

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Bachelor’s Project

Forecasting in Finance

Eykhmann Victoria

Supervisor: Ing. Miroslav Burša, PhD

Study Programme: Open Informatics

Field of Study: Software Systems

May 24, 2018

iv

v

Aknowledgements
I would like to thank Ing. Miroslav Burša, Ph.D. for guidance and regular consultations
during writing this work. Also I would like to thank Michal Bouška for his helping.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 25, 2018 .

viii

Abstract

The aim of this thesis was to design and develop a web application for data specialist to
import data from database, check the suitability of a dataset for classification and to generate
a valid classifier that can be further used to classify incoming data. We have used real data
from manufacturing companies (manufacture orders).
The application is implemented using Java EE and Spring framework and is designed to be
run online. It is able to visualize data (to verify the data), train multiple classifiers on the
whole dataset (or a subset). The best (selected) classifier can be exported and handed to
the production team.
The application has been tested on three real datasets and was developed under a supervision
of a commercial company that develops ERP systems.

Abstrakt

Cílem této práce bylo navrhnout a vyvinout webovou aplikaci pro datového specialistu, která
umožňuje import dat z databáze, kontrolu validity datové sady pro klasifikaci a vytvoření
(naučení) klasifikátoru, který lze dále použít pro klasifikaci nově příchozích dat. Využili jsme
skutečné údaje z výrobních firem (příkazy k výrobě).
Aplikace je implementována pomocí Java EE a frameworku Spring. Aplikace je navržena tak,
aby mohla být provozována online. Aplikace umožňuje vizualizovat data (verifikace datové
sady), trénovat více klasifikátorů na celé datové sadě (nebo na podmnožině). Nejvhodnější
(vybraný) klasifikátor lze exportovat a předat k použití v produkčním prostředí.
Aplikace byla testována na třech reálných datových sadách a byla vyvíjena pod dohledem
společnosti, která vyvíjí ERP systémy (a která poskytla reálná data).

ix

x

Contents

1 Introduction 1
1.1 Financial forecast . 1
1.2 Problem statement . 1

2 Analysis 3
2.1 Data specialist’s workflow . 3
2.2 Requirements . 6

2.2.1 Functional requirements . 6
2.2.2 Non functional requirements . 7

3 Technology 9
3.1 Software development . 9
3.2 Technology review . 10

3.2.1 Server-side technology . 10
3.2.2 Client-side technology . 12

3.3 Architecture . 13

4 Design & Implementation 17
4.1 GUI Design . 17
4.2 Design . 19
4.3 Components . 22

5 Testing 31
5.1 Use cases . 31
5.2 Code analysis . 32
5.3 Unit tests . 32
5.4 Cross browser testing . 32
5.5 Conclusion . 34

6 Conclusion 35
6.1 Further work . 36

A User Guide 39
A.1 Requirements: . 39
A.2 Running . 40

xi

xii CONTENTS

B Table of parameters 41

C Sprints 45

D List of abbreviations 47

E Content of CD 49

List of Figures

2.1 Process for data specialist . 4

3.1 Waterfall method . 9
3.2 Sprint . 10
3.3 Top 15 development languages, ranked by IEEE Spectrum in 2017[5] 11
3.4 Comparison between JavaScript chart libraries 13
3.5 Client Server . 13
3.6 Model–view–presenter and Model-View-Presenter 14
3.7 Java Python communication . 15

4.1 Graph . 18
4.2 Time Series . 18
4.3 Train classifier . 19
4.4 Use classifier . 19
4.5 Class diagram . 20
4.6 Use cases related to statistical graphs include importing data, selecting pa-

rameter for coloring data, displaying four types of graphs, toggling between
linear/logarithmic scales and selecting dataset 21

4.7 Use cases for viewing one or several products on the time series graph and
selecting timespan for graph . 22

4.8 Use cases related to classifier include training one or several classifiers, dis-
playing their accuracy, testing and export of a selected classifier 22

4.9 Upload new dataset for statistical graphs . 23
4.10 Coloring by selected parameter . 23
4.11 X logarithmic . 23
4.12 Y logarithmic . 23
4.13 Scatter plot with linear scales . 24
4.14 Scatter plot with logarithmic scales . 24
4.15 Histogram shows distribution of command price. Logarithmic y axis was used. 25
4.16 Boxplots . 25
4.17 List for x axis . 26
4.18 Choosing dataset element . 26
4.19 Time series for a single product . 26
4.20 Several products in one graph . 27
4.21 Timespan selection in time series graph component 27

xiii

xiv LIST OF FIGURES

4.22 Form for training classifier . 28
4.23 List of trained classifiers . 28
4.24 Classifier results . 29
4.25 Classifiers results . 29
4.26 Use classifier page . 30
4.27 Download classifier . 30

5.1 Rendered main page of application in Chrome browser 32
5.2 Rendered main page of application in Edge 33
5.3 Rendered main page of application in Firefox browser 33
5.4 Rendered main page of application in Internet explorer browser 34
5.5 Rendered main page of application in Opera browser 34

List of Tables

5.1 Functional requirements implementation . 31

B.1 Human readable names . 41
B.2 Description in EN . 42

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Financial forecast

The purpose of the financial forecast is to evaluate current and future fiscal conditions to
guide programmatic decisions. A financial forecast is a fiscal management tool that presents
estimated information based on past, current, and projected financial conditions. This will
help identify future revenue and expenditure trends that may have an immediate or long-
term influence on government policies, strategic goals, or community services. An effective
forecast allows for improved decision-making in maintaining fiscal discipline and delivering
essential community services.[1]

1.2 Problem statement

A big problem of manufacturing companies is fixed financial means in warehouses, in ma-
terials, and in semi-products; which are lying unused for a prolonged period of time and
represent a significant fixation of financial means.

The main goal of this project is to create a robust tool that can be used by data specialists,
to evaluate the current situation in stock and make decisions about adding semi-products
to the manufacturing chain. Having such an application would tremendously simplify the
process of further decision making.

Production planner, which makes decision about what and when products will be pro-
duced, decides this based on:

• leadership priority (priority customer, new opportunities)

• current orders (waiting, in process)

• available resources (worker, machine, material)

• estimated needs (warehouse status)

• own experiences

1

2 CHAPTER 1. INTRODUCTION

The planner primarily focuses on production and operation, not on warehouse status.
This can lead to long-term fixation of the funds in the warehouse and inefficient use of
storage capacities.

The goal of the joint project Asseco and CVUT was to provide an executive employee a
simplified financial view of the future status of the warehouse. It attempts to develop a De-
cision Support System that will notify production planners, given a high enough probability,
if the semi-finished products will remain in the warehouse for a long time.

We focused on individual production orders. For the semi-finished product we already
have historical information on how much money (and how long) it was in the warehouse before
and after the end of the production order. Therefore, we can estimate similar parameters
for new production orders. If we keep track of the expensive and long-lying semi-finished
products, we can assign them a numerical value, which will rate the production order. We
called this value a penalty, and it represents the value of a semi-product in a warehouse
accumulated over time.

The next decision was to separate products into different classes according to their
penalty. Products were divided into three classes: with high, low, and medium penalty.
Categories are introduced so that there are always the same amount of manufacture orders
in each class. A simple semaphore like UI element was created, that colorizes production
order with low penalty in green color, products with high penalty in red, and others in
yellow.

Chapter 2

Analysis

Following python scripts are available:

• sql_connect.py. Connects to database and downloads raw data.

• prepare_data.py. Adds statistical data.

• generate_classifier_description.py. Generates parameters for classifier.

• own_classifier.py. Trains classifier with parameters that gets from previous script.

2.1 Data specialist’s workflow

This section describes the expected data specialist’s workflow, which is shown in figure 2.1.
At the beginning only data from database are available. At the end, a trained and tested
classifier can be exported and transferred to IT developers that will use the classifier to
evaluate production orders.

3

4 CHAPTER 2. ANALYSIS

Figure 2.1: Process for data specialist

The first step is to export selected dataset from Helios Orange Database. In this step,
it is necessary to download the data from the database to the disk, to CSV file type. For
downloading data to the dataset use python script sql_connect.py This script generates
following files:

• manufacture_command.csv

This file contains raw data from Helios database.

• material.csv

This file represents the tree of dependencies of semi-finished products on materials.

• slozitost.csv

File contains TAC for materials. TAC is time required to perform an operation on one
piece of product is minutes.

2.1. DATA SPECIALIST’S WORKFLOW 5

• stock_load.csv

This file contains information about movements of the semi-finished products in the
warehouse

• stock_price.csv

The price of semi-product.

The next step is adding statistical/cumulative data. For this purpose prepare_data.py
script was created. This script expects files from previous step and creates new ones:

• days.txt

This file contains a list of days from Helios database. For example, the day in which
the new manufacture command was started.

• manufacture_command_ex.csv

File manufacture_command_ex.csv extends the previous file. Except for columns
named as parameters in database, it contains additional calculated columns with sta-
tistical information. Rows mean different production orders. List of necessary column
names and their description you can find in Appendix B.

• data_cont.csv

This file has information about the amount of products in the warehouse. The first
row represents dates in Unix time stamp. The first column means ids of materials.
Cells shows count of material in a particular day.

The specialist will check on the graphs dependency between different parameters, and
will verify distribution of numerical data. The next step is to divide the suitable dataset
into two parts, the training dataset and testing dataset. The first part will be used to train
classifiers, which will be tested on the second part.

If we go into details, the step of training a classifier is separated into two parts. First,
you need to generate parameters for a classifier. For example, four parameters are neces-
sary: company, start_years_train(=start train years), end_years_train(=end train years),
start_years_test(=start test years), end_years_test(=end test years). Other parameters
are optional. Script experiments/generate_classifier_description.py takes parameters from
the specialist and sets other by default. Then script puts these parameters into specific
structure in JSON format. This structure is sent to own_classifier.py script, that trains
classifier.

The specialist will compare different classifiers and will select the one with best perfor-
mance using the testing data. Then he verifies that the classifier works as expected. The
final step is to extract and export the classifier.

This project is based on Michal’s Bouška work. He created python scripts for working
with database, and for training and using classifiers. My work was to simplify the process by
providing graphical interfaces such as statistical and time series graph. This application will
allow person without deep knowledge of training classifier methods to test and use them.

6 CHAPTER 2. ANALYSIS

2.2 Requirements

This chapter defines functional and non functional requirements for the application. A
functional requirement describes what a software application should do, while non-functional
requirements place constraints on how the application will do so. Almost all requirements I
got during the first weeks from Asseco.

2.2.1 Functional requirements

This section is separated into three parts. The first part covers requirements about statistical
graphs, the second one contains requirements about time series graph, the last one includes
requirements about classifiers.

Statistical graphs

1. Import data
User will be able to upload dataset with .CSV file extension and valid structure. All
parameters should be read, but display only necessary ones. The parameters must be
human-readable.

2. Colorize products by parameter
User is able to choose parameter for coloring the graph items (such as penalty). Ap-
plication will re-colorize products taking into account selected parameter. Parameters
should be colored by 1/3 principle. That means, that dataset should be sorted and
divided into three parts by values. The first third will be colored in green, the second
in yellow, the third in red.

3. View dependency graph (Scatter plot)
This graph shows dependency of one parameter on another. Each dot on graph
represents an individual product.

• Log/Linear scales
User can switch between linear and logarithmic scales for both x and y axes.

4. View histograms
Application should display two histograms for both x and y parameters.

• Log/Linear scales
User can switch between linear and logarithmic scales.

5. View boxplots
The box plot (a.k.a. box and whisker diagram) is a standardized way of displaying
the distribution of data based on the five number summary: minimum, first quartile,
median, third quartile, and maximum. Application should display both boxplots for x
and y parameters[2].

• Log/Linear scales
User can switch between linear and logarithmic scales.

2.2. REQUIREMENTS 7

6. Changing x-y axes
User will be able to choose parameter for x axes and for y axes on scatter graph.

7. Changing dataset
User will be able to choose dataset

Time Series graph

8. View time series graph
Graph should display quantity of material in a stock via line charts.

9. One graph includes several products
User will be able to display two or more materials in a one graph.

10. Choose timespan for time series graph

Classifiers

11. Train classifier
User will be able to train classifier by filling the form.

12. Train different classifiers
User will be able to train different types of classifiers.

13. Show accuracy of classifiers
User is able to see results of selected classifier.

14. Compare different classifiers accuracy in the same graph
Selected classifiers results should be displayed on graph in which x values represent
particular classifiers, and y axes displays accuracy from zero to one.

15. Test classifier
There will be two ways to test the classifier. The first is by using already prepared
test dataset, the second is by typing parameters manually via web form.

16. Export classifier
User will be able to download selected classifier for further usage.

2.2.2 Non functional requirements

1. The classifier training can be time consuming which means that the application should
use an asynchronous approach.

2. Availability
All modern browsers:

• Chrome 65
• Edge 16
• Firefox 59
• Internet explorer 11
• Opera 50

8 CHAPTER 2. ANALYSIS

Chapter 3

Technology

3.1 Software development

For developing this application a waterfall approach was chosen with some elements of agile
approach, such as Scrum.
The waterfall method is a relatively linear sequential design approach in software develop-
ment. Progress flows largely in one direction through the phases of requirement analysis,
system design, implementation, testing, deployment, and maintenance.
In the waterfall model, each phase must be completed before the next phase can begin and
there is no overlapping in the phases.
The Waterfall method can be seen in figure 3.1.

Figure 3.1: Waterfall method

For this project I chose to follow this approach because I have already had main require-
ments and there won’t be unexpected changes during development.
From the agile software development method I get a useful tool named sprint (figure 3.2).
A sprint or iteration is the basic unit of development in Scrum. The spring is a timeboxed

9

10 CHAPTER 3. TECHNOLOGY

effort, that is, it is restricted to a specific duration. Often sprints are limited to one calendar
month. My sprints duration was one week. Each sprint starts with planning event that aims
to identify the work for the sprint and make an estimated forecast for the sprint goal. Each
sprint ends with a sprint review. List of all sprints see in Appendix C.

Figure 3.2: Sprint

3.2 Technology review

Description of technology is separated to two chapters. Technology on server side and tech-
nology on client side. All used technology is Open Source. This means that the programmer
need not pay to use them.

3.2.1 Server-side technology

Language
There are many languages for writing web application, but there is no best language for web
applications, because each language is unique and has its own advantages and disadvantages.

• Java is an object-oriented programming language. The key benefit of Java is "Write
once, run anywhere" (WORA). That means, compiled Java code expected to run on
any Java virtual machine (JVM) regardless of computer architecture[3].

• Python is an object-oriented programming language. It supports multiple program-
ming paradigms including procedural, functional and imperative. Python has a design
philosophy that emphasizes code readability, notably using significant whitespace[4].

To decide what programming language to work in, I look to the IEEE Spectrum Ranking
for help; it ranks the popularity of programming languages. Rankings are created by weighing
and combining 12 metrics from 10 sources[5]. It takes into consideration Google search,
Google trends, Stack Overflow questions, GitHub tags, Hacker News and others. The top
15 languages are shown in figure 3.3.

To choose the best programming language suitable for me I take into account my own
experience. During my studies in University, I used Java. Considering that Java was ranked
as one of the best languages for web development, the application will be written in Java.

Spring
Spring is a popular application framework for the Java platform. The main reason behind
the creation of Spring Framework is to make web development easier and faster. Framework

3.2. TECHNOLOGY REVIEW 11

Figure 3.3: Top 15 development languages, ranked by IEEE Spectrum in 2017[5]

is separated to several modules that provide a range of services such as Spring Core Con-
tainer, aspect-oriented programming (AOP), authentication, model-view-controller (MVC)
and others[6]. The key feature of Spring Core is the Dependency Injection (DI), concrete
example of Inversion of Control (IoC). Dependency Injection is a technique that eliminates
dependency between components, helps reuse classes and tests these classes separately.

Maven
Maven is tool for building and managing Java-based projects. All configurations are located
in the POM file that contains information about the project and configuration details used
by Maven to build the project[7]. Maven dynamically downloads libraries from central
repository.

Vaadin
Vaadin Framework is a Java UI framework that simplifies web app development. Code is
written in Java and executed on the server’s JVM, while the UI is rendered as HTML5 in
the browser. The framework also automates all the communication between the browser and
the server.

Lombok
Project Lombok is also licensed under the MIT license. Lombok is java library that writes
all getters/setters, constructor and other features for you.

@Data
public class User implements Serializable {

private String firstName;

12 CHAPTER 3. TECHNOLOGY

private String lastName;
private int age;

public User(String firstName, String lastName, int age) {
this.firstName = firstName;
this.lastName = lastName;
this.age = age;

}

}

In this simple example annotation @Data will generate getters and setter for all variables:
firstName, lastName, age.

3.2.2 Client-side technology

HTML 5
Hypertext Markup Language (HTML) is the standard markup language for creating web
pages and web applications[8]. It describes the structure of Web pages by providing tagged
elements, building blocks of HTML page.

CSS
Cascading Style Sheets is a language used to style and lay out web pages. For example, CSS
used to alter the font, text size, background color and other decorative features.

JavaScript
JavaScript is a high-level, interpreted programming language. It is used to make dynamic
webpages interactive, for example providing 2D/3D graphics, which is useful for my appli-
cation.

JavaScript library for plotting statistical graphs
A lot of JavaScript graphics libraries aid in the development and display of graphic elements
like particles, motion, animation, plotting[9]. At the beginning of the development I used
Chart.js library. It offers basic chart types, like line charts, histograms and time series.
However I was required to create more complex charts with additional functionality.

Upon brief research, I found a better library that suits my needs. Plotly.js offers a lot
of features, any chart can be zoomed in, zoomed out, auto-scaled, it offers more charts, like
box plots, that I have to implement in my application.

Adil Baaj has done research about JavaScript Chart Libraries[10]. He reviewed the pres-
ence of 7 types of visualizations:
Basic: line, bar, column, scatter plot, bubble, donut / pie, and area charts
Scientific: contour plot, heat map, ternary plot, polar graph, carpet plot, and parallel co-
ordinates plot
Financial: time series, candlesticks
Statistical: error bars, box plots, 2D density plots, tree map
3D: point cloud, line, ribbon, surface, and mesh plots
Map: choropleth maps, scatter plot on maps, bubble maps, line on maps

3.3. ARCHITECTURE 13

Figure 3.4: Comparison between JavaScript chart libraries

JavaScript Object Notation (JSON)
To serialize and deserialize graphs, I use JSON format. Reading JSON file is much faster
then CSV file.

3.3 Architecture

In this section I describe the architecture of my application. Software application architecture
is the process of defining a structured solution that meets all of the technical and operational
requirements, while optimizing common quality attributes such as performance, security, and
manageability [11].

Client-server
The client–server model is a distributed application structure that partitions tasks or work-
loads between the providers of a resource or service, called servers, and those who demand
the service, called clients[12].

Figure 3.5: Client Server

Thick vs Thin Client
A thin client machine is going to communicate with a central processing server, meaning
there is little hardware and software installed on the user’s machine. Other words, thin
client is a way of saying that all UI logic runs in a web server and the only communication
is when the web browser requests a new full HTML page to show.
In contrast, a thick client will provide users with more features, graphics and choices making

14 CHAPTER 3. TECHNOLOGY

the applications more customizable [13]. Thick client can be a JavaScript application running
in a web browser, for example. The UI logic is running in the client.
In my application, I use JavaScript library Plotly.js, that enables one to play with graphs
and there is thus no necessity to send any request to the server. Vaadin framework combines
the strengths of each model.

Model–view–presenter
Model–view–presenter (MVP) is a derivation of the model–view–controller (MVC) architec-
tural pattern, and is used mostly for building user interfaces. Model–view–presenter divides
an application into three interconnected parts. Model is responsible for managing the data
of the application. The view means presentation of the model in a particular form. The
presenter responds to the user input and performs interaction on the data model objects.
One big difference about MVC from MVP is that the View does not directly bind to the
Model. Figure 3.6 shows differences between MVP and MVC.

Figure 3.6: Model–view–presenter and Model-View-Presenter

Spring DI
Inversion of Control is a principle in software engineering by which the control of objects or
portions of a program is transferred to a container or framework. Dependency injection (DI)
is a pattern through which to implement IoC, where the control being inverted is the setting
of object’s dependencies.

Spring Web
I use spring web for REST API.

Java Python communication
Follow figure 3.7 shows how Java communicates with Python scripts. Java calls Python
scripts via command line, so three pipes are opened: OutputStream in which Java writes,
InputStream and ErrorStream from which Java reads.

3.3. ARCHITECTURE 15

Figure 3.7: Java Python communication

16 CHAPTER 3. TECHNOLOGY

Chapter 4

Design & Implementation

4.1 GUI Design

This section shows a mock-up design of the application. The application contains three
pages: "Graph", "Train classifier", and "Use classifier". Description of each tab clarified
below. All tabs have a navigation bar on top, that allows navigation between pages.

1. Graph page
This page contains two tabs, for statistical graphs and for time series graph. By default,
the statistical graph tab is displayed. The page has a select element for choosing a
dataset and an "Add" button for adding a new dataset. These two elements meet the
requirements 1 and 7.

• Figure 4.1 displays the first page "Graph" in which the Graph tab is opened. The
tab contains two lists for selecting x and y parameters for axes (see requirement
6). Two checkboxes for each axis are placed to the right from each list and serve
to toggle between linear/logarithmic scales. Four graphs situated in this tab are:
Scatter plot (requirement 3), two Histograms for x and y parameters (requirement
4) and a Boxplot (requirement 5). The select element for choosing the parameter
for coloring the graph items is placed above two lists (requirement 2).

17

18 CHAPTER 4. DESIGN & IMPLEMENTATION

Figure 4.1: Graph

• Figure 4.2 displays the second tab "Time" for time series graph. In this tab, two
elements are present: a list for selecting id of products and a time series graph
(requirement 10). The list enables one to select several products and then a graph
is able to display them (requirement 9).

Figure 4.2: Time Series

2. Train one classifier (or all classifiers) page
This page is responsible for training classifiers (see figure 4.3). Page contains form
that includes parameters for training classifiers and a button "Train" (requirement
11). After clicking that button, using the data from the submitted form, a dataset for
training and testing is constructed and a classifier is trained. Button "Train all" will
train all classifiers in the list (satisfies requirement 12). Trained classifiers will appear
in the list right of the form. The "Show" button is responsible for displaying accuracies
of selected classifiers on the graph (requirements 13, 14). By selecting a classifier or
clicking on a classifier on the graph, a link appears under the graph that enables you
to download the classifier (requirement 16).

4.2. DESIGN 19

Figure 4.3: Train classifier

3. Use selected classifier page
On this page it is possible to test the classifier in two ways (requirement 15). The first
way is by using an already prepared dataset. For this purpose, the page contains a grid
with a test dataset. The second way is by typing parameters manually via the form.
The form is placed to the right of the grid. There is a select element under the grid for
choosing the type of classifier. After clicking the "Evaluate" button, your result will
appear under the button and is colored in green, yellow or red according to its penalty
value. The history of previous results is kept.

Figure 4.4: Use classifier

4.2 Design

Class diagram
In software engineering, a class diagram in the Unified Modeling Language (UML) is a type
of static structure diagram that describes the structure of a system by showing the system’s
classes, their attributes, operations (or methods), and the relationships among objects[14].
The application has three layers: View, Service API, Database API (figure 4.5).

20 CHAPTER 4. DESIGN & IMPLEMENTATION

Figure 4.5: Class diagram

Package "Service API" represents the Service layer and it’s responsible for retrieving
and saving datasets and classifiers. The package contains four classes: GraphManager,
TimeSeriesManager, ClassifierManager, PythonCaller.

• GraphManager responsibilities include: to serialize/deserialize datasets, provide list of
all available datasets.

• TimeSeriesManager provides the same methods but with time series files.

• ClassifierManager is responsible for import/export of classifiers.

• The goal of PythonCaller class is to interact with python scripts, for example, train,
test, and get accuracy of classifier.

Package "View" is responsible for querying the model and updating the view, reacting to user
interactions updating the model. Package contains three pages: MainView, TrainClassifier
and UseClassifier.

• Main page includes two tabs: for statistical graphs and for time series graph. Main page
in first tab calls GraphManager to get list of datasets and to get data from particular
dataset. These data it uses to display four graphs. Page calls TimeSeriesManager in
second tab to get list of datasets and to get data for time series graph.

• Page TrainClassifier is responsible to train, retrieve and show accuracy of classifiers. It
calls ClassifierManager to get list of all classifiers, also, it sends parameters to Python-
Caller to train the classifier.

• The main goal of UseClassifier page is to use the classifier on selected command orders.
ClassifierManager is called to get list of available classifiers, PythonCaller is called to
evaluate command orders.

Package "Database API" provides data to Service layer. It contains three folders: "com-
mand_ex" for statistical graphs, "data_cont" for time series graph, and "classifier" for
classifiers.

4.2. DESIGN 21

Use cases
The following graphs show use cases diagrams. All use cases presented satisfy the specialist’s
workflow steps (section 2.1).
Figure 4.6 shows use cases related to statistical graphs. This graph covers requirements 1,
2, 3, 4, 5, 6, 7. These use cases will be implemented in the first page of the application in
the tab "Graph".

Figure 4.6: Use cases related to statistical graphs include importing data, selecting parameter
for coloring data, displaying four types of graphs, toggling between linear/logarithmic scales
and selecting dataset

Figure 4.7 shows use cases related to time series graph. This graph covers requirements
8, 9 and 10. These use cases will be implemented on the first page in the tab "Graph".

22 CHAPTER 4. DESIGN & IMPLEMENTATION

Figure 4.7: Use cases for viewing one or several products on the time series graph and
selecting timespan for graph

Figure 4.8 shows use cases related to classifiers. This graph covers requirements 11, 12,
13, 14, 15 and 16. Requirement 15 will be implemented on the page "Use classifier", others
will be implemented on the page "Train classifier".

Figure 4.8: Use cases related to classifier include training one or several classifiers, displaying
their accuracy, testing and export of a selected classifier

4.3 Components

This section is structured in the same way as the Analysis section. The first part covers
requirements related to statistical graphs, the second includes requirements for times series
graphs, and the last one contains requirements related to classifiers.

4.3. COMPONENTS 23

Statistical graphs

1. Import data for statistical graphs component
The application should provide an opportunity to upload a new dataset. To add a new
dataset, user should click the button "Add new", then modal window then appears
(figure 4.9). Example name is "hudba_manufacutre_command_ex.cvs"

Figure 4.9: Upload new dataset for statistical graphs

2. Colorize products by parameter component
User can select parameter for coloring the x-y plot. The most relevant parameter is
penalty. But the user can select any other. This adds a third parameter that can be
visualized.

Figure 4.10: Coloring by selected parameter

3. View x-y graph (Scatter plot) component
Figure 4.13 shows scatter plot with both x and y axes linear. Logarithmic axes can be
toggled for any axis.

• Linear/logarithmic scale
Changing scale type is implemented via check boxes (figure 4.11 and figure 4.12)

Figure 4.11: X logarithmic

Figure 4.12: Y logarithmic

24 CHAPTER 4. DESIGN & IMPLEMENTATION

Figure 4.13: Scatter plot with linear scales

Figure 4.14 shows same parameters as figure 4.13, but using a logarithmic scale.

Figure 4.14: Scatter plot with logarithmic scales

4. View histograms component
For histogram graphs, the same logarithmic scale is available. On mouse-over, x and
y values appear on the graph nearby the cursor (figure 4.15).

4.3. COMPONENTS 25

Figure 4.15: Histogram shows distribution of command price. Logarithmic y axis was used.

5. View boxplots component
Boxplots can also have logarithmic scale. JavaScript library Plotly.js provides this
feature. The box plot is a standardized way of displaying the distribution of data
based on the five number summary: minimum, first quartile, median, third quartile,
and maximum [2]. On mouse-over these five values appear (figure 4.16).

Figure 4.16: Boxplots

6. Changing x-y axes component
For changing the sources for x and y axes, two lists were created. Names of parame-
ters were mapped to human-readable names. For example, amount_clear parameter
in database was transformed into "amount clear". All transformation together with
description of the parameters can be seen in Appendix B.

26 CHAPTER 4. DESIGN & IMPLEMENTATION

Figure 4.17: List for x axis

7. Changing dataset component
For changing dataset, the responsible element is select, from Vaadin framework.

Figure 4.18: Choosing dataset element

Time Series graphs

8. View time series graph component
JavaScript library provides its own time series graph. X axis represents date. Y axis
represents amount in warehouse (pieces). Figure 4.19 shows time series for a single
product. Product id is displayed on the left. For anonymous reasons we cannot display
product name. But, it is available in Helios database and data specialist can find it
here.

Figure 4.19: Time series for a single product

4.3. COMPONENTS 27

9. View time series graph (multiply products) component
Figure 4.20 shows several products in one graph. Ids of the product are displayed on
the right side from the graph. As mentioned before, we do not display product name.

Figure 4.20: Several products in one graph

10. Time series graph: choosing timespan
This functionality is implemented using Plotly.js library (figure 4.21).

Figure 4.21: Timespan selection in time series graph component

Classifiers

11. Train classifier component
User should fill the form (see figure 4.22) and click button "Train". After clicking, using
the data from the submitted form, a dataset for training and testing is constructed
and a classifier is trained. Trained classifier appears in the classifiers list (figure 4.23).

28 CHAPTER 4. DESIGN & IMPLEMENTATION

Figure 4.22: Form for training classifier

Figure 4.23: List of trained classifiers

12. Train different classifiers
Button "Train All" was created for this purpose. (see figure 4.22). Application creates
23 pipes that run the own_classifier.py script simultaneously and starts to train mul-

4.3. COMPONENTS 29

tiply different classifiers. The same as in previous point, trained classifiers appear in
the classifiers list.

13. Show accuracy of classifier component
By selecting one or several classifiers in the classifier list (figure 4.23) and clicking the
"Show" button, results are displayed in the graph (see figure 4.24)

Figure 4.24: Classifier results

14. Compare different classifiers accuracy in the same graph
My solution was to create scatter graph with accuracy for various classes (red, yellow,
green and overall), (see figure 4.25). X axis represents particular classifiers, Y axis
represents accuracy from zero to one.

Figure 4.25: Classifiers results

15. Test classifier
There are two ways of testing the classifier. The first way is by using already prepared
dataset. For this purpose, a grid view is implemented. Rows represent particular
command orders. Columns represent order parameters needed for the classifier. The

30 CHAPTER 4. DESIGN & IMPLEMENTATION

second way is by typing parameters manually via form. The form is placed to the right
of the grid. More information you can find in Chapter 4.1. It is also possible to test
all generated classifiers on a particular product by clicking "For each" button (figure
4.26).

Figure 4.26: Use classifier page

16. Export classifier
After selecting a classifier, a link appears under the graph. By clicking this link, user
is able to download the classifier (figure 4.27) in pickle format.

Figure 4.27: Download classifier

Chapter 5

Testing

This chapter describes the steps that were taken to evaluate the quality of the application.

5.1 Use cases

The first step was to go through all functional requirements, validate each use case, and ob-
serve expected results. Table 5.1 shows that all functional requirements related to statistical
graphs, time series graph and classifiers were successfully implemented.

Table 5.1: Functional requirements implementation
Functional requirement Implemented Tested
Import data X X
Colorize products by parameter X X
View dependency graph (Scatter plot) X X
View histogram X X
View boxplots X X
Changing x-y axes X X
Changing dataset X X
View time series graph X X
Time series graph includes several products X X
Choose timespan for time series graph X X
Train classifier X X
Train different classifiers X X
Show accuracy of classifiers X X
Compare different classifiers accuracy in the same graph X X
Test classfiers X X
Export classifiers X X

31

32 CHAPTER 5. TESTING

5.2 Code analysis

Static code analysis was made with FindBugs plugin for IntelliJ IDEA. It finds bug patterns,
such as null pointer dereferences, infinite recursive loops and so on. After analysis of the
project files, analyzer did not find any critical bugs. Minor bugs were reviewed and fixed.

5.3 Unit tests

Unit testing is a level of software testing where individual units/components of a software
are tested. It is performed by using the White Box Testing method in which the internal
structure/design/implementation of the item being tested is known to tester. To test software
JUnit was used. JUnit is a unit testing framework for the Java programming language [15].
The following tests were done:

• Add new dataset/ time series file
Add new dataset, and make sure, that new dataset was added, that GraphManager(
or TimeSeriesManager) refreshes list of existing datasets.

• Serialize datasets/time series graph
Test converting dataset from CSV format to JSON format. This test trying to convert
files in appropriate format to another format.

All unit test are passing with no errors.

5.4 Cross browser testing

The purpose of CrossBrowserTesting is to perform cross-browser testing on web applications
and mobile applications. The following screenshots of the main page were made from differ-
ent browsers. Functionality was preserved, small differences were in rendering without any
impact on functionality nor usability of the application.

• Page rendered in Chrome browser version 65 (figure 5.1). It provides all functionality.

Figure 5.1: Rendered main page of application in Chrome browser

5.4. CROSS BROWSER TESTING 33

• Page rendered in Edge browser version 16 (figure 5.2). It provides all functionality.

Figure 5.2: Rendered main page of application in Edge

• Page rendered in Firefox browser version 59 (figure 5.3). It provides all functionality.

Figure 5.3: Rendered main page of application in Firefox browser

• Page rendered in Internet explorer browser version 11 (figure 5.4). It provides all
functionality.

34 CHAPTER 5. TESTING

Figure 5.4: Rendered main page of application in Internet explorer browser

• Page rendered in Opera browser version 50 (figure 5.5). It provides all functionality.

Figure 5.5: Rendered main page of application in Opera browser

5.5 Conclusion

All test were passed and application is ready to use. We have successfully implemented and
verified the functionality of all the functional requirements 1 to 16 (see section 2.2) and all
non-functional requirements (1, 2) (see section 2.2).

Chapter 6

Conclusion

In my thesis I’ve implemented a web app for data specialist that can import a dataset, check
the validity (suitability) of the dataset using various visualizations. If the data is suitable,
he can train multiple classifiers for prediction, compare their performance and finally export
selected classifier for using in production.

The following goals were achieved:

• Get acquainted with ERP systems and provided DB export.
I have understood the aim of enterprise resource planning. I was able to import the
provided CSV files and use the data in my application.

• Visualize the data (x-y plots, time restriction, histograms).
I have implemented data visualization using Plotly.js library. All required types of
graphs are available and working.

• Implement various classification and prediction methods for selected timespan.
Classifiers from the previous work were integrated into the application and GUI was
implemented to ease work. Timespan selection was also implemented using a form,
where user can choose the required timespan.

• Test the solution.
The application was tested. It is working (online), all required functionality has been
tested to work. Information about testing can be found in chapter 5.

• Visualize the classifiers results.
Visualization of classifier results was made with the same JavaScript library. The
graph component provides opportunity to compare different classifiers and select one
for export and further usage.

• Unit test and project documentation.
Unit tests and documentation were written. All tests were passed. User guide with
installation instructions was also provided (available in readme.md file). Installation
to Docker image is possible using provided Dockerfile.

The application was presented to Asseco Solutions, Inc. company with positive feedback.

35

36 CHAPTER 6. CONCLUSION

6.1 Further work

The application is ready to use, in the future, some improvements can be done.

• User Interface could be more user friendly and more interactive. This would need more
testing with users (UX tests).

• Better support for mobile platforms could be provided. In time of developing, only
x86 platform was used.

• Classifier training performance can be improved, especially with python scripts. Clas-
sifiers could be trained in parallel on grid nodes. It should be faster than training
classifiers on local PC.

• Verification by data specialist is to be performed. Data specialist was kept aside to
have no inner information. We will describe the problem to him and observe his
understanding of the "unknown" application.

Bibliography

[1] Government Finance Officers Association. Financial Forecasting. url: http://gfoa.
org/financial-forecasting-budget-preparation-process.

[2] Roald Hoffmann. Box Plot: Display of Distribution. url: http : / / www . physics .
csbsju.edu/stats/box2.html.

[3] Herbert Schildt. Java The Complete Reference. 2015.

[4] David Ascher and Mark Lutz. Learning Python. 1999.

[5] Nick Diakopoulos and Stephen Cass. IEEE Spectrum Ranking. 2017. url: https:
//spectrum.ieee.org/static/interactive-the-top-programming-languages-
2017.

[6] Ashish Sarin. Getting started with Spring Framework. 2016.

[7] The Apache Software Foundation. Introduction to the POM. 2018. url: http://maven.
apache.org/guides/introduction/introduction-to-the-pom.html.

[8] Jon Duckett. HTML and CSS: Design and Build Websites. 2011.

[9] Jon Duckett. JavaScript & JQuery. 2014.

[10] Adil Baaj. Compare the Best Javascript Chart Libraries. url: https://blog.sicara.
com/compare-best-javascript-chart-libraries-2017-89fbe8cb112d.

[11] MSDN. What is Software Architecture? url: https://msdn.microsoft.com/en-
us/library/ee658098.aspx.

[12] Wikipedia contributors. Client–server model — Wikipedia, The Free Encyclopedia. [On-
line; accessed 7-May-2018]. 2018. url: https://en.wikipedia.org/w/index.php?
title=Client%E2%80%93server_model&oldid=837529203.

[13] Vangie Beal. The Differences Between Thick, Thin and Smart Clients. url: https://
www.webopedia.com/DidYouKnow/Hardware_Software/thin_client_applications.
asp.

[14] Allen I. Holub. Allen Holub’s UML Quick Reference. 2017.

[15] Wikipedia contributors. JUnit — Wikipedia, The Free Encyclopedia. [Online; accessed
7-May-2018]. 2018. url: https://en.wikipedia.org/w/index.php?title=JUnit&
oldid=832731550.

37

http://gfoa.org/financial-forecasting-budget-preparation-process
http://gfoa.org/financial-forecasting-budget-preparation-process
http://www.physics.csbsju.edu/stats/box2.html
http://www.physics.csbsju.edu/stats/box2.html
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://blog.sicara.com/compare-best-javascript-chart-libraries-2017-89fbe8cb112d
https://blog.sicara.com/compare-best-javascript-chart-libraries-2017-89fbe8cb112d
https://msdn.microsoft.com/en-us/library/ee658098.aspx
https://msdn.microsoft.com/en-us/library/ee658098.aspx
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=837529203
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=837529203
https://www.webopedia.com/DidYouKnow/Hardware_Software/thin_client_applications.asp
https://www.webopedia.com/DidYouKnow/Hardware_Software/thin_client_applications.asp
https://www.webopedia.com/DidYouKnow/Hardware_Software/thin_client_applications.asp
https://en.wikipedia.org/w/index.php?title=JUnit&oldid=832731550
https://en.wikipedia.org/w/index.php?title=JUnit&oldid=832731550

38 BIBLIOGRAPHY

Appendix A

User Guide

You should go through these steps to use the application. All steps are required except those
that are marked as optional.

A.1 Requirements:

1. Download or clone project from https://gitlab.com/eykhmvic/eClubAsseco. Let’s call
installed folder MAIN.

2. Be sure that you install following libraries in python

• scipy

• graphviz

• jupyter

• matplotlib

• numpy

• pandas

• pymongo

• sacred

• scikit-learn

3. Change PYTHON_PATH in MAIN/src/main/java/my/asseco/Tools/Constants to your
python path.

4. Change PYTHONPATH to MAiN/pythonModule/pythonDir

5. (Optional) Put data in MAIN/pythonModule/pythonDir/manufacture_command_ex
older. For example, "hudba_manufacture_command_ex.csv".

6. (Optional) Put data in MAIN/pythonModule/pythonDir/data_cont folder. For ex-
ample, "pribory_data_cont.csv"

39

40 APPENDIX A. USER GUIDE

A.2 Running

Running the project from command line
Run follow command in the project root directory:

mvn clean install spring-boot:run

Running the project from IDE
Navigate to the Main class and run it as a Java application.

After the server has started, point your browser to http://localhost:8080 to see the re-
sulting application

Appendix B

Table of parameters

Table B.1: Human readable names

Name Human readable name
amount_clear amount clear
amount amount
planed_start planned start
planed_end planned end
start_date start date
end_date end date
amount_produced amount produced
amount_rejected amount rejected
manufacture_cost manufacture cost
sum_TAC sum TAC min
mean_TAC mean TAC
nrow_TAC nrow TAC
material_sum material sum
material_mean material mean
material_nrow material nrow
parent_count parent count
parent_depth parent depth
parent_pieces_order_count parent pieces order count
ongoing_same_pieces ongoing same pieces
ongoing_same_command ongoing same command
ongoing_all_command ongoing all command
ongoing_all_pieces ongoing all pieces
time_complexity time complexity
command_price command price
actual_pieces actual pieces
actual_cost actual cost
cost_sin_2_6_60 cost [CZK*DAY]
penalty penalty

41

42 APPENDIX B. TABLE OF PARAMETERS

end_stock_price end stock price
start_month start month
cost_penalty_60 cost penalty

Table B.2: Description in EN

Name Units Description
amount_clear piece pieces clean (after removal of defective pieces)
amount piece the quantity required on the manufacturing order
planed_start Planned date of start of manufacture command
planed_end Planned date of end of manufacture command
start_date Actual date of start of manufacture command
end_date Actual date of end of manufacture command
amount_produced piece Amount produced
amount_rejected piece Amount rejected
manufacture_cost CZK Unit price
sum_TAC min Amount of TAC needed to create the product
mean_TAC min Average TAC needed to create the product
nrow_TAC count Number of TAC entries needed

to create the product (number of steps)
material_sum CZK Sum of the materials needed to create the product
material_mean piece Average amount of materials

needed to create the product
material_nrow count Number of materials needed to create the product
parent_count count Number of unique parents in the semi-product tree
parent_depth count Maximum depth of parents in the semi-product tree
parent_pieces_order_count count Number of parent orders at start_date
ongoing_same_pieces piece Sum of products on manufacturing

order from ongoing_same_command
ongoing_same_command count Number of running manufacturing order

on the day of the production order
with the same product

ongoing_all_command count Number of running manufacturing order
on the day of the production order entry

ongoing_all_pieces piece Sum of pieces from ongoing_all_command
time_complexity count*min Time complexity (amount*sum_TAC)
command_price CZK Order price (amount * manufacture_cost)
actual_pieces piece Actual number of semi-products (of the same type)

in stock at the day of the production order entry
actual_cost CZK Actual price
penalty count(0-60) Penalty from 0 to 60
end_stock_price CZK Reflects the target money,

that are blocked in the storage after

43

finishing the manufacture order
start_month month Month from date of assignment
cost_penalty_60 count Penalty

44 APPENDIX B. TABLE OF PARAMETERS

Appendix C

Sprints

1. Meet Asseco. Get data from Michal. Import the CSV (‘extended’)

2. Prepare first ‘Hello World’ with simple (fake) graph

3. Put online first online demo (histograms for ‘pribory’ dataset).

4. Introduce ‘scatter plots’ (X-Y) with semaphore coloring (by penalty)

5. Visualize time series (from ‘_cont’ CSV file)

6. Include other companies dataset(s)

7. GUI improvements, usability; Choose the correct way to implement classifier

8. Implement classifier (Random Forest, WEKA, use Michal’s scripts (Python, BASH)

9. Visualize experiment results

10. Selection and export of the 3 (BSF) classifiers

11. Unit testing, Documentation

12. Final thesis document,UML models

45

46 APPENDIX C. SPRINTS

Appendix D

List of abbreviations

AOP Aspect-oriented programming

API Application Programming Interface

CSS Cascading Style Sheets

CSV A comma separated values file

DI Dependency Injection

ERP Enterprise Resource Planning

GUI Graphical user interface

HTML Hypertext Markup Language

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IoC Inversion of Control

JS JavaScript

JSON JavaScript Object Notation

JVM Java Virtual Machine

MIT Massachusetts Institute of Technology

MVC Model-View-Controller

MVP Model-View-Presenter

POM Project Object Model

UI User Interface

UML The Unified Modeling Language

WORA Write once, run anywhere

47

48 APPENDIX D. LIST OF ABBREVIATIONS

Appendix E

Content of CD

• code (Contains source of the code)

– README.md

– LICENSE

– assecoApp

– JavaDoc

• thesis

– source (Contains source of the thesis)

– BP_Eykhmann_Victoria.pdf

49

	Introduction
	Financial forecast
	Problem statement

	Analysis
	Data specialist's workflow
	Requirements
	Functional requirements
	Non functional requirements

	Technology
	Software development
	Technology review
	Server-side technology
	Client-side technology

	Architecture

	Design & Implementation
	GUI Design
	Design
	Components

	Testing
	Use cases
	Code analysis
	Unit tests
	Cross browser testing
	Conclusion

	Conclusion
	Further work

	User Guide
	Requirements:
	Running

	Table of parameters
	Sprints
	List of abbreviations
	Content of CD

