
Faculty of Electrical Engineering

Department of Computer Science

Bachelor’s Thesis

Artificial Neural Networks in Solution of

the Orienteering Problems
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Abstract

In this thesis, neural networks (NN) approaches for the Orienteering Prob-
lem (OP) and their extensions to the Orienteering Problem with Neighbor-
hoods (OPN) are studied. We focus on the Hopfield Neural Network (HNN)
and the Self-Organizing Map (SOM) and we propose two new modifications built
on the HNN and the SOM to address the OPN and improve the performance of
the NN approaches in solving orienteering problems. The first modification ex-
tends the existing discrete HNN solver for the OP to address the OPN, for which
a new data representation is proposed together with the modification of the en-
ergy function to reflect the new data representation. The second modification
is built on the SOM solver, where we propose the new selection of the winner
neurons and a combination of the unsupervised learning with the combinatorial
metaheuristic called the Variable Neighborhood Search (VNS).

Keywords: neural networks; orienteering problem; orienteering problem with
neighborhoods; hopfield neural network; self-organizing map

Abstrakt

V této práci jsou studovány př́ıstupy neuronových śıt́ı (NN) pro problematiku
orientace (OP) a jejich rozš́ı̌reńı na problematiku orientace s okoĺım (OPN).
Zaměřujeme se na umělé neuronové śıtě, konkrétně na Hopfieldovu neuronovou
śı́t (HNN) a samoorganizačńı mapy (SOM) a navrhujeme dvě nové modifikace
postavené na HNN a SOM tak, aby se řešily OPN a zlepšily výkonnost NN
v rámci řešeńı problematiky orientace. Prvńı modifikace rozšǐruje existuj́ıćı
diskrétńı HNN pro OP s ćılem řešit OPN. Modifikace je založena na nové
reprezentaci dat a modifikované energetické funkci, která respektuje novou repre-
zentaci dat. Druhá modifikace je založena na řešeńı SOM, kde navrhujeme nový
výběr neuron̊u a kombinaci neuronového učeńı bez učitele s metaheuristickým
př́ıstupem Variable Neighborhood Search (VNS).

Kĺıčová slova: neuronové śıtě; problematika orientace; problematika orientace
s okoĺım; hopfieldova neuronová śı́t; samorganizačńı mapy
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CHAPTER 1
Introduction

This thesis focuses on the artificial neural networks in the solution of the Orienteering Problem
(OP) and its variants arising from robotic data collection planning. The origin of the OP is
set in sport, more specifically in the orienteering races that origin in the late 19th century in
Sweden. In the orienteeering race, the goal for the game participants is to find control stations,
each with the associated reward, in the shortest time possible by using a given map of station
locations. The OP is similar to the orienteering race. The objective is to visit as many
control stations as possible in the shortest time. The OP was introduced by Golden, Levy,
and Vohra in [1]. In [2], it is pointed out that the OP can be considered as a combination
of the Knaspsack Problem to determinate the most valuable locations, and the Travelling
Salesman Problem for finding the shortest tour of the selected locations.

The OP can be used for data gathering, logistic tasks, or planning applications. Some of
the OP applications need a specific modification and survey of the OP variants can be found
in [3]. One of the first applications of the OP is mentioned in [4], where the traveling salesman
knows the number of sales he can make in each city, and he needs to maximize the number
of made sales while the distance traveled between the cities in one day needs to fit the given
travel budget. The authors of [5] describe a complex routing problem where a fleet of trucks
must deliver fuel to many customers. The fuel level of each customer must be maintained
above a critical level. The objective is to select a subset of customers, which fuel is close to
the critical level, and deliver fuel to these customers.

A recent application of the OP is in the tourist guides applications. A tourist visits a city
and wants to visit as many sights and attractions as possible but does not have time to visit
all of them. In [6], the Mobile Tourist Guide lets tourists select attractions and then it makes
a feasible plan to visit the most valuable attractions in the limited time. This problem is
a part of the Tourist Trip Design Problems.

In [7], the authors present the Generalized Clustered Orienteering Problems, which is
motivated by the Pokémon GO game. The application seeks for time-effective and profitable
tours. The places to visit are divided into clusters. The objective is to find an unrooted
tour that maximizes the total selected prize while at least one node of each cluster is visited
and the traveled distance satisfies the given travel budget.

In the data collection missions, an autonomous vehicle with limited travel budget collects
data from sensor locations. Each location has associated reward according to the importance
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Chapter 1. Introduction

of the respective data. However, the vehicle cannot visit all sensor locations, because of
the limited travel budget. Therefore, only a subset of locations can be visited. In some cases,
the data does not need to be obtained from the sensor location itself, the gathering device can
collect data remotely from the sensor location within a communication range, which can safe
the travel cost, and thus collect data from more sensors. This variant of the OP is referred as
the Orienteering Problem with Neighborhoods (OPN).

Several approaches have been proposed in the literature to solve the OP including algo-
rithms for finding optimal solutions and effective heuristics. However, the existing heuristics
may not be the best option to solve the OPN. One of the reasons is that the OPN is a con-
tinuous problem and heuristics for the OP represent solution of discrete problems. Although
the neighborhood can be sampled, still to find the most suitable number of the neighbors is
quite challenging and heuristics may perform poorly. Therefore, this thesis is built on the neu-
ral network based approaches, such as the Hopfield Neural Network (HNN), [8], and the Self-
Organizing Maps (SOM), [9].

The thesis is organized as follows. The OP is formally introduced as the optimization
problem in Chapter 2. The existing approaches and heuristics are overviewed in Chapter 3.
An artificial neural network based on the Hopfield-Tank model is introduced in Chapter 4.
In Chapter 5 the Hopfield Neural Network is extended to the OPN. The proposed modifications
of the SOM are presented in Chapter 6. Results on the evaluation of the solvers for the OP
and the OPN are reported in Chapter 7. Conclusion is in Chapter 8.
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CHAPTER 2
Problem Statement

The Orienteering Problem (OP) and specifically the Orienteering Problem with Neighbor-
hoods (OPN) studied in this thesis are motivated by the data collection missions to collect
the most rewarding data by the specified vehicle data collector. Given a set of sensor locations
si ∈ S, each location has associated reward ς ≥ 0 depending on its importance. The vehicle is
requested to start at the specified location and terminate at the given end location. The prob-
lem is to determine a route that allows the vehicle to retrieve data from the most valuable
locations while the total route length does not exceed the given travel budget of the vehicle.

The OP can be formulated as Mixed-Integer Linear Programming (MILP), i.e., some
variables used in the problem formulation are constrained by integers while others not. In [2],
Vansteenwegen formulates the OP as an Integer Linear Programming (ILP) problem with
decision variables and sub tour eliminations constraints created according to the Miller-Tucker-
Zemlin formulation of the Traveling Salesman Problem (TSP).

The Orienteering Problem with Neighborhoods extends the OP to the cases, where the ve-
hicle can collect data within a specified range from the particular sensor location. Therefore,
it is not necessary to visit the location itself.

The range for data collection is denoted as a sensing radius δ. The neighborhood of
the sensor location can be presented as a disk with the radius δ centered at the location
s. The problem is then to determine (in addition to the sequence of the visits of the most
valuable sensor locations) the waypoint location pi (a point on the disk) for each selected si
to be visited. Both the OP and the OPN are formally described in the rest of the section.

2.1 Orienteering Problem

Having a set of locations S = {s1, ..., sn} at which data can be obtained, each location si ∈ R2

with the assigned reward ςi ≥ 0, start and end locations denoted as s1 and sn with the assigned
rewards ς1 = ςn = 0, the objective is to maximize the sum of rewards of the visited locations,
while the sum of the total route length does not exceed the given travel budget Tmax. Due
to the limited travel budget, not all locations can be visited, but only a subset of the most
valuable locations. We follow the formulation presented in [10], where the subset of k locations
is denoted as Sk ⊆ S and the subset Sk can be defined by a sequence of the visits to the sensor
locations expressed as a permutation Σ = (σ1, ..., σk), where 1 ≤ σi ≤ n, σi 6= σj , for i 6= j,
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Chapter 2. Problem Statement

and the prescribed start and end of the sequence, σ1 = 1, σk = n. The requested route R can
be represented as a sequence of the sensor locations si ∈ Sk, R = (sσ1 , ..., sσk). The OP can
be then defined as follows.

maximize
k,Sk,Σ

R =
k∑
i=1

ςσi (2.1)

subject to
k−1∑
i=1

|(si, si+1)| ≤ Tmax (2.2)

sσ1 = s1, sσk = sn, (2.3)

where |(si, si+1)| denotes the Euclidean distance between the locations si and si+1.

2.2 Orienteering Problem with Neigborhoods

The OPN is an generalization of the OP where we allow to collect the reward within the δ
sensing range from the particular selected location. Let S = {s1, ..., sn} be a set of sensor
locations, δ be a sensing radius within data from the location si ∈ R2 can be obtained, each lo-
cation except the start and end has assigned reward ςi > 0, ς1 = ςn = 0, the start location
and the end location be fixed locations denoted as s1 and sn, respectively, and considered
without the sensing radius, δ1 = δn = 0, because the vehicle is requested to precisely visit
these locations. Similarly to the OP, the objective of the OPN is to maximize the sum of
rewards of the visited locations, while the total route length does not exceed the travel budget
Tmax. Thus not only the subset of the k visited locations Sk ⊆ S and a sequence of the visits Σ
need to be deternined but request a set of the waypoint locations pi ∈ R2 within the particular
δ-neighborhood of each selected sensor locations. In this case, the route R can be represented
as a sequence of the waypoint locations R = (pσ1 , ..., pσk), where pσi is the waypoint location
from where data of the location sσi can be gathered, and 1 ≤ σi ≤ n, σi 6= σj , for i 6= j,
and the start and end are prescribed, σ1 = 1, σk = n. The OPN is then defined as follows

maximize
k,Sk,Σ,P

R =
k∑
i=1

ςσi (2.4)

subject to

k−1∑
i=1

|(pσi , pσi+1)| ≤ Tmax (2.5)

|(pσi , si)| ≤ δi (2.6)

pσi = s1, pσk = sn, (2.7)

where |(pσi , pσi+1)| denotes the Euclidean distance between the waypoint locations pσi and pσi+1 .
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CHAPTER 3
Related Work

The Orienteering Problem (OP) and the Orienteering Problem with Neighborhoods (OPN)
have been studied since 1980s and many approaches have been proposed. This thesis is
built on existing approaches based on neural networks (NN) [8] and [10], and the Variable
Neighborhood Search (VNS) [11], therefore an overview of these approaches is presented in
this chapter together with the description of the existing heuristics.

The first approach to solve the OP was by Tsiligirides in [4], where he proposed two
heuristics: S-Algorithm and D-Algorithm. The S-Algorithm is a stochastic heuristic based on
the Monte Carlo method. The algorithm generates many random routes and selects the best
one. The routes are built with probabilities based on the reward associated with the added
location and the Euclidean distance to the added location. The second heuristic is determin-
istic and uses a method from Wren and Holiday’s routing scheduling problem for one depot
[12] to build up routes. To improve the found routes, Tsiligirides proposed R-I-Algorithm that
includes the exchange of two locations, the insertion of a location and the 2-Opt. The 2-Opt is
a heuristic used for the local route improvement proposed by Croes in [13] to solve the Trav-
eling Salesman Problem (TSP). Given an initial route that crosses over itself, the heuristic
reorders route to eliminate the crossovers.

The Center of gravity heuristic to solve the OP was proposed by Golden et al. in [1].
The heuristic consists of three steps: an initial route, which satisfies the OP constraints (starts
at 1, ends at n, and the total length does not exceed the travel budget), is constructed by
the insertion heuristic. In the next step, the route is improved by the 2-Opt and the cheapest
insertion (the inserted location causes the lowest increase of the total route length). In the last
step, a new route is created by adding decreasingly sorted ranked locations. The locations are
ranked by the ratio of the reward to the distance from the location to the center of gravity

g = (
∑n

i=1 Sixi∑n
i=1 Si

,
∑n

i=1 Siyi∑n
i=1 Si

), where (xi, yi) are the coordinates of the i-th location, and Si is

the reward of the location i. The locations are then sorted and via cheapest insertion added
to the empty route. The two previous steps are then repeated.

In [14], Ramesh et al. introduced the Four-phase heuristic. The heuristic consists of
the route improvement phases: the insertion, the improvement, and the reduction. In the first
phase, locations are added to the route with the relaxed travel budget constraint. The next
phase uses the 2-Opt and 3-Opt (the local search heuristic for the TSP) to improve the route.
In the third phase, a location with the minimal ratio of the reward to distance is removed
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Chapter 3. Related Work

from the route. The three phases are iteratively repeated. Finally, the fourth phase inserts
as many locations as possible while the budget constraint is satisfied.

The heuristic by Chao et al. proposed in [15] consists of five steps: 1) initialization, 2) two-
exchange, 3) one-point movement, 4) clean up, and 5) reinitialization. The method is referred
to as the Five-step heuristic. The initialization of the procedure is following. An ellipse is
constructed over all locations, two foci of the ellipse are in the start and the end locations,
the length of the major axis is equal to the travel budget. Then routes are constructed by
using the cheapest insertion. The route with the highest sum of rewards denoted as routeop,
is then improved by the two-exchange, where a location from the routeop is exchanged with
a location from the routenop, where routenop is the rest of routes generated in the initial
step. The two-exchange step uses the cheapest insertion. The improvement step continues
with the one-point movement, i.e., a location is moved between routes greedily. The clean up
step shortens the routeop by applying the 2-Opt. In the reinitialization step, the k locations
with the smallest ratio of the reward to the insertion cost are moved from the routenop to
the routenop.

The combination of the Graph Randomized Adaptive Search Procedure (GRASP) and
the Path Relinking (PR) was proposed by Campos et al. in [16]. The author proposed four
GRASP methods for the OP. The GRASP solution is then linked to another solution via
the PR. The PR method gradually transforms an initial solution to the requested solution.
Each GRASP method starts with the initialization of the route and the candidate solution
CL. Then a restricted candidate list RCL is constructed and evaluated by a greedy function.
From the RCL, a location is selected and then inserted at the best position of the route.
In each method, the construction of the RCL differs. The RCL in the first method is created
from the CL and all locations with rewards higher than the specified threshold for the location
from the CL. In the second method, the RCL is similar to the one from the first method,
except the size of the RCL is limited by the cardinality threshold of the CL, and no locations
are repeated within the set. The third method creates the RCL depending on a quotient
between the reward and the smallest time step. All location with the quotient higher that
the threshold quotient are used to construct the RCL. The last method differs from the third
method like the seconds from the first. The size of the RCL is limited, and no repetitions are
allowed.

The Variable Neighborhood Search (VNS) for the OP was proposed by Sevkli and Sevilgen
in [11] and searches the solution space with changing its neighborhood. The proposal is
based on the VNS metaheuristic introducted by Hansen et al. in [17]. The VNS heuristic
consists of four structures: point insert, points exchange, sub route insert, and sub routes
exchange. The point insert structure randomly selects a location from the solution (the current
route) and inserts it at a random position of the solution. In the points exchange structure,
two different locations of the solution are randomly selected and exchanged. The sub route
insert is similar to the first structure, but a sub route is randomly selected and then inserted
at a different position of the solution. In the sub routes exchange structure, two different
sub routes are randomly selected from the solution and exchanged. The structures are used
in two phases called shake and local search. In the shake phase, the current solution is
exchange with a different random solution. The local search phase takes the current solution
and searches its neighborhood to obtain a better solution if it is possible.

6



Chapter 3. Related Work

3.1 Neural Network Based Approaches

In this thesis, approaches based on the neural networks (NN) are mainly considered as a suit-
able technique to solve the OPN. The first artificial neural network for solving the OP was
based on the Hopfield-Tank model and proposed by Wang et al. in [8]. The authors build
the network for the OP on the neural network model from [18] combining it with traditional
heuristics. The input data formed as a set of locations are encoded into the two-dimensional
state matrix, where the state at the cell (i, j) represents that the i-th location is visited
at the j-th position of the route. The neural part consists of updating the state matrix by
an activation function until a local minimum is found. The activation function is a sigmoid
function that minimizes the complex energy function. The energy function reflects the con-
straints of the OP, such as the route starts at the start location and ends at the end location,
the total route length does not exceed the given travel budget, the locations in the route are
not repeated and so on. After the network is stabilized, the route is decoded from the state
matrix and improved by the 2-Opt. The cheapest insertion and the deletion of the least valu-
able location (the location with the largest ratio of its distance to its reward) are the heuristics
employed in the NN-based solution of the OP.

The Self-Organizing Map (SOM) for solving the OP was proposed by Best et al. in [9].
The network is based on the SOM for solving the Price-Collecting Traveling Salesman Prob-
lem with Neighborhoods (PC-TSPN) proposed in [19]. The SOM is a two-layer competitive
neural network based on Kohonen’s unsupervised learning [20]. The first layer consists of
sensor locations and the second layer consists of neurons. The second layer forms a ring of
neurons that represent the solution (the final route). The SOM algorithm consists of updating
the neuron ring for each location si ∈ S. In each epoch, a location is selected, and the neu-
ron is adapted according to the neighboring function towards the current si. The SOM for
the OPN in [21] differs from the SOM for the PC-TSPN [19] in the limited travel budget and to
favor the locations with the highest rewards. In [21], the authors propose the duplication of
locations by a factor of rewards divided by the greatest common divisor of the set of rewards
to adapt network more often to the locations with the highest rewards during a single epoch.
As addressed in [10], this proposition is computationally demanding, therefore the author of
[10] proposed a new method of conditional adaptation in [10].

In each epoch, the winner neuron is determined for each location. In addition to the win-
ner neuron, two neurons from the ring are selected, a neuron with the shortest distance to its
location, and a neuron with the lowest reward associated with its location. Then, the winner
neuron is adapted towards the current location; however, if the route represented by the SOM
would exceed the travel budget, the two selected additional neurons are removed from the net-
work. If the route represented by the SOM is still exceeding the travel budget, the adaptation
and removal is reverted and the SOM continues with the next sensor location.

Since both NN-based methods are further extended and improved, their detail description
is presented in the following chapters together with the proposed modifications.
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CHAPTER 4
Hopfield Neural Network

4.1 Introduction

The first attempt to solve the Orienteering Problem (OP) by the Hopfield Neural Network
(HNN) was by Wang et al. in [8]. The HNN approach consists of the data representation,
the design of the complex energy function and the application of traditional heuristics [13].
The Hopfield-Tank model in the designed network to solve the OP consists of the state matrix,
where each cell denotes an activation level. The Hopfield-Tank model is a continuous model,
where each activation level of the matrix is updated to a value from the interval [0, 1] one at
the time via the sigmoid activation function

Φi,j =
1

1 + exp−α
, with (4.1)

α = ln(Φi,j)− ln(1− Φi,j)−
∂E

∂Φi,j
∆t, (4.2)

where E is the energy function and ∆t is the time step.

4.2 Neural Network Representation

The graph formulation of the OP is used for the representation of the HNN. Having a graph
G(V,E), where V is a set of n vertices, each vertex is assigned with a reward ςi ≥ 0, i ∈ [1, n],
where ς1 = ςn = 0. There is a symmetrical edge from E with no orientation between every
two vertices. The edge between vertices i and j is associated with the cost of the traveled
distance between i and j. The undirected complete graph can be interpreted as an adjacency
matrix A ∈ Rn,n, where n is the number of vertices.

Ai,j =

{
1 if there is an edge between i and j

0 otherwise
. (4.3)

The matrix A is then used for the conceptualization of the neural network as follows.
Let Φ ∈ Rn,n+1 be a state matrix that represents the neural network, see Fig. 4.1.

The activation level of the location si that is visited at the position j is denoted as Φi,j and it

9
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is referred as a state. During the updating of the matrix Φ, the state value is in the interval
[0, 1].

Φ 1 2 3 4 5 · · · n n+1

1 1 0.25 0.36 0.59 0.42 · · · 0.25 1

2 0.27 0.74 0.24 0.68 0.57 · · · 0.36 1

3 0.36 0.64 0.12 0.34 0.84 · · · 0.61 1

4 0.78 0.29 0.24 0.11 0.36 · · · 0.47 0

5 0.96 0.34 0.01 0.88 0.37 · · · 0.98 1

...
...

...
...

...
...

. . .
...

...

n 0.25 0.78 0.67 0.15 0.14 · · · 1 1

start
at s1

s5 is in
the route

end at snstate Φ3,4

row i
represents
location si

col j represents j-th
position in the route

Figure 4.1: The state matrix Φ representing the Hopfield Neural Network. The rows represents
locations, columns represents position at the route. The last column is set to 1 if the respective
location is in the route. The start location s1 and the end location sn are represented by the states
Φ1,1 and Φn,n, respectively.

The start and end states are prescribed and therefore nodes Φ1,1 and Φn,n represent
the start and the end, respectively, and they are set to 1. The (n+1)-th column of the matrix
Φ is used for the calculation of the route reward [8]; Φi,n+1 = 1, when location si is in
the route, otherwise Φi,n+1 = 0.

10
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4.3 Energy Function

The energy function is the essential part of the Hopfield-Tank based neural network. The neu-
ral network for the OP [8] minimizes the following quadratic energy function:

E =
a

2
·
n∑
i=1

n∑
j=1

n∑
h=1
h6=i

Φi,j · Φh,j (4.4)

+
b

2
·
[ n∑
i=1

n∑
j=1

Φi,j − n
]2

(4.5)

+
c

2
· Γ
( n∑
i=1

n−1∑
j=1

n∑
h=1

|(si, sh)| · Φi,j · Φh,j+1 − Tmax

)
(4.6)

+ d · (2− Φ1,1 − Φn,n) (4.7)

+ e ·
n∑
i=1

[
Φi,n+1 · (1−

n∑
j=1

Φi,j)
]

(4.8)

− f ·
n∑
i=1

(ςi · Φi,n+1), (4.9)

where a, b, c, d, e, f are the parameters of the energy function, Φ is the state matrix, Tmax is
the given travel budget, |(si, sj)| = ‖ si − sj ‖ is the Euclidean distance from the location
si to the location sj , ςi is the reward of the location si, and Γ(x) is a function

Γ(x) =

{
x2 if x ≥ 0

0 otherwise.
(4.10)

The quadratic energy function consists of several terms. Each term has been proposed to
meet the constraints of the OP and can be characterized as follows.

Eq. 4.4 penalizes columns of the matrix Φ that have more than one state activated, since only
one location can be visited at the time.

Eq. 4.5 ensures that the number of activated states in the matrix Φ is equal to n. If the num-
ber of activated states is less than n, the activated states are consecutively repeated in
the final sequence.

Eq. 4.6 ensures that the total route length does not exceed the travel budget Tmax.

Eq. 4.7 ensures that the route starts at the start state and ends at the end state.

Eq. 4.8 sets the (n + 1)-th column of the matrix Φ to 1, if the location si is in the route,
otherwise it is set to 0.

Eq. 4.9 is proposed to maximize the total sum of rewards.

The neural network includes the energy function E and the weights that are then used for
updating the matrix Φ. The weights depend on the current state of the matrix Φ and are
calculated as the second derivate of the energy function by the respective state of the matrix
Φ.

11
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The activation function uses the weights for the network update, therefore with knowledge
of the energy function, new values of the matrix Φ can be calculated from the partial derivative
∂E
∂Φi,j

∂E

∂Φi,j
= a ·

n∑
h=1
h6=i

Φh,j (4.11)

+ b ·
[ n∑
h=1

n∑
k=1

Φh,k − n
]

(4.12)

+ c · γ
( n∑
p=1

n−1∑
q=1

n∑
h=1

[
|(sp, sh)| · Φp,q · Φh,q+1 − Tmax

])
· %(i, j) (4.13)

− d · λ(i, j) (4.14)

+ e · ε(i, j) (4.15)

− f · ζ(i, j), (4.16)

where γ(x) is

γ(x) =

{
x if x ≥ 0

0 otherwise
, (4.17)

and the following partial terms.

%(i, j) =


∑n

h=1

[
|(si, sh)| · (Φh,j−1 + Φh,j+1)

]
if 1 < j < n∑n

h=1

[
|(si, sh)| · Φh,j−1

]
if j = n∑n

h=1

[
|(si, sh)| · Φh,j+1

]
if j = 1

, (4.18)

where |(si, sj)| = ‖si− sj‖ is the Euclidean distance between the locations si and sj , and Φi,j

is the state of the matrix Φ. The function λ is

λ(i, j) =

{
1 if (i = 1 and j = 1) or (i = n and j = n)

0 otherwise
. (4.19)

The term ε(i, j) is

ε(i, j) =

{
1−∑n

h=1 Φi,h if j = n+ 1

−Φi,n+1 if j ≤ n
, (4.20)

where Φi,j is the state of the matrix Φ and the state Φi,n+1 is the (n + 1)-th column of
the location si that is set to 1, if the location is in the route. The term ζ(i, j) is a function

ζ(i, j) =

{
ςi if j = n+ 1

0 if j ≤ n
, (4.21)

where ςi is the reward of the location si.

4.4 Update Algorithm

In this section, the update algorithm proposed in [8] is described. First, the parameters are
set to initial values, and the state matrix is initialized. Next, by updating the network, local
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minima are found. Last, a route that represents the state matrix is constructed and further
improved.

The parameters are set to values a = b = 1, c = 20, d = 10, g = 20, f = 15, and the time
step ∆t is set to 1. After the parameters are initialized, a process of finding local minima
is repeated until the network is stabilized. The process of the network stabilization goes as
follows. A state with the largest value of ∂E

∂Φi,j
is selected from a random row or column.

The state Φi,j is then updated by the activation function (Eq. 4.1). If the absolute value
of −∂E∂Φi,j

∆t is smaller than a threshold ∆ϑ = 2 three times in succession, a local minimum is

found. Then a threshold is applied to the state matrix. From each column of the matrix Φ,
a state with its value larger than a threshold (T = 0.5) is selected and set to 1, others states
are set to 0. If there are more states larger than the threshold per the column, the state with
the largest value is selected.

Φi,j =

{
1 when the location si is visited at the j-th position

0 otherwise
. (4.22)

After the application of the threshold, only n states of the matrix are active, i.e., their value
is equal to 1. From these states, a route is constructed according to Eq. 4.22. The 2-Opt
is applied to the constructed route. If the route is not feasible, i.e., the budget constraint is
violated after the improvement, the parameter f is decreased. Otherwise, the parameter is in-
creased. The route is further examined and if the total route length exceeds the travel budget,
a location with the largest ratio of the distance to the reward is removed from the route. If
the total route length does not exceed the travel budget, a location is added via the cheapest
insertion. The examination is over when the budget constraint is satisfied. If the route is
feasible and so far has the best total sum of rewards, the route is marked as the best solution.
The matrix Φ is then adjusted to reflect the current route and is slightly perturb.

If the number of repetitions exceeds the prescribed limit, the algorithm continues with
the process of finding a local minima. Otherwise, the algorithm continues from the initial-
ization of the parameters. If the number of iterations exceeds the given limit, the algorithm
stops.

4.5 Proposed Implementation of the HNN for the OP

The algorithm used in the evaluation reported in Chapter 7 of this thesis differs from the orig-
inal algorithm [8] described in Section 4.4. The modifications of the algorithm are proposed to
improve the performance of the network, and because the original algorithm [8] was unclear in
some parts. The modified algorithm and the implementation of the based solver are described
in this section.

4.5.1 Modified Update Algorithm

The modified algorithm consists of three parts, see Fig. 4.2. The first is the initialization of
the parameters and the state matrix Φ. Next follows the update of the state matrix until
the network is stabilized. Last, the route that reflects the state matrix is constructed and
improved. The parameters are also initialized to the values a = b = 1, c = 20, d = 10, g = 20
and f = 15, the time step ∆t is set to 0.001 and the threshold of the local minima is ∆ϑ = 2.
If the time step is smaller, the local minimum is found faster. The state matrix Φ is initialized
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InitializationLocations Update Improvement Solution

No. of repetitions reached, but no. of iterations not

No. of repetitions and iterations not reached

No. of
I,R

reached

Figure 4.2: The structure of the solver based on the HNN consists of three main parts: Initialization,
Update, and Improvement. I denotes iterations, R denotes repetitions.

to random values from the interval [0, 0.5]. Then the matrix is updated and reasons for doing
particular modifications are listed.

First, all counters for calculating the local minima are reset, and the state matrix is
reinitialized. Then a random row from the matrix Φ is selected. The whole row is selected to
improve the performance of the network, the local minimum is found in the less number of
updates, and it does not affect the quality of the solution. All states of the row are updated
by the activation function (Eq. 4.1). Three updates from the start of the update, the middle
of the update, and the end of the update are presented in Fig. 4.3 to show how the network
is stabilizing while satisfying the OP constraints. All states are compared with the threshold
∆ϑ to check if the network is stabilized. If the value of a state is less then the threshold three
times in succession, a local minimum is found. Otherwise, another random row is selected,
and the process of updating is repeated. When the network is stabilized, a filter is applied
to the state matrix, i.e., from each column of the matrix Φ, a state with the largest value is
selected and set to 1, and the other states are set to 0.

A route that reflects the matrix is constructed such that the state Φi,j = 1 represents
the location si at the j-th position of the route. The route obtained from the matrix might
contain duplicate locations. As mentioned in Section 4.3, if the number of activated states after
the filter application is smaller than n, the activated states are consecutively repeated, i.e.,
the duplicates of the location si appear in the route just behind the original location si, and
therefore the duplicates can be removed from the route. The current route may not be feasible,
therefore the 2-Opt heuristic is applied. If the route is feasible after the heuristic improvement,
then the parameter f is increased. Otherwise, f is decreased to satisfy the length constraint
in the next repetition. The route is further examined and improved. The examination and
improvement are as follows. If the total route length exceeds the travel budget, then a location
sremove is selected from the route and then removed. The location is selected according to

sremove = arg max
si∈R

|(si, si−1)|
ςsi

, (4.23)

where si is an location of the route, |(si, si−1)| = ‖si − si−1‖ is the Euclidean distance of
two locations, and ςsi is the reward of the location si. If the route length does not exceed
the travel budget, a location sinsert is inserted to the route. The location is selected from
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Φ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0 1.0000 0.4402 0.4851 0.1562 0.0415 0.1370 0.3475 0.1333 0.2048 0.2706 0.1196 0.0132 0.3720 0.1161 0.2070 0.2893 0.3493 0.0682 0.0765 0.3551 0.2783 0.3053 0.4484 0.4752 0.2652 0.0007 0.1983 0.0846 0.2171 0.1434 0.3994 0.1907 0.0836 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

2 0.3185 0.1636 0.0969 0.0769 0.3899 0.0620 0.4549 0.1294 0.3991 0.4490 0.0759 0.0256 0.2924 0.0905 0.2286 0.4910 0.3835 0.2369 0.1379 0.1516 0.0104 0.2855 0.1180 0.3684 0.1501 0.2278 0.1260 0.2056 0.4212 0.2680 0.1079 0.2397 0.4317 0.0000

3 0.2048 0.3165 0.3216 0.2668 0.2714 0.4510 0.1659 0.2205 0.0269 0.1915 0.0129 0.1174 0.4201 0.0039 0.0009 0.1570 0.1418 0.1524 0.1673 0.4272 0.2704 0.0358 0.0774 0.4982 0.1617 0.2830 0.4194 0.4298 0.3909 0.1591 0.3615 0.0957 0.4756 0.0000

4 0.1831 0.3625 0.2471 0.1341 0.0284 0.4675 0.1609 0.2199 0.4805 0.2783 0.1400 0.4844 0.2792 0.2970 0.1261 0.4316 0.4643 0.0534 0.2021 0.0001 0.1308 0.2003 0.1619 0.4137 0.1197 0.0916 0.3046 0.2788 0.4531 0.4003 0.2544 0.1362 0.2628 0.0000

5 0.0015 0.2702 0.2913 0.4690 0.4312 0.0112 0.4495 0.2095 0.1512 0.4338 0.4887 0.4482 0.0600 0.4203 0.4126 0.1134 0.1224 0.4127 0.2441 0.3227 0.0745 0.1579 0.4425 0.1662 0.4625 0.2213 0.1193 0.3628 0.4757 0.2554 0.1256 0.4772 0.0256 0.0000

6 0.4169 0.4463 0.4568 0.4281 0.3958 0.1663 0.0793 0.3296 0.1550 0.0275 0.3896 0.0753 0.4401 0.0029 0.1978 0.3528 0.2471 0.0205 0.4273 0.4049 0.4630 0.0935 0.3674 0.1842 0.2128 0.2302 0.1600 0.4682 0.3558 0.1372 0.4938 0.2727 0.0835 0.0000

7 0.4506 0.2008 0.4792 0.1169 0.2801 0.3088 0.2719 0.3076 0.1984 0.3473 0.2477 0.2013 0.0450 0.1005 0.4484 0.0655 0.0279 0.3533 0.0285 0.1214 0.2207 0.2127 0.3342 0.4509 0.3727 0.3024 0.3067 0.0099 0.2962 0.0794 0.0934 0.2468 0.2801 0.0000

8 0.0726 0.3637 0.0602 0.3815 0.1356 0.3678 0.0798 0.4829 0.1155 0.2812 0.0279 0.2160 0.2296 0.0934 0.2439 0.0829 0.1219 0.3653 0.3036 0.3346 0.1995 0.2545 0.2073 0.0018 0.0612 0.2172 0.2980 0.1406 0.3106 0.0448 0.4207 0.3832 0.4085 0.0000

9 0.4809 0.2647 0.0441 0.3487 0.3445 0.0270 0.4642 0.1257 0.0549 0.1803 0.3552 0.1483 0.4242 0.4381 0.2701 0.2895 0.2417 0.1047 0.4889 0.4962 0.3120 0.4907 0.0573 0.0292 0.2887 0.1979 0.3397 0.3335 0.1186 0.2229 0.2420 0.0995 0.4876 0.0000

10 0.2862 0.4482 0.3321 0.3131 0.4124 0.4577 0.3680 0.0927 0.3130 0.0163 0.0169 0.2511 0.2864 0.3063 0.4928 0.3911 0.2952 0.4889 0.2031 0.2860 0.0463 0.2322 0.0747 0.2441 0.0720 0.4082 0.3627 0.2949 0.1503 0.4622 0.2825 0.4364 0.4105 0.0000

11 0.1145 0.2496 0.3229 0.0723 0.1176 0.4156 0.3853 0.1338 0.4324 0.1364 0.4202 0.2387 0.1291 0.3113 0.0340 0.1181 0.0144 0.3199 0.1643 0.2466 0.3946 0.4085 0.3186 0.3029 0.2712 0.1135 0.4531 0.2335 0.3959 0.3895 0.1439 0.0105 0.1391 0.0000

12 0.4668 0.0828 0.2567 0.3824 0.4680 0.3905 0.3148 0.1044 0.3107 0.0536 0.2336 0.1221 0.0875 0.3516 0.1365 0.4075 0.0160 0.3831 0.3021 0.4245 0.2017 0.1049 0.1957 0.3152 0.0580 0.4292 0.2111 0.4476 0.0731 0.2215 0.0867 0.0399 0.3043 0.0000

13 0.3433 0.4223 0.2723 0.2338 0.2371 0.3767 0.0446 0.2907 0.1103 0.1666 0.3782 0.4619 0.3031 0.2856 0.4779 0.1862 0.0877 0.4024 0.3879 0.1926 0.0980 0.2031 0.2507 0.0272 0.4141 0.1983 0.1003 0.1357 0.2849 0.1402 0.4400 0.1283 0.0624 0.0000

14 0.2123 0.3621 0.2995 0.0891 0.4066 0.0902 0.1994 0.0732 0.4684 0.1613 0.3763 0.2540 0.1392 0.0626 0.3417 0.0416 0.4505 0.0344 0.1396 0.1535 0.2851 0.1668 0.0677 0.4833 0.2671 0.2034 0.2683 0.4073 0.1434 0.3965 0.4697 0.3557 0.2586 0.0000

15 0.2692 0.4448 0.1652 0.3594 0.1442 0.2384 0.3278 0.3055 0.1148 0.0818 0.4447 0.1774 0.4235 0.4863 0.1278 0.4579 0.1259 0.2814 0.2430 0.2927 0.3491 0.2263 0.0598 0.0525 0.4946 0.4670 0.1959 0.3911 0.4367 0.0516 0.1497 0.2060 0.4964 0.0000

16 0.3149 0.0654 0.1406 0.0534 0.3932 0.4461 0.1681 0.4750 0.3908 0.3455 0.3986 0.3771 0.4734 0.3565 0.0030 0.2547 0.0995 0.2957 0.1038 0.3258 0.3555 0.1563 0.3204 0.3225 0.3521 0.2115 0.2592 0.4037 0.3612 0.4652 0.4001 0.1761 0.0307 0.0000

17 0.0407 0.2294 0.4239 0.4869 0.3976 0.3989 0.3777 0.2431 0.2975 0.2548 0.2164 0.1540 0.2578 0.4712 0.2535 0.0535 0.0750 0.0792 0.4089 0.2312 0.3996 0.2314 0.0833 0.1111 0.4907 0.4870 0.4723 0.4559 0.3872 0.1483 0.4866 0.4279 0.3777 0.0000

18 0.4104 0.4147 0.2753 0.3094 0.2924 0.0184 0.1069 0.0473 0.2348 0.2608 0.3051 0.2060 0.0143 0.3585 0.2810 0.0936 0.2675 0.0122 0.4932 0.4989 0.0956 0.1043 0.4896 0.0826 0.0765 0.4455 0.4698 0.2248 0.4320 0.3976 0.1026 0.3425 0.3124 0.0000

19 0.3779 0.1518 0.1048 0.3963 0.2587 0.1521 0.1311 0.0195 0.4571 0.3371 0.0338 0.3157 0.1181 0.1274 0.0831 0.1303 0.1206 0.0821 0.2258 0.2248 0.0716 0.3084 0.3013 0.0171 0.2782 0.0262 0.4492 0.1759 0.1287 0.2917 0.4882 0.0066 0.4435 0.0000

20 0.0931 0.4029 0.2022 0.2452 0.0340 0.2217 0.2023 0.3711 0.2556 0.0180 0.4892 0.3830 0.1011 0.1195 0.0035 0.1832 0.3454 0.2283 0.2548 0.1538 0.0297 0.2720 0.4320 0.0558 0.2211 0.1079 0.1845 0.0128 0.0961 0.1912 0.4563 0.1892 0.0941 0.0000

21 0.1585 0.4343 0.1281 0.3802 0.1366 0.4992 0.1358 0.1546 0.4884 0.0187 0.2557 0.1080 0.0223 0.4389 0.4533 0.2506 0.1937 0.1071 0.2802 0.4656 0.0391 0.3360 0.1868 0.1470 0.0206 0.1996 0.2431 0.2117 0.1559 0.4323 0.3058 0.3143 0.3666 0.0000

22 0.4338 0.1946 0.0033 0.4331 0.3303 0.1578 0.4215 0.3491 0.4135 0.0294 0.3713 0.3524 0.4828 0.1219 0.0461 0.0899 0.4021 0.0117 0.1290 0.2382 0.1985 0.2760 0.2587 0.3980 0.0191 0.4705 0.0539 0.4514 0.2762 0.3682 0.3181 0.2101 0.0628 0.0000

23 0.3213 0.1431 0.3931 0.4792 0.0646 0.2422 0.3927 0.0941 0.1135 0.2451 0.0768 0.2354 0.2912 0.1667 0.1376 0.3029 0.2957 0.3757 0.0013 0.0718 0.1345 0.3993 0.0909 0.1049 0.4532 0.0423 0.3811 0.3214 0.3604 0.0912 0.3842 0.1817 0.2343 0.0000

24 0.2773 0.1609 0.2989 0.0195 0.0535 0.3930 0.1330 0.2986 0.4698 0.3684 0.0898 0.1366 0.0060 0.3926 0.4323 0.3817 0.3939 0.0041 0.0162 0.2933 0.0950 0.1211 0.2465 0.1373 0.0022 0.0679 0.4977 0.0934 0.4520 0.1794 0.3278 0.2293 0.3402 0.0000

25 0.1267 0.2488 0.3938 0.0197 0.3818 0.1924 0.4896 0.2502 0.2822 0.1261 0.2562 0.1748 0.0584 0.1379 0.0688 0.0625 0.1540 0.3621 0.1574 0.2751 0.1085 0.2947 0.2774 0.1764 0.2924 0.3708 0.1284 0.4718 0.1986 0.3577 0.3120 0.3253 0.1065 0.0000

26 0.2058 0.3450 0.4883 0.3982 0.3345 0.2385 0.1804 0.4607 0.4947 0.3553 0.0190 0.1325 0.4241 0.0815 0.2866 0.2861 0.2389 0.0617 0.3946 0.0336 0.3391 0.0710 0.3260 0.2098 0.1994 0.2978 0.4084 0.0571 0.1098 0.2337 0.1637 0.3156 0.0787 0.0000

27 0.1519 0.2139 0.4132 0.3904 0.3943 0.3739 0.3851 0.2496 0.3929 0.0176 0.1737 0.4744 0.3042 0.4598 0.2133 0.3659 0.3544 0.2470 0.2049 0.4254 0.0730 0.4148 0.1249 0.3708 0.3232 0.1820 0.4806 0.0568 0.3457 0.2962 0.1355 0.4976 0.0101 0.0000

28 0.0487 0.3880 0.4044 0.4226 0.2731 0.1540 0.3155 0.2908 0.3276 0.2899 0.0949 0.2874 0.0033 0.4608 0.1419 0.2502 0.1657 0.0673 0.3232 0.0805 0.1922 0.1940 0.4037 0.3742 0.1746 0.4605 0.2198 0.4708 0.0960 0.2174 0.4809 0.1448 0.1055 0.0000

29 0.3854 0.0674 0.3786 0.0394 0.3829 0.1694 0.3670 0.1728 0.2643 0.1544 0.1761 0.2251 0.2963 0.4263 0.3909 0.3636 0.2495 0.4714 0.0557 0.4435 0.3751 0.4299 0.1181 0.3356 0.1497 0.0889 0.4316 0.3672 0.0699 0.0764 0.4727 0.4552 0.1438 0.0000

30 0.3513 0.4946 0.0266 0.0206 0.3616 0.1994 0.2849 0.0160 0.3755 0.0101 0.3123 0.3018 0.4009 0.1758 0.0513 0.3723 0.2316 0.4947 0.2474 0.1615 0.1128 0.0830 0.3112 0.2018 0.0146 0.1783 0.2717 0.0910 0.1510 0.2269 0.2348 0.0023 0.2215 0.0000

31 0.2614 0.0229 0.0831 0.4608 0.3079 0.0991 0.3362 0.3179 0.4114 0.1380 0.2189 0.0872 0.1893 0.0912 0.3188 0.1840 0.3386 0.4802 0.2968 0.4215 0.2914 0.4986 0.4362 0.4698 0.2703 0.0272 0.1207 0.4972 0.2619 0.1230 0.2187 0.0233 0.1459 0.0000

32 0.3018 0.4841 0.4538 0.4009 0.3203 0.2717 0.3123 0.4583 0.4906 0.3995 0.1476 0.0817 0.2183 0.3316 0.4203 0.1985 0.1284 0.3418 0.4899 0.1270 0.2780 0.4597 0.3973 0.3052 0.0804 0.3944 0.0671 0.2034 0.1131 0.0904 0.3493 0.4149 0.0745 0.0000

(a) The first update

Φ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

2 0.3185 0.1636 0.0969 0.0769 0.3899 0.0620 0.4549 0.1294 0.3991 0.4490 0.0759 0.0256 0.2924 0.0905 0.2286 0.4910 0.3835 0.2369 0.1379 0.1516 0.0104 0.2855 0.1180 0.3684 0.1501 0.2278 0.1260 0.2056 0.4212 0.2680 0.1079 0.2397 0.4317 0.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.0015 0.2702 0.2913 0.4690 0.4312 0.0112 0.4495 0.2095 0.1512 0.4338 0.4887 0.4482 0.0600 0.4203 0.4126 0.1134 0.1224 0.4127 0.2441 0.3227 0.0745 0.1579 0.4425 0.1662 0.4625 0.2213 0.1193 0.3628 0.4757 0.2554 0.1256 0.4772 0.0256 0.0000

6 0.4169 0.4463 0.4568 0.4281 0.3958 0.1663 0.0793 0.3296 0.1550 0.0275 0.3896 0.0753 0.4401 0.0029 0.1978 0.3528 0.2471 0.0205 0.4273 0.4049 0.4630 0.0935 0.3674 0.1842 0.2128 0.2302 0.1600 0.4682 0.3558 0.1372 0.4938 0.2727 0.0835 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.2862 0.4482 0.3321 0.3131 0.4124 0.4577 0.3680 0.0927 0.3130 0.0163 0.0169 0.2511 0.2864 0.3063 0.4928 0.3911 0.2952 0.4889 0.2031 0.2860 0.0463 0.2322 0.0747 0.2441 0.0720 0.4082 0.3627 0.2949 0.1503 0.4622 0.2825 0.4364 0.4105 0.0000

11 0.1145 0.2496 0.3229 0.0723 0.1176 0.4156 0.3853 0.1338 0.4324 0.1364 0.4202 0.2387 0.1291 0.3113 0.0340 0.1181 0.0144 0.3199 0.1643 0.2466 0.3946 0.4085 0.3186 0.3029 0.2712 0.1135 0.4531 0.2335 0.3959 0.3895 0.1439 0.0105 0.1391 0.0000

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.2692 0.4448 0.1652 0.3594 0.1442 0.2384 0.3278 0.3055 0.1148 0.0818 0.4447 0.1774 0.4235 0.4863 0.1278 0.4579 0.1259 0.2814 0.2430 0.2927 0.3491 0.2263 0.0598 0.0525 0.4946 0.4670 0.1959 0.3911 0.4367 0.0516 0.1497 0.2060 0.4964 0.0000

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

17 0.0407 0.2294 0.4239 0.4869 0.3976 0.3989 0.3777 0.2431 0.2975 0.2548 0.2164 0.1540 0.2578 0.4712 0.2535 0.0535 0.0750 0.0792 0.4089 0.2312 0.3996 0.2314 0.0833 0.1111 0.4907 0.4870 0.4723 0.4559 0.3872 0.1483 0.4866 0.4279 0.3777 0.0000

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21 0.1585 0.4343 0.1281 0.3802 0.1366 0.4992 0.1358 0.1546 0.4884 0.0187 0.2557 0.1080 0.0223 0.4389 0.4533 0.2506 0.1937 0.1071 0.2802 0.4656 0.0391 0.3360 0.1868 0.1470 0.0206 0.1996 0.2431 0.2117 0.1559 0.4323 0.3058 0.3143 0.3666 0.0000

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23 0.3213 0.1431 0.3931 0.4792 0.0646 0.2422 0.3927 0.0941 0.1135 0.2451 0.0768 0.2354 0.2912 0.1667 0.1376 0.3029 0.2957 0.3757 0.0013 0.0718 0.1345 0.3993 0.0909 0.1049 0.4532 0.0423 0.3811 0.3214 0.3604 0.0912 0.3842 0.1817 0.2343 0.0000

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.1267 0.2488 0.3938 0.0197 0.3818 0.1924 0.4896 0.2502 0.2822 0.1261 0.2562 0.1748 0.0584 0.1379 0.0688 0.0625 0.1540 0.3621 0.1574 0.2751 0.1085 0.2947 0.2774 0.1764 0.2924 0.3708 0.1284 0.4718 0.1986 0.3577 0.3120 0.3253 0.1065 0.0000

26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(b) The middle update

Φ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

2 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.5053 0.5056 0.5055 0.5056 0.5055 0.5056 0.5055 0.5056 0.5055 0.5056 0.5056 0.5056 0.5056 0.5055 0.5056 0.5056 0.5056 0.5055 0.5056 0.5055 0.5056 0.5055 0.5056 0.5056 0.5055 0.5055 0.5056 0.5055 0.5056 0.5055 0.5055 0.5055 0.5053 0.0000

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.5030 0.5030 0.5030 0.0000 0.5030 0.0000 0.5030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5030 0.0000 0.5030 0.5030 0.5030 0.5030 0.5030 0.0000 0.5030 0.0000 0.0000

9 0.0436 0.0001 0.0033 0.0012 0.0036 0.0010 0.0022 0.0012 0.0026 0.0019 0.0031 0.0030 0.0029 0.0043 0.0036 0.0036 0.0024 0.0030 0.0016 0.0033 0.0018 0.0026 0.0022 0.0018 0.0019 0.0024 0.0010 0.0029 0.0011 0.0020 0.0014 0.0001 0.0376 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11 0.0000 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

14 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

17 0.0002 0.0000 0.0004 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0043 0.0005 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.0006 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0002 0.0000 0.0000 0.0002 0.0001 0.0000 0.0001 0.0000 0.0000 0.0001 0.0004 0.0001 0.0003 0.0001 0.0003 0.0000 0.0002 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0005 0.0000

26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

29 0.0607 0.0002 0.0087 0.0016 0.0102 0.0012 0.0048 0.0017 0.0060 0.0035 0.0077 0.0073 0.0072 0.0133 0.0103 0.0098 0.0051 0.0075 0.0026 0.0087 0.0032 0.0059 0.0044 0.0032 0.0035 0.0053 0.0013 0.0071 0.0014 0.0039 0.0022 0.0004 0.0479 0.0000

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(c) The last update

Figure 4.3: The state matrix Φ during updates of the network while solving problem from Tsiligirides
Set 3 with Tmax = 45 with I = 0 and R = 1.
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Chapter 4. Hopfield Neural Network

Algorithm 1: The OP solver based on the Hopfield Neural Network

Input: S - the set of locations, I - no. of iterations, R - no. of repetitions
Output: Rbest - the sequence of locations , Sk - the subset of locations, Σ - the

sequence of visits, k - no. of visited locations
1 begin Initialization
2 graph← loadGraph(S);
3 neuralNetwork ← initializeNetwork();
4 parameters← initializeParameters();
5 i← 0;
6 r ← 0;

7 end
8 begin Iteration - graph, neuralNetwork, parameters, i, r
9 for i < I do

10 parameters← initialize;
11 neuralNetwork ← initialize;
12 for r < R do
13 neuralNetwork ← resetLocalMinima();
14 while not local minima is found do
15 row ← getRandomRow();
16 neuralNetwork ← updateActivationLevel(row);

17 end
18 neuralNetwork ← applyF ilter();
19 R ← constructRoute(Φ);
20 R ← improveRoute();
21 if R is feasible then
22 parameters← decreaseF ()
23 else
24 parameters← increaseF () ;
25 end
26 R ← examineRoute();
27 neuralNetwork ← adjustNetwork(R);
28 if R is better than Rbest then
29 Rbest ← R;
30 end
31 r ← r + 1;

32 end
33 i← i+ 1;

34 end

35 end
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the set of the unvisited locations denoted as R:

sinsert = arg max
si∈R,

sa∈R,sb∈R

ςsi
|(sa, si)|+ |(si, sb)| − |(sa, sb)|

. (4.24)

The formula is proposed according to the heuristic in [14]. The selection method of sinsert

has been proved to be the best between the explored methods. The process of inserting
and removing locations is repeated until the budget constraint is satisfied or the number of
prespecified attempts is reached. After this examination, the route is feasible. If the route is
the best solution obtained so far, it is marked as the best. Then the state matrix is adjusted
to reflect the solution, i.e., the state is set to either 0.99 if the respective location is in the final
route, or to 0.01, if it is not. The values are not rounded because with round values 1 and
0 the network did not function properly, it got stuck in a global minima and could not be
stabilized.

If the number of repetitions R has not been reached, the algorithm continues with the re-
setting the counters, the reinitialization of the matrix, and finding a new local minima. If
the number of repetition has been reached, but the number of the prespecified iterations I
has not been exceeded, the algorithm continues with the reinitialization of the parameters.
Otherwise, the algorithm stops. The whole procedure is summarized in Algorithm 1.

Implementation

The HNN-based solver is implemented in C++ and the implementation uses libraries provided
by the thesis supervisor. The implemetation is based on an object-oriented programming.
The objects represent parts of the solver: the graph that represents distribution of locations,
the network representation, the energy function, the parameters and the route representation.
The object-oriented UML class diagram is shown in Fig. 4.4. The main object is the class

NNOP that encapsulates methods iterate() and initialize(). The instances are initialized
in method initialize(). The method iterate() is the main method of the solver. The de-
tailed description of the implemeted methods is on the enlisted CD, and the activity diagram
of the solver is depicted in Fig. 4.5.

17



Chapter 4. Hopfield Neural Network

hasGraph

1

hasGraph1

hasGraph

1

hasParams 1hasNetwork

1

hasNetwork 1

hasEnergyFunc

1

Graph

- locations : TargetPrtVector
- distanceMatrix : Double2Vector
- graphSize : Integer
- limit : Double
- startLoc : Integer
- endLoc : Integer

+ setTargets(TargetPtrVector, Double) : void
+ calculateDistances(void) : void

NNOP

+ iterate(void) : void
+ initialize(void) : void

NeuralNetwork

- nodes : Double2Vector
- minimaCounter : Int2Vector
- netSize : Integer
- isFeasible : Boolean

+ checkLocalMinima(void) : Boolean
+ resetLocalMinima(void) : void
+ applyFilter(void) : void
+ adjustNetwork(TargetPtrVector route) : void
+ getRandomRow(void) : int

Route

- routeLocations : TargetPtrVector
- routeSize : Integer

+ constructRoute(void) : void
+ improveRoute(void) : void
+ examineRoute(void) : void
+ getDistance(void) : double
+ getReward(void) : double

EnergyFunc

- networkNodes : Double2Vector
- networkSize : Integer

+ updateActivationLevels(NeuralNetwork,
Parameters, Integer) : void

Parameters

- a : Integer
- b : Integer
- c : Integer
- d : Integer
- e : Integer
- f : Integer
- deltaT : Double
- deltaVartheta : Double

+ initParams(void) : void
+ increaseParamF(void) : void
+ decreaseParamF(void) : void

Figure 4.4: The UML class diagram of the solver based on the Hopfield Neural Network [8], where
TargetPtrVector is a vector of STarget* that represents sensor locations, Double2Vector labels vector
of vectors of Doubles, and Int2Vector labels vector of vectors of Integers.
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Load graph

Parameter initialization

Reset minima counters

Network initialization

Select random row

Update row

Apply filter Construct route

Improve route

Examine routeAdjust neural network

Local minima
not found

Local minima found

No. of repetitions
reached, but no.
of iterations not

No. of repetitions or
iterations not reached

No. of iterations and
repetitions reached

Figure 4.5: The activity diagram the solver based on the Hopfield Neural Network [8].
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CHAPTER 5
Hopfield Neural Network Extension
to the Orienteering Problem with
Neighborhoods

The Hopfield Neural Network (HNN) proposed for the Orienteering Problem (OP) in [8] was
designed to fit the discrete problem of the OP. In this chapter, the HNN solver proposed in
Chapter 4 is modified to address the Orienteering Problem with Neighborhoods (OPN).

5.1 Hopfield Neural Network for the OPN

The HNN consists of the data representation, the energy fuction, and the traditional heuristic
[13]. The data representation and the energy function need to be modified as follows to reflect
the OPN. Let m be the number of fixed waypoints. Waypoints are situated on the disk
with the radius δ centered at the location si. A set of possible waypoints of the location si,

si
δ

psim

psi1

psi2

psi3

psi4

psi5

psi6

psi7

psi8

psi9

psi10

psi11

Figure 5.1: The sampled variant of the OPN. The location si is represented by its waypoints psik ,
where k ∈ {1, ...,m}, the distance between the waypoint and the location is equal to the sensing radius
δ.
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x-dim

z-d
im

y
-d
im

start at s1

end at sn

state χ3,2,1

χ2,n+1,2 = 1,
i.e., ps22 is
in the route

y − dim
represents
locations

x − dim represents
positions at the route

z − dim
represents
waypoints

Figure 5.2: The representation of the HNN for the OPN. The three dimensional matrix represents
the sensor locations: y−dim, and their respective waypoints: z−dim, and the position of the waypoint
of the route is represented by x− dim.

i ∈ [2, n− 1] is denoted as Psi = {psi1 , ..., p
si
m}, Ps1 = ∅ and Psn = ∅. This sampled variant of

the OPN is shown in Fig. 5.1. The sampled OPN can be formulated as a graph G(V,E), where
V is set of n clusters - the possible waypoints of the respective locations. Each cluster contains
m vertices, except the start and end cluster (with only single waypoint), and is associated with
the reward ςi ≥ 0, where i ∈ [1, n] and ς1 = ςn = 0. The edge (without orientation) between
every two vertices i and j from two different clusters exists and it is associated with the cost
of the traveled distance between the vertices. The graph can be interpreted as an adjacency
matrix A ∈ Rn,n, where n is the number of clusters.

Ai,j =

{
1 if there is an edge between clusters i and j

0 otherwise
. (5.1)

The matrix A needs to be expanded to reflect individual vertices within each cluster. Then
the matrix is used for the conceptualization of the network as follows.

Let χ ∈ Rn,n+1,m be the 3D state matrix that represents the HNN for the OPN, see
the visualization of the matrix presented in Fig. 5.2. The activation level χi,j,k is referred
as the state and denotes that data for the location si were collected from the waypoint psik
and the waypoint is visited at the j-th position of the route. The value of the state is:

χi,j,k =

{
1 if waypoint psik is visited at j-th position of the route

0 otherwise
. (5.2)

The state χ1,1,1 represents the start location and the state χn,n,m represents the end location.
These states are prespecified and set to 1. States χi,n+1,k are set to 1, if the waypoint psik is
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in the route, otherwise they are set to 0. Each state of the matrix χ is updated according to
the activation function:

χi,j,k =
1

1 + exp−α
, with (5.3)

α = ln(χi,j,k)− ln(1− χi,j,k)−
∂E

∂χi,j,k
∆t, (5.4)

where E is the energy function similar to the one in Section 4.3, and ∆t is the time step.
The modified energy function is as follows.

A sum over the waypoints is added to each term of E for the OP (Eq. 4.4) except the term
Eq. 4.6. Two sums over the waypoints are added to the term Eq. 4.6 to ensure that the total
route length does not exceed the travel budget. The derivative of the energy function used in
the activation function Eq. 5.4 is following

∂E

∂χi,j,k
= a ·

n∑
h=1
h6=i

m∑
l=1
h6=k

χh,j,l (5.5)

+ b ·
[ n∑
h=1

n∑
r=1

m∑
l=1

χh,r,l − n
]

(5.6)

+ c · γ
( n∑
r=1

n−1∑
q=1

n∑
h=1

m∑
o=1

m∑
l=1

[
|(psro , pshl )| · χr,q,o · χh,q+1,l − Tmax

])
· %(i, j, k) (5.7)

− d · λ(i, j, k) (5.8)

+ e · ε(i, j, k) (5.9)

− f · ζ(i, j, k), (5.10)

where γ(x) is

γ(x) =

{
x if x ≥ 0

0 otherwise
. (5.11)

The function %(i, j, k) is

%(i, j, k) =


∑n

h=1

∑m
l=1

[
|(psik , p

sh
l )| · (χh,j−1,l + χh,j+1,l)

]
if 1 < j < n∑n

h=1

∑m
l=1

[
|(psik , p

sh
l )| · χh,j−1,l

]
if j = n∑n

h=1

∑m
l=1

[
|(psik , p

sh
l )| · χh,j+1,l

]
if j = 1

, (5.12)

where |(psik , p
sh
l )| = ‖psik = pshl ‖ is the Euclidean distance between the waypoints psik and pshl .

The partial functions are

λ(i, j, k) =

{
1 if

(
i = 1 and j = 1 and k = 1

)
or
(
i = n and j = n and and j = m

)
0 otherwise

.

(5.13)
The state χi,j,k represents the waypoint psik visited at the j-th position of the route

ε(i, j, k) =

{
1−∑n

h=1 χi,h,k if j = n+ 1

−χi,n,k if j ≤ n
. (5.14)
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ζ(i, j, k) =

{
ςi if j = n+ 1

0 if j ≤ n
, (5.15)

where ςi is the reward of the waypoints psik , k ∈ [1,m].

5.2 Implementation of the HNN Solver for the OPN

The HNN based solver for the OPN has the same structure as the solver for the OP presented
in Fig. 4.2, however, some parts are slightly changed to reflect the sampled OPN variant.
In the method setTargets(TargetPtrVector, Double) of the class Graph depicted in Fig.
4.4, the sampled variant of the OPN is created. For each location, m possible waypoints are
generated at the location si according to trigonometric formulas:

x = sxi + δ · cos(i∆θ/360), (5.16)

y = syi + δ · sin(i∆θ/360), (5.17)

for i ∈ {1, ...,m} where x, y are coordinates of the possible waypoint, δ is the sensing radius,
∆θ is the angle at which the waypoint is located on the disc, and sxi , syi are coordinates
of the location si. The neural network represented by the 3D state matrix is implemented
by using Double3Vector, i.e., a vector of vectors of vectors of Doubles. The waypoints are
also calculated for the start and the end location, but are completely ignored, to simplify
the implementation.

The algorithm for solving the OPN by the HNN proposed in this chapter consists of three
parts depicted in Fig. 4.2. The initialization, the update, and the improvement parts are
built on the proposed algorithm for the OP [8] and modified to reflect the OPN as follows.

In the initialization part, only the parameter ∆t is changed. The time step is initialized
with the value ∆t = 0.0001.

In the second part (the update), the randomly selected row i and its respective states χi,j,k,
j ∈ [1, n], k ∈ [1,m] are updated by the activation function. The counters for finding local
minima are updated according to the location and not the waypoint, therefore the network is
stabilized faster.

The most important change is in the last part of the solver, where the route is constructed
from the state matrix and further improved. The obstacle is to construct the route from
the three-dimensional matrix. Given a state χi,j,k with m possible waypoints, the waypoint
psik is encoded as the location p at the j-th position of the route, and it is labeled by the value
p = i · m + k. After improving and examining the route, the matrix is adjusted to reflect
the route. The route location p at the j-th position is represented by the state χi,j,k, where
i = p/m, j is the position at the route, and k = p mod m.
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CHAPTER 6
Self-Organizing Map

The application of the Self-Organizing Map (SOM) for solving the Orienteering Problem (OP)
and the Orienteering Problem with Neighborhoods (OPN) is reported in [10] and it is briefly
described in Section 3.1; however, the proposed modifications to improve the quality of so-
lutions by the SOM-based approach are directly modifying the approach [10], and therefore
the SOM-based solution of the orienteering problems is described in detail in this chapter to
make the thesis more self-contained. The SOM is using the unsupervised learning, where par-
ticular locations are presented to the two-layer network where the locations represent the input
layer, while the output layer consists of the array of connected neurons. The neuron weights
share the space with the input locations and thus the array forms a ring of neurons which
evolves in the same space as the input locations, therefore the array of neurons directly repre-
sents the requested route in the input space. The main difficulty of addressing the solution of
the OP and the OPN by the SOM is to satisfy the travel budget Tmax. Therefore, if the route
represented by the network would exceed Tmax after the adaptation towards the particular
location, the network is not adapted, i.e., the so-called conditional adaptation of the SOM.
Besides, the author of [10] proposes to weight the power of the adaptation according to the re-
wards associated with locations. The conditional adapt and the learning according to [10] can
be described as follows.

Each epoch, all locations S = {s1, ..., sn} are given to the network (in random order to
avoid the local optima) and the adaptation of the network to the particular s ∈ S consists of
the determination of the closest point ps, which is the point of the ring that has the shortest
distance to s. Since the adaptation is performed only if the network would represent a route
not exceeding Tmax, the network is saved as a sequence of M neurons N = {ν1, ..., νM},
and therefore the network can be easily reverted to its previous state, if the conditional adapt
is not performed. The closest point ps is used for the weights of the new winner neuron
ν∗ added to the network. Then, the winner neuron with its neighboring neurons is adapted
towards the location s according to the neighboring function f(G, d) similarly as in the regular
SOM [20].

f(G, d) =

{
e
−d2

G2 for d < 0.2M

0 otherwise
, (6.1)

where d is the number of neurons in the ring, M is the current number of the neurons in
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the ring, and G is the learning gain that is updated according to the gain decreasing rate α
after each epoch.

The initial ring of neurons consists of neurons that represent the start and the end lo-
cations, N = {ν1, νend}. The learning parameters are initialized to the following values,
the learning gain G = 10, the gain decreasing rate α = 0.1, the default learning rate µ = 0.6,
and the maximal reward Rmax = arg maxs∈S ς(s) is determined. The current best found so-
lution T = (s1, s,n ) is set with its sum of rewards to R = 0 and the learning epoch counter is
set to i = 1.

Each learning epoch, the network is given a permutation of all locations, except for
the start and the end locations, Π← permute(S \{s1, sn}), since the visitation of s1 and sn is
prescribed in the OPN. For each location s from Π, the following steps are performed. First,
the current configuration of the network is saved as N ′ ← N . Then two winner neurons are
determined, a summary of the winner selection is depicted in Algorithm 2.

Algorithm 2: The winner neuron selection and determination of the closest point ps
from [10]. The highlighted lines have been modified in this chapter.

Input: s - the location, N - the set of neurons, Tmax - the travel limit, i - epoch
Output: N - the set of neurons, ps - the closest point

1 begin winnerWeights
2 Get all neurons marked as winner in the current epoch i:

Nwin ← winners(N \ {ν1, νend}, i).
3 Let each winner ν ∈ N be associated with target location sν = s(ν) and reward

ς(sν).

4 Determine the winner νf which has the longest distance to its associated location
sνf : νf = arg maxν∈Nwin

|(ν, sν)|.
5 Determine the winner νl which associated location sνl has the lowest reward:

νl = arg minν∈Nwin
ς(sν).

6 Determine the closest point ps of the ring N to the location s.
7 if the expected route length after adapting ps would be longer than Tmax then
8 if ς(sνf ) < ς(s) AND |(νf , s(νf ))| > |(ps, s)| then

9 Remove νf from the ring N ← N \ {νf}.
10 end
11 if ς(sνl) < ς(s) AND |(νl, s(νl))| > |(ps, s)| then
12 Remove νl from the ring N ← N \ {νl}.
13 end

14 end
15 return (N , ps) ;

16 end

The additional winner neurons are removed from the network in the method winnerWeights

of Algorithm 2 to support the adaptation of the network to s while not exceeding the travel
budget. The first neuron νf from the ring has the longest distance to its associated location.
The second neuron νl represents the location with the lowest reward. Along with the addi-
tional neurons, the closest point ps is determined as the point of the ring that has the shortest
distance to the location s. The winner νf is removed from the ringN ← N\{νf}, if the reward
of the location associated with the neuron is lower than the reward of the current location s
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and the distance between the neuron and its associated location is larger than the distance
between ps and s. The winner νl is removed from the ring N ← N \ {νl}, if the reward of
the location associated with the neuron is lower than the reward of the current location s
and the distance between the neuron and its associated location is larger than the distance
between ps and s. If ps is situated in the neuron ring, determine the previous winner νp and
the next winner νn. Then the conditional adapt follows.

If the length of the new tour LTwin represented by the neuron ring including the closest
point ps satisfies the travel budget, then a new neuron ν∗ with weights identical to ps is created
and added to the neuron ring N at the position corresponding to ps. The winner neuron ν∗

and its neighboring neurons are adapted towards the location s according to the neighboring
function (Eq. 6.1). The location s is associated with the neuron ν∗ and the neuron is marked
as the winner for the current epoch. If the length LTwin exceeds the travel budget, the network
is reverted to the previous state N ← N ′.

At the end of each learning epoch, the update is made to remove all non-winner neurons
from the ring, and the learning parameters are updated. If the total sum of the rewards of
the new solution is higher than the sum of the rewards of the current best solution, then
the new solution is marked as the best solution.

For the OPN, the SOM solver is slightly modified to reflect the data collected from the lo-
cation s within the sensing radius δ. In [10], an alternative location p′ is determined between
the point ps and the location s. Then data from the location s can be read at the alterna-
tive location p′, |(p′, s)| ≤ δ, therefore p′ is used instead of the location s in the adaptation
and the learning epoch. The final route is then recreated from the sequence of winner neurons
associated with alternate locations.

6.1 Improvements of the SOM for the OPN

We propose two types of SOM modifications. The first type of modifications is based on
the selection of the winner neuron, and the second type of modifications is based on the com-
binatorial heuristic.

6.1.1 Proposed Modification of the Winner Neuron Selection

Even though the approach [10] addressed the OPN, the quality of the solution suffers from
stucking in local optima. It is partially caused by the heuristic nature of the SOM, but also
because the only way how to escape the local optima is in the randomized construction of
the route in each learning epoch, where more rewarding location is visited only if Tmax is not
exceeded after removing νl and νf . Therefore, we focus on improving the solution quality
by considering different approaches how to identify locations that should not be visited by
the route in benefit of adding more rewarding locations, and thus having a higher sum of
the collected rewards.

In the method winnerWeights from [10] depicted in Algorithm 2 two neurons νf and νl
are selected and if the conditions on the lines 8 and 11 are met, the neurons are removed
from the ring N . Along with the neurons, the closest point ps of the ring to the location s
is determined. If the condition of the adapt is met, the winner neuron ν∗ representing ps is
created.

A new selection of the winner neuron and new removal methods denoting the determination
of the winner neurons that are removed from the ring are proposed to improve the quality of
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Table 6.1: Combinations of proposed methods for the selection of the winner and selected neurons,
and the method from [10].

SOM [10] SOMv1 SOMv2 SOMv3 SOMv4 SOMv5

winner neuron ν∗ ν∗n ν∗n ν∗n ν∗ ν∗

νf νl1 νl1 νl1

winners νl νl2 νr νl2 νl2 νr

νr

the found solutions. The removal methods of neurons νl and νf are determined on the lines
4 and 5 of Algorithm 2. These methods are replaced by the new proposed methods that
determine the neurons νr, νl1 , and νl2 to be removed. The neuron νr is the neuron of the ring
N which has the largest ratio of the distance (between the neuron and its associated location)
to the reward associated with the location:

νr = arg max
ν∈Nwin

|(ν, sν)|
ς(sν)

. (6.2)

The removal method for the neurons νl1 and νl2 is inspired by the determination of the neuron
νl of [10]. The neurons are determined together and represent two neurons which are associated
with the lowest rewards.

On the line 6 of Algorithm 2, the closest point of the ring to the location s is determined.
After the conditional adapt, ps is represented as the winner neuron ν∗. The new point p′s for
the location s is determined as the weighted closest point, i.e., the point with the minimal ratio
of the reward associated with s to the distance between s and the ring. After the conditional
adapt, the point p′s is represented by the newly proposed winner neuron ν∗n:

ν∗n = arg min
ν∈N

ς(sν)

|(νprev, s)|+ |(ν, s)| − |(ν, νnext)|
. (6.3)

The proposed removal methods of the selected neurons and the closest point is combined
with the original determination of the closest point from [10] to improve the found solutions.
The combinations are summarized in Table 6.1.

6.1.2 SOM-based Initialization of the VNS

The idea of this proposed modification is that the final solution from the SOM solver [10] is
used as the initial solution for the VNS solver [22]. The motivation for the combination of
the SOM-based approach with the combinatorial heuristic is to improve the found solutions
from the neural network. Moreover, we also aim to find out, if the VNS solver performs better
with a random initial solution or with the quality solution obtained by the SOM solver.

The VNS solver from [22] consists of four core methods: foundInitialSolution, shake,
localSearch, selectLocations, see Algorithm 3. The methods shake and localSearch

have been described and the VNS has been overviewed in Chapter 3. The foundInitialSolu-
tion method generates the first feasible solution to use as the initial solution for the solver.
The method is changed for the method getSomSolution to pass a solution generated by
the SOM-based solver, and use it as the initial solution for the solver. The method select-
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SOM solverLocations VNS solver VNS solution

SOM
solution

Figure 6.1: Data flow of the SOM-based initialization of the VNS.

Algorithm 3: The randomized VNS solver from [22], where L(Σ′′k) denotes the length
of the solution. The highlighted line is modified for the SOM solutions.

Input: S - the set of locations, Tmax - the travel limit
Output: Σk - the representation of the solution

1 P,Σk ← foundInitialSolution() ;
2 while termination condition is met do
3 P ′ ← shake(P );
4 P ′′ ← localSearch(P ′) ;

5 Σ
′′
k ← selectLocations(P ′′,Tmax) ;

6 if L(Σ′′k) ≤ Tmax then
7 P ← P ′ ;
8 Σk ← Σ′′k ;

9 end

10 end

Locations of Algorithm 3 iteratively determines the number of the selected locations to be
visited, while the length of the tour does not exceed the travel budget Tmax.

The data flow of the proposed modification is depicted in Fig. 6.1. First, a solution is
generated by the SOM-based solver. The solution is presented to the VNS solver as the initial
solution. The VNS solver then runs for the limited time tm and calculates the best solution.

The solution of the SOM-based solver needs to be discretized to be used by the VNS
[22]. Therefore a solution is represented by the label of the location s and coordinates of
the waypoint ps that represents the location s. the initial solution for the VNS solver is thus
created by placing k waypoints on the disk with the sensing radius δ centered at the location
s. The first placed waypoint is the waypoint from the SOM solution. Then k − 1 waypoints
are equally distributed on the disk. The VNS solver then runs for the limited time tm.
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CHAPTER 7
Results

The objective of this thesis is to compare and evaluate the neural network (NN) based solvers
for solving the Orienteering Problem (OP) and the Orienteering Problem with Neighbor-
hoods (OPN). The first solver is the Hopfield Neural Network (HNN) based solver proposed
by Wang et al. in [8] consisting of the complex energy function and robust data representa-
tion. The second NN-based solvers are based on the Self-Organizing Map (SOM) proposed
in [10] and here improved by two approaches. In the first modification, a determination of
the winner neuron and the removal methods are combined in five SOM variants. The second
proposed modification of [10] uses the SOM-based initialization in the combinatorial Variable
Neighborhood Search (VNS) heuristic.

The performance of all these solvers is compared with existing approaches for the OP
and the OPN. The proposed solvers and available existing methods (further marked by ∗) are
following.

HNN-OP is our implementation of the HNN based solver for the OP that was proposed by
Wang et. al in [8].

HNN-OPN is the extension of the HNN-OP solver for the sampled OPN.

NoNN is the solver of the OP based on the heuristics used in HNN-based approach [8].

SOMv1 is the SOM solver based on [10] for the OP and the OPN. It combines new winner
neuron selection ν∗n and new removal methods νl1 , νl2 , and νr.

SOMv2 is the SOM solver based on [10] for the OP and the OPN. It combines new winner
neuron selection ν∗n and new removal method νr.

SOMv3 is the SOM solver based on [10] for the OP and the OPN. It combines new winner
neuron selection ν∗n and new removal methods νl1 and νl2 .

SOMv4 is the SOM solver based on [10] for the OP and the OPN. It combines the original
winner neuron selection ν∗ and new removal methods νl1 and νl2 .

SOMv5 is the SOM solver based on [10] for the OP and the OPN. It combines the original
winner neuron selection ν∗ and new removal method νr.
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SOM-VNS is the modified randomized VNS solver from [22] for the OP and the sampled
OPN. The initial solution of the solver is the solution from the SOM solver [10].

VNS∗ is the OP solver of [22] using the randomized generation of the initial solution.

MILP∗ is the Mixed Integred Linear Programming solver for the OP.

GRASP∗ is the OP solver proposed in [16].

SOM1∗ is the SOM based solver for the OP and the OPN proposed by Faigl et. al in [21].

SOM2∗ is the SOM based solver for the OP and the OPN proposed in [10].

The solvers have been run on five datasets. Three datasets Tsiligirides Set 1, Tsiligiri-
des Set 2, and Tsiligirides Set 3 are provided by Tsiligirides from [4] and denoted as Set 1,
Set 2, Set 3, respectively. The Tsiligirides Sets consist of overall 49 problems with budgets in
the range from 5 to 110. The next two datasets, Chao diamoned-shaped Set and Chao squared-
shaped Set available from [23] were proposed by Chao et. al in [15] and are denoted as Set
64, Set 66, respectively. The Set 64 and Set 66 include 40 problems with budgets in the range
from 5 to 130. Overall, the solvers have been tested on 89 problems for the OP. And for
the OPN, all problems have been run with the varying sensing radius δ = {0.5, 1.0, 1.5, 2.0},
and the sampled OPN solvers have been run with the different numbers of the possible way-
points m = {4, 6, 8, 10, 12}. Overall, the solvers for the OPN have been tested on 1 780
instances.

All the solvers have been implemented in C++, compiled using gcc version 5.4.0. The prob-
lems have been run on Intel Core i5-5200U CPU with 2.2 GHz. The solvers are randomized
and have been run for 10-20 trials for each problem, the best reward R for given problem is
obtained among the performed trials. Alongside of the best rewards R, the average compu-
tational time t and Ravg are reported. For the evaluation of the results, a relative percentage
error (RPE), Eq. 7.1, and an average percentage error (ARPE), Eq. 7.2, have been used,
where Rref denotes the reference solution of the problem, which is the optimal solution for
the OP and in the case OPN, it is the best solution found among all the existing solvers
and the provided solutions.

RPE = 100 · Rref −R
Rref

[%] (7.1)

ARPE = 100 · Rref −Ravg

Rref
[%] (7.2)

The ARPE indicates the robustness of the algorithm. The RPE and ARPE denote the av-
erage values of RPE and ARPE for solved problems in the respective dataset, i.e. they are
aggregated quality indicators among all budgets per particular problem set. The statisti-
cal t-test has been performed for selected datasets with the null hypothesis that the mean
value of the solution of the problem obtained by the specific solver being the optimal (refer-
ence) solution of the problem. The results for individual evaluations are reported in following
sections.

7.1 Results for the Orienteering Problem

The results obtained by the OP solvers HNN-OP, SOMv1, SOMv2, SOMv3, SOMv4, SOMv5,
and SOM-VNS are evaluated in this section. The solvers have been initialized and run with
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following settings.

HNN-OP have been run with the number of iterations set to 2, the number of repetitions
set to 20 for 10 trials. The parameters of the solver have been set to a = b = 1, c = 20,
d = 10, g = 20, f = 15, ∆t = 0.001, and ∆ϑ = 2.

SOMvX denotes all versions of the SOMv1, SOMv2, SOMv3, SOMv4, and SOMv5. The solvers
have been run for 500 learning epochs and 20 trials.

SOM-VNS consists of the SOM initialization and the VNS solver. The SOM have been
run with number of learning epochs set to 500. The VNS solver have been run with
the maximal computational time of the VNS tm = 5s, the maximal number of iterations
is set to 30 000, and the maximal number of iterations when the solution is not improved
to 10 000. The number of trials is 10.

Table 7.1: Aggregated results for the Orienteering Problem.

Set
SOM2 [10] HNN-OP SOMv1 SOMv2 SOMv3 SOMv4 SOMv5 SOM-VNS

RPE ARPE RPE ARPE RPE ARPE RPE ARPE RPE ARPE RPE ARPE RPE ARPE RPE ARPE

Set 1 0.10 1.05 1.81 5.57 0.10 1.32 0.10 1.27 0.55 2.92 0.57 2.78 0.24 1.17 0.10 0.40

Set 2 0.92 1.10 1.53 3.20 0.92 1.61 0.92 1.52 0.92 1.91 1.22 2.05 0.92 1.55 0.92 1.12

Set 3 0.00 0.89 0.61 2.09 0.00 1.00 0.00 1.17 1.22 3.49 1.36 3.60 0.00 1.19 0.00 0.28

Set 64 1.62 4.37 1.46 3.62 1.33 3.54 1.23 3.43 5.68 9.91 6.07 9.63 1.30 3.38 0.57 1.72

Set 66 1.53 5.27 4.89 7.89 2.46 5.61 3.04 5.77 3.67 6.98 3.34 6.82 2.93 5.79 0.42 1.92
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(b) The SOM-VNS solver the OP.

Figure 7.1: The average sum of rewards with the standard deviations as error bars for the HNN-OP
[8], SOM2 [10], and the proposed SOM-VNS.

The HNN-OP implemented according to [8] is evaluated and the results depicted in Table
7.1 indicates that the HNN-based solver provides competitive solutions for the OP in the com-
parison of the SOM-based approach [10]. The HNN-OP has been compared with the NoNN
solver based solely on the heuristic methods used in [8] to evaluate the influence of the neural
network in the studied approach. The results reported in Table 7.2 and the overview presented
in Fig. 7.1a indicate that the neural network based on the Hopfield-Tank model is the core
part of the HNN-based solver to obtain the quality solutions because without it the NoNN
provides poor solutions.

From the overview reported in Table 7.1 it can be noticed that the HNN-based solver
provides overall better solutions for Set 64 than the half of the SOM-based solvers. The re-
sults in Table 7.1 also indicate that the modifications of the winner selection proposed to
improve the quality of the solutions by the SOM-based approach [10] have all the similar
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Table 7.2: Results for the problems of Chao diamond-shaped Set 64 for the Orienteering Problem.

Tmax
MILP GRASP [16] SOM2 [10] HNN-OP NoNN

R t [s] R t [s] R t [s] R t [s] R t [s]

15 96 1.86 96 0.01 96 0.01 96 2.36 96 0.25

20 294 1.15 294 0.05 294 0.03 294 3.11 156 0.93

25 390 6.90 390 0.06 384 0.03 390 4.53 252 2.40

30 474 1 147.50 468 0.06 462 0.04 468 6.53 348 4.24

35 576 3 111.59 576 0.08 570 0.05 576 9.11 492 7.77

40 714 33.94 714 0.09 696 0.05 696 15.72 564 12.00

45 816 67.98 816 0.09 804 0.06 798 21.01 636 16.81

50 900 81.63 900 0.11 870 0.06 882 27.55 702 27.74

55 984 49.44 984 0.17 960 0.07 972 36.34 810 38.38

60 1062 56.75 1062 0.12 1032 0.07 1032 50.52 912 48.59

65 1116 26.77 1116 0.11 1098 0.08 1110 65.23 1050 67.76

70 1188 119.94 1188 0.09 1164 0.08 1146 78.79 1098 85.27

75 1236 260.94 1236 0.09 1230 0.08 1206 104.12 1158 96.70

80 1284 338.63 1284 0.09 1272 0.08 1260 131.03 1212 115.67
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Figure 7.2: Average sum of rewards with standard deviations as the errors bars for the selected
problems for the Orienteering Problem.

performance in solution of Set 1, Set 2, and Set 3. The performance of the solvers shown
in Fig. 7.2 for the most demanding problems of Set 64 and Set 66 varies. The solvers
SOMv3 and SOMv4 performs poorly for these sets. On the other hand, the solvers SOMv1,
SOMv2, and SOMv5 performs better than the SOM2 [10]. Overall, the modified SOM-based
solvers SOMv1, SOMv2, SOMv3, SOMv4, and SOMv5 are competitive with the SOM2 [10]
and the examples of the found solutions for the selected problem can be found in Appendix
A.

The results reported in Table 7.1 imply that the best performing solver is the VNS solver
with the SOM-based initialization. The SOM-based initialization of the VNS solver has been
proposed to improve the found solutions for the OP and to determine whether the VNS solver
provides better solutions with the random initialization or with the feasible quality SOM
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Table 7.3: The evalution of the t-test for the selected problems and the selected solvers.

Problem MILP HNN-OP SOMv1 SOMv2 SOM-VNS

(Tmax) Rmax p-value R p-value R p-value R p-value R

Set 1 (46) 175 2.025e-04 165 1.707e-04 171 3.758e-07 171 3.434e-01 176

Set 2 (38) 360 8.538e-06 342 8.281e-02 359 1.608e-01 359 1.679e-01 358

Set 3 (45) 470 1.896e-03 457 2.793e-08 461 2.350e-09 489 1.093e-01 466

Set 64 (45) 816 1.043e-04 770 7.011e-11 784 2.930e-13 778 1.498e-04 797

Set 66 (45) 650 3.195e-08 598 5.52e-12 568 8.800e-13 562 5.887e-03 636

solution as the initial solution. The results depicted in Fig. 7.1b imply the latter option of
the initilization provides solution with the higher sums of the rewards.

The statistical one-sample t-test have been performed to evaluate the deviation of the se-
lected problems from the optimal solution of MILP. Have the optimal solution of the selected
problem with the budget Tmax denoted as Rmax, the set of rewards provided by the partic-
ular solver, and the statistical significance level α = 0.05. The null hypothesis is following.
The optimal value of the problem is the mean value of the set of rewards. The test can be
interpreted according to obtained p-value, if the p-value is larger than α it can be considered
that the mean value of the set is close to the optimal value and the null hypothesis is accepted,
otherwise the obtained rewards are statistically significantly different, i.e., the mean value of
the set is not close to the optimal value and the null hypothesis is not accepted. For example,
the selected problem for Set 2 with Tmax = 38 the optimal value is R = 360, the p-value
for the results provided by HNN-OP is 8.538e-06 and therefore the rewards are significantly
different from the optimal value, and the null hypothesis is disregarded. On the other hand,
the p-value of results provided by SOM-VNS is 0.1679 and therefore the null hypothesis is ac-
cepted and the rewards are close to the optima. The problems that accept the null hypothesis
and therefore the solvers perform close to the optimal solution are presented in Table 7.3.

The overall results of the proposed solvers are evaluated and presented in Table 7.1.
The proposed solvers are compared with the SOM based solver SOM2 [10]. The best results of
the solvers are highlighted in bold. Overall, the best performing solver is the VNS solver with
the SOM-based initialization and the examples of the found solutions provided by the solvers
for the selected problems are presented Appendix A.

7.2 Results for the Orienteering Problem with Neighborhoods

The results obtained for the OPN by solvers HNN-OPN, SOMv1, SOMv2, SOMv3, SOMv4,
SOMv5, and SOM-VNS are evaluated in this section. The solvers have been initialized and run
with following settings.

HNN-OPN have been run with the number of iterations set to 2, the number of repetitions
set to 10 for ten trials. The parameters of the solver have been set to a = b = 1, c = 20,
d = 10, g = 20, f = 15, ∆t = 0.0001, and ∆ϑ = 2. The sensing radius of the solver is
δ = {0.5, 1.0, 1.5, 2.0} and the number of possible waypoints per each location is set to
10.

SOMvX denotes all versions of the SOMv1, SOMv2, SOMv3, SOMv4, and SOMv5. The solvers
have been run for 500 learning epochs in 20 trials.
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SOM-VNS consists of the SOM initialization and the VNS solver. The SOM have been run
with the number of learning epochs set to 500. The VNS solver have been run with
the maximal computational time of the VNS tm = 5s, the maximal number of iterations
set to 30 000, and the maximal number of iterations without solution improvement set
to 10 000. The sensing radius of the solvers is δ = {0.5, 1.0, 1.5, 2.0} and the number of
possible waypoints per each location is set to 10. The number of trials is set to 10.

Table 7.4: Results for the selected problems of the Orienteering Problem with Neighborhoods

Problem
HNN-OPN SOMv1 SOMv2 SOMv3 SOMv4 SOMv5 SOM-VNS

R t [s] R t [s] R t [s] R t [s] R t [s] R t [s] R t [s]

Set 1 (δ = 0.5, Tmax = 46) 185 12.674 165 0.151 150 0.152 155 0.152 150 0.165 160 0.190 240 4.996

Set 1 (δ = 1, Tmax = 46) 205 16.924 185 0.181 185 0.170 200 0.171 210 0.171 190 0.178 285 4.994

Set 1 (δ = 1.5, Tmax = 46) 225 20.774 225 0.266 240 0.201 250 0.217 240 0.246 240 0.198 285 4.996

Set 1 (δ = 2, Tmax = 46) 235 23.618 275 0.196 275 0.185 275 0.059 275 0.051 275 0.191 285 4.989

Set 2 (δ = 0.5, Tmax = 38) 430 7.015 450 0.011 450 0.010 450 0.005 450 0.005 450 0.009 450 4.362

Set 2 (δ = 1, Tmax = 38) 430 39.695 450 0.003 450 0.004 450 0.005 450 0.004 450 0.004 450 3.738

Set 2 (δ = 1.5, Tmax = 38) 430 69.235 450 0.004 450 0.003 450 0.004 450 0.003 450 0.004 450 2.666

Set 2 (δ = 2, Tmax = 38) 430 100.070 450 0.004 450 0.004 450 0.004 450 0.003 450 0.003 450 1.817

Set 3 (δ = 0.5, Tmax = 50) 570 15.478 450 0.174 480 0.160 410 0.163 430 0.204 490 0.181 660 4.998

Set 3 (δ = 1, Tmax = 50) 600 18.994 540 0.201 540 0.179 550 0.199 520 0.207 580 0.186 750 4.984

Set 3 (δ = 1.5, Tmax = 50) 620 23.006 580 0.219 590 0.219 620 0.212 620 0.217 580 0.190 790 4.993

Set 3 (δ = 2, Tmax = 50) 650 25.536 640 0.211 660 0.204 680 0.216 700 0.208 670 0.206 800 5.002

Set 64 (δ = 0.5, Tmax = 45) 1020 200.904 1014 0.562 1068 0.583 900 0.569 900 0.562 1038 0.565 1326 5.010

Set 64 (δ = 1, Tmax = 45) 1266 277.860 1308 0.639 1320 0.593 1344 0.360 1344 0.373 1308 0.601 1344 5.012

Set 64 (δ = 1.5, Tmax = 45) 1260 346.660 1344 0.029 1344 0.031 1344 0.029 1344 0.039 1344 0.026 1344 5.013

Set 64 (δ = 2, Tmax = 45) 1308 384.104 1344 0.025 1344 0.027 1344 0.025 1344 0.024 1344 0.025 1344 5.011

Set 66 (δ = 0.5, Tmax = 60) 995 197.827 715 0.490 740 0.530 705 0.509 740 0.467 745 0.533 1420 5.011

Set 66 (δ = 1, Tmax = 60) 1290 249.464 1415 0.581 1390 0.599 1415 0.615 1425 0.557 1400 0.547 1680 5.013

Set 66 (δ = 1.5, Tmax = 60) 1385 287.172 1605 0.708 1605 0.797 1650 0.676 1650 0.681 1605 0.619 1680 5.017

Set 66 (δ = 2, Tmax = 60) 1470 344.874 1680 0.016 1680 0.016 1680 0.019 1680 0.016 1680 0.016 1680 5.007

The performance overview of the proposed solvers for the OPN with δ = 1 is reported in
Fig 7.3.

The results depicted in Table 7.4 indicates that the HNN-based solver for the solution of
the OPN is competitive with the SOM-based approaches, however the SOM-based approaches
are capable of finding the optimal solution value of the problem with the δ > 0 in tens of
miliseconds, but for the problems with the lower budgets the HNN-OPN performs better than
the SOM-based approaches SOMv3, SOMv4, SOMv5.

The SOM-based approaches SOMv1, SOMv2, SOMv3, SOMv4, SOMv5 modifying the win-
ner selection are competitive with the existing approaches [21] and [10], see overview for
the selected problems with δ > 0 in Fig. 7.4. The flexible δ > 0 gives the solver benefit to
improve the quality of the solution and achive the optimal values for the smaller budgets.
The solvers provide almost optimal solutions for δ = 2 and for δ = 1.5, the obtained solutions
are slightly worse than the SOM approach [21].

The results of the VNS solver with the SOM-based initialization for the selected problems
with δ = {0.5, 1.0, 1.5, 2.0} are reported in Table 7.4. The SOM-VNS outperforms the other
proposed solvers with the number of possible waypoint samples per each location set to 10.
The computational time of the SOM-VNS is set to 5 seconds, the generation of the SOM
initialization is in miliseconds, which is negligible and it is not included in the reported
results.
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Figure 7.3: Average sum of rewards with standard deviations as the errors bars for the selected
problems for the Orienteering Problem with Neighborhoods. The number of waypoints for the location
of the samples solvers HNN-OPN and SOM-VNS is set to 10.
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Figure 7.4: Average sum of rewards with standard deviations as the errors bars for the selected
problems for the Orienteering Problem with Neighborhoods. The number of sampled waypoints per
each sensing location in HNN-OPN and SOM-VNS is set to 10.
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The overall results in Fig. 7.3 are indicating that the SOM-VNS solver is the best per-
forming solver for the OPN regadless the sensing radius. The proposed HNN-based solver of
the HNN for the OPN [8] is competitive but in comparison with the SOM solvers based on
[10] the HNN-OPN is computationally more demanding. The examples of the found solutions
provided by selected solvers for the selected problems are presented in Appendix A.
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CHAPTER 8
Conclusion

In this thesis, we focus on neural network (NN) approaches in the solution of the Orien-
teering Problem (OP) and their extension to the Orienteering Problem with Neighborhoods
(OPN), specifically using the Hopfield Neural Network (HNN) proposed by Wang et al. in
[8] and the Self-Organizing Map (SOM) originally proposed by Best et al. in [9]. The con-
tribution of the thesis can be found in modifications of the approaches based on [8] and [10]
that have been proposed to address the OPN and to improve the performance of the NN in
the solving of the OP and the OPN.

The first proposed modification based on the HNN approach extends the OP solution to
the OPN. First, the HNN-based solver for the OP has been implemented according to [8].
Based on the evaluation results, the HNN-based solver for the OP provides competitive results
to the existing SOM-based approaches, and it is shown that the utilized heuristics in HNN
cannot provide quality solutions without the Hopfield-Tank model.

The HNN-based solver has been further extended to fit the OPN. The challenge of ap-
plying the discrete Hopfield-Tank model to the continuous neighborhood has been overcome,
and the HNN-based solver for the OPN provides competitive solutions for the OPN problems,
however, it is computationally demanding.

The second modification is directly built on the SOM-based approach [10]. Even though
the SOM-based solver [10] addresses the OPN, the solution can suffer from the stucking in
the local optima, therefore new removal methods and the winner neuron determination has
been proposed. The proposed selections are combined with the original methods of [10] to
provide the most rewarding solutions. The reported results indicate that the OP addressed
by the modified solver outperforms the SOM-based solver [10] for the problems of Set 64.
The new proposed SOM-based solver provides competitive solutions for the OPN.

The last modification combines the SOM-based approach [10] and the Variable Neigh-
borhood Search (VNS) [22] to improve the quality of the SOM-based solutions and deter-
mine whether the VNS solver performs better with the randomly generated initial solution
or the SOM-based initial solution. The presented results indicate the latter option is bet-
ter for the VNS performance. The VNS with the SOM-based initialization proves to be
the best performing solver for the OP and the OPN; it outperforms both the HNN-based
solver and SOM-based solver. The only drawback of the SOM-based VNS is the required
computational time which is significantly higher than for the pure SOM-based approaches.
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Overall, the proposed modifications of the NN approaches based on the HNN [8] and the SOM
[10] are competitive. Amongst the proposed solvers, the worst performing is the HNN-based
solver, however, the initial doubts about the quality of the solution and the time of the so-
lution have been denied. The best performing solver is the VNS [22] with the SOM-based
initialization [10].

For the future work, the determination of winner neurons and the selected neurons for
removal of the SOM [10] can be further improved to determine neurons with even more sig-
nificance to the conditional adaptation, and thus make a tighter connection between the prin-
ciples of the unsupervised learning and the combinatorial heuristics. The HNN approach can
be further studied to optimize the computational time for the OP and the OPN solutions.
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APPENDIX A
Galllery of the Solutions of the OP
and the OPN

(a) Set 1, Tmax = 46,
Rbest = 175

(b) Set 2, Tmax = 38,
Rbest = 360

(c) Set 3, Tmax = 45,
Rbest = 470

(d) Set 64, Tmax = 45,
Rbest = 798

(e) Set 66, Tmax = 45,
Rbest = 615

Figure A.1: The best solutions of the selected problems obtained by the HNN-OP.

(a) Set 1, Tmax = 46,
Rbest = 175

(b) Set 2, Tmax = 38,
Rbest = 360

(c) Set 3, Tmax = 45,
Rbest = 470

(d) Set 64, Tmax = 45,
Rbest = 804

(e) Set 66, Tmax = 45,
Rbest = 615

Figure A.2: The best solutions of the selected problems obtained by the SOMv1.
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Appendix A. Galllery of the Solutions of the OP and the OPN

(a) Set 1, Tmax = 46,
Rbest = 175

(b) Set 2, Tmax = 38,
Rbest = 360

(c) Set 3, Tmax = 45,
Rbest = 470

(d) Set 64, Tmax = 45,
Rbest = 804

(e) Set 66, Tmax = 45,
Rbest = 620

Figure A.3: The best solutions of the selected problems obtained by the SOMv2.

(a) Set 1, Tmax = 46,
Rbest = 175

(b) Set 2, Tmax = 38,
Rbest = 360

(c) Set 3, Tmax = 45,
Rbest = 460

(d) Set 64, Tmax = 45,
Rbest = 726

(e) Set 66, Tmax = 45,
Rbest = 610

Figure A.4: The best solutions of the selected problems obtained by the SOMv3.

(a) Set 1, Tmax = 46,
Rbest = 175

(b) Set 2, Tmax = 38,
Rbest = 360

(c) Set 3, Tmax = 45,
Rbest = 460

(d) Set 64, Tmax = 45,
Rbest = 738

(e) Set 66, Tmax = 45,
Rbest = 635

Figure A.5: The best solutions of the selected problems obtained by the SOMv4.
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Appendix A. Galllery of the Solutions of the OP and the OPN

(a) Set 1, Tmax = 46,
Rbest = 175

(b) Set 2, Tmax = 38,
Rbest = 360

(c) Set 3, Tmax = 45,
Rbest = 470

(d) Set 64, Tmax = 45,
Rbest = 792

(e) Set 66, Tmax = 45,
Rbest = 600

Figure A.6: The best solutions of the selected problems obtained by the SOMv5.

(a) Set 1, Tmax = 46,
Rbest = 175

(b) Set 2, Tmax = 38,
Rbest = 360

(c) Set 3, Tmax = 45,
Rbest = 470

(d) Set 64, Tmax = 45,
Rbest = 810

(e) Set 66, Tmax = 45,
Rbest = 650

Figure A.7: The best solutions of the selected problems obtained by the SOM-VNS.

(a) Set 1, Tmax = 46,
Rbest = 215

(b) Set 2, Tmax = 38,
Rbest = 430

(c) Set 3, Tmax = 50,
Rbest = 620

(d) Set 64, Tmax = 45,
Rbest = 1200

(e) Set 66, Tmax = 60,
Rbest = 1000

Figure A.8: The best solutions of the selected problems of the OPN obtained by the HNN-OPN.
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Appendix A. Galllery of the Solutions of the OP and the OPN

(a) Set 1, Tmax = 46,
Rbest = 225

(b) Set 2, Tmax = 38,
Rbest = 450

(c) Set 3, Tmax = 50,
Rbest = 580

(d) Set 64, Tmax = 45,
Rbest = 1308

(e) Set 66, Tmax = 60,
Rbest = 715

Figure A.9: The best solutions of the selected problems of the OPN obtained by the SOMv1.

(a) Set 1, Tmax = 46,
Rbest = 240

(b) Set 2, Tmax = 38,
Rbest = 450

(c) Set 3, Tmax = 50,
Rbest = 590

(d) Set 64, Tmax = 45,
Rbest = 1320

(e) Set 66, Tmax = 60,
Rbest = 740

Figure A.10: The best solutions of the selected problems of the OPN obtained by the SOMv2.

(a) Set 1, Tmax = 46,
Rbest = 250

(b) Set 2, Tmax = 38,
Rbest = 450

(c) Set 3, Tmax = 50,
Rbest = 620

(d) Set 64, Tmax = 45,
Rbest = 1344

(e) Set 66, Tmax = 60,
Rbest = 705

Figure A.11: The best solutions of the selected problems of the OPN obtained by the SOMv3.
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Appendix A. Galllery of the Solutions of the OP and the OPN

(a) Set 1, Tmax = 46,
Rbest = 240

(b) Set 2, Tmax = 38,
Rbest = 450

(c) Set 3, Tmax = 50,
Rbest = 620

(d) Set 64, Tmax = 45,
Rbest = 1344

(e) Set 66, Tmax = 60,
Rbest = 740

Figure A.12: The best solutions of the selected problems of the OPN obtained by the SOMv4.

(a) Set 1, Tmax = 46,
Rbest = 175

(b) Set 2, Tmax = 38,
Rbest = 360

(c) Set 3, Tmax = 50,
Rbest = 470

(d) Set 64, Tmax = 45,
Rbest = 810

(e) Set 66, Tmax = 60,
Rbest = 650

Figure A.13: The best solutions of the selected problems of the OPN obtained by the SOMv5.
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APPENDIX B
Content of the enclosed CD

CD

README.md

thesis-bp

hnn-op

hnn-op-implementation

hnn-op-documentation

hnn-opn

hnn-opn-implementation

hnn-opn-documentation

gallery

scripts

Figure B.1: The content of the enclosed CD.
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