1

pk

T∑
t=1

zk,t

s.t. zk,t ≥ (ct − bt)xt + btdt − byk,t, k = 1, . . . ,K, t = 1, . . . , T

zk,t ≥ (ct + ht)xt − htdt + hyk,t, k = 1, . . . ,K, t = 1, . . . , T

xt ≥ 0, t = 1, . . . , T

yk,t+1 = xt + yk,t − dk,t, t = 1, . . . , T

(22)

Where ct, ht, bt are the per unit ordering, holding and shortage costs at time
stage t, dk,t is the demand at time stage t under scenario k, pk is probability
of scenario k, xt is ordered amount for time stage t, yk,t is expected leftover
inventory from stage t-1 under scenario k, zk,t is expected cost at time stage
t under scenario k.

We will use this mixed integer linear program as a base for our final
solution.

4.6.2 Linear program extensions

Even though the proposed linear program 22 allows us to obtain the or-
dering amounts by optimizing some sort of expected cost, it does not fully
capture the real world retailer’s case, as it, for instance, does not account for
goods deterioration. For this reason, we have to add the following necessary
extensions to the base linear program:

• Disallow back orders: Because we are modeling am online grocery
store, we have to remove the possibility of back orders (back order is
a case of unsatisfied demand at some period satisfied in later period)
in from the model, as back orders are not supported by the shop.
Therefore, we have to update the constraint yk,t+1 = xt − dk,t and
replace it with yk,t+1 = max(0, xt − dk,t). Such constraints are
commonly added to linear programs using the big M method, which is
also recommended by the solver used by this study, Gurobi 8.0.0 [37],
if the M constant is as small as possible. Therefore, we will replace
the original constraint with the following:

yk,t+1 ≥ xt + yk,t − dk,t, t = 1, . . . , T

yk,t+1 ≥ 0, t = 1, . . . , T

yk,t+1 ≤ xt + yk,t − dk,t +M(1− b), t = 1, . . . , T

yk,t+1 ≤Mb, t = 1, . . . , T

(23)

Where b is an additional binary variable and M is constant, either
equal to maximum inventory level (if available), or to multiple to daily
maximum demand in all scenarios.
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• Per order fixed costs: The base linear program only includes per
unit ordering costs, although it is quite common that suppliers charge
per order costs as well. Therefore, we add the following constraint:

xt ≤ wtM, t = 1, . . . , T (24)

Where wt is binary variable indicating that order will be placed at
time stage t. We also have to update the objective to include the per
order costs:

min
xt

K∑
k=1

pk

T∑
t=1

zk,t +

T∑
t=1

ftwt (25)

Where ft is the per order cost at time stage t.

• SKU expiration date: Because our target is to generate ordering
policies of a grocery online store for multiple weeks ahead, our model
is also expected to include item expiration. For simplicity, we assume
that the store sells goods in the order they were received, the expired
goods are removed from inventory right after expiration, and the ex-
piration date always occurs after fixed interval of u time stages after
they are received in stock. We introduce another set of variables lk,τ,t,
which denotes the left over inventory from time stage τ at time stage
t under scenario k. Finally we update the constraints for yk,t and add
constraints for lk,τ,t:

yk,t+1 ≥ xt + yk,t − dk,t − lk,t−u,t, t = 1, . . . , T − 1

yk,t+1 ≥ 0, t = 1, . . . , T − 1

yk,t+1 ≤ xt + yk,t − dk,t − lk,t−u,t +M(1− b), t = 1, . . . , T − 1

yk,t+1 ≤Mb, t = 1, . . . , T − 1

yk,t+1 =

t∑
τ=t−u

lk,τ,t, t = 1, . . . , T − 1

lk,t,t ≤ xk,t, t = 1, . . . , T − 1

lk,τ,t+1 ≤ lk,τ,t, t = 1, . . . , T − 1, τ = 1, . . . , T − 1
(26)
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4.6.3 Final linear program

After adding all the extensions mentioned above, we obtained this final
mixed integer linear program:

min
xt

K∑
k=1

pk

T∑
t=1

zk,t +
T∑
t=1

ftwt

s.t. zk,t ≥ (ct − bt)xt + btdt − byk,t, k = 1, . . . ,K, t = 1, . . . , T

zk,t ≥ (ct + ht)xt − htdt + hyk,t, k = 1, . . . ,K, t = 1, . . . , T

xt ≥ 0, t = 1, . . . , T

xt ≤ wtM, t = 1, . . . , T

yk,t+1 ≥ xt + yk,t − dk,t − lk,t−u,t, t = 1, . . . , T − 1

yk,t+1 ≥ 0, t = 1, . . . , T − 1

yk,t+1 ≤ xt + yk,t − dk,t − lk,t−u,t +M(1− b), t = 1, . . . , T − 1

yk,t+1 ≤Mb, t = 1, . . . , T − 1

yk,t+1 =
t∑

τ=t−u
lk,τ,t, t = 1, . . . , T − 1

lk,t,t ≤ xk,t, t = 1, . . . , T − 1

lk,τ,t+1 ≤ lk,τ,t, t = 1, . . . , T − 1, τ = 1, . . . , T − 1

(27)

4.6.4 Decomposition

It can be easily seen that our final final mixed integer linear program is
quite complex. For illustration, a testing problem with three week planning
horizon (21 time stages) and 100 scenarios has over 15000 variables. On the
testing machine with Intel Core i7 7700HQ and 24 Gigabytes of RAM, the
Gurobi optimizer found the optimal solution after more than 15 minutes,
you can see results of an experiment with the running time rate of growth in
figure 4. The task of the model in the experiment was to iteratively create
inventory policy, while considering 5,10,20,40,60 and finally 80 scenarios.
The running time for 80 scenarios that can be seen in the graph is not the
actual running time. As the inventory policy generation took more than the
2 hour time limit, it was stopped before generating an optimal solution. The
experiment therefore did not reject our hypothesis that the order of growth
is exponential in number of scenarios. Considering that companies would
likely need to create ordering policies for thousands of products, we decided
to implement one of decomposition approaches introduced in section 2.2.5,
the Progressive Hedging Algorithm. This decomposition methods improves
the running time of the model, and allows us to use the model with more
demand scenarios, which can further improve its performance, as can be
seen in section 5.
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Figure 4: Experiment with extensive form running time.

Progressive hedging algorithm’s idea is straightforward, it decomposes
the extensive form of a multi stage problem by scenarios in a set of smaller
problems. The scenario subproblems are modified with a penalization term,
which measures the deviation of the scenario solution from the scenario in-
variant solution. Even though convergence to globally optimal solution in
the mixed integer programming case is not guaranteed, researchers have
shown that the algorithm can find high quality solutions [38]. Another diffi-
culty arises with selection of penalty parameters and converge acceleration
techniques, however researchers such as. Watson et al. [39] provide ways
around these problems.

To clarify, PHA is commonly used only for multi stage problems and the
penalization terms are used to force non-anticipativity constraints. Even
though our problem is a multi period model and does not contain any non-
anticipativity constraints, we will use the penalty terms to enforce that
the ordering policies (xk,1, . . . , xk,T ) generated by solving the subproblems
converge to the scenario invariant policy x̂1, . . . , x̂T . To include the penalty
term, we update the objective function of the subproblem of each scenario
s to the following:

min
xs,t

T∑
t=1

zt +

T∑
t=1

ftwt +

T∑
t=1

λs,t(xs,t − x̂t) +
1

2

T∑
t=1

λs,t(xs,t − x̂t)2 (28)

Where λ is a Lagrange multiplier and ρ is a parameter.
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The PHA is defined as follows:

Algorithm 1 Progressive Hedging Method for Multi period Newsvendor
problem

1: Initialize variables ρ, γ and θ, set variable k = 0.
2: for each scenario s ∈ S (set of all scenarios) do
3: solve scenario sub-problem without penalization term
4: end for
5: Set x̂t =

∑
s∈S psxs,t, t = 1, . . . , T

6: Set λs,t = ρs(xs,t − x̂t), s = 1, . . . , |S|, t = 1, . . . , T
7: for each scenario s ∈ S do
8: solve scenario sub-problem with penalization term
9: end for

10: Update x̂t ←
∑

s∈S psxs, t = 1, . . . , T
11: Update λs,t ← λs,t + ρs(xs,t − x̂t), s = 1, . . . , |S|, t = 1, . . . , T
12: Update ρ← γρ

13: δt =

√∑
s∈S (xs,t−x̂t)

x̂t
, t = 1, . . . , T

14: for t = 1, . . . , T do
15: if δt ≥ θ then return to step 7
16: end if
17: end for
18: Terminate.

The algorithm definition raises a few questions, namely the following:

• The initial value of ρ, γ and θ: We have empirically selected the initial
value of ρ = 1, γ = 1.4 and θ = 0.0001. The value of γ ensures that
the value of ρ almost doubles on every second iteration.

• Is the termination test on lines 15 - 17 sufficient? Our simulations
have shown that additional tests need to be added. In [39] the authors
propose PHA algorithm cycling behavior detection. At each iteration
of the algorithm, they save the xi components of the scenario invariant
solution x̂1, . . . , x̂T using hashing. Once cyclic behavior of any of the
decision variables x̂it from x̂1, . . . , x̂T is detected between iterations,
its value is fixed to max(x̂i,s), s ∈ S.

We also check the following quantity ∆ at each iteration k ≥ 1:

∆ =

T∑
t=1
| x̂k,t − x̂k−1,t |

T
(29)

Where x̂k,t denotes the scenario invariant solution at iteration k. The
value of ∆ indicates the mean solution variable change between itera-
tions. If ∆ ≤ 1

T (means that on average only one variable changed by
1) for 10 consecutive iterations, we terminate the algorithm.
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5 Evaluation

In this section we evaluate both topics of this thesis. For the evaluation
purposes, we use the data provided by the supervisor. The evaluation con-
sists of two tasks. First part is dedicated to evaluation of proposed demand
forecasting methods, the second contains evaluation of inventory models,
primarily with focus on the applicability of an extensive form inventory
model and its decomposed form.

5.1 General description of our evaluation

First, we take all the proposed time series prediction models and we bench-
mark them on 5 selected product classes. Each algorithm has to provide
forecasts for 3 periods of length of 28 days. The forecasts are then evaluated
using standard accuracy metrics and also visual evaluation is performed.
Second, we pick the best performing models, and compare their properties,
primarily the residuals. Afterwards, we pick the model with the best prop-
erties, and we use its forecasts and residuals to generate demand scenarios
for the inventory models. The inventory models are then benchmarked, ev-
ery model will generate ordering policies for each of the 3 periods and each
product class. Finally, the inventory models are evaluated according to costs
associated with their ordering policies.

5.2 Demand prediction

As already mentioned, the evaluation consists of two parts. In this part
we evaluate the demand prediction models on a set of 5 product classes
(SKU) across 3 consecutive periods of length of 28 days. The periods are
the following:

• From August 1st 2017 to August 28th 2017

• From September 1st 2017 to August 28th 2017

• From October 1st 2017 to August 28th 2017

Each time a model is tested for given SKU and period, it obtains all historical
demand data available before start of the period.

In addition to the models introduced in section 4.4, we also include the
Prophet [40] model for comparison of accuracies. The Prophet model is a
forecasting model developed and used by the company behind the largest
social network in the world. The model uses a decomposable time series
model of the following form:

yt = g(t) + s(t) + h(t) + εt (30)
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Where yt represents a fitted value at time step t, g(t) is a logistic or linear
trend component, st is a seasonality component modeled by Fourier series,
ht represents possible effect of holidays and εt is is an error term which is
assumed to be normally distributed. For finding the model’s parameters a
L-BFGS [36] algorithm is used.

5.2.1 Evaluation metrics

We use mainly two performance measures of forecasting accuracy, root mean
squared error and mean absolute percentage error. In general, a forecast
error e at is defined as follows:

ei = yi − ŷi (31)

Where yi is the i-th observation of the time series, and ŷi is the forecast
of the i-th observation. Root mean squared error (RMSE) is probably the
most commonly used scale-dependent measure, it is defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(ei)2 (32)

The fact that RMSE is scale dependent makes it unsuitable for comparing
forecasting performance on different time-series. However, for purposes of
anonymization, we actually compute RMSE from scaled values:

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi
m

)2 (33)

Where m denotes the maximum observed value in the time-series. This
adjustment allows for better comparison across different series. A more
common scale-independent forecast error measure is the mean absolute per-
centage error (MAPE), which describes the error as a percentage value:

MAPE =
100

n

n∑
i=1

|yi − ŷi|
xi

(34)

5.3 Forecasting evaluation results

In this part of thesis we discuss the results of evaluation of the proposed
forecasting models. Before a general summary, we first discuss the results
by each product class in separate subsections. In each subsection, we provide
a summary commentary. In addition to the commentary, each subsection
contains a figure showing the product class’ demand forecasts, where the
forecasts of each model is shown separately, namely the figures 5, 6, 7, 8
and 9. In the appendix section 7 we also provide figures (15, 16, 17, 18 and
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19) containing the forecasts for each product class, but with the forecasts
provided by the models drawn in one plot. Nonetheless, each of the above
mentioned plots also contains part of the time series history preceding the
forecasting periods, and the start of each forecasting period is denoted by a
dashed line.

We also provide tables with scores of each model in the respective prod-
uct classes’ sections, in addition to these per-product-class results tables,
the appendix section 7 contains table 11, which contains all scores of all
models for every product class.
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Figure 5: Results of first product class - SKU1 forecasting evaluation

Exp. Smoothing ARIMA Prophet
MAPE RMSE MAPE RMSE MAPE RMSE

Period 1 5.918 0.042 8.536 0.062 10.907 0.077

Period 2 9.459 0.079 10.176 0.083 17.506 0.139

Period 3 9.327 0.087 10.917 0.095 14.426 0.129

Table 1: Results of SKU1 forecasting

5.3.1 SKU1 forecasts

We first discuss the results of forecasting of the demand of the first product
class (SKU1). The forecasts can be seen in figures 5 and 15 and the RMSE
and MAPE scores are in table 1.

It is clear from both the figure and the table that the best performing
models were the ARIMA and exponential smoothing models, which both
provide quite similar forecasts, however the smoothing method has slightly
better scores. Both models are well adapted for the weekly seasonality in
the first period forecast, a little less in the other periods, maybe because
they are over-fitted to the seasonality pattern - which has slightly changed
in later testing periods. The weekly seasonality adjustment can be seen from
the selected order of the (S)ARIMA model - (0, 1, 2)x(0, 1, 1)7 in first period
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and (1, 0, 2)x(0, 1, 1)7 in second and third. Also the smoothing model has
selected high weekly seasonality smoothing parameter - γw was higher than
0.4 in all periods. Both models have underestimated the slope of the trend
in second and third period, namely the smoothing model in second period,
most likely because it selected quite low trend parameter β = 0.06. The
prophet model’s forecasts seem to be adjusted to the seasonality as well,
but in somewhat damped way. In the second period, the Prophet model
forecasted a decreasing trend, whereas it was actually increasing, which
resulted in the worst score.
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Figure 6: Results of second product class - SKU2 forecasting evaluation

Exp. Smoothing ARIMA Prophet
MAPE RMSE MAPE RMSE MAPE RMSE

Period 1 6.2877 0.032 10.964 0.064 10.455 0.068

Period 2 20.644 0.156 20.671 0.156 31.996 0.229

Period 3 14.169 0.097 23.078 0.130 13.094 0.093

Table 2: Results of SKU2 forecasting

5.3.2 SKU2 forecasts

Product class 2 (SKU2) consists of similar type of products as SKU1, which
can be also seen if we compare figures 5 and 6. Both the historical data and
forecasts show similar patterns. Again, a (1, 0, 2)x(0, 1, 1)7 SARIMA model
(this time for each period) was selected. The exponential smoothing method
also used similar parameters α ∼ 0.01, β ∼ 0.9, φ ∼ 0.8, γr ∼ 0.04 and γw ∼
0.4 to those selected for SKU1. Unfortunately, the models underestimated
the trend slope in second period, and the decrease in level in third period
as well. This resulted in overall worse scores than the models obtained for
forecasting SKU1.
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Figure 7: Results of third product class - SKU3 forecasting evaluation

Exp. Smoothing ARIMA Prophet
MAPE RMSE MAPE RMSE MAPE RMSE

Period 1 10.072 0.076 7.227 0.060 6.954 0.052

Period 2 10.744 0.112 13.106 0.133 12.630 0.126

Period 3 8.532 0.094 8.662 0.091 8.129 0.087

Table 3: Results of SKU3 forecasting

5.3.3 SKU3 forecasts

Figure 7 contains the forecasts for product class 3 (SKU3), which is a class
of ham products, the table 3 contains all scores. An ARIMA model of order
(1, 1, 2)x(1, 1, 1)7 was selected for all periods, which performed well in first
and third testing period. The exponential smoothing method’s parameters
were selected always a little differently for each period. For first period it
was α ∼ 0.01, β ∼ 0.95, φ ∼ 0.95, γr ∼ 0.04 and γw ∼ 0.34, for second
α ∼ 0.11, β ∼ 0.49, φ ∼ 0.92, γr ∼ 0.04 and γw ∼ 0.42, and the third
α ∼ 0.17, β ∼ 0.74, φ ∼ 0.92, γr ∼ 0.04 and γw ∼ 0.26, so the trend and
weekly seasonality parameters changed the most, but it always resulted in
good scores. On average the Prophet model provided the most accurate
forecasts by a slight margin.
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Figure 8: Results of fourth product class - SKU4 forecasting evaluation

Exp. Smoothing ARIMA Prophet
MAPE RMSE MAPE RMSE MAPE RMSE

Period 1 19.258 0.164 10.685 0.108 9.692 0.106

Period 2 11.662 0.122 11.891 0.125 10.561 0.107

Period 3 7.311 0.081 11.276 0.118 7.139 0.070

Table 4: Results of SKU4 forecasting

5.3.4 SKU4 forecasts

Product class 4 (SKU4) is a class of a hygiene product. From the his-
torical data it seems that the weekly seasonality pattern is not as signifi-
cant as in the demand time-series of previous products. Figure 8 contains
the plot of forecasts for SKU4 against actual historical data, and the table
4 contains the scores of all models. For SKU4, an ARIMA model of or-
der (1, 0, 2)x(0, 1, 1)7 was selected for all periods which seems to follow the
slightly increasing trend and the level as well. However the Prophet model’s
forecasts were more accurate. The exponential smoothing method provides
similar results to both other methods in second and third testing period,
but the selected parameters α ∼ 0.01, β ∼ 0.86, φ ∼ 0.8, γw ∼ 0.25 and
γr ∼ 0.04 for first period led to MAPE of almost 20% .
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Exp. Smoothing ARIMA Prophet
MAPE RMSE MAPE RMSE MAPE RMSE

Period 1 9.438 0.067 7.677 0.051 10.245 0.066

Period 2 15.991 0.088 16.248 0.087 15.372 0.089

Period 3 17.712 0.127 8.320 0.061 9.686 0.071

Table 5: Results of SKU5 forecasting

5.3.5 SKU5 forecasts

We will finish our per-product evaluation with product class 5 (SKU5).
Figure 9 contains the plot of forecasts for SKU5 against actual historical
data, and the table 5 contains the scores of all models. SKU5 is a class
consisting of popular drink, which might be the reason why the histori-
cal data show a repeating weekly seasonality pattern. In the first testing
period, all models seem to fit the seasonality quite well. However in the
second testing period the difference between the minima and maxima of the
series grew, and there is a slight drop of level at start of September (pos-
sibly because the summer holiday ends at that time). None of the models
did forecast that. Possibly some product classes would require models ad-
justed for these “holiday” effects. For SKU5, an ARIMA models of orders
(1, 1, 2)x(1, 1, 1)7, (1, 1, 1)x(1, 1, 1)7, (1, 1, 2)x(0, 1, 1)7 were selected for each
period respectively. The ARIMA model (1, 1, 1)x(1, 1, 1)7 selected for the
second period had the highest MAPE of them, maybe it would have been
better if the model selection process (BIC criterion) selected same model for
all periods. The exponential smoothing method provides similar results to
both ARIMA in the first two periods. But the α ∼ 0.32, β ∼ 0.08, φ ∼ 0.95,
γw ∼ 0.54 and γr ∼ 0.04 parameters selected for third period resulted in
MAPE of 17.7%. The parameters show signs of over-fitting as the level com-
ponent is quite high and the trend component is low. Therefore future work
might focus on improvement of the “training” process for both methods. For
the holiday effects, a SARIMAX (Seasonal Arima with External Factors 2.1)
model with additional “holiday” input might provide better results. Before
we finish the commentary, we can state Prophet model achieved very high
MAPE scores in every period.
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Figure 9: Results of fifth product class - SKU5 forecasting evaluation

5.3.6 Residual analysis

We will now look at the residuals of the proposed forecasting methods, as
we want to generate demand scenarios for the inventory models using the
distribution estimated from the sample mean and sample variance of the
residuals. Also the properties of the residuals also provide us with an insight
in quality of the model. As stated in [1] a well fitted model’s residuals have
the following properties:

• The residuals are uncorrelated - if the residuals are correlated, there is
some information in the residuals which could be used in the forecasts
but were not

• The residuals have zero mean. If the mean is not zero then then the
model is biased (but it can be fixed by shifting the forecasts).

For the assessment of possible autocorrelations of the residuals, we can
use the autocorrelation plot. An example of autocorrelation plot can be seen
in figure 10, which was created from residuals of ARIMA and Exponential
smoothing models selected for forecasting the demand in first testing period
for SKU1. In the plot we can see that that the residuals of the exponential
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Figure 10: Autocorrelation plots of residuals of ARIMA and Exponential
smoothing models selected for forecasting of SKU1 in first testing period

smoothing model are significantly correlated, whereas the ARIMA model’s
residuals exhibit almost no correlation.

Another option of autocorrelation detection is the Ljung-Box test, which
may be defined as follows:

• H0(null hypothesis): The data are independently distributed.

• H1(alternative hypothesis): The data are not independently distributed,
they exhibit correlation.

The test statistic can be computed as follows:

Q∗ = T (T + 2)
h∑
k=1

(T − k)−1r2k (35)

Where T is the number of observations, h is the maximum considered lag
([1] suggests h = 2m for seasonal data, where m is the seasonality period),
rk is the autocorrelation at lag k, which is defined as follows:
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SKU1 SKU2 SKU3 SKU4 SKU5

ARIMA 0.15 0.18 0.32 0.13 0.28

Smoothing ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Table 6: Ljung-Box test p-values for lag = 14 of residuals of models used
for first period forecasting

rk =

n−k∑
t=1

(xt − x)(xt+k − x)

n∑
t=1

(xt − x)2
(36)

Table 6 contains the p-values of the Ljung-Box test statistic for first 14
lags computed from residuals of models selected for forecasting of demand
in first testing period for all SKUs. According to the table, we can reject
the hypothesis that the residuals of the exponential smoothing models are
independent. A relatively high p-values of the ARIMA model would suggest
that we can’t reject the hypothesis that its residuals are independent.
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SKU1 SKU2 SKU3 SKU4 SKU5

ARIMA 0.84 0.81 0.85 0.84 0.89

Smoothing 0.90 0.87 0.91 0.85 0.94

Table 7: Shapiro-Wilk test p-values of residuals of models used for first
period forecasting

Another important property of the residuals is normality, because our
scenario generation approach assumes that the residuals are from normal
distribution. For this we will use the Shapiro-Wilk test, which has the null
hypothesis that the tested sample comes from normal distribution. Table
7 contains Shapiro-Wilk test p-values of residuals of models used for first
period forecasting. We can see high p-values in the rows of each model,
which means the we cannot reject the hypothesis that the residuals are from
normal distribution.
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5.3.7 Forecasting evaluation results summary

We have evaluated the proposed models both visually and using accuracy
scores, and we also evaluated the models’ residuals using statistical tests.
Both our proposed methods performed better than that provided by the
Prophet library. The Exponential Smoothing method has the best average
accuracy scores, but some of its forecasts had signs of over-fitting. Also
the residual auto-correlation evaluation showed the model (or rather the pa-
rameter selection) could be further improved. The ARIMA models’ average
MAPE is slightly higher, but its mean RMSE (computed from scaled se-
ries) is exactly same. However, the evaluation has shown that its residuals
are likely not correlated and can be from normal distribution. Because of
its good “on average” performance in all evaluation parts, we have chosen
the ARIMA model as the model for generating demand scenarios for the
inventory models.

Future research might focus on improving the model selection methods
used for selecting the ARIMA models, namely we could theoretically use
higher order models. In case of Exponential Smoothing the autocorrela-
tion plots have shown it clearly didn’t use some of the information in the
historical data.

5.4 Inventory control

The next part of our evaluation is dedicated to the inventory control models.
In this subsection, we only consider forecasts provided by the best forecasting
model according to the evaluation in section 5.2 - the ARIMA model, and
use it for scenario generation.

During the demand evaluation, the ARIMA model generated forecasts
of demand for 5 SKUs across 3 consecutive periods of length of T = 28
days. Each of these forecasts, and the fitted models residuals, are used for
demand scenario generation. According to generated scenarios, the models
proposed in 5.4.1 will output ordering amounts xi, . . . , xT for each SKU and
each period. The performance of the models is later compared according to
costs, which would theoretically be incurred if the inventory policies provided
by the models were applied in real world.

5.4.1 Models

In section 4.6 we have designed our extented formulation of the stochastic
multi period Newsvendor inventory model. Due to the complexity of its
mixed integer linear programming formulation and the computation com-
plexity (especially when used with problem with more stage or scenarios)
associated with it, we have suggested that a decomposition approach should
be used - the Progressive Hedging Algorithm. Progressive Hedging Algo-
rithm is commonly used for problems that can’t be solved in its extensive

42



form in reasonable time, or those that don’t fit in RAM. This is not exactly
the case of our formulation. As you can see in table 10, some of the less
complex testing problems were solved in a couple of minutes. On the other
hand, for some of the problems, the selected Gurobi solver did not provide
an optimal solution for the extensive form with only 25 scenarios in under
20 minutes. Considering that an inventory of a store may contain thousands
of products, we decided to include the following models in the evaluation,
with “acceptable” computation time in mind:

• Extensive form model with 25 scenarios - this model solves the exact
formulation problem, but has rather limited amount of information
about the possible outcomes of the random demand

• Progressive hedging model with 250 scenarios - this models solves the
decomposed problem, but due to the increased number of scenarios it
can hedge against more possible outcomes of the random demand.

• Base stock model with daily restocking - this model is very simplistic,
its only objective is to prevent shortages

5.4.2 Testing parameters

We will now briefly list the parameters used by the above mentioned models
and in the evaluation.

First we can repeat that the planning horizon T of the models is T=28
days. And the goods durability estimates are the following:

• SKU1 - 4 days as it represents is a fruit product

• SKU2 - 6 days as it represents a different fruit product

• SKU3 - 8 days as it represents packaged ham product

• SKU4 - “unlimited’ durability, as it is a hygiene product which most
likely lasts longer than the planning horizon

• SKU5 - “unlimited’ durability, as it is a packaged drink which most
likely lasts longer than the planning horizon

Second we list cost types. As we don’t know the exact shortage, warehous-
ing and other costs associated with each SKU, we decided to the use the
following estimates:

• Shortage cost - bt: We use a value extracted from the historical data
equal to the average daily selling price of the product class

• Ordering costs (per unit) - ct: we use the values ct = 0.65bt
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• Fixed ordering costs (per order) - ft: we omitted this cost in evaluation

• Holding (warehousing) costs (per unit) - ht: we use the values ht = bt
50

It is clear that the values are very rough estimates and without expert’s
knowledge our total cost estimates are rather illustrative.

Now that we have the prices, we can show how we compute the estimated
total costs. If we assume that the inventory model required the orders
x1, . . . , xT and the actual demands were d1, . . . , dT , then we can calculate
the costs as follows:

• The total shortage cost - S:

B =
T∑
i=1

btmax(0, di − xi) (37)

• The total ordering cost - C:

C =
T∑
i=1

cixi (38)

• The total holding cost - H:

H =
T∑
i=1

htmax(0, xi − di) (39)

• The overall cost V:
V = B + C +H (40)

5.4.3 Total Costs evaluation

With computation time, the estimated costs is the most important measure
when comparing the models mentioned above. The evaluation of the total
costs associated withe the orders generated by the models can be seen in
table 8, where PHA stands for Progressive Hedging Algorithm, EF for Ex-
tensive form. Estimated costs with a star mean that the algorithm did not
finish in the time limit of 20 minutes and the result is only the best solution
obtained before the limit.

It can be seen that in most cases, both the Newsvendor based models
perform better than the simple Base Stock model, sometimes by up to 33%
as in case of testing period 1 for SKU2. This is also reflected in the total
sum of costs. PHA model has the lowest sum of estimated costs, EF model
is behind by roughly 0.5%, and the Base Stock model has the largest sum
of costs - 12% higher than PHA.
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Estimated costs

MAPE PHA EF Base Stock

SKU1
Period 1 8.54 6.6 · 105 6.7 · 105 7.9 · 105

Period 2 10.17 7.7 · 105 7.9 · 105 8.6 · 105

Period 3 10.91 8.5 · 105 8.7 · 105∗ 9.0 · 105

SKU2
Period 1 10.96 5.7 · 105 5.8 · 105∗ 7.3 · 105

Period 2 20.67 9.2 · 105 9.5 · 105∗ 8.8 · 105

Period 3 23.08 1.2 · 106 1.2 · 106∗ 1.7 · 106

SKU3
Period 1 7.23 1.2 · 106 1.2 · 106∗ 1.4 · 106

Period 2 13.10 1.4 · 106 1.5 · 106∗ 1.4 · 106

Period 3 8.66 1.5 · 106 1.5 · 106∗ 1.6 · 106

SKU4
Period 1 10.68 9.9 · 105 9.9 · 105 1.0 · 106

Period 2 11.89 1.2 · 106 1.2 · 106 1.2 · 106

Period 3 11.28 1.4 · 106 1.4 · 106 1.4 · 106

SKU5
Period 1 7.68 1.7 · 106 1.7 · 106 2.4 · 106

Period 2 16.25 1.8 · 106 1.8 · 106 2.4 · 106

Period 3 8.32 1.6 · 106 1.7 · 106 2.2 · 106

Sum 1.79 · 107 1.80 · 107 2.08 · 107

Table 8: Estimated total costs evaluation

As the total sum of costs suggest, in most cases the Progressive Hedging
model provided the best ordering policy. In only one test case was the EF
model’s policy better - test period 3 of SKU5. In one test case the Best
Stock model had the best result - test case 2 of SKU2, possibly because the
forecast had poor accuracy. From both the total results and the sub-results
it seems that the extra information that the PHA model obtained in the
additional scenarios was beneficial enough to outweigh the fact that its just
an approximation algorithm of the EF.

Lets now take a closer look at some of the more interesting test cases.
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Figure 11: Inventory model simulation visualization for test period 2 of
SKU1. The top 3 plots contain inventory level simulations for each model,
with periods with shortage highlighted by red rectangles, the bottom plot
contains the forecast of ARIMA model with prediction interval in light blue.

We start with test case 2 of SKU1. The policies generated by the PHA
model are the best in most cases, however this test case is one of those in
which PHA was best by the highest margin. The visualization of the inven-
tory levels can be seen in figure 11. We can see that at the end of the testing
period, the actual demand is slightly higher than the forecasted one, which
resulted in multiple periods with shortages of both EF and PHA model.
Nonetheless, PHA’s policy has significantly less periods with shortages -
likely because its solution accounts for more possible demand outcomes.
The base stock model has the largest estimated cost due to big amounts of
excess inventory.
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Figure 12: Inventory model simulation visualization for test period 1 of
SKU5. The top 3 plots contain inventory level simulations for each model,
with periods with shortage highlighted by red rectangles, the bottom plot
contains the forecast of ARIMA model with prediction interval in light blue.

We continue with test case 1 for SKU5, as the estimated total cost differ-
ence between the Newsvendor based models and the base stock model was
highest in this case. PHA model’s policy estimated cost was lower by 33%
than that of the base stock model. An inventory simulation of this test case
can be seen in figure 12. The large difference between the model’s is caused
by the accuracy of the forecast (MAPE was 7.7%). As the base stock model
orders the amount equal to the top of the demand prediction interval, it
has large amounts of excess inventory in this case. The EF model’s policy
caused some shortages at the end of the testing period - possibly because
the forecasted demand was lower. PHA’s policy seems to cover this better,
which means it achieved the best result.
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Figure 13: Inventory model simulation visualization for test period 2 of
SKU2. The top 3 plots contain inventory level simulations for each model,
with periods with shortage highlighted by red rectangles, the bottom plot
contains the forecast of ARIMA model with prediction interval in light blue.

The next inventory simulation we show in full detail is again for SKU2,
this time for test period 2 (figure 13. In this case the base stock model’s
policy was better than PHA by almost 3%. For this case, the forecast
expected smaller demand (MAPE was almost 21%). However the top of
the prediction interval, which is used as the order amount by the base stock
model, aligns with the actual demand quite well for the most part. But
during some days in the test period, the demand was so much higher than
the expected one that even the base stock model’s policy had shortages.
Still the shortage costs of base stock model were much lower than that of
other models.

The PHA’s more scenarios and its ability to finish processing in the 20
minute time limit (the EF model did not finish in the time limit), have
probably helped it to achieve significantly better result than EF, but its
estimated costs were still significantly higher then those of base stock model.
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Figure 14: Inventory model simulation visualization for test period 2 of
SKU5. The top 3 plots contain inventory level simulations for each model,
with periods with shortage highlighted by red rectangles, the bottom plot
contains the forecast of ARIMA model with prediction interval in light blue.

The only test case, in which the EF’s policy was better than that of PHA
was in case of test case 2 of of SKU5 (visualization in figure 14). However,
their policies and estimated costs are almost identical anyway. Both models
achieved zero shortage costs, but the PHA model had more excess inventory
- its inventory line in the subplot is clearly a little higher. The base stock
model had even larger amounts of excess inventory, which resulted in much
higher estimated costs.
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Estimated shortage costs

MAPE PHA EF Base Stock

SKU1
Period 1 8.54 2.0 · 104 7.9 · 104 0
Period 2 10.17 4.6 · 104 1.2 · 105 0
Period 3 10.91 9.5 · 104 1.5 · 105∗ 0

SKU2
Period 1 10.96 3.1 · 104 8.6 · 104∗ 0
Period 2 20.67 2.4 · 105 3.0 · 105∗ 2.4 · 104

Period 3 23.08 7.8 · 103 10.0 · 103∗ 0

SKU3
Period 1 7.23 7.3 · 104 1.0 · 105∗ 0
Period 2 13.10 2.5 · 105 3.0 · 105∗ 0
Period 3 8.66 1.6 · 105 2.1 · 105∗ 0

SKU4
Period 1 10.68 1.6 · 105 1.8 · 105 0
Period 2 11.89 2.1 · 105 2.3 · 105 0
Period 3 11.28 2.7 · 105 2.9 · 105 1.1 · 104

SKU5
Period 1 7.68 6.0 · 103 5.4 · 104 0
Period 2 16.25 0 0 0
Period 3 8.32 6.3 · 104 1.3 · 105 0

Sum 1.6 · 106 2.2 · 106 3.5 · 104

Table 9: Estimated shortage costs evaluation

5.4.4 Shortage costs evaluation

We have already provided commentary on the overall performance of the
models including shortage costs. Nonetheless the value of shortage costs is
not just monetary, as it can cause customer dissatisfaction, so we provide
another look at the models, this time with focus on shortage costs.

Table 9 contains the estimated shortage costs obtained from the inven-
tory simulations. It can be seen that the Base Stock model has the smallest
shortage costs overall , which is as expected, because low shortage of goods
is the only objective of the model. If we look at the columns with results of
the PHA and EF models, we can see that the PHA model achieved smaller
shortage costs. Therefore we can state, that it has the potential to cause
smaller dissatisfaction than the EF model.
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Running time [s]

PHA EF Base Stock

SKU1
Period 1 256 335 0
Period 2 287 283 0
Period 3 210 1290 0

SKU2
Period 1 332 1200 0
Period 2 258 1201 0
Period 3 284 1200 0

SKU3
Period 1 652 1200 0
Period 2 602 1201 0
Period 3 669 1201 0

SKU4
Period 1 240 978 0
Period 2 506 493 0
Period 3 500 900 0

SKU5
Period 1 161 534 0
Period 2 165 386 0
Period 3 168 614 0

Table 10: Model running time evaluation

5.5 Running time evaluation

Until now, we have focused on the estimated costs of the generated policies.
However another important aspect is the running time of the models, as an
inventory might contain thousand of products. Note that we have set a time
limit of 1200 seconds for the inventory policy generation, which stopped the
Extensive form model before completely finishing in 7 cases. We also won’t
discuss the running time of the Base Stock model, as it provided the results
in an instant in all cases.

As we can see in table 10, the PHA model was significantly faster than
EF in 13 of 15 cases. Its longest test case running time was 669 seconds,
however as the algorithm can easily be parallelized, this could be dramat-
ically improved. Even if the running times of EF model were on average
significantly longer, it did not provide better results than PHA, except of
one test case. The worse time effectiveness of EF meant it had to use smaller
count of demand scenarios, and in 7 test cases the EF did not even finish in
the time limit anyway.

If we consider that a single powerful machine could theoretically run the
EF algorithm for 8 or 16 products at once, an ordering policy for inventory
of 1000 products could be generated in roughly 10 hours. With the PHA
algorithm, it could finish in 5 hours or even less. Or we could feed even
higher count of scenarios in the PHA model, which could further improve
its results.
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5.5.1 Inventory control evaluation conclusion

In this subsection we have evaluated three inventory models, first model was
the extensive form of our proposed extension of Newsvendor model, which
worked with 25 demand realization scenarios in each test case, the second
one was the a decomposed version of the previous model, which used the
Progressive Hedging Algorithm and 250 demand scenarios. The last model
was the simple Base Stock model.

Across 3 testing periods for 5 SKUs, forming 15 possibly real world test
cases, the best on average model was the PHA base model, as it generated
inventory policies with the smallest cost. Its extensive form provided worse
results, which were obtained in significantly longer running times.

The Base Stock model was the worst performing one, as it does not
consider price changes and also due to the relatively accurate forecasts, its
safety inventory level was not needed in most cases.

5.6 Evaluation conclusion

In this section, we have evaluated both the demand forecasting models and
the inventory control models. For the purposes of evaluation, we have ex-
tracted 15 possibly real world test cases from the data provided by the
supervisor.

Both the exponential smoothing and ARIMA forecasting models showed
reasonable forecasting performance given the random nature of the testing
data. However, during our in depth analysis we have found out that the
“fitting” procedure of both models could be further improved. Possible
future work could therefore focus on the fitting phase, or on forecasting
with external factors.

In the part dedicated to inventory control, we compared the performance
of two version of our extended Newsvendor inventory model. This model
has the advantage of large variability due to its mixed integer linear pro-
gramming formulation, but solving the program requires large amounts of
computation time. Therefore we have compared the extensive formulation of
the model and its approximation form based on Progressive Hedging Algo-
rithm. The extensive form of the model had to use less demand information
in order to be able to finish in reasonable computing time. The approxima-
tion form had the advantage of more demand information.

The PHA model performed significantly better on average than the ex-
tensive form, and it required significantly less computation time. Both mod-
els performed better than the the third model - the simplistic Base Stock
model. In future work, we could focus on development of some combination
of these models. The decomposition formulation could be used to presolve
parts of the problem, until a smaller problem is obtained, which could be
later solved in the extensive form.
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6 Conclusion

The task of this thesis was to study the problems of demand prediction and
inventory optimization, and to employ this knowledge to create an auto-
mated inventory control model. After a thorough analysis we have presented
a set of time series forecasting and inventory control approaches, which to-
gether form an inventory control pipeline capable of generating possibly
optimal goods ordering policies.

The demand prediction part of the thesis contains a survey of time series
forecasting problematic and available methods. The prediction part of the
inventory control pipeline was then implemented to include an extended
exponential smoothing forecasting method and a seasonal ARIMA model.
Both methods have proven its worth in many previous research works and
results of our evaluation confirm they are suitable for our task as well.

The inventory control part of the thesis consists of an introduction to the
inventory control problematic, and contains a review of important concepts
of stochastic programming, which are highly useful for inventory models that
assume demand uncertainty. We then proceed by creating an extension of
the stochastic multi-stage Newsvendor inventory model, that can generate
ordering policies for many time periods ahead. This model considers fixed
and per unit ordering costs, shortage costs, holding costs and goods durabil-
ity. All costs can be time-dependent and the model can be possibly extended
even further, as it has a flexible mixed integer linear program formulation.
We then suggested to solve the problem using the progressive hedging algo-
rithm to improve the model’s efficiency and significantly enhance its ability
to hedge its inventory policies against more demand outcomes.

We have performed a two stage, in depth evaluation of the proposed
methods, using real world data. In the first stage, which was dedicated to
evaluation of the forecasting methods, the seasonal ARIMA model proved
its superiority and robustness. Its forecasts were always either the most ac-
curate, or very close to the best forecast, and its performance was the most
stable. Its residuals showed that it fitted the provided data well, as its errors
showed almost no correlation, and normality. The second stage evaluated
the proposed inventory models by estimating costs of their inventory policies
and compared the models from the customer satisfaction perspective. We
also examined the trade of between solving an exact form of the inventory
model with limited amount of demand scenario samples, and solving its ap-
proximation with significantly more demand scenarios. The results showed
that it is sufficient to use reasonable number of scenarios to achieve efficient
inventory control policy, and it is preferable to use the approximation ap-
proach. The approximation form provided the best inventory policies due
to the significantly larger amount of demand scenarios it could handle, and
its running times were much lower than those of the exact form.
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6.1 Future work

We can name multiple examples of possible improvements and topics for
possible future research.

The demand prediction module’s accuracy could be improved by in-
cluding a forecasting method that uses external factors in addition to the
historical time series data, such as SARIMAX.

It would be interesting to focus on the scenario generation procedure as
well. For example we could test other methods of the forecast prediction
interval estimation, such as bootstrapping the residuals.

The inventory module could be improved by combining the decomposi-
tion approach and the extensive form solution approach. The decomposition
model could be used to generate a subset of the inventory decisions, until a
problem of manageable size for the extensive form is obtained. The extensive
form could then generate optimal decisions for the remaining problem.
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7 Appendix
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Table 11: Demand forecasting evaluation results
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Figure 15: Results of first product class forecasting evaluation
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Figure 16: Results of second product class forecasting evaluation
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Figure 17: Results of third product class forecasting evaluation
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Figure 18: Results of fourth product class forecasting evaluation
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Figure 19: Results of fifth product class forecasting evaluation
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