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Abstract

Bakalářská práce se zaměřuje na ovládáńı solid-state lidar̊u s omezeným
počtem natáčećıch paprsk̊u. Kromě plánováńı směr̊u paprsk̊u se práce
věnuje i rekonstruováńı 3D mapy z ř́ıdkých měřeńı těchto lidar̊u. V
práci se pro rekonstruováńı a plánováńı použ́ıvaj́ı hluboké neuronové śıtě.
Plánovaćı část využ́ıvá reinforcement learning metody pro trénink neu-
ronových śıt́ı. Bylo vytvořeno trénovaćı prostřed́ı implementuj́ıćı frame-
work pro trénováńı reinforcement learning agent̊u. Za pomoćı stocha-
stických metod se podařilo navrhnout agenta, který nab́ıźı dostatečnou
škálovatelnost a překonává náhodný plánovač.

Abstrakt

This Bachelor’s thesis aims at control of the solid-state lidar sensor with
a limited number of steerable rays. Besides planning of directions of the
rays, the thesis is also devoted to creating dense 3D maps from sparse
measurements. The thesis uses deep neural networks for planning the rays
and reconstructing the dense maps. Planning part exploits the reinforce-
ment learning concept for training of the neural network. An environment
implementing a framework for training of reinforcement learning agents
was created. The agent proposed in this thesis is using stochastic meth-
ods to achieve a sufficient scalability in the challenging environment.

Keywords: Lidar, reinforcement learning, deep neural network, 3D map-
ping, voxel map.
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INTRODUCTION

1 Introduction

Lidar sensors offer an accurate distance measurement, which can be used for mapping
surrounding space. There is much utilization of volumetric space reconstructions in different
fields. For example, the lidar sensors are nowadays essential equipment for a large variety
of autonomous vehicles. The sensor can help autonomous vehicles to orient itself in an
environment. One of the most significant issues which prevent a broader implementation
of these sensors is a relatively high price. Breakthrough in this field is a solid-state lidar.
These lidars do not have moving parts, and their price should be circa hundreds of dollars
[1]. Solid-state lidar can send a limited number of rays in chosen directions per timestamp.
Zimmermann et al. [2] proposed a mapping agent which creates dense reconstructions
from sparse measurements. They also proposed prioritized greedy planning for choosing
the directions of these rays.

The objective of this thesis is to apply reinforcement learning (RL) methods to learn
planning of the rays and contribute to the methods of controlling these sensors. RL is a field
of study based on concepts of behavioral psychology, especially the trial and error method,
and has in recent years experienced a rapid development due to the growth of computational
power and neural networks improvement. Richard Sutton has made a helpful summary of
RL concepts in his book [3]. One of the biggest achievements was playing Atari games by
a RL agent without any prior knowledge of the environment [4]. Soon after was introduced
a RL agent, able to solve simple continuous problems such as balancing inverse pendulum
on a cart. Today state-of-the-art methods can solve complex problems with infinite action
spaces. Although these methods reach the great success, they still suffer from a lack of
sample efficiency - they need for training a lot of interactions with the environment. This
inefficiency makes creating an agent controlling lidar very challenging, since training large
neural networks is very time-consuming.

The agent is divided into two parts - mapping and planning. The mapping part should
create the best possible reconstruction from sparse measurements, while the planning part
is focused on picking rays that will maximize reconstruction accuracy. Agents are trained
using a publicly available dataset which contains drives of a car equipped with Velodyne
lidar [5]. Theoretical background of the RL is discussed in the first part of this thesis. In
the second part are methods from the first part used to solve the Lidar-gym environment
[6].
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THEORETICAL BACKGROUND

2 RL basics

Firstly, an environment where an agent can operate must be defined. The environment
can be described by Markov decision process (MDP), where St ∈ S is a state from a set of
possible states S in which the environment could be located in time t. In the environments
with the observable MDP, an agent can observe the state of the environment and make the
action accordingly. An action is a probabilistic transition between the states. Every action
At ∈ A moves the environment from St to St+1. If we consider the lidar planning task,
the action is sending the rays in certain direction and the state is given by the position of
the sensor and by the already executed measurements. The environment evaluates every
action and returns an appropriate reward Rt (see Figure 1). In RL the set A is often called
an action space and the set S an observation space. Return Gt is a sum of a discounted
future rewards [3].

Gt =
∞∑
k=0

γkRt+k (1)

where γ ∈ [0, 1] is a discount factor. The RL methods define how experience from interact-
ing with the environment will change the policy. The major issue is that maximizing of the
immediate reward is often not an effective approach to maximize the sum of discounted
rewards Gt. This greedy policy can take the agent into a very disadvantageous state. Thus,
the agent must take into account the future states and rewards. The goal of the agent is
to find policy π which maximizes the expected return. The agent use the value function
Vπ(St) which assesses how advantageous is being in the state St with the policy π.

Vπ(St)
.
= Eπ[Gt|St]. (2)

An optimal policy π∗ is then defined for all St ∈ S as

π∗(St)
.
= max

π
Vπ(St). (3)

In the past, agents used big tables to estimate the value function. That is possible in
environments with small action and observation spaces but is very memory consuming
for larger environments and even impossible for a continuous action or observation space.
Therefore, the modern methods use neural networks as function estimators.

Figure 1: Illustration of RL concept. Source - [3].
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2.1 Temporal difference learning

Temporal difference (TD) learning combines the ideas of Monte Carlo methods and
the dynamic programming. It can learn directly from experience obtained by an interac-
tions with the environment without any prior knowledge of the said environment. The TD
learning is done by following assignment in each timestamp [3]

δt = Rt + γV (St+1)− V (St) (4)

V (St)← V (St) + λδt (5)

where δt i the TD and λ ∈ R+ is step size.

2.2 Q-learning

Q-learning is a type of TD learning developed by Watkins [7]. The state value V from
the previous subsection is replaced by the Q value, which refers to a quality of action in a
particular state instead of the quality of the state itself. When we rewrite the TD learning
(4) to the Q-learning we get:

Q(St, At)← Q(St, At) + λ[Rt + γmax
At+1

Q(St+1, At+1)−Q(St, At)]. (6)

The policy here is to take the action with the maximum Q value. That is called the
greedy policy. An obvious drawback of greedy policy is that it does not allow to explore
the whole environment properly because an action with the highest Q value is always
chosen. A solution to this problem is to make sometimes a random action, and explore the
environment. This policy is often referred to as the ε-greedy policy.

Algorithm 1 ε-greedy policy in pseudocode

1: function ChooseAction
2: ε← ε · εd
3: if ε > random ∈ (0, 1) then
4: action ← random ∈ A
5: else
6: action ← max

At
Q(St, At)

7: return action

It is common to set ε = 1 at the beginning of the training and the decay rate εd
close to one. The general idea behind this policy assumes that it is needed to explore the
environment first and then exploit experience of the agent.
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2.3 Prioritized experience replay

The prioritized experience replay is a biologically inspired mechanism introduced by
Schaul et al. [8] which stores all experience (specifically: St, At, Rt, St+1) in a buffer and
assigns priority to every experience. The main idea is that experience with a high TD
should have the higher priority. It is thus necessary to calculate the priority p from the TD
error:

p = (|δt|+ η)ρ (7)

where ρ indicates how much we prefer experience with the higher priority and η � 1 is
a constant which helps to avoid the priorities very close to zero. Considering a greedy
selection would abandon experience with the low priority, a better approach is to choose
experience i ∈ I with the probability

P (i) =
pi∑

j∈I
pj
, (8)

where I is the set of all experience in the buffer. It is now possible to sample a batch of
experience for training using this probability. It removes a correlation in the observation
sequence and improves the sample efficiency of the DQN. It is feasible to store all the
experience in a buffer sorted by the priority, but a more efficient implementation is a sum
tree. That is a binary tree, where the value of each root is equal to the sum of its children
values (see Figure 2). Example of the usage is in the algorithm 2.

Algorithm 2 Retrieve node from sum tree in pseudocode

1: function GetChild(parent, value)
2: if parent.left is None then return parent

3: if value ≤ parent.left.value then
4: return GetChild(parent.left, value)
5: else
6: return GetChild(parent.right, value - parent.left.value)

29

13

5 8

16 

4 12

GET 15

15 - 13 = 2

2

[0, 5] (5, 13] (13, 17] (17, 29]

Figure 2: Simple example of sum tree.
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3 Deep neural networks in RL

As was stated in the previous chapter, the tabular methods are very inefficient in
the large environments. In these cases, it is possible to use the deep neural networks
which can replace the tables. Deep Q networks (DQN) proposed by Google Deepmind [4]
outperformed all previous RL algorithms in playing Atari games. With the neural networks
also grew the popularity of policy gradient methods where function estimator outputs an
action instead of Q values. Note that most of these methods are general and not necessarily
tied to the neural networks.

3.1 Deep Q network

The neural network takes the current state as input and outputs the Q value for each
possible action. The network is trained using gradients of the Q-value in the current state
with respect to trainable weights θ of the neural network.

δt = Rt + γmax
At+1

Qθ(St+1, At+1)−Qθ(St, At) (9)

θt+1 = θt + λδt∇θQ
θ(St, At). (10)

The weights are updated in proportion to the TD δt. Unfortunately, this simple DQN agent
suffers from a lack of the sample efficiency and often does not converge well. There are
many techniques which can help to the DQNs to achieve satisfying results.

3.2 Target network

Target network is a technique which improves the convergence of a DQN learning [4].
It uses two neural nets instead of one. Firstly is trained online network on a batch of data
and the target network is used for predictions during training. After the completion of the
training on a batch of data, the target network is updated [9].

θ− = τθ + (1− τ)θ−, (11)

where θ− is the set of trainable weights of the target network, θ indicates the weights of the
online network and τ � 1 is constant. TD δ is now calculated using the target network:

δt = Rt + γmax
At+1

Qθ−(St+1, At+1)−Qθ(St, At). (12)

The target network stabilizes the training since the predicting network does not change
after each training step.
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3.3 Double Q-learning

Classic Q-learning algorithm tends to overestimate actions under certain conditions.
Hasselt et al. propose the idea of a Double Q-learning which decompose the max operation
into action selection and action evaluation [10].The TD is then computed by the following
equation.

δ = Rt + γQθ−(St+1, argmax
At+1

Qθ(St+1, At+1))−Qθ(St, At). (13)

The double DQN outperforms the DQN in terms of the value accuracy and the policy
quality.

4 Policy gradient

By this section, the goal of the neural network was predicting the values by which
the policy was determined. In policy gradient methods the neural networks approximate
the policy itself.

J = Eπ[Gt|St, At, θt] (14)

θt+1 = θt + λ∇̂θJ (15)

where J is a performance measure with respect to our the neural network parameters and
∇̂θJ is a stochastic estimate of the gradient of the performance measure. In other words,
this method is basically doing a stochastic gradient ascent of J with respect to θ [11]. The
policy gradient methods are outperforming the DQNs, especially in the continuous action
spaces, because it does not have to estimate the Q-value for every possible action.

4.1 Actor-Critic

Thanks to predicting the action directly, it is much easier to predict in the continuous
action space, but the Q-value which assessed the quality of the action in the certain state
has been lost. That is why the Actor-Critic framework was created. It uses two separate
neural networks - actor which predicts the action and critic which assesses an advantage
of the action. This concept is visualised in Figure 3.
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Figure 3: Actor-Critic framework. Source - [3].

Consider the critic using the Q-values for an update. θ and ω denote the trainable
weights of actor and critic, respectively. Critic update is similar to DQN:

δt = rt + γQω(St+1, µ
θ(St+1))−Qω(St, At) (16)

ωt+1 = ωt + λδt∇ωQ
ω(St, At). (17)

Note that instead of At+1 is now used function µθ(St+1), which is an action estimate by
the neural network of the actor. The update rule of the actor is not so straightforward.

θt+1 = θt + λ∇θµ
θ(St)∇aQ

ω(St, At)|a=µθ(St). (18)

This equation uses the chain rule for derivatives to obtain the gradient of Q-values with
respect to the trainable weights θ. Namely:

∂Qω(St, At)

∂θ
=
∂Qω(St, At)

∂At

∂At
∂θ

. (19)

The neural network of the actor is updated by gradients which change the action output to
maximize the Q-value of the critic [12]. There are other approaches, which doesn’t use the
Q-value as critic assessment, but they rather use so-called advantage [13]. These methods
are beyond the scope of this thesis.
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4.2 Stochastic Actor-Critic

A stochastic Actor-Critic method is a frequently used approach. In this method the
actor outputs a parameters of a probability distribution and the action itself is sampled
from the parameterized distribution. It is a standard to use a normal distribution and
predict a mean and variance of the action. The biggest advantage of the normal distri-
bution is that it can be adjusted to the use of a backpropagation [14]. Another benefit
of the stochastic actor is that it does not need any other techniques for the action space
exploration.

4.2.1 Beta distribution

On the other hand, an obvious drawback of the normal distribution is that there is
always some small probability of sampling an outlier. There is also an issue for a bounded
action space. When mean value of the normal distribution is close to the boundary, an
agent can experience a not negligible bias. A solution for both problems is to use Beta
distribution as the stochastic policy [15]. The Beta distribution is defined by the following
function:

f(x;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (20)

where α, β ∈ R+
0 are the distribution parameters and x ∈ [0, 1]. Γ is Euler’s gamma

function, which extends factorial into the set of real numbers. The Beta distribution is
shown in Figure 4. The biggest advantage is that Beta distribution is bounded by definition
and does not need any additional clipping.

Figure 4: Probability density of beta distribution. Source - [15].
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For the reinforcement learning is suitable only α, β ≥ 1. That makes the Beta dis-
tribution concave and unimodal. This can be ensured by using a softplus activation and
adding one at the end of actor-network.

4.3 Deterministic policy gradients

Deep deterministic policy gradient (DDPG) is one of the methods for exploiting the
Actor-Critic framework. Whereas the stochastic actor predicts the distribution parameters
and samples an action, the DDPG outputs the action directly. Silver [12] has shown that
the deterministic policy can outperform its stochastic counterparts. A disadvantage of a
deterministic approach is that it needs an additional policy to ensure the action space
exploration. The exploration methods are discussed in the subsection 4.4.

4.4 Parameter and action space noise

In the large action space is crucial to emphasize an exploration of the agent. Wrong
exploration can cause that the agent converges prematurely and ends up in a local optimum.
The DDPG commonly uses the stochastic policy to slightly modify actions of the actor.

Ât = µθ(St) +N (0, σ2) (21)

where N is the normal distribution with the mean value equal to zero and the variance,
which is reducing during the training. Ât is a perturbed action. An action space noise helps
the agent to explore the environment.

Another approach is to apply the noise directly to the weights of the neural network
of the actor. It can sometimes lead to more consistent exploration and richer behaviors
[16].

θ̂ = θ +N (0, σ2) (22)

where the policy using θ̂ is a so-called perturbed actor, which is interacting with the
environment.
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The major issue of the parameter space noise is that it is much harder to tune. When
we use the action space noise, it is easier to estimate its impact on the actions (differences
between both approaches can be seen in Figure 5). Because of an unpredictable influence
of the parameter space noise is necessary to use an adaptive noise scaling.

d = |µθ̂(St)− µθ(St)|2 (23)

σt+1 =

{
κσt if d ≤ T
1
κ
σt otherwise

(24)

where κ is a scaling factor slightly bigger than one and T is a threshold value, which has
to be tuned to the specific environment.

When it is necessary to explore the action space near to some desired action or include
a momentum of the environment, it is possible to use Ornstein-Uhlenbeck random process
[9],

Ât = µθ(St) + ν(ρ− µθ(St)) + φN (0, 1), (25)

where ν, φ ∈ [0, 1] are constants of the random process and ρ is mean value around which we
want to explore the action space. When ν = 0 it is a basic exploration as in the expression
(21).

Figure 5: Left - action space noise, Right - parameter space noise. Source - [16].
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EXPERIMENT

5 Experiment

The experiment aims at using reinforcement learning algorithms for controling the
solid-state lidar with a limited number of steerable rays. For purposes of the experiment it
was neccessary to implement an environment, where an agent can learn and be evaluated
[6]. The lidar-gym environment is written in Python 3 based on OpenAI gym interface [17].
It uses point clouds from the KITTI dataset drives[5]. One episode of the learning in the
environment corresponds to a drive in the KITTI dataset. The large point clouds from the
drives are processed into 3D voxel maps by C++ package [18], which also provides a ray
tracing engine for the environment. Every voxel map is a 3D array containing real numbers
which correspond to the occupancy confidence c of each voxel.

c > 0 occupied voxel

c = 0 unknown occupancy

c < 0 empty voxel.

(26)

5.1 Environments

Lidar-gym implements several environments (visualized in Figure 6), which follow
the same template with different sizes of the voxel maps.The observation space is a local
cutout of the voxel map, which provides occupancies from sparse measurements of the
sensor. The sensor is located in the quarter of x-axis and half of y-axis and z-axis of
the local cutout. The action space is divided into two parts. The first part is the dense
voxel map reconstructed from the observations (sparse measurements). The second part of
the action space are directions of the measuring rays. Each ray has an own azimuth and
elevation. The environment expects directions in the format of a 2D array of booleans,
where true means a fired ray. The reward function of the environment is negative logistic
loss −L (27). Parameters of the environments are described in Table 1.

Name of environment Large Small Toy
Voxel map size [voxels] 320 × 320 × 32 160 × 160 × 16 80 × 80 × 8

Lidar FOV [°] 120 × 90 120 × 90 120 × 90
Densitiy of rays 160 × 120 120 × 90 40 × 30
Lidar range [m] 42 42 42
Number of rays 200 50 15
Voxel size [m] 0.2 0.4 0.8

Episode training time [min]∗ 120 15 1.5

Table 1: Description of environments

∗Using GPU Nvidia 1080Ti.
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The environments also offer a visualization of actions using Mayavi [19] and ASCII
art. The agents use neural networks as function estimators, which are implemented in
Tensorflow [20] and Keras [21].

Figure 6: Visualization of the large environment: The first figure is the ground truth map,
second is the voxel map of the sparse measurements and the third figure shows the dense
reconstruction. The dense reconstruction in the third figure and the rays fired in the second
figure are made by an agent using the random planner. Some known structures as cars and
trees can be seen in the reconstructed map.
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Due to the high time complexity, all experiments were conducted in the toy environ-
ment. The RL agents need significantly more training steps than supervised agents. Unlike
the RL agents, for the supervised agent is known desired output, thus it can be learned by
a gradient descent on the loss function between made and desired outputs. There are the
RL agents trained for over million epochs in OpenAI baselines [22]. A drive in the KITTI
dataset has on average 200 epochs. All agents were trained and evaluated on different drives
from the city category of the dataset.

5.2 Mapping agent

The mapping agent is based on work of Zimmermann et al. [2]. It uses a convolutional
neural network (CNN) for reconstructing the dense map from the sparse measurements.
3D convolutional layers are used to learn features and max-pooling layers are used to avoid
overfitting. The CNN architecture is described in Figure 7.

Conv3D 
(80, 80, 8, 1) 

ReLu

Conv3D 
(80, 80, 8, 2) 

ReLu

Conv3D 
(80, 80, 8, 4) 

ReLu

Conv3D 
(40, 40, 4, 8) 

ReLu

Conv3D 
(40, 40, 4, 16) 

ReLu

INPUT 
(80, 80, 8, 1) 

MaxPool3D 

OUTPUT 
(80, 80, 8, 1) 

Conv3D 
(40, 40, 4, 32) 

Linear

Conv3D 
Transpose 

(40, 40, 4, 1) 
Linear

Figure 7: Input of the supervised mapping agent is voxel map containing the sparse mea-
surements. The output is the dense reconstruction of the input.

Gradient descent is made by Adam optimizer [23]. Optimizer uses a logistic loss L
between a ground truth map Y and predicted dense map Ŷ .

L(Y, Ŷ ) =
∑
i

wi log(1 + exp(−YiŶi)) (27)

where w are weights which balance importance of the occupied and unoccupied voxels.
Unfortunately, a naive implementation of this loss function is computationally inconvenient

13/26



EXPERIMENT

and often cause numerical issues as overflow. To stabilize training, the following modified
loss was used [24]

ai = −YiŶi
bi = max(0, ai)

L =
∑
i

wi(bi + log(exp(−bi) + exp(ai − bi))).
(28)

At first, the supervised mapping agent with a random ray planning is trained. Reconstruc-
tions of the supervised agent are then used for the training of the RL planning agents and
after that is the mapping agent retrained with the RL agent picking the rays.

5.3 Discrete planning agent

Since the action of the environment At for directions of the rays is 2D binary array,
first try is to use a discrete agent. The DQN is the most used option for discrete action
space, but in this use case, it requires some tweaks. Note that the number of the possible
actions is extremely large. Even in the toy environment it is

(
40×30
15

)
≈ 1034 of actions. Thus

it is necessary to emphasize the action space exploration. Further arises the problem with
the ε-greedy policy, because we are unable to process all the possible actions and pick the
one with the biggest Q-value. We consider only one ray as action to resolve this issue. For
K rays is the TD from (9) now computed as:

q(St, At) =
K

max
At

Qθ(St, At)

δt = Rt + γq(St+1, At+1)− q(St, At)
(29)

where q is an average Q value over K actions with maximum Q values. The DQN agent
implements all features as Prioritized experience replay, target network, and double Q
learning which are described in the theoretical part of this thesis. The exploration is ensured
by the action space noise. The neural network architecture is described in Figure 8. The
agent uses values of parameters shown in Table 2. The weights are updated via stochastic
optimizer Adam with learning rate λ.
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Conv3D 
(80, 80, 8, 1) 

ReLu

Conv3D 
(40, 40, 4, 16) 

ReLu

SPARSE INPUT 
(80, 80, 8, 1) 

MaxPool3D 

DENSE INPUT 
(80, 80, 8, 1) 

Conv3D 
(80, 80, 8, 1) 

ReLu
MaxPool3D 

Conv3D 
(40, 40, 4, 4) 

ReLu

Conv3D 
(40, 40, 4, 4) 

ReLu

Conv3D 
(40, 40, 4, 8) 

Linear

Conv3D 
(40, 40, 4, 8) 

Linear

X
Conv2D 
(40, 40, 4) 
ReLu

Conv2D 
(20, 20, 32) 

ReLu
MaxPool2D 

Conv2D 
(20, 20, 3) 
ReLu

Conv2D 
(40, 30, 1) 
ReLu

Conv2D 
(40, 30, 32) 
Linear

Conv2D 
(40, 30, 64) 
Linear

OUTPUT 
(40, 30, 1) 

Figure 8: The DQN outputs an estimate of the Q-value. The network takes as the input
two voxel maps. In conducted experimets was significantly better to merge these two inputs
using multiplication than using addition.
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5.4 Continuous planning agent

The discrete action output was substituted by a continuous action, which is then
mapped into the 2D binary array. This will allow the agent to avoid the extremely large
discrete action space. Thank to this substitution it is possible to exploit the actor-critic
framework. The output of the actor is now 2 by K array where the first row is the elevation
and the second row is the azimuth of each ray. The last layer of the actor-network is tanh
function, so its output is an element of [−1, 1]. As training method is used DDPG. The
neural network architecture is described in Figure 9.

SPARSE INPUT 
(80, 80, 8) 

DENSE INPUT 
(80, 80, 8) 

Conv3D

MaxPool3D

Conv3D

Conv3D

Conv3D

MaxPool3D

Conv3D

Conv3D

X

Conv3D

MaxPool3D

Conv3D

Conv3D

MaxPool3D

DENSE 
(100) 

DENSE 
(30) 

DENSE 
(30) 

ACTOR OUTPUT 
(2, 15) 

Conv3D

MaxPool3D

Conv3D

Conv3D

Conv3D

MaxPool3D

Conv3D

Conv3D

X

Conv3D

MaxPool3D

Conv3D

MaxPool3D

DENSE 
(100) 

DENSE 
(100) 

DENSE 
(30) 

DENSE 
(30)  X

DENSE 
(30) 

DENSE 
(30) 

DENSE 
(30) 

CRITIC OUTPUT 
(1) 

ACTOR CRITIC 

Figure 9: The architecture of the actor is on the left side and the critic is on the right side.
In the middle can be seen shared inputs and outputs.
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To explore the action space in our experiments correctly, it is necessary to apply
Ornstein-Uhlenbeck random process. When only Gaussian noise is added, actions tend to
converge into the corners very fast as in Figure 10. For actor’s and critic’s neural network is
used Adam optimizer with learning rates λa, λc. The target networks are used to stabilize
the learning of the actor and critic. The continuous agent also uses prioritized experience
replay.
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Figure 10: The difference between actions made by agents with the different exploration
methods. Left figure is an example of the action made by an agent with Gaussian noise
used for the exploration. The action in the right figure is made by the agent trained using
Ornstein-Uhlenbeck noise.

5.5 Stochastic planning agent

There is an obvious issue with the deterministic actor. For efficient exploring of the
ground truth map, it is required to hit as many unique voxels as possible. Thus making
several similar actions in a row is not a good strategy. Unfortunately, except the first few
epochs of every drive, there is not a big difference between two subsequent observations. It is
hard for a neural network to make two different outputs for two similar inputs. The solution
to this problem could be a stochastic agent. The stochastic agent outputs parameters of the
Beta distribution and preserves the Actor-Critic framework. The architecture of stochastic
agent is similar to the DDPG from the previous subsection, the only difference is that
the agent now outputs only two values - the distribution parameters. The action is then
sampled with distribution probabilities. Stochastic actor output can be seen in Figure 11.
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Figure 11: The example of stochastic agent output - probability density of choosing a ray
with specific azimuth and elevation.

5.6 Comparison of methods

Several methods were tried. Unfortunately, most of the methods do not perform well
in the Lidar-gym environment. The DQL had the worst performance. That is probably
caused by the extremly large action space. The workaround made in formula (29), did not
help the agent to converge. The continuous DDPG agent also did not converge successfully.
For DDPG agent is hard to change direction of the rays efficiently in the subsequent epochs
and it often makes several same actions in a row which degrades performance a lot. Only
the stochastic agent was able to outperform a random agent. Summary of the agents
performances is made in Figure 12. It turns out that it is very difficult to get satisfying
results. The stochastic agent converges, but it does not use any kind of the advanced
strategy. The output of the DDPG actor does not even allow making any sophisticated
action. Therefore were also conducted experiments with an extended stochastic agent,
which uses the Beta distribution for each ray separately, but with no significant success.
Another advantage of the simple stochastic agent is its scalability. This agent can be
adjusted to the large environment much easier than any other used agent. The parameters
used for the training of these agents are described in Table 2.
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Parameter Value

γ 0.09
λc 0.001
λa 0.0001
τ 0.01

Memory size 4096
Batch size 8

Table 2: Parameters used for learning. DQN uses λ = λc.
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Figure 12: False positives were calculated using the ground truth map and true positives
using all voxels, which could be possibly hit by the sensor. Five different evaluations are
displayed for the non-deterministic agents.
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6 Conclusion

First, we overviewed reinforcement learning concepts and described several methods
which help convergence of the learning process. Then, we addressed the challenging multi-
dimensional control task of selecting depth-measuring rays for the 3D mapping. Various
agents and model architectures were implemented and compared. All deterministic agents
performed poorly in this specific task. The stochastic agent successfully outperformed the
random planner. Action space size and time-complexity were two major blockers during the
training. None of the trained RL agents can compete with the prioritized greedy planner
proposed by Zimmermann et al. [2].

6.1 Future work

We propose further experiments with an agent, which stands between the simple
and the extended stochastic agent. The extended stochastic agent has the action space
consisting of 60 real numbers (15 rays with azimuth and elevation and for each alpha,
beta parameters). That is very likely too much for the network architecture used in the
experiments. On the other hand, when only one distribution is outputted for all rays, it
does not allow the agent to create an advanced policies, because the Beta distribution
considered in this thesis is always unimodal. A solution could be to output for example
three different distributions, each describing five rays. That would allow agent to output a
density function with multiple local maxima.

Another improvement could be achieved by adjusting the neural network architecture.
Especially splitting the network into two subnetworks before the output or different types
of merging the input layers can have a significant impact on performance. Finally, the
reinforcement learning agent can be almost always improved by a better reward function,
but we find very difficult to improve the existing reward function.
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APPENDIX

Appendix A CD Content

In Table 3 are listed names of all root directories on CD.

Directory name Description
thesis the thesis in pdf format
ctu thesis latex source codes
lidar-gym OpenAI gym environment

Table 3: CD Content
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Appendix B List of abbreviations

In Table 4 are listed abbreviations used in this thesis.

Abbreviation Meaning
CNN Convolutional neural network
DDPG Deep deterministic policy gradients
DQN Deep Q-learning
MDP Markov decision process
RL Reinforcement learning
ReLu Rectified linear unit
TD Temporal difference

Table 4: Lists of abbreviations
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