
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

Štěpán Klouček

Android application for control of an unmanned
helicopter carrying a bird repeller

May 2018

Department of Control Engineering

Thesis supervisor: Dr. Martin Saska

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457180Osobní číslo:ŠtěpánJméno:KloučekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra řídicí techniky

Kybernetika a robotikaStudijní program:

Systémy a řízeníStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Mobilní aplikace pro řízení bezpilotní helikoptéry nesoucí plašič ptactva

Název bakalářské práce anglicky:

Android application for control of an unmanned helicopter carrying a bird repeller

Pokyny pro vypracování:

The goal of the thesis is to design, implement in Android and ROS (Robot Operating System), and experimentally verify
in a Gazebo simulator and real experiments an application to support control of an unmanned aerial vehicle (UAV) equipped
by an acoustic bird repeller. The following tasks will be solved:
1. To design an Android application for control of UAVs equipped by an onboard computer with ROS in the task of protection
of vineyards against birds. The user will be able to set GPS way points defining a UAV path and a profile of sound properties
along this path.
2. To select a proper sound generator for initial, integrate it into the UAV system of the MRS group at CTU [1,2] and
implement an interface for its smart using based on current altitude and distance to the flocks.
3. To implement a suitable/proper path planning algorithm (based on a variant of TSP or OP problem) to find a feasible
short path through selected places of the bird repeller operation.
4. To verify system functionalities in Gazebo and with a real platform in outdoor conditions (only technical properties of
the system will be evaluated, while the influence of the flying repeller on birds will be a subject of consequence research
in cooperation with Czech university of life sciences Prague).

Seznam doporučené literatury:

[1] T. Baca, P. Stepan and M. Saska. Autonomous Landing On A Moving Car With Unmanned Aerial Vehicle. In The
European Conference on Mobile Robotics (ECMR), 2017.
[2] G. Loianno, V. Spurny, J. Thomas, T. Baca, D. Thakur, D. Hert, R. Penicka, T. Krajnik, A. Zhou, A. Cho, M. Saska, and
V. Kumar. Localization, Grasping, and Transportation of Magnetic Objects by a team of MAVs in Challenging Desert like
Environments. IEEE ICRA and RAL, 2018.
[3] Shripad Gade, Aditya A. Paranjape, and Soon-Jo Chung. "Herding a Flock of Birds Approaching an Airport Using an
Unmanned Aerial Vehicle", AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum, 2015.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Martin Saska, Dr. rer. nat., Multirobotické systémy FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 25.05.2018Datum zadání bakalářské práce: 14.02.2018

Platnost zadání bakalářské práce: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
prof. Ing. Michael Šebek, DrSc.

podpis vedoucí(ho) ústavu/katedry
Ing. Martin Saska, Dr. rer. nat.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university thesis.

Prague, date

signature

Acknowledgements

I would like to thank everyone in Multi-robots research group for their advice. Espe-
cially Dr. Saska for his leading, D. Heřt for his help with sound system and T. Báča for his
advice. Also, I would like to thank my coworker P. Ješke for many late night discussions
about how the application should look like.

Abstract

This work aims to create a complete solution for bird repulsing on
vineyards by creating a mobile application capable of controlling UAV
with sound system mounted onboard. The user is able to create and edit
waypoints in an interactive map implemented in the created application.
These waypoints can be sent to UAV to perform area patrolling, to
fly exact trajectory defined by these waypoints or to fly computed
trajectory by path planning algorithm. To compute trajectories feasible
for the UAV an algorithm based on a variant of orienteering problem
is presented here. Multiple options of the sound system are discussed
in this thesis. Experiments are verifying the functionality of the whole
solution in an outdoor environment.

Keywords: Android application, UAV, bird repulsing, vineyard
protection

Abstrakt

Ćılem této práce je vytvořit kompletńı řešeńı pro plašeńı ptactva na
vinićıch, pomoćı mobilńı aplikace schopné ovládat bezpilotńı letoun a
zvukové zař́ızeńı na něm umı́stěné. Uživatel aplikace je v interaktivńı
mapě schopný vytvořit a upravovat letové body. Tyto body lze odeslat
UAV, které je schopné střežit prostor, letět trajektorii podle zadaných
bod̊u nebo aby letělo trajektroii vypoč́ıtanou navrhnutým algoritmem.
Pro vytvářeńı proveditelných trajektoríı, byl vytvořen algoritmus na
základě ”orienteering problem”. V práci je také řešeno několik možnost́ı
jak vytvořit zvukový systém. Experimenty testuj́ı funčnost navrhnutého
řešeńı v reálných podmı́nkách.

Kĺıčová slova: Android aplikace, UAV, plašeńı pták̊u, ochrana
vinic

CONTENTS

Contents

1 Introduction 1

2 State of the art 2

2.1 Mobile application . 2

2.2 Orienteering problem . 2

2.3 Close enough orienteering problem . 3

3 Specification 4

4 Path planning 6

4.1 Repulsing birds and OP . 6

5 Path planning with close enough neighbors 9

5.1 Close enough neighbors for bird repulsing 9

5.2 Probability of repulsing computation . 10

6 Sound system 12

6.1 Speaker . 12

6.2 Siren . 13

7 Communication 14

7.1 Communication technologies . 14

7.2 Communication via Wi-Fi network . 14

7.2.1 Secure Shell . 15

7.2.2 Packet comunication . 15

7.2.3 RosJava . 15

7.3 Comunication protocol . 16

7.3.1 UAV status message . 16

7.3.2 Command messages . 16

i

CONTENTS

8 Android application 19

8.1 Used technologies . 19

8.1.1 Android . 19

8.1.2 SQLite . 20

8.1.3 Google Maps . 21

8.1.4 Ros . 21

8.2 User interface . 21

8.2.1 Navigation . 22

8.2.2 Manual control . 23

8.2.3 Google Map . 23

8.2.4 Trajectory manager . 24

9 Experiments 26

9.1 Basic functionality test . 26

9.2 Testing coverage algorithm . 29

9.3 Testing orienteering algorithm . 32

9.4 Testing sound system capabilities . 36

10 Conclusion 37

Appendix A CD Content 43

Appendix B List of abbreviations 44

ii

1 INTRODUCTION

1 Introduction

An unmanned aerial vehicle (UAV) is a remotely controlled or autonomous flying
vehicle. Vertical Take-Off and Landing (VTOL) multirotor vehicles are popular, due to their
capability to fly and land almost everywhere. Most common vehicles from this category are
helicopters and multirotors vehicles with fixed propellers. In particular, the popularity of
multirotors vehicles is on the rise because of low their price, easier usage and maintenance
compared to the helicopters.

Quadrocopter is typically powered by four electrical motors. Hexacopters with six
motors are used for heavier payloads. Also the advantage of hexacopters is that in the
case of motor malfunction, the opposing motor to the malfunctioned one can be turned off
to stabilize the vehicle. This approach is only possible when the weight of the vehicle is
not exceeding capabilities of four remaining motors. Purpose of such an aircraft can vary
greatly with sensors installed and equipment mounted. Cameras are a common utility for
hobby drones . The thermal camera is usable in a search for lost people [7] or detecting a
faulty solar panels [22]. Sensors can be used for performing aerial surveillance of volcanic
area [8] or environmental scanning [24] [10] [33]. Many large-scale business projects emerged
in the last years that use UAV for goods delivery [26] or for warehouse management [2].

This thesis aims to propose and implement a solution for the bird repulsing using
UAV controlled by a mobile application. This thesis specification match real industrial
project requirements. To create such a solution three parts have to be created: the mobile
application, sound system and path planning.

Path planning is described in chapter 4. There is a short description of orienteering
problem and its usage for bird repulsing. Furthermore, implementation of the used algo-
rithm is described in that chapter. The sound system is discussed in chapter 6. Several
solutions are described there and two of them were tested on real UAV.

Many similarities can be found between bird repulsing and ground mapping in precise
agriculture, which are also solved by our team in this industrial project and which are
discussed in the work of P. Ješke [16]. These similarities are in the communication from
UAV to the mobile phone and the mobile application itself. For creating a better final
solution, and as was requested in the project these two parts were created to work with
both applications. The mobile application was mainly developed for this thesis and is
described in chapter 8. In Ješke’s thesis application is used with new added features such
as an obstacle for trajectory which was not necessary to implement in this thesis.

Communication is briefly described in chapter 7 as the major part of it was created
to support many different area coverages needed for ground mapping. For this thesis, com-
munication is needed to receive status messages about UAV and to send flight commands.
A status message consists for example of UAV position and battery status.

1/44

2 STATE OF THE ART

2 State of the art

Gade, Paranjape, Aditya and Chung [14] were solving a similar problem. Their work
is focused on the bird herding near airports, using the n-wavefront algorithm. So they are
diverting flocks away from the airport protected zone, instead of repulsing. The UAV for
bird repulsion also exists, it is called ”prohawk” and is advertised at bird-x.com. Prohawk
is a MAV with mounted sonic bird repeller. Which is entirely automated (launch, patrol,
land). The MAV used in this project is more modular as the mounted repeller can be easily
replaced. Furthermore, the application created for this project allows for a higher level of
automation, due to the possibility of saving trajectories and the usage of path planning
algorithm.

2.1 Mobile application

An essential part of this project is the mobile application. There is no universal
communication standard for UAVs. Every manufacturer has its unique mobile application.
The most advanced application comes with the DJI drones as their market share is as high
as 85%. A free version of the application allows a user to manually control the UAV and
to capture photos or videos with it. The paid version of the application allows the user to
create autonomous flight plans.

Also, some alternative application exists such as Litchi for DJI drones or PIX4Dcapture.
These applications can be used only with limited types of UAV, due to the communication
restrictions. These applications offer specialization of UAV eq. creating 3D models and
ground mapping. The proposed application is designed to be able to control UAVs with
Pixhawk and ROS, designed at CTU Prague [5].

2.2 Orienteering problem

Handling the UAV is a difficult task. Manual control can vary with different types
of UAV manufacturer. Also the pilot needs to control multiple aspects to fly safely. Air
traffic and remaining battery time are one of them. For the bird repulsion mission, the pilot
would have to fly through numerous way-points, controlling the status of the UAV during
the flight. To perform such a mission pilot would have to make a flight plan to ensure safety.
Even with the flight plan, there is a chance of a human mistake. To prevent these mistakes
path planning algorithm is used for the bird repulsion. Using such an algorithm can also
save time as it is faster than creating a flight plan and create more efficient trajectories.
To handle these tasks path planning algorithm based on orienteering problem is proposed.

The name of the ”orienteering” algorithm originates from an outdoor game orienteer-

2/44

2 STATE OF THE ART

ing [9] [36] [29] played in rural terrains such as a forests. Competitors are usually equipped
with a magnetic compass and a map. The map contains many points which are associated
with a score. Contestants are starting from one of the points, and their goal is to visit as
many of these points as possible within a limited time and reach the endpoint. Each point
needs to be visited only once. Contestants of the game which arrive at endpoint after time
limitation are disqualified. The winner is declared by the highest collected score. Often it
is not possible to visit all of the points. The competitors have to carefully select which
points they are going to visit, in order to maximize their total score and not violating the
time restriction.

The Orienteering problem (OP) can be viewed as modified Traveling salesmen prob-
lem (TSP) described in [23] [30]. The TSP is declared as a problem in which a salesman
wants to visit multiple cities in a way that the path generated is the shortest possible. If
we add time constraint so that salesmen can not visit all the cities and all cities have non
zero rewards modeled as expected sales value, we get OP or from older literature ”selective
traveling salesman problem”, [20] or [21]. For both of the problems the starting point and
the endpoint can be same, but generally, they are not.

As the OP is NP-hard (non-deterministic polynomial-time) [19] an optimal algo-
rithm is time-consuming, so the researchers are focusing on a heuristic approaches. These
approaches can be indeterministic using Monte Carlo technique [36] or more often deter-
ministic [32] [9] [37]. To create algorithms for real-life vehicles, Dubins [11] approach can
be used to create curvated trajectories. These trajectories are used for UAVs [29] or for
underwater vehicles [31]. Also, evolution algorithms are used for the OP [17].

The OP has many real-life practical uses. One of the earliest models is presented
by Golden, Assad, and Dahl [15]. This model simulates fuel delivery company, which dis-
tributes fuel among customers. The reward is modeled as the urgency of fuel delivery, that
is increasing with decreasing fuel supply of a customer. Each day path which minimizes
travel distance and maximizes customer satisfaction is chosen. Another use is building
telecommunication network [35] or planning a tourist trips [34].

In this thesis, unique usage of the OP in the mobile application is being solved. Also
the possibility of reward collection correlation is discussed here, as the action on TSP city
could also affect neighbor cities. This possibility is further explained by using the close
enough orienteering problem.

2.3 Close enough orienteering problem

Close enough orienteering problem (CEOP) or very similar variant correlated OP [38],
extends rewards collecting from point to area. These approaches allow data from sensors
to be collected more effectively. Furthermore the CEOP with the Dubins vehicle also exists
[28] [13].

3/44

3 SPECIFICATION

3 Specification

The goal of this thesis is to propose and implement a solution for a bird repulsion
using UAV controlled by a mobile application. To create such a solution mobile application,
sound system and path planning algorithm has to be created.

In the mobile application, the user is able to:

• connect from mobile phone to the UAV

• take of with the UAV remotely

• manually control the UAV

• create a new trajectory

• choose between three autonomous flight modes

Creating trajectory will be done in a terrain map. Every point of a trajectory is
editable. The user can edit the height of a flight, forbid performing of a repulsion maneuver
and set a reward for path planning algorithm. Points can be dragged to change their
position. Unwanted points can be deleted.

To fulfill these goals UAV has to be equipped with the Wi-Fi and the GPS. The
civilian accuracy of GPS is sufficient. Continuous connection to the Wi-Fi is needed. A
UAV has to know its GPS position and from the ground distance. Also, it has to be
equipped with an onboard computer able to run the ROS and the Xbee board to control
the sound system. The whole solution should work with basic UAV [5] used by Multi-robot
System group displayed in figure 1.

Figure 1: UAV of Multi-robot System group with neccesery components [4]

4/44

3 SPECIFICATION

To start the application, the user needs Android device with API (Application Pro-
gramming Interface) level at least 15 (Ice cream sandwich). This device must be able to
connect to the same network as the UAV. Also, the internet connection or pre-downloaded
Google Maps are needed to display the map correctly.

The sound system has to be mounted on the UAV. Control of the sound system
is managed from the application by selecting different modes of flight. Furthermore 12V
source is needed to power the sirens.

Planning algorithm will be based on the OP. As an input, it takes set of way-points
defined by a user in the Android application. Every way-point has the position and the
reward. Planning algorithm searches for feasible trajectory connecting way-points with the
highest collected reward within defined time budget. Planning algorithm should be fast
enough, that user do not recognize the background computation.

5/44

4 PATH PLANNING

4 Path planning

Trajectory created by the user consists of multiple points. These points represent the
position of bird flocks which are needed to be scared off. Location of bird flock is obtained
from the user by the mobile application. Each point is associated with a non-zero reward
based on user estimation, which can be influenced by the amount of grapes or price of wine
in particular part of the vineyard. UAV is capable of performing repulsing maneuver which
scares the flock on such point. The maneuver takes twenty seconds to be performed. The
UAV is limited by its battery capacity, so the trajectory created by the user might not be
feasible.

For feasible set of points path planning can shorten the length of the trajectory,
resulting in saving flight time. For unfeasible trajectories, the new feasible trajectory will
be computed. Such a planning algorithm can take away a lot of responsibility from the
user and allows a less experienced user to use the application. Path planning algorithm
described in this chapter is based on OP.

4.1 Repulsing birds and OP

A set of N vertices is given. Each vertice x represents a point where the bird repulsing
maneuver should be executed. Starting and ending point coincide. Each of these points
contains non-negative reward Sx, which represents the user-defined priority of maneuver
based on the importance of that point. Time t to travel between each pair of vertices is
known. Because the repulsing maneuver takes twenty seconds to perform, twenty seconds is
added to each vertice. As the battery of the UAV is limited, not all vertices can be visited.
The battery flight time is Tmax, also referenced as time budget. The goal is to determine
the path which maximizes the reward.

For computing the trajectory, a non-deterministic approach is used. At first, a circle
with radius Tmax/2 is made around the starting location. Every point outside this circle is
deleted from the computation as it is not reachable within given time budget. If at least
one point beside the starting point remains, the algorithm continues. To determine a new
trajectory, the Monte Carlo technique is used. Such a method is used to iterate multiple
times over stochastic procedure to determine an empirical mean or in this case to select the
best outcome. Selecting such a result is shown in algorithm 1. The number of iterations is
limited by time, rather than a fixed number of repetitions to ensure smooth user experience
on any device.

6/44

4 PATH PLANNING

Algorithm 1 Selecting best trajectory using the Monte Carlo technique

1: function getBestTrajectory
2: timeStart
3: while 1 > timeCurrent - timeStart do
4: newTrajectory ← createTrajectory() . Algorithm 2
5: if newTrajectory.reward > bestTrajectory.reward then
6: bestTrajectory← newTrajectory.
7: else if newTrajectory.reward = bestTrajectory.reward then
8: if newTrajectory.length < bestTrajectory.length then
9: bestTrajectory← newTrajectory
10: end if
11: end if
12: end while
13: return bestTrajectory
14: end function

Creating a feasible trajectory is described in algorithm 2. Only points not violating
the time budget are added to the trajectory. Function timeBetween(), returns the flight
time between two points with additional twenty seconds added because of the length of
the repulsing maneuver.

Algorithm 2 Creating feasible trajectory

1: function createTrajectory
2: while unusedPoints.empty do
3: newPoint← nextPoint() . Algorithm 3
4: Tselected ← timeBetween(currentPoint, newPoint)
5: if Tmax > Tselected + Tcurrent + TtoReturn then
6: Tcurrent ← Tselected + Tcurrent
7: currentPoint = newPoint
8: trajectory.add(currentPoint)
9: unusedPoints.remove(currentPoint)
10: else
11: unusedPoints.remove(currentPoint)
12: end if
13: end while
14: return trajectory
15: end function

7/44

4 PATH PLANNING

Algorithm 3 shows randomness in choosing the next point for the trajectory. From
all unused points, four points are chosen based on the reward and the time of flight to the
next point. From these points, one is selected based on the chance proportional to that
point reward. Property of point, the difficulty is evaluated by a simple heuristic, seen in
algorithm 3 on line five.

Algorithm 3 Stochaistic point selection

1: function nextPoint
2: unsudedPoints.sortByTime()
3: unsusedPoints← unsudedPoints.getFourBest
4: for i = 0; i < unusedPoints.size; i+ + do
5: point[i].difficulty = timeBetween(point[i], pointCurrent)/point[i].reward
6: totalT ime = totalT ime+ pointi.time
7: end for
8: chance = getRandomNumber(from : 0, to : 1)
9: for i = 0; i < unusedPoints.size; i+ + do
10: if point[i].difficulty/totalT ime+ timeFromOther > chance then
11: return point[i]
12: else
13: timeFromOther = timeFromOther + point[i].time/totalT ime
14: end if
15: end for
16: unusedPoints.remove(currentPoint)
17: return bestPoint
18: end function

All algorithms in this chapter are written in a pseudo-code only. Implementation in
Java was relaying at arrays of edges and vertices, where vertices represent locations of bird
repulsion and edges lines between them. To improve this algorithm, heuristic evaluating
difficulty of the point can be changed. Such a change could be introducing of a center of
the gravity for points. The disadvantage of this algorithm is a problem to escape local
maximum. The concrete example would be four points with the same reward on one side
and a greater number of points with a little lower reward on the opposite side. The al-
gorithm would always choose four points with the higher reward at the beginning a thus
ending in local maximum as it would not have enough time to visit points on opposite side.
This scenario is possible but unlike in a real-life mission, but it could be prevented by a
previously mentioned center of the gravity or by dynamic computation of points to choose
from instead of fixed four points.

8/44

5 PATH PLANNING WITH CLOSE ENOUGH NEIGHBORS

5 Path planning with close enough neighbors

So far the proposed approach was using the simplifying assumption that each maneu-
ver is only associated with a given location. This assumption is correct for distant locations
but for closer ranges, which can be easily inserted by the user, there is a correlation between
points as performing maneuver on one point can also repulse flock on nearby points.

The usefulness of the Close enough OP for bird repulsion will be discussed here with
an assumption it is going to be used in a path planning using growing self-organizing
array proposed by J. Faigl [12]. Furthermore, a chance for bird repulsion is explained and
computed here as it is needed for the GSOA (growing self-organizing array).

5.1 Close enough neighbors for bird repulsing

For the path planning with neighbors, many practical scenarios are proposed, which
are all bind to retrieving the data from sensors. It is understandable that such neighborhood
can be modeled as a communication range, as it is not required to be precisely on sensor’s
location, but it is sufficient to be in communication range to collect data from a sensor.
In these paragraphs, the CEOP will be used for more specific non-sensor usage. So far to
collect the reward, stopping the UAV on point and performing repulsing maneuver with
trm length was required. Common vineyard practice is to scare the birds by using short
and loud sounds, for example gun-shots. For the GSOA trm = 0 is considered, as only a
short and loud sound will be played. Precise visiting of each point is not necessary because
the flock itself covers some area and sound system can provide sound loud enough to scare
the birds from a distance. This means each reward can be collected from repulsing range
δ which will be dependent on the strength of the sound system. Furthermore, there is a
chance that performing this maneuver will affect nearby flocks outside repulsing range δ.
This chance is presented for the distance from repulsing range δ to correlation distance ζ.
Afer collecting sensor data the rewards of nearby sensors were decreased, as the information
gain from nearby sensors is smaller after such a collection. For bird repulsion the reward
of the correlated points would be decreased as well but also it would be added to the
collected reward of the visited point, as there is a probability that repulsing was successful
on nearby points. The proposed correlation is probability-based and it is possible to collect
a portion of the reward multiple times during the flight through the correlation radius but
is not considered here as it would be too different from CEOP. Also making such a noise
too often would not be pleasant for people, and the birds are known to adapt quickly, so
overusing this, it could lead to birds ignoring the device or shortening the effective range
of UAV.

For the UAV in a range not exceeding δ whole reward of the point in radius will be
collected. This applies to all points in the range. For range exceeding correlation distance

9/44

5 PATH PLANNING WITH CLOSE ENOUGH NEIGHBORS

ζ, no reward will be collected. A portion of the reward from the points between these
two ranges will be added to the collected reward, based on probability λ (probability of
successful bird repulsing). The decreased reward of a point will be riλ. Also, the total
collected reward is increased by that amount.

5.2 Probability of repulsing computation

To implement the GSOA algorithm, a probability to repulse the birds needs to be
computed. At first it is neccesery to calculate the sounds intensity.

I =
P

S
=

P

4πR2
. (1)

and because senses including hearing are logaritmical (Fechner-Weber law) it is more
logical to use decibels.

L = 10log
I

Iref
. (2)

Whole equation of a logaritmical intesity is created by merging the equation (2) into
the equation (1) as follows

L = 10log
P

4πR2Iref
. (3)

The repulsing distance δ and correlation distance ζ needs to be computed, in order
to know where to use final probability equation. Also two power values k1 and k2, which
are explained later, has to be experimentally found or estimated, in order to compute
concrete values. k1 is power value where a chance of repulsing is λ = 1, in other words,
it is minimal power value for successful repulsing. For values lower then k1, there is a
chance for a successful repulsing λ. Lowest power value for repulsing is k2, even at this
level chance of repulsing can be proposed as λmin. Values k1 and k2 are dependent on base
level of environment noise. From parameter k1 the value of δ and from k2 the value ζ can
be computed, by substituting R as ζ or δ and expressing this value from equation (3) as

δ =

√√√√√√√
P

4πIref

10

k1
10

, (4)

10/44

5 PATH PLANNING WITH CLOSE ENOUGH NEIGHBORS

ζ =

√√√√√√√
P

4πIref

10

k2
10

. (5)

With these values, it is possible to find function f which would map sound pressure
level in decibels L to chance λ

f(L) = λ (6)

If we compute equation (6) with value k1, the result is 100% as it is definition of that
value. For most precise assumptions the value k2 result is zero. But it is better to propose
new variable λmin. This variable has to be set manually, and can make computation faster
as with higher λmin the correlation distance ζ is smaller, thus fewer points are affected by
repulsion. With λmin = 1 this problem is reduced to the CEOP.

f(k1) = 1 (7)

f(k2) = λmin (8)

With knowledge that function f has to satisfy equation (7) and (8) the linear function
f can be found as

λ =
(L− k2)(1− λmin)

k1 − k2
+ λmin. (9)

This function (9) after merging into equation (3), gives us an equation to compute
the chance of repulsiong based on distance R and power of speaker P .

λ =

(10log
P

4πR2Iref
− k2)(1− λmin)

k1 − k2
+ λmin (10)

Function (10) is used for computing chance of repulsing between range δ and ζ.
Determining power values k1 and k2 will be solved by the cooperating university. Also, it
is possible that the function (9) will be changed to match reality better, but is sufficiently
satisfying for the initial implementation of the GSOA.

11/44

6 SOUND SYSTEM

6 Sound system

The carried repulsor or sound system is an essential part of the bird repulsion pro-
cess. The UAV itself is as loud as 90dB from 1m. Most of these noises are produced by
whirling blades. The UAV-mounted sound system is proposed to increase the effectiveness
of repulsion. Three approaches will be discussed:

• Ultrasound repulsor

• Playing sounds of predators

• Loud siren

Ultrasound is commonly used for commercial repulsors. Repulsor effectivity is en-
hanced by changing the frequency, within the ultrasound spectrum. Also, sudden change
of power can further enhance effectivity of repulsor. Both these changes make affected area
unpleasant for birds, resulting in birds leaving the area after a short time period. The
main advantage is that ultrasound with a frequency lower than 20kHz is that it is on the
borderline of human (audible) perception. Anyway, it is possible that the birds will ignore
ultrasound for long-enough time to destroy valuable crops.

Older but still used method is using loud noises. A farmer can scare away the flock
by shooting in the air. This approach requires someone patrolling area, moreover, shooting
can be dangerous for birds or humans alike. A more modern system consisting of several
generators capable of generating loud noises can be bought. The disadvantage is high
construction/deconstruction time and loudness.

Playing pre-recorded predator voices is a more viable solution. These sounds are
naturally threatening birds and do not have to be as loud as the previous method. Which
makes this method more pleasant for humans around the area.

6.1 Speaker

Firstly playing pre-recorded sounds was chosen for this thesis. To overcome the loud-
ness of properels at least 5W, reproductor was needed. Proposed reproductor is Niceboy
SOUNDair seen in figure 2 with 10W of power, 480g weight, 3.5mm jack, and its own
battery.

For handling sounds, SFML C++ library was used. An advantage of using a speaker
is an easy connection to onboard computer and omnidirectionality. When tested with real
UAV device, the speaker was as loud as propellers. Also, its high weight can compromise
UAV’s ability to maneuver. Because of that, another solution is proposed.

12/44

6 SOUND SYSTEM

Figure 2: Niceboy SOUNDair speaker used for bird repulsing [6]

6.2 Siren

This solution consists of two ESP PS82 sirens 3. With 156g both, they are a third
of the weight of the speaker. The sound pressure level is 122 dB from 1m. The signal is
sent via Xbee board by Ros service. Powered by linear stabilizer on 12V and switched
by a transistor. Main advantages of using sirens are low price, high durability, low power
requirements and small weight. The disadvantage in this approach is controlling loudness,
as siren can function from 3V to 14V with only 30% power drop between these values.

Figure 3: ESP PS82 sirens, final solution for bird repulsing [6]

13/44

7 COMMUNICATION

7 Communication

Communication with a UAV is essential for this thesis. Current status of communi-
cation technologies and their usability for communication between the UAV and mobile
device is described here. Subsection [2,3] of this chapter requires at least basic knowledge
of ROS system. If the reader is not familiar with ROS system, it is suggested to read [25]
or [27] as a basic introduction.

7.1 Communication technologies

Radio control is common method for manual control of a UAV. Range varies greatly
with a used module. For cheaper modules range can be up to 5km. More expensive
modules can provide control up to tens of kilometers. Low latency and great range
make this technology best for safe manual control. It is possible to broadcast video
feed from the UAV. As the mobile phone does not have a possibility to broadcast
at these frequencies, it has to be connected to other controller or device with such a
capability, which makes this technology impractical for mobile application.

Bluetooth effective range depends on its performance class. Most effective class 1 offers
range about 100 meters. Mobile phones have Bluetooth as a basic utility, most of them
are equipped with class 2 with an effective range of 10 meters. Also, support libraries
exist for ROS platform making this viable solution for close range communication.

Wi-Fi technology offers up to 100 meters of reach with standard 2.4GHz frequency. This
range can be greatly reduced in urban areas, due to overusing this communication
band. It is possible to use 5GHz version, which is not as common as 2.4GHz type, to
remove communication overusing problem (interference problem). Using this version
leads to quicker transfer rates but also lowers reach of the network. The reach of a
network for both versions can be enhanced by using antennas. The main advantage
of using Wi-Fi for communication is that every Android with access to Google Store
has to use this communication technique.

7.2 Communication via Wi-Fi network

The selected option for communication is Wi-Fi network as it is easily extendable
and widely supported. When UAV with ROS and mobile phone are connected to same
Wi-Fi network, three possibilities of communication were found: secure shell, packet com-
munication and RosJava.

14/44

7 COMMUNICATION

7.2.1 Secure Shell

The secure shell, shorter SSH is a secure communication protocol. After such a con-
nection is established, between mobile phone and UAV, the instructions can be sent directly
to a command line. This allows quick calling of ROS services and ROS messages without
creating publishers or subscribers. For sending more complex messages as whole trajecto-
ries, extra communication layer would be required. Obtaining data about the UAV status
is possible but not easy to achieve.

7.2.2 Packet comunication

With knowlodge of ROS system it is possible to send publisher like messeges without
the need of ROS running on mobile phone.

Figure 4: Packet format of rosserial protocol

To achieve such a communication rosserial protocol must be implemented with de-
fined packet format seen in figure 4. This type of communication would be preferred as it
would be independent from the ROS master running on UAV. However, it would require
a considerable amount of time to create.

7.2.3 RosJava

This option implements the already mentioned rosserial protocol. RosJava is used to
build Android applications as it provides the client library for ROS communication and
architecture style of ROS. Which allows similar logic on the side of the Android application
and the ROS running on the UAV.

As it is the recommended solution for the Android application, as it allows to quickly
create an application without higher knowledge of the ROS operating system. Also, Github

15/44

7 COMMUNICATION

repository named android core [18] exist. Android core contains several small projects as a
reference how to use many tools stored here. This application is built on top of a tutorial
presenting basic publisher and subscriber.

7.3 Comunication protocol

At first, every type of message has its own publisher and subscriber. Every publisher
and subscriber need its thread. Application with more than 6 threads started to crash
unexpectedly at the side of ROS core. To minimize the number of threads communication
protocol was created. There is one subscriber waiting for a status message from UAV and
one publisher sending commands to UAV, at the side of the mobile application. The UAV
have one publisher sending status messages and one subscriber taking commands. Only
parts important for this thesis are explained in next subsection. Further information can
be found in the P. Ješke thesis [16].

7.3.1 UAV status message

The UAV status message from UAV to a mobile phone, containing all important data
about UAV.

First element Messege type
0 Position x in UTM coordinates
1 Position y in UTM coordinates
2 UAV altitude
3 UAV latitude
4 UAV longitude
5 Battery voltage
6 Aproximate battery voltage
7 Confirmation of recieved message

7.3.2 Command messages

Multiple commands messages can send. Each message is an array of stdFloat64. The
first element of the message is determining a type of message. These messages are from
mobile phone to the UAV.

16/44

7 COMMUNICATION

First element Messege type
1 Take off
2 Manual control message
7 Area message
8 Standart trajectory message
10 Siren test

Take off message This message contains no other usable data. The only purpose
is to start to take off sequence. If the UAV is already in the air take of message has no
purpose.

Manual control message Controlling UAV manualy is desriped in application chap-
ter 8.2.1.

Element in array Name
1 Left joystick angle
2 Left joystick distance from start
3 Right joystick
4 Right joystick distance from start

The angle of the joystick is in radians, distance from the start is number between
zero for, a starting position, and one for the most distant locations.

Standart trajectory message

Element in array Name
1 Size of trajectory
2 Number of parameters
3 UTMx
4 UTMy
5 Height
6 Will perform maneouvering
7 Reward
... ...

Size of the trajectory defines the number of the points. The number of parameters
helps with backward compatibility as if any parameter is added in the Android application,
it is still possible to use the older software on a UAV.

The total length of an array is 3 + trajectory size * number of parameters, as the
parameter 3-7 for this case are repeating base on size of trajectory. ”Will perform maneu-
vering” parameter defines if the UAV performs repulsing maneuver here, if false then point
serves only as a waypoint.

17/44

7 COMMUNICATION

Area message Area message shares same data format with standard trajectory
message. Parameter maneuvering point is unused for area message as at the start is the
sound system turned on and is shut down at end of this trajectory.

Siren test This message is only for turning sound system on and off. Whenever this
message arrives, sound system status is changed.

18/44

8 ANDROID APPLICATION

8 Android application

Nowadays it is possible to see UAVs almost everywhere. They can be used for various
tasks as filmmaking, searching for lost people or delivering a cargo. These tasks can be
quite hard even for a skilled pilot. An advantage for the pilot is that he can do almost
anything with proper equipment mounted to UAV. A pilot is not sufficient when you need
really precise operations, also not every time it is possible to have such person in your
company or hire one. Using autonomous UAV can erase these difficulties. If coded well,
application for UAV give logical boundaries to the user (e.g. a user cannot threaten air
traffic or can manage returning of the UAV with low battery) also such application can be
used with basic knowledge about UAVs and does not require a trained operator.

This application aims to be user-friendly and easy to use with minimal previous
experience with UAVs. The user can select previously define trajectory or create his own.
On this trajectory, he can choose from 3 types of flight.

• Patroling inside an area

• Flying with given trajectory

• Flying computed trajectory

Patroling inside is done by back and forth motions which is implemented as a trape-
zoidal algorithm in P. Ješke’s work [16]. After user-defined time repulsing maneuver is
made. Flying with given trajectory is flying point after point and repulsing on them. Ori-
enteering problem described in the chapter 4 takes user-defined points and tries to find a
trajectory with limited time budget that has the highest rewards.

8.1 Used technologies

8.1.1 Android

The mobile part of this thesis is created for Android devices. With over 73% of An-
droid users on the market, this app cover majority of the market. One of the basic philoso-
phies of Android development is supporting different screen sizes with responsive design. To
ensure that, relative layouts and dpi (density-independent pixel) was used instead of reg-
ular pixels. These techniques are sufficient for eliminating problems with responsivity and
work well on small devices to big screens of tablets. On the other hand, larger screens often
seem to be ineffective in using the given screen space. To make use of this space, fragments
were used through creating the application. For smaller devices, there is one fragment per
screen. However, for bigger screens these fragments can be combined together as shown in

19/44

8 ANDROID APPLICATION

figure 5. To make the application even more accessible, Czech and English localization using
XML and Android resource system were added. More languages can be easily added. The
basic functionalities of the application can be found at https://youtu.be/GXst6LBxzro.

Figure 5: Example of fragments functionality. Two fragments are merged into one screen,
but separeted for handset. [3]

8.1.2 SQLite

For purposes of this application, only basic functions of the database are needed.
SQLite can satisfy these demands and also is a recommended option for Android developers.
Zero initial configuration and no actions needed after crash make SQLite engine great
option for storing valuable data on a mobile phone. Model of my database is shown in
figure 6.

Figure 6: Database model to store important values about trajectories.

20/44

https://youtu.be/GXst6LBxzro

8 ANDROID APPLICATION

This allows a user to have multiple trajectories, which are saved after the application
is closed. So it is possible for the operator to rerun his favorite trajectories or update ones
that were not successful.

8.1.3 Google Maps

Most important part of the application is where a user is defining his desired trajec-
tory. Google Maps has been chosen for this application, because of support, rich API and
a significant level of editability. Typical input is a marker. Unfortunately, Google Maps
marker cannot exist without map displayed, which is a considerable problem for persistent
data application. It was necessary to encapsulate this marker with a custom class, so a
user will not lose his work when switching screens. Google Places were used for quicker
navigating on the map as the user is not limited only to scrolling, but can also type in the
location where he wants to create a trajectory.

8.1.4 Ros

ROS is an open-source, meta-operating system for robots. It provides many services
including hardware abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management[1]. One part of
the ROS is running on the UAV itself. The second part is running on mobile. Ros is primely
implemented in Python and C + +, but after discussion with the colleague, experimental
Java libraries were. Because of this it is possible to write the android application in the
native language and use similar methods which were used in part of the application running
on the UAV in C + +.

8.2 User interface

One of the goals for the application was to create an easy to use and intuitive user
interface. Google Material Design guidelines were followed to create such an interface.
Material Design is a comprehensive guide for visual, motion, and interaction design across
platforms and devices. Almost every UI element is described here. The description does
not contain how to use this element programmatically but how to position it in view and
how it should behave based on user interaction to create pleasant user experience.

21/44

8 ANDROID APPLICATION

8.2.1 Navigation

Navigation between the screens can be done in multiple ways. One way to create
navigation is the main menu, which will be displayed as an initial screen. Then the user
is able to pick the wanted action. After performing the selected action or pressing back
button, the user returns to the main menu from where it is possible to continue. Another
way for navigation is, creating a global menu which is same for all non-detail screens. For
a small number of items, which is adviced to be up to five by Google Material Design, it is
possible to create a bottom menu. Bottom menu is easily visible and can combine text and
images for menu items. On the other hand, the bottom menu takes quite a considerable
portion of the screen. With basic navigation bar and landscape orientation, it could take up
to a quarter of the screen. Implementing this kind of navigation could be disorientating for
the user. Also, the application now has five menu items, and that could lead to problems in
future if another item would be added. From these possibilities side navigation bar, as seen
in figure 7, was implemented. The bar is scrollable so almost unlimited amount of items
can be added later. The user can bring side menu visible by taping on it in the navigation
bar or by swiping right on the edge of the screen. To hide the menu swipe left, choose an
item or click outside the menu area.

Figure 7: Application navigation done by side bar with five menu items.

As can been seen in figure 7, menu consists of five items.

• Manual control

• Google Maps

• Trajectory manager

• Connection info

22/44

8 ANDROID APPLICATION

• Information

8.2.2 Manual control

Manual control (figure 8) allows the user to take off with the UAV and in air control.
UAV is handled by two joysticks unlike sport UAVs and helicopters, UAV is not controlled
directly by yaw, pitch, roll, and thrust. As this type of control can be hard to master. In-
stead, left joystick serves for movement in the horizontal plane. Namely forward, backward,
left and right. Right joystick pulled on sides serves as a control of an yaw. Altitude can
be controlled by pulling right joystick up or down. For safety reasons descending is much
slower than ascending.

Figure 8: Manual control tab consisting of take off button and two joysticks.

8.2.3 Google Map

The map is where most of the user interaction is done. After loading the map, a
position with trajectory will be displayed. If no trajectory exists, the map will be positioned
on the user’s location that is determined from the available information from his or hers
mobile phone. As seen in chapter 9 navigation bar has a unique menu for this screen
consisting of six items. Sixth item of menu the clue icon is hidden behind a drop-down
menu.

Navigation on the map is well known for most of the users. Several Google Map
gestures are available. Dragging for moving on the map, pinching for zooming the map
and rotation for rotating the map. New points of trajectory can be added by clicking on
the map. Long click on point makes that point draggable allowing repositioning on the
map. Taping on point will bring up a detail screen, where it is possible to change whether

23/44

8 ANDROID APPLICATION

Figure 9: Google Map fragment with opened options menu on the right side. Trajectory
defined by multiple red markers is visible in terrain map.

repulsing maneuver will be executed on the point, height, and reward. Also, the point can be
removed here. In drop-down menu items remove trajectory, save trajectory, new trajectory
and zoom on UAV position are self-explanatory. Shorten trajectory will change a sequence
of points to create the shortest trajectory. After clicking on flycurrenttrajectory, the
user can pick one of three flying modes. Fly trajectory for point by point flying. Fly the
computed trajectory for a budget based flying and patrol inside for covering the whole
area. Clue icon serves for searching and navigating to a different location. The command
option shorten trajectory runs OP algorithm with an unlimited time budget.

8.2.4 Trajectory manager

Next screen, shown in figure 10, serves for managing trajectories. Every trajectory is
displayed here on its own card. In the card, the user can select, edit or delete the respective
trajectory. After selecting trajectory, a user is taken to map with that trajectory. Editing
trajectory takes the user to detail screen where he can rename it, enter an additional
description or set height for all points globally, so he does not have to change the height
for each point manually. Lastly, the user is able to delete trajectory both on the card and
when in detail. The new trajectory can be added by tapping ”plus” in the navigation bar.

24/44

8 ANDROID APPLICATION

Figure 10: View for managing trajectories. Select button takes the user to Map fragment,
edit button show editing popup and delete removes trajectory. Green ”plus” adds new
trajectory.

25/44

9 EXPERIMENTS

9 Experiments

To verify the functionality of complete proposed solution, three experiments were
performed. These experiments test communication between drone and mobile phone, sound
system performance and usability of computed path. The first experiment was performed to
verify these functionalities, other two experiments were created to match real-life scenarios.
All the flights were controlled by mobile application from take-off. Trajectories and their
parameters were also created in the application. More tests were performed but are not
described here, as they were more of prerequisites to these tests. Namely, connection,
correct sending and receiving messages and manual control. Through the chapter, there
are orange and blue points in figures. Orange points are safe to fly area boundaries, and
blue marker is the starting point.

9.1 Basic functionality test

The first experiment tests basic functions of the proposed system. These functions
are fly to the position, change flight height and perform maneuver on designated point with
the sound system on. Flight plan as was seen in the application is in figure 11. Concrete
values which were sent to drone are in table 1. As it can be seen in figures 12,13 and
14, UAV can perform all actions. Repulsing maneuver can be recognized by the change of
height by ten meters. During the repulsing, sounds system was turned on.

Figure 11: Croped view from Android application of first experiment

26/44

9 EXPERIMENTS

Index UTM x UTM y Height Maneuver
1 -24.2 36.8 4 yes
2 37.7 29 8 yes
3 36.8 -8.2 6 yes
4 9.8 11.2 10 no
5 -5.3 5.8 4 yes

Table 1: First experiment important values

Figure 12: Flight path of basic functionality test from the bird perspective ploted in Mat-
blab

27/44

9 EXPERIMENTS

Figure 13: Change of altitude during flight of basic functionality test

Figure 14: Trajectory of basic functionality test plotted in space

28/44

9 EXPERIMENTS

9.2 Testing coverage algorithm

This experiment is testing area coverage by the trapezoidal algorithm. Four points in
figure 15 are bordering points of theoretical vineyard rather than the exact position of birds
flock. In figure 16 bird perspective of this algorithm can be seen, as the height is remaining
same through the flight. Flight plan values are supplied in table 2. For completeness figure
of altitude change is in figure 17 and trajectory plotted in space is in the figure. 18. In
figure 15 can be seen that the trajectory did cover only the middle of the selected area.
This is caused by setting higher speed than the UAV is capable of, resulting in a wrong
sampling of trajectory. Because of that, the final flown trajectory is taking ”shortcuts” to
satisfy wanted trajectory at least partially.

Figure 15: Croped view from Android application of area coverage experiment. Area covered
is bordered by black lines.

Index UTM x UTM y Height
1 -24.2 36.8 8
2 37.7 23 8
3 36.8 -8.2 8
4 -14.2 -14.2 8

Table 2: Area coverage flight plan values

29/44

9 EXPERIMENTS

Figure 16: Trajectory from the bird perspective during the trapezoidal algorithm

30/44

9 EXPERIMENTS

Figure 17: Change of altitude during flight of the trapezoidal algorithm

Figure 18: Trajectory of the trapezoidal algorithm ploted in space

31/44

9 EXPERIMENTS

9.3 Testing orienteering algorithm

In this scenario, four vineyards with different types of grapes and thus rewards are
created. Each vineyard is represented by four points. The UAV starting position is in the
middle. Situation before computation is in figure 19. Points chosen by the algorithm are in
figure 20. The algorithm correctly chose higher reward points and used almost whole time
budget (202/220). So no more points could not be added as repulsing takes twenty seconds.
The algorithm did collect maximal reward possible (16 reward points were collected within
the time budget of 220 seconds) but did not find the best path as there are two possibilities
of a shorter path with the same reward. Whole algorithm input is shown in table 3.

Figure 19: Flight plan as seen in the Android application before computation

Figure 20: Flight plan after computation in algorithm presented in this thesis. Points joined
by lines were chosen by algorithm.

32/44

9 EXPERIMENTS

Index UTM x UTM y Height Reward
1* -25 41 4 2
2 -22 41 4 2
3 -25 38 4 2
4* -21 37 4 2
5 30.8 -16.2 4 1
6 36.8 -6.2 4 1
7 30.8 -10.2 4 1
8 36.8 -10.2 4 1
9* 33.8 29.8 4 3
10* 47.8 28.8 4 3
11* 46.8 19.8 4 3
12* 46.7 19.8 4 3
13 -15.2 -3.2 4 1
14 -14.2 -7.2 4 1
15 -14.2 -10.2 4 1
16 -14.2 -14.2 4 1

Table 3: Flight plan values of orienteering algorithm. Values marked with * were chosen
by algorithm.

33/44

9 EXPERIMENTS

Figure 21: Trajectory from the bird perspective during the test flight of OP algorithm

34/44

9 EXPERIMENTS

Figure 22: Change of altitude during flight of the OP algorithm experiment

Figure 23: Trajectory of the computed path by path planning algorithm ploted in space

35/44

9 EXPERIMENTS

9.4 Testing sound system capabilities

To select the best solution for the sound system, multiple tests were performed by
sound level meter testo815. This device allows two mods of filtering. Frequency filter A,
detach low frequency human inaudible noises from the measurement. Frequency filter C
even the low-frequency noises. Both types of measurement were carried as the birds have
wider range audible frequency than the humans. The siren was powered with 12V during
the test and the speaker was playing an 800Hz Sawtooth tone. The speaker was louder
than the propellers while playing continues tone. Playing predator noises on the speaker
was not recognizable on measured power value. The siren has highest power values a thus
is selected option for bird repulsing.

Distance [m] ESP siren Speaker UAV Proppelers
Filter modes (A) (C) (A) (C) (A) (C)
1 105 115 93 97 82 87
2 101 107 88 89 77 84
5 88 98 83 85 73 78
10 82 86 78 81 68 73
15 78 82 74 76 65 69
20 75 76 67 71 60 66
Enviroment 51 71 53 68 53 68

Table 4: Power values [dB] messuered by testo815 to verify usability of sound system. Two
power values are shown here, each for different type of filtering (A and C)

36/44

10 CONCLUSION

10 Conclusion

The solution for bird repulsion at vineyards by the UAV is presented in this thesis.
At first, an Android application was created. The created application allows the user to
quickly create trajectories for the UAV, without the knowledge of the ROS system running
on it. It is possible to control the sound system directly from the application, or by selecting
one of the flight modes. Trajectories created in the application are saved on the mobile
phone and are editable with a possibility of adding additional parameters based on the
future requirements of users.

The sound system was at first implemented with the speaker. Testing the speaker
revealed that the emitted sound is inaudible in comparison with the noise emitted by the
UAV’s propellers. After these power tests, the sound system was reimplemented with piezo
sirens. These sirens are easy to use in the application or by calling ROS services.

The path planning algorithm is based on the Orienteering problem and solved with
a stochastic approach using the Monte Carlo technique. This algorithm was used to find
a feasible path for the UAV. Furthermore, usage of the sound system with regard to the
distance and the power was computed. Functionalities of proposed application were at first
tested in Gazebo. Real platform experiments were described in this thesis. These tests
verified the possibility of using the path planning algorithm proposed in this thesis for bird
repulsion and also verified the functionality of the whole solution.

For the future, much more work could be done on the application and the sound
system. Implemented path planning algorithm could be substituted by a more advanced a
GSOA. The logic for using GSOA is already described in this thesis, however, it has not
been used for computing the trajectories. Also, it is possible that the sound system and
repulsing maneuver will require modification after a research carried by Czech University
of life sciences.

37/44

10 CONCLUSION

38/44

REFERENCES

References

[1] Ros/introduction, 2014. Available at http://wiki.ros.org/ROS/Introduction.

[2] Walmart testing warehouse drones to catalog and manage inven-
tory, 2016. Available at https : //www.supplychain247.com/article
/walmart testing warehouse drones to manage inventory.

[3] An example of how two ui modules defined by fragments can be combined into one
activity for a tablet design, but separated for a handset design., 2018. Available at
https://developer.android.com/guide/components/fragments.

[4] Mav used by multi-robot systems group, 2018. Available at http : //mrs.
felk.cvut.cz/images/images/main page icons/single MAV hexa compressed.jpg.

[5] Micro Aerial Vehicle - MRS CVUT. 2018. Available at
http://mrs.felk.cvut.cz/research/micro-aerialvehicles.

[6] Soundair speaker, 2018.
Available at https : //iczc.cz/cuogtvukisgubb01o0cag07l52 4/obrazek.

[7] Drones for search & rescue missions. Altigator.com, c2018. Available at
https://altigator.com/drones-for-search-rescue-missions.

[8] G. Astuti, G. Giudice, D. Longo, C. D. Melita, G. Muscato, and A. Orlando. An
overview of the “volcan project”: An uas for exploration of volcanic environments.
Journal of Intelligent and Robotic Systems, 54(1):471–494, Mar 2009.

[9] I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. A fast and effective heuristic
for the orienteering problem. European Journal of Operational Research, 88(3):475 –
489, 1996.

[10] J. Chudoba, M. Saska, T. Baca, and L. Preucil. Localization and stabilization of
micro aerial vehicles based on visual features tracking. In International Conference
on Unmanned Aircraft Systems (ICUAS), 2014.

[11] L. E. Dubins. On Curves of Minimal Length with a Constraint on Average Curvature,
and with Prescribed Initial and Terminal Positions and Tangents. American Journal
of Mathematics, 79(3):497+, July 1957.

[12] J. Faigl. Data collection path planning with spatially correlated measurements using
growing self-organizing array, 2018.

[13] Jan Faigl and Robert Pěnička. On close enough orienteering problem with dubins
vehicle. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5646–5652, 2017.

39/44

REFERENCES

[14] Shripad Gade, Aditya A. Paranjape, and Soon Jo Chung. Herding a flock of birds
approaching an airport using an unmanned aerial vehicle. In AIAA Guidance, Naviga-
tion, and Control Conference 2015, MGNC 2015 - Held at the AIAA SciTech Forum
2015. American Institute of Aeronautics and Astronautics Inc., 2015.

[15] Bruce Golden, Arjang Assad, and Roy Dahl. Analysis of a large scale vehicle routing
problem with an inventory component. Large scale systems, 7(2-3):181–190, 1984.

[16] P. Ješke. Autonomous helicopter control by a mobile phone with android for precision
agriculture, 2018.

[17] Gorka Kobeaga, Maŕıa Merino, and Jose A. Lozano. An efficient evolutionary algo-
rithm for the orienteering problem. Computers & Operations Research, 90:42 – 59,
2018.

[18] D. Kohler and K. Conley. rosjava–an implementation of ros in pure java with android.
2011. Available at https://github.com/rosjava/rosjava core.

[19] Golden Bruce L., Levy Larry, and Vohra Rakesh. The orienteering problem. Naval
Research Logistics (NRL), 34(3):307–318, 1987.

[20] G. Laporte, F. Semet, V V Dadeshidze, and L J Olsson. A tiling and routing heuristic
for the screening of cytological samples. Journal of the Operational Research Society,
49(12):1233–1238, Dec 1998.

[21] Gilbert Laporte and Silvano Martello. The selective travelling salesman problem.
Discrete Applied Mathematics, 26(2):193 – 207, 1990.

[22] S. Lee, K. E. An, B. D. Jeon, K. Y. Cho, S. J. Lee, and D. Seo. Detecting faulty solar
panels based on thermal image processing. In 2018 IEEE International Conference
on Consumer Electronics (ICCE), pages 1–2, Jan 2018.

[23] Mathieu Lihoreau, Tamara Gómez-Moracho, and Cristian Pasquaretta. Traveling
Salesman, pages 1–4. Springer International Publishing, Cham, 2017.

[24] A. S. Lomax, W. Corso, and J. F. Etro. Employing unmanned aerial vehicles (uavs) as
an element of the integrated ocean observing system. Proceedings of OCEANS 2005
MTS/IEEE, pages 184–190 Vol. 1, Sept 2005.

[25] Aaron Martinez and Enrique Fernández. Learning ROS for Robotics Programming.
Packt Publishing Ltd., 2013, birmingham edition, 2013.

[26] Andrew Meola. Shop online and get your items delivery by a drone delivery ser-
vice: The future amazon and domino’s have envisioned for us, 2017. Available at
http://www.businessinsider.com/delivery-drones-market-service-2017-7.

40/44

REFERENCES

[27] Jason M. O’Kane. A Gentle Introduction to ROS. O’Kane, Columbia, 2014 edition,
2014.

[28] Robert Pěnička, Jan Faigl, Petr Váňa, and Martin Saska. Dubins orienteering problem.
IEEE Robotics and Automation Letters, 2(2):1210–1217, April 2017.

[29] Robert Pěnička, Jan Faigl, Petr Váňa, and Martin Saska. Dubins orienteering problem
with neighborhoods. In 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 1555–1562, June 2017.

[30] Robert Pěnička, Martin Saska, Christophe Reymann, and Simon Lacroix. Reactive
dubins traveling salesman problem for replanning of information gathering by uavs.
In European Conference of Mobile Robotics (ECMR), pages 259–264, 2017.

[31] Robert Pěnička. Motion planning for seabed monitoring by autonomous underwater
vehicles, 2016.

[32] R. Ramesh and Kathleen M. Brown. An efficient four-phase heuristic for the gen-
eralized orienteering problem. Computers & Operations Research, 18(2):151 – 165,
1991.

[33] M. Saska, V. Kratky, V. Spurny, and T. Baca. Documentation of dark areas of large
historical buildings by a formation of unmanned aerial vehicles using model predictive
control. In IEEE ETFA, 2017.

[34] Wouter Souffriau, Pieter Vansteenwegen, Joris Vertommen, Greet Vanden Berghe, and
Dirk Van Oudheusden. A personalized tourist trip design algorithm for mobile tourist
guides. Applied Artificial Intelligence, 22(10):964–985, 2008.

[35] T. Thomadsen and T. Stidsen. The quadratic selective travelling salesman problem.
2003.

[36] T. Tsiligirides. Heuristic methods applied to orienteering. The Journal of the Opera-
tional Research Society, 35(9):797–809, 1984.

[37] C. Verbeeck, K. Sörensen, E.-H. Aghezzaf, and P. Vansteenwegen. A fast solution
method for the time-dependent orienteering problem. European Journal of Operational
Research, 236(2):419 – 432, 2014.

[38] J. Yu, M. Schwager, and D. Rus. Correlated orienteering problem and its application
to persistent monitoring tasks. IEEE Transactions on Robotics, 32(5):1106–1118, Oct
2016.

41/44

REFERENCES

42/44

APPENDIX A CD CONTENT

Appendix A CD Content

In Table 5 are listed names of all root directories on CD.

Directory name Description
kloucste.pdf the thesis in pdf format
thesis sources latex source codes
android sources android application source files
android application genereted apk and how to install readme
communication sources source files for comunication running on drone

Table 5: CD Content

43/44

APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

In Table 6 are listed abbreviations used in this thesis.

Abbreviation Meaning
API Application programming interface
GPS Global Positioning System
UAV Unmanned Aerial Vehicle
MAV Micro-Air Vehicle
VTOL Vertical Take-Off and Landing
OP Orienteering problem
CEOP Close enough orienteering problem
TSP Travelling salesman problem
GSOA Growing Self-Organizing Array
UI User interface

Table 6: List of abbreviations

44/44

	Introduction
	State of the art
	Mobile application
	Orienteering problem
	Close enough orienteering problem

	Specification
	Path planning
	Repulsing birds and OP

	Path planning with close enough neighbors
	Close enough neighbors for bird repulsing
	Probability of repulsing computation

	Sound system
	Speaker
	Siren

	Communication
	Communication technologies
	Communication via Wi-Fi network
	Secure Shell
	Packet comunication
	RosJava

	Comunication protocol
	UAV status message
	Command messages

	Android application
	Used technologies
	Android
	SQLite
	Google Maps
	Ros

	User interface
	Navigation
	Manual control
	Google Map
	Trajectory manager

	Experiments
	Basic functionality test
	Testing coverage algorithm
	Testing orienteering algorithm
	Testing sound system capabilities

	Conclusion
	Appendix CD Content
	Appendix List of abbreviations

