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Abstract

Malware detection becomes a necessity
with the rising amount and power of cyber
attacks. Nowadays, Windows operating
system is the most widely used system,
and for that reason, it is targeted the most
by malware authors. We focus on malware
detection in Portable Ezecutable files since
it is the most common file format used for
spreading malware in Windows OS. The
amount of malware is too large, so it is
not possible to analyze all the samples by
hand, even only running them would cost
too much time and resources. Therefore,
it is necessary to analyze binaries with-
out actually executing them, i.e., perform
static analysis. Many methods of static
analysis have been proposed, but they
lack comparison on the same real-world
data. In this thesis, we provide a compar-
ison of features extracted from raw byte
code, PE header, and assembly code. We
evaluate gain of each feature separately,
and then select the best performing set of
features and use them to train Gradient
Boosting Tree. We tested our approach on
a dataset of almost 900,000 binaries col-
lected in the wild between November 2017
and January 2018. Our dataset is much
larger than those usually used for research
and contains a wide range of malware vari-
ants. We show that proposed approach
provides sufficient results for deployment
in real applications. Besides, we provide
a thorough analysis of obtained results to
understand where and why the classifier
makes mistakes.

Keywords: static analysis, malware
detection, portable executable
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Abstrakt

Se silicimi kybertutoky a jejich roustou-
cim mnozstvim se detekce skodlivych sou-
boril stava nezbytnou. Operac¢ni systém
Windows je v soucasnosti nejrozsitenéj-
$im systémem, a proto je také nejcastéj-
$im tercem utokn. Zamérujeme se na de-
tekci skodlivych soubori ve formatu Por-
table Executable, jelikoz pravé ty jsou
nejcastéji zneuzivany pro siteni vird ve
Windows. Mnozstvi skodlivych souborii
je prilis velké na to, aby bylo mozné
zkoumat soubory jednotlivé. Dokonce ani
neni mozné soubory pouze spustit, pro-
toze by tento proces stal priliS mnoho
Casu a prostredki. Z téchto divodu je
nutné zkoumat soubory bez samotného
spusténi t.j. aplikovat statickou analyzu.
Bylo publikovino mnoho metod statické
analyzy, avsak chybi jejich porovnani na
stejnych redlnych datech. V této préaci po-
rovnavame priznaky ziskané z binarniho
kédu, PE hlavicky a assembler kodu. Vy-
hodnocujeme prinos kazdého z priznak,
tak abychom vybrali nejlepsi mnozinu pri-
znaki, na které natrénujeme Gradient Bo-
osting Tree. Nase reseni jsme otestovali
na 900 000 spustitelnych souborech, které
jsme shromazdili od listopadu 2017 do
ledna 2018. Pouzity dataset je mnohem
vétsi nez ty, které se bézné pouzivaji pro
vyzkum, a obsahuje Sirokou skalu skod-
livych soubort. Nami navrhované reseni
dosahuje vysledkt nutnych k pouziti v
praxi. Navic v nasi v praci detailné analy-
zujeme ziskané vysledky a zkoumame kde
a pro¢ nas klasifikator chyboval.

Klicova slova: statickd analyza, detekce
skodlivych souborti, portable executable

Pteklad nazvu: Detekce skodlivych
soubort pomoci metod statické analyzy
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Chapter 1

Introduction

The number of malware in the wild is constantly rising (see Figure 1.1), and
AV-test reports over 250,000 new malicious programs every day. The total
number of malware reached 700 million in 2017. Windows operating system
is still targeted the most, and Portable Executable is the most common file
format used for spreading malware [6]. Attacks performed by malware are
becoming stronger and threaten even critical infrastructure of countries. In
2017, WannaCry ransomware infected over 230,000 Windows computers in
over 150 countries. Victims of the attack include British healthcare system,
several hospitals, the large telecommunication provider Telefonica, as well as
the German railway company [30]. Developing effective malware detection
systems that would detect and stop cyber attacks is crucial to protect our
computers, privacy, businesses, and infrastructure.

The task of detecting malware is different from many other machine learning
fields in many aspects. Among others, attackers write their programs in a way
to evade detection. They are at the same time the source of data for creating
a classifier. This situation is very challenging. Another important aspect of
the anti-malware engine is its scalability. With the number of binaries on
computers, the system must be able to handle a large number of coming files
and classify each file as fast as possible. Furthermore, the need of making
right decisions about files is another crucial aspect when detecting malware.
Rising too many false alarms would make users turn off the system, but at
the same time, we want to detect as much malware as possible.

Several data-mining methods were proposed in a literature [29] [11]. There
are two types of malware analysis: static and dynamic. The difference is
that during static analysis a binary is not executed. Static analysis is very
challenging since we do not see the behavior of a file. Published methods
extract information from PE header, raw binary code, or they go further
and disassemble the binary to obtain assembly code. These approaches show
promising results, but they are hard to compare since they were not tested
on the same datasets.

In this work, we compare several methods used for malware detection.
We create our custom dataset that is large enough to cover many malware
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Figure 1.1: Total number of malicious programs registered by AV-test during
the last 10 years. [6]

variants and simulates real-world scenario. We compare various features that
are widely used for malware analysis, and find the best performing set. We
further add a detailed analysis of obtained classification model, where we
explain where and why the classifier makes mistakes. The resulting model
is efficient and capable of handling large datasets while having satisfactory
performance. Our work can serve as a baseline when building a malware
detection model, and it provides a valuable introduction to the field of static
analysis.

The thesis is organized as follows:

In Chapter [2| we explain the concept of Portable executable (PE) format.
We focus on information that is valuable for malware detection, and we also
mention some countermeasures against static analysis.

In Chapter [3| we review published work concerning malware detection. We
summarize used methods and report their results. We add a section about
machine learning classifiers and explain the model we used.

In Chapter 4 we formulate requirements on datasets used for malware
detection. We survey public datasets and introduce our custom dataset, and
explain metrics that are used for measuring the performance of classifiers.

In Chapter |5 we define our method starting with features we use. We give
reasoning behind used features, explain how to select the most relevant ones
and build a classifier on them.

In Chapter [6| we show results of particular used features, and we find the
best performing set of features. We train a classification model on them and
give a detailed analysis of the obtained model, and we further improve it.

We conclude this thesis in Chapter 7| and give suggestions for future work.



Chapter 2

Portable executable file

Malware comes in many different forms and types, but Portable Executable
(PE) is the most common file format used for spreading malware [6]. Knowl-
edge of PE files is necessary to understand how we can extract useful in-
formation for malware detection. Firstly, we give examples of files that are
in PE format. Secondly, we explain the structure of PE file and explain
its important parts. We include a section about assembly code that can be
obtained from a binary. Finally, we explain packing and how it impacts static
analysis.

. 2.1 PE file extension

PE format is used by:

® Executables (.exe)
Almost every program that a user executes comes in the form of .exe file.

® Dynamic-link libraries (.dll)
DLLs are widely used in Windows OS. They contain code and data that
can be used by other programs.

® Other minor formats like FON Font files

Difference between DLLs and EXE files is negligible for our problem, so we
treat them the same. DLLs are meant to be loaded by other programs so
they export functions and data that can be loaded by other processes. When
EXE file is executed, it resides in its own process and starts running its
program. EXE file usually does not export any functions, but it can import
other libraries.

. 2.2 PE file format

PE file contains all data and executable code as well as all necessary informa-
tion for Windows loader. The loader gets information about sections of the
file and allocates memory for them, resolves imported libraries of the program,

3



2. Portable executable file

MS-DOS MZ HEADER

MS-DOS REAL-MODE
STUB PROGRAM

PE FILE SIGNATURE
PEW0W0

PE FILE HEADER

PE OPTIONAL HEADER

SECTION HEADERS

rsre section header

SECTIONS

Figure 2.1: Structure of PE file [2].

and passes execution to the program. PE file has predefined structure so
loaders can read it across all versions of Windows OS and execute the file

properly. The structure is shown in Figure 2.1

PE starts with DOS header usually consisting of a message "This program
cannot be run in DOS mode." It should contain field e_lfanew that points to

a beginning of PE header.

PE header has information about the whole file. Some of the entries in the

PE header:

B Target machine

#® Timestamp when the file was created

® Number of sections

® Size of Optional header

Optional header follows and gives more details about the file. Some of the

entries in the Optional Header:

® Entry point address - where the program execution starts

B Size of code, Size of data

® Magic code representing architecture (PE32, PE64, ROM)

4



2.3. Import Address table

® Pointers to Data directories - addresses and sizes of tables like import
table, resources table

Section table follows and gives information about each section. Each record
in the table contains, among others, name of the section, virtual address
and virtual size. Typical sections are: .text, .code (executable code); .rsrc
(resources); .data, .idata (initialized data); .bss (uninitialized data). However,
section names can be user-defined and there is no fixed set of names.

B 23 Import Address table

As we mentioned previously, there are data directories in the PE file. Table
with imports is one of them, and it is a valuable source of information for an
analyst because imports give us an idea about the functionality of a program.
Authors of programs usually use libraries, so they do not have to implement
all the functionality by themselves. Using libraries saves time and work during
development. Furthermore, libraries already installed in the computer can be
reused so they are not bundled with the binary and the binary is smaller.

Libraries are typically used for standard operations like writing to a file,
accessing the internet, etc. We can use CreateFile function from Kernel32
library for writing to a file instead of writing the code by ourselves. Other typ-
ical procedures like reading Windows registry, using Graphical User Interface
(GUI), cryptography, and many others are done calling library functions.

Imported libraries are connected to the program by a process called linking.
There are three types of linking:

8 Dynamic linking - Libraries are resolved by OS when the program is
executed. All the linked libraries are listed in the PE header.

® Static linking - The code of the linked library is copied into the executable.
There is no information about static linking in the PE header.

B Runtime linking - Libraries are connected to the executable only when
they are needed. These libraries can be resolved using functions LoadLibrary
and GetProcAddress which may or may not be listed in the PE header.

Dynamic linking is the best option for a security analyst. Information
about dynamically linked libraries is inside the PE header so by reading it
we can at least partially understand the functionality of the program. For
example, we can find out that a program uses GUI, or accesses the internet,
just by looking at its imports.

Statically linked libraries can be discovered by digging deeper in the binary
and matching the code with known libraries. Runtime linking is almost
stealthy for the static analysis. We can discover libraries supposed to be
linked in runtime by finding their name as a string in the binary. However,
even that does not have to be possible if the binary is packed. An explanation
of packing follows in Section [2.5



2. Portable executable file

XOR CL
101 [10000000]11110001]/00010010| 10

Figure 2.2: Machine code and its translation into assembly instruction "XOR
CL 12".

. 2.4 Code section

Executable instructions (code) of a binary usually has an intended section
(e.g., .text). Code data are usually read-only because they do not need
to be modified during runtime. Instructions are in a binary in the form of
machine code. The machine code is specific for given hardware and is hard to
read. Therefore, there is a mapping between machine code and assembly code.
Assembly code is more general and easier to understand. In this section, we
explain what is assembly language and how to extract it.

B 2.4.1 Assembly language

Assembly language (ASM) is a low-level programming language used for giving
instructions to the computer. ASM is specific for each architecture, e.g., x86,
MIPS. There exists a mapping between assembly language and a machine
code where the machine code is in a binary form and is directly interpreted
by the hardware. We can think of the assembly code as a human-readable
version of the machine code. A program called assembler transforms the
assembly code into the machine code. The reverse process of converting the
machine code into the assembly code is called disassembling and is performed
by a disassembler.

Instructions of the assembly code are in the form of operational codes
(opcodes). An opcode represents a basic operation, e.g., ADD represents
addition. The opcode is followed with zero or more operands. Operands can
be constants, registers or addresses in memory. For example XOR CL x12
performs logical XOR between a value in the register CL and constant 12
(hex). Machine code representation is shown in Figure 2.2

B 2.4.2 Disassembling

A PE executable contains machine code which can generally be translated
into assembly code instructions. It is necessary to locate the entry point of the
binary to start disassembling. The entry point is an address in the memory
where the program starts, i.e., the address of the first instruction. If we shift
the address just by one bit, we can interpret the machine code as a completely
different program. This fact is visible in the Figure 2.2l The translation
starts at the entry point and continues based on the data found. Data and
code can be mixed, and therefore the translation should be done with care.
The code contains many GOTO instructions (jump, call, etc.) which affect

6



2.5. Packing

the flow of the program. The code is usually divided into functions based on
GOTO instructions.

Having the assembly code is a powerful tool for the analysis of a program.
By reading or executing the code, we can understand each part of the program.
Binaries can also use specific code constructs or opcodes that can be typical
for some malware.

B 25 Packing

Packing generally takes an executable and transform it into another executable
with the same functionality but different properties. It is mainly used for
compressing and encrypting the binary and preventing its analysis. Even
legitimate software defends against analysis because then it would be possible
to copy it or easily change it. Packing of binaries is popular among malware
writers because it provides effective protection against traditional detection
techniques such as pattern matching. To understand why packing makes
analysis difficult it is necessary to understand how packing works.

Bl 2.5.1 Unpacking stub

There are several techniques of packing. Generally, they transform an exe-
cutable into another executable called unpacking stub. The stub is completely
different program than the original one. Its only purpose is to make the
original binary run. The unpacking stub must do three steps:

1. Unpack original executable into the memory
2. Resolve imports

3. Forward execution to the original entry point

The original executable is stored as an encrypted binary blob in the
packed executable, so the stub needs to load it into the memory. When
a binary is loaded into the memory, the unpacking stub must resolve all
imports. Resolving can be done using one of the types of linking described
in Section [2.3 Common approach is calling functions LoadLibrary and
GetProcAddress and resolving all imports. These two functions are then
in the PE header. Another approach is having all imports of the original
program in the PE header of the unpacking stub. Then imports are resolved
by the OS loader, and the stub does not have to do anything. However,
the functionality is exposed which is something the malware authors do
not want. The stealthiest option is performing runtime linking and finding
even LoadLibrary and GetProcAddress functions on the computer and not
exposing any imports at all.



2. Portable executable file

B 2.5.2 Unpacking of binaries

If we analyzed a packed binary as is, then we analyze the unpacking stub
and not the original binary. Therefore, unpacking of the binary should be
performed to obtain the original one.

Firstly, it is necessary to detect that a binary is packed. A packed file
usually has a high entropy of sections since it is compressed and possibly
encrypted. Another way is finding signatures of the packers [19], e.g., packers
can create sections with typical names, or append specific byte sequences.

Retrieving the original binary (unpacking) is a very complex problem.
There are packers (e.g., UPX) that provide also decompressing procedure.
This case is the easiest one, but the decompression tool is usually not available.

The most reliable unpacking procedure is running the unpacking stub
until the execution is forwarded to the original binary (original entry point).
However, there are many difficulties connected to this approach. Detection of
the original entry point is one of the many challenging problems. Another
problem is that the unpacking stub needs to be run and it can be potentially
dangerous.

Generic unpackers are another way to go [19]. First, they detect the used
packer and using this knowledge they try to reverse the packing method.
This method requires a database of packers and a lot of effort in reversing
the packing. There are many packers available, and attackers can even write
their packers, so building a generic packer is a challenging task.

Unfortunately, there are currently no fully automated unpacking tools that
would handle all kinds of packers. Packing a binary is a huge obstacle in
the way of static analysis. Packing can hide useful information hidden in
the binary,e.g., imports, strings (packed binary does not contain readable
strings because it is compressed or encrypted), original sections; and can
make disassembling impossible. Writing a custom packer evades detection by
a generic unpacker and then running the binary for analysis is a necessity.
However, addressing the unpacking is out of scope of this work.



Chapter 3

Related work

Malware detection is becoming more and more important since the number
of malware is continuously rising and attacks are becoming more powerful
[6]. Therefore, many researchers focus on finding a large-scale solution to
prevent cyber attacks. Malware detection system needs to find a good set of
features to represent a binary file, and appropriate classification model must
be selected and trained. In this chapter, we review literature that addressed
these problems.

B 3.1 Malware analysis

Malware is malicious software that intentionally harms a computer user.
Malware can vary in its form (executable file, pdf file, etc.), and functions
(trojan, spyware, adware, etc.). Detection of malware is essential for protecting
users’ data and privacy. Therefore malware detection systems are deployed
to check files and mitigate their harm. Malware detection systems are fully
automated because they must handle a large number of files coming every
second and it is impossible to classify them by hand.

If we examine a binary without actually running it, then we talk about
static analysis. When the sample is executed, we talk about dynamic analysis.
We focus on static analysis in this work.

B 3.1.1 Static analysis

Classifying binaries using static analysis is a complicated task because we
cannot directly see the behavior of an executable. Thus, we extract infor-
mation from the binary structure (e.g., PE header). We can go further and
disassemble binaries to obtain assembly code as explained in Section [2.4. By
understanding the code, we can understand the binary and understand its
purpose. However, automating this process is an ongoing challenge.

Schultz et al. [28] introduced data mining to start malware detection on
a bigger scale. They used three types of features: strings, byte sequences,
and Portable executable features. Strings are extracted as series of printable

9
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Figure 3.1: Binaries from Ramnit malware family transformed into images.

characters embedded in the binary. Byte sequences are non-overlapping
sequences of n bytes. Portable executable features are extracted from the
PE header. They include a list of imported libraries, list of library function
calls, and a count of different function calls within a library. Their dataset
consisted of 4,266 binaries, and they obtained 97.76% detection rate with
6.01% false positive rate (explained in Section .

Elovici et al. [9] used bytes 5-grams together with features from the PE
header (e.g., machine type, file size, imported libraries, exported functions).
They trained several classification models, and the best performing one was
a decision tree trained on PE header features which they tested on 7,694
malicious files and 22,736 benign files. They obtained TPR 0.925 and FPR
0.035.

Kolter et. al [I7] used n-grams instead of byte sequences. The difference
is that n-grams are overlapping sequences. They selected the 500 most
prevalent 4-grams out of all generated. Their features represent whether the
n-gram is present in the binary. They tested their model on a dataset of 1971
benign executables and 1651 malicious executables. They obtained the area
under ROC curve (AUC) of 0.996. They also compared several classification
models and concluded that boosted decision trees provide the best detection
performance.

Nataraj et al. proposed visualizing malware binaries as gray-scale images
[21]. They take a binary as a vector and transform it into an image. The
width of the image is derived from the length of the file. The proposed
widths are in Table Malware images show similarities between samples
in the same family, and this fact is used for classifying binaries. Example of 3
images from Ramnit malware family is in Figure 3.1, Authors used tools for
analyzing textures and extracted GIST features [23]. GIST features provide
a low dimensional description of an image. K-NN classifier was trained using
these features on a dataset of 9,458 binaries from malware 25 families. They
performed multiclass classification and obtained 99.2% accuracy. They also
tried adding benign executables to their dataset, and then their accuracy
dropped to 98.1%. Authors pointed out that this method is vulnerable to
adversaries that obfuscate the code to make texture features useless.

Raff et al. [25] proposed training a neural network on raw bytes. This
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File size Image width
<10 Kb 32

10 - 30 kB 64

30 - 60 kb 128

60 - 100 kB 256
100 - 200 kB 384
200 - 500 kB 512
500 - 1000 kB 768
>1000 kB 1024

Table 3.1: Tmage widths proposed by Nataraj et al. [21].

approach does not require researchers to manually design features. Instead, a
convolutional network finds useful patterns in the binary. They compared
several datasets where the biggest one used for training had 2 million samples
(1,000,020 benign and 1,011,766 malicious). Training on the big dataset took
a month on 8 GPUs. They tested their classifier on two datasets (77,349 and
65,821 files) and obtained AUC 98.2 and 98.1 respectively. They compared
their network to n-gram (n = 1) approach and obtained AUC 93.4 and 97.0
respectively.

Microsoft Malware Classification Challenge [27] in 2015 provided dataset
with 21,741 samples. Almost 400 researchers participated in the challenge,
and other researchers have used this dataset since then too. Microsoft shared
each sample as a binary and also output from Interactive Disassembler (IDA).
IDA output contains assembly code.

Ahmadi et al. [5] participated in the challenge and achieved 99.8% accuracy.
They used features both from raw binaries and IDA output. Their feature set
consist of metadata features (file size, entry point address), section statistics
(details in Section [5.1.3), n-grams of bytes and opcodes, image features,
entropy, and many other features. Their framework is available online.

Winners of Kaggle competition [I5] used n-grams of opcodes up to 4-grams,
segment line counts, and pixel intensity of IDA output file transformed into
an image. Those features contributed the most to the final solution, but they
also used byte n-grams, dll calls, and some other features.

B 3.1.2 Dynamic analysis

When malware is executed for analysis, we talk about dynamic analysis.
Dynamic analysis is a powerful tool for malware detection because a binary
can potentially show its malicious behavior during its execution.

There are several challenges when performing dynamic analysis. Malware
must be executed in a safe environment to prevent spreading. Dynamic
analysis is usually performed in a specialized Virtual machine called sandbox
which records the behavior of a binary (created files, network activity, etc.).
Chen et al. [8] showed that malware changes its behavior in a sandbox,
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and therefore this environment should be designed with care. The result of
dynamic analysis depends on a scenario of the experiment which must cover
all situations in which the malware could be malicious (e.g., some malware
only activates when browsing the internet). Another problem is that malware
can start being malicious after a long time, so short analysis does not discover
its maliciousness. Sandboxes nowadays can perform detailed analysis and are
likely to discover the malicious behavior of binaries.

In conclusion, valuable malicious indicators can be obtained during dynamic
analysis. We can see what files were created/deleted, network activity, etc.
This information directly reveals the purpose of a file and show its potential
maliciousness. However, malware equipped with anti-sandboxing techniques
may remain undetected which limits the performance of this approach. Giving
more details about dynamic analysis is out of scope of this work.

. 3.2 Classifiers

The goal of classification is creating a prediction model, that will assign
a label to each vector in defined feature space. In this section, we define
classification problems and continue by explaining Gradient boosting decision
trees that we have used for our problem.

B 3.2.1 Classification definition

Let us define a general classification model. Let L be a set of data labels. In
our case of binary classification:

L = {malicious, legitimate} .
We define classification model as a function f such that
f:RP > L

where D is dimension of data.

Machine learning uses training data to build a model that can be used for
classification. The model is found by minimizing chosen lost function. For
train set T'

T = {(xi,yi) }iey
Vi=1...n:x; € RP
Vi=1l...n:y, €L
where n is number of training samples. We minimize loss function:

n

l= Z J(f (i), yi)

=1

where J is arbitrary cost function, e.g., mean squared error. Classification
models differ especially in f function and also in chosen J function.
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The usual flow of creating classifier is as follows. Firstly, labeled data,
which we want to classify, are described by features. These features should
be descriptive enough to make the classification possible. A part of the
dataset (called train set) is used during the training phase of the classifier
where the prediction model is built. The model should be tuned to achieve
maximal generalization to unseen data. Obtained model is then tested on
data that were not part of the train set, and results are reported. Examples
of classification models are Support Vector Machines, Random Forest, Neural
Network.

B 3.2.2 Choosing a classifier

We want to use a dataset of binaries to train a model that will be used
for classifying binaries as legitimate or malicious. Ferndndez-Delgado et al.
[10] showed that random forest is the most likely to perform the best on
classification problems. Random Forest is an ensemble method that constructs
multiple decision trees, and the final decision is obtained by aggregation of
results of the trees. Random Forest also returns the decision path which shows
how the decision was made. It helps to interpret decisions of the forest and
understand them. Another model based on Decision trees is called Gradient
Boosting Decision Trees. It is built differently than random forest.

B 3.2.3 Gradient boosting decision trees

We explain Gradient boosting decision trees (GBDT) in this section. Boosting
solves the need to classifydifficult samples right because it puts more weight
on them during training. The tree is built by sequentially adding weak
classifiers. GBDT is a version of Gradient Boosting Machine where all weak
classifiers are regression trees. Algorithm |1/ shows how the tree is built. Model
is initialized with a constant value in step 1. Then we sequentially add M
weak learners in step 2. A model for each class is built separately (using
softmax function guarantees that probability of all classes sums to 1). In each
step, a weak learner fits negative gradients of residuals of the classifier from
the previous step. A tree partitions space into .J,,, disjoint regions, and the
tree predicts a constant value in each region Rjj,,. This value is multiplied
by jkm obtained by line search in step (iii). The resulting model is updated
in step (iv). The tree outputs a score for each class, and the class with the
highest score is then predicted for a given sample.

B 3.24 LightGBM

Light GBM [16] is an implementation of gradient boosting decision tree. It is
suitable for large datasets because it is highly efficient and fast. It can be
used for many problems including regression and classification.

Light GBM introduces algorithms to implement gradient boosting efficiently
while preserving accuracy. Gradient-based One-Side Sampling is a way
to weight samples during training. Data instances with larger gradients
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Algorithm 1 Gradient Boosting Tree Algorithm [I4]

1. Initialize fyo(x) = argmin,, SN L(yir,7), k=1,2,... K.
2. Form=1,2,....M

a. fork=1,2,....K

(i) Compute
OL(yir, f (i)

Tikm = — [af(xi)]f:fk,ml

(ii) Fit a regression tree to the targets 7k, giving terminal regions
Rikm,7=1,2,...,Jm.
(iii) For j=1,2...,J, compute

Vikm = argmin Y L(Yik, fem-1(z:) +7)

$ieRjkm
(iv) Update fom(z) = fom—1(2) + X7 YikmI (€ € Rjkm)-

3. Output fk(x) = fim(x),k=1,2,.... K

contribute more to the information gain (used for building a tree). This fact
is used to keep instances with high gradients during training and randomly
sample instances with smaller gradients.

Light GBM also implements Exclusive Feature Bundling for reducing the
number of features. Many features are exclusive (they do not take nonzero
values simultaneously) and therefore can be bundled together. This fact is
used to lower the dimension of features. The resulting classifier trains much
faster while having almost the same accuracy.

In the field of malware detection, a model is required to handle large
datasets and minimize the number of misclassifications. Light GBM is very
effective and capable of consuming big data. Therefore, we use Light GBM as
a classifier in our work.
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Chapter 4

Dataset

The number of malware in the wild is continuously rising, and AV-test reports
over 250,000 new malicious programs every day with Windows OS being
targeted the most [6]. Malware samples often change their code and adopt
more advanced evasion techniques, so their detection is becoming harder.
The proper dataset should reflect trends in malware and simulate real-world
situations. In this section we describe requirements on datasets of binaries,
briefly overview current public datasets and then describe the one we created.

B a1 Requierements on dataset

Several requirements naturally arise when finding a dataset:

8 Dataset should cover as many malware families as possible.

Malware can be divided into families where the family has the same
author or uses the same vulnerabilities of systems. Samples from the
same family can also use similar code constructs, parts of the code, or
libraries. These similarities between samples in a family can help to
discover new variants of malware that were just slightly modified. By
including more families, we also cover more variants of malicious behavior
because families usually have different behavior.

8 Dataset should be as large as possible.
Large dataset generally helps in building a classifier because it prevents
overfitting and helps to generalize to unseen samples. Getting a large
dataset would not be a problem but the problem is labeling the samples.
It is not possible to manually process a large dataset, and therefore labels
need to be extracted from various sources (e.g., from scans of antivirus
engines).

8 Dataset should simulate real-world situations.
The usual situation is that binaries are collected for a given period and
then a model is created. This model is then used for evaluation of
samples coming in the following period of time. Public datasets lack this
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property and therefore are not suitable for evaluating real-world malware
detectors.

. 4.2 Public datasets

Unfortunately, there are not many public datasets of binaries. Researchers
usually create their own collection of malware from virus sharing services and
legitimate samples from their organizations or clean installation of Windows
OS. Unfortunately, results from researchers are not comparable because they
lack common benchmarking dataset.

The newest widely used dataset is from Microsoft Kaggle competition [27].
However, competitors showed that it is easy to get nearly 96% accuracy by
using only three simple features. This dataset contains around 20,000 samples
from only nine malware families. The number of samples, as well as families,
is highly insufficient.

Public datasets usually contain less than 50,000 samples [27][2I]. This
number does not represent the volume of files in the wild, and it has only
a small fraction of malware families. Consequently, it is hard to evaluate
classification of new unseen malware families. Datasets are also aging very
fast. Antivirus engines are continually improving so malware authors must
improve malware to evade detection, e.g., by finding new vulnerabilities or
by improving its defense against analysis. Therefore, it is necessary to keep
datasets up to date.

. 4.3 Custom dataset

We created our own dataset that meets requirements previously described. It
is large enough to create model generalizing to unseen data; covers hundreds
of malware families; and was collected in consecutive periods of time to
simulate real-world situation.

We use binaries collected in the wild between November 26th 2017 and
January 1st 2018. There are more than 900,000 samples that we were able
to label. Usual source of labels is VirusTotal (VT) [4]. Researchers upload
binaries there, and they are checked by antivirus engines (AVs), then a sample
is considered legitimate if no AV finds it malicious. We used similar service
like VT called Titanium Cloud [26].

Titanium Cloud (TC) provides file reputation service and returns labels of
three categories - malicious, legitimate, suspicious. TC uses many features to
make this decision. Unfortunately, authors do not provide detailed information
about their engine but only basic information. They make the decision using
whitelists and blacklists of files, PTI (Proactive Threat Indicators), antivirus-
detections and possibly others. PTIs are based on the behavior of a binary,
resources embedded inside, etc. We resolved all our samples in Titanium
Cloud two weeks after the last day of our test dataset and used the result as
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legitimate malicious suspicious

train set | 515092 42624 19858
test set | 310435 29304 12065
total 825527 71928 31923

Table 4.1: Labels distribution in our dataset.

labels for training and testing. We were able to label 929,378 samples out of
all collected. Labels distribution is summarized in Table 4.1l

The task of classifying our dataset is very challenging. Classes are very
unbalanced since we have much more legitimate samples than malicious ones.
There is also possible overlap between suspicious class and the other two.
Therefore, we leave out suspicious class and use only legitimate and malicious.
We split the dataset based on the time when samples occurred because we
wanted to simulate the real-world scenario. We use binaries collected between
November 26th 2017 and January 4th 2018 as a train set, and the test set
contains binaries from 21 following days.

B 4.4 WMetrics

When building a model, it is important to measure its performance numerically.
We want to compare several models and select the best one based on our
criteria. In case of malware detection, our priorities are:

1. Catching as much malware as we can.

2. Minimizing the number of false alarms.

The first criterion expresses that we want to classify malware samples as
malicious. Otherwise, we would not discover any threats and our system
would be useless. The simple solution would be to classify all samples as
malicious, but our system would be useless as it would generate a large
number of false alarms.

The second criterion requires the number of legitimate samples classified as
malicious to be minimal. If we raise false alarms for too many files, users will
turn off the malware detection system. We use standard metrics to express
our requirements, their description follows.

B 4.4.1 Confusion matrix

The confusion matrix is a table showing the performance of supervised learning
algorithm. Our classification model requires each data instance to belong
exactly to one class, and the model predicts these class labels. Confusion
matrix shows what predictions were made on particular classes. Example of
the confusion matrix is in Figure 4.1 Confusion matrix C' is such that C; ; is
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Predicted class

Classl Class2

True False
Classl .
ass Positive Negative
Actual
class
False True
Class2 .
Positive Negative

Figure 4.1: Structure of confusion matrix.

equal to the number of data instances of the group i that were predicted to
be in the group j. In binary classification task:

® (o are true positives (TPs) - malicious samples classified correctly
® (), are false negatives (FNs) - malicious samples classified as legitimate
m (1 are false positives (FPs) - legitimate samples classified as malicious

® (), are true negatives (TNs) - legitimate samples classified correctly
We further normalize the matrix by dividing each element by sum of its row.
B 4.4.2 True positive rate, False positive rate

True positive rate (TPR), also called Recall or Detection rate, is a standard
metric used for measuring performance of a model. It is defined as

TP

TPR = ———.
R TP +FN

It tells the ratio of malicious samples that were recognized.

False positive rate (FPR) is defined as

FP

FPR= ———.
R FP+ TN

It tells us the ratio of legitimate samples that were classified as malicious.
Minimizing this value is important since we do not want to rise too many
false alarms.

Another standard metric is accuracy (ACC) defined as

TP + TN

ACC = :
cc TP +FN +FP + TN
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However, accuracy is not suitable for our problem because our classes are
highly imbalanced. Classifying legitimate samples right would cause high
accuracy, but it would not reflect misclassification of malicious samples much.
For example, if we had 95% legitimate samples and 5% malicious samples
in our dataset. If we classify all samples as legitimate, we get accuracy 95%
in this setup. This number sounds great, but the classifier is in fact useless.
However, we get TPR 0% and FPR 0%. These numbers tell us much more
about the performance.

To conclude, we evaluate our model using TPR because it shows the
detection rate, FPR because it reports the rate of false alarms, and we add
the confusion matrix to make our statistics complete.
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Chapter 5
Method

Firstly, we need to find a representation of raw binary code in PE files, and
express it mathematically. This representation must describe the binary well
and capture potential maliciousness of the file.

In this Chapter, we describe features that we use to model PE files. Since
the dimension of obtained feature space is high, we explain how we select the
most relevant features. In the last section, we describe the configuration of
the classifier that we use.

. 5.1 Features

The first set of features, we describe, models the raw binary code. These
features are easy to get, and their extraction is fast. The second set of
features models PE header of the binary. These features are well structured
and usually give us valuable insight into the file. Finally, we disassemble the
files and model the assembly code. Disassembling is a time-consuming and
computationally expensive operation, but it reveals functionality of a binary.
We need to express all the features as vectors and concatenate them to obtain
a single vector describing the whole binary in the form of x € RP where D is
the number of features.

We use four ways to represent the features:

® Bag-of-words features [14] - we count the number of occurrences of given
key in a file (e.g., imports).

® Hashed features [31] - hash of each key is used as an index to the array
where the number of occurrences of given key is put. We hash each key
to 4 different equally-sized arrays with different hashing seeds to reduce
the number of collisions. Generally, features with a higher number of
values are hashed to reduce their dimension. Generally, features with a
number of possible values too large for bag-of-words representation are
hashed to reduce their dimension (e.g., strings).

® Dense features - continuous features are represented simply by its value
(e.g., size of a file).
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Feature type

Features

Dense

number of resources, number of sections, mean size of resources,
is signed, extreme import indicator, file size, entry point,
haralick features, local binary patterns, entropy window,

size of assembly file, number of opcodes

Bag of words

imported libraries, packer, machine, section type,

resource lang, resource type, resource locale, certificate serial,
special symbols, aop onegrams, aop onegrams normalized,
opcode onegrams, registers, byte onegrams

size per section type, size of section, entropy of section,

Histogram section size per section, section properties, data define,
registers normalized, opcode onegrams normalized,
Hashed exports, imported functions, strings, tokenized strings,
ashe

aop bigrams, aop trigrams

Table 5.1: Overview how each feature is represented.

® Histogram features - we create equi-depth histogram [24] with 10 bins,
and add 1 to the bin corresponding to the feature value (e.g., entropy of

sections).

Table |5.1| summarizes how we represent each particular feature. The descrip-
tion of our features follows.

B 5.1.1 Raw binary features

Raw binary features are extracted from the raw code. An advantage of this
approach is that there is no other intelligence needed. We do not need to
understand the structure of the PE file, but we simply use the bytes. These
features can be hard to interpret because they only show general information
about the file. The list of used features and their description follows:

m File size

B Entropy

We compute the entropy of the binary code. Entropy is associated with
the amount of disorder in a system. Higher entropy means a higher level
of disorder. Therefore, measuring entropy can help to detect packed
(compressed, encrypted) executables because they have high entropy.
Entropy is computed using Shannon’s formula:

255

e =~ p(i)log, p(i)
i=0

where p(i) is the probability of appearing of byte i. The probability is
estimated within the window. We do not compute the entropy of the
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Figure 5.1: PE file transformed into an image.

whole file, but we rather use windows of 10,000 non-overlapping bytes.
There can be only some sections encrypted (i.e., with higher entropy),
and the rest can be not packed, windows find packed data across the
whole file. Then we use statistical measures of obtained entropy windows
such as mean, variance and quartiles.

Image features

The binary is transformed into an image as suggested in [21]. An example
of a binary image is shown in Figure 5.1. The example is Google Earth
executable so that we can see its logo in the resources. Binaries within
a malware family have similar images [21] and image features should
discover this fact. The similarity can be found for example in the resource
section where icons are located.

We extract local binary patterns (LBP) [22] and haralick features [13],
which are both used for texture analysis, using mahotas [I] library.

In local binary patterns, an image is first transformed by sliding a fixed-
sized window over each pixel in the image. Pixels with lower intensity
than the central pixel of the window are marked, and the window is
encoded into an integer number. Histogram of these numbers is then
used as a feature. LBP describe local patches, and they find interest
regions of images (edges, lines, corners, etc.).

To get Haralick features, we create a co-occurrence matrix of pixels.
Element i, of the matrix corresponds to a number of times pixel of
intensity ¢ is adjacent to a pixel with intensity j in an image. Statistics of
the matrix are computed and used as features. There are 13 statistics in
total, including correlation, entropy, contrast, variance. Haralick features
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ms ms ms ms

.net  visual visual pklite32 armadillo upx visual visual bobsoft 1ns.,tall
. shield
cFH c++ basic ¢
5705 4149 3815 1337 841 737 346 297 104 7

Table 5.2: Prevalence of packers in 30,000 random samples.

1386

amd64 thumb armnt Oxaa64 arm ia64 sh3 mipsfpu sh4

25591 4201 75 56 50 15 6 4 1 1

Table 5.3: Prevalence of machines in 30,000 random samples.

model spatial interactions between pixels.

Byte n-grams

N-gram is a continuous sequence of n bytes from a given byte sequence
where byte has value in range 0-255. N-grams can help us to discover
usage of specific bytes and specific patterns in a binary. They can learn
from all types of sections (PE header, code section, data section, imports)
reasonably [32]. We used only 1-grams since n-grams with n > 1 are
computationally too expensive.

Strings

We find strings in the file as a consecutive sequence of more than 8
printable characters. Strings are often embedded inside of a binary. There
can be attacker’s messages for a victim, names of used libraries, etc. There
is a lot of noise in strings, and more effort should be invested in cleaning
the data, but we leave it for future work and use the strings without
preprocessing. We compared using the whole strings and tokenized
strings because there can be single words indicating maliciousness of a
file. We used hashing trick to represent strings [31] because there are
thousands of strings and we need to reduce their dimension.

5.1.2 PE header features

We use Cisco’s internal tool called Pe-tool to parse PE header and to obtain
useful information about binaries. This information reveals nature of the
binary and gives us a valuable insight into the purpose of the binary as
explained in Chapter 2l Other tools can be used to parse the headers, and
they produce the same or very similar results.

We list used features and also give examples of values from randomly
selected 30,000 samples to get better picture about the features:

Imported libraries

Names of dynamically linked libraries are extracted, e.g., "KERNEL32.d1l".
We can get a better picture of the behavior of a binary when we look at
imports. Imports can show, for example, if a binary uses files, connects
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DllICanUnloadNow 518 | BdDestroyObject 95
DIlIGetClassObject 515 | BdCreateObject 95
DIIRegisterServer 479 | CPPdebugHook 66
DllUnregisterServer 472 | qt_ plugin_ instance 63
DIIMain 109 | Initialize 61

Table 5.4: Prevalence of exports in 30,000 random samples.

kernel32 13282 | shell32 3818
user32 8857 | gdi32 3453
advapid2 8707 | oleaut32 3291
ole32 5475 | comctl32 2207
mscoree 4699 | version 2028

Table 5.5: Prevalence of imported libraries in 30,000 random samples.

to the internet, uses GUI, uses the registry, cryptography, etc. Some
malware families can also use specific libraries instead of the usual ones.
The ten most prevalent imported libraries from 30,000 random samples
are listed in Table [5.5. We also detect unusual imports (name longer
than threshold 60) and use its presence as a feature.

Imported functions

The reasoning behind this feature is the same as for imported libraries
but we get fine-grained information by using names of imported functions.
We represent this feature as a bag-of-words where the key is "library
name_ function name". The ten most prevalent imported functions are
available in Table 5.6l

Exported functions

PE files (especially DLLs) export functions so other modules (especially
EXESs) can use them. Exports give us insight into the library and reveal
what functionality the binary exports. The ten most prevalent exports
of 30,000 random samples are listed in Table[5.4. For example, four most
prevalent exported functions ( ’DIlICanUnloadNow’, "DIIGetClassOb-
ject’, 'DlIRegisterServer’, 'DllUnregisterServer’) indicate that a program
implements COM server.

Packer

Many times binaries are packed either to compress their size or to prevent
analysis. We detect the used packer by matching signatures. Malware
families can use specific packers and detection of the packer can help
detect the whole family. The ten most prevalent packers in 30,000 random
samples are shown in Table [5.2.

Machine
There is a difference between binaries across platforms (e.g., i386 vs.
amd64), and properties of binaries can depend on the platform. The
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kernel32 GetProcAddress 10418 | kernel32 TerminateProcess 9083
kernel32 GetLastError 10128 | kernel32 WriteFile 8974
kernel32 GetCurrentProcess 9860 kernel32_ MultiByteToWideChar 8974
kernel32_ CloseHandle 9708 | kernel32_ UnhandledExceptionFilter 8796
kernel32 ExitProcess 9622 kernel32_ WideCharToMultiByte 8785

Table 5.6: Prevalence of imported functions in 30,000 random samples. Names
are in the form of "library name_ function name".

most prevalent machines in 30,000 random samples are overviewed in
Table 5.3. We can see that the biggest portion of samples is designated
for i386, but there are many binaries for amd64 too.

B Section properties

As we described in Chapter [2| binaries consist of sections, and these
sections have specific properties that can help during classification. They
have various names, sizes, and entropies. These properties can be common
in malware families. We extract names of sections and use the size and
entropy of each section as a feature. Pe-tool returns following types of
sections: text, native, packed, or encrypted. The type of a section is
derived from its entropy. We get a type of each section and use its size
and entropy as features. Another feature is count of section types in a
file and we add one more feature which is a number of sections in the
binary.

B Resources
Each binary has a resource section that can contain icons, menus, etc.
We extract following statistics about resources: count, mean of size,
languages, types, locale. Resources can help identify binaries (e.g., same
programs differing only in version have typically the same icons).

® Signature
Binaries can be digitally signed to validate the file and verify it has not
been tampered with. The signature depends on a content of a file, and
therefore it is possible to check its validity. However, many binaries are
not signed, or malware authors can create their own certificates. We
check whether the binary is signed and use the result as a feature. Serial
of the certificate (identifier) is used as a feature as well.

Bl 5.1.3 Assembly features

It is possible to overcome detection based on bytes of a binary using ob-
fuscation [20]. Therefore we disassemble binaries to obtain assembly code.
Disassembling PE file is challenging task because malicious, and even legit-
imate software uses various prevention techniques where packing is one of
the biggest issues as described in Section [2.5. However, assembly code is a
valuable source of information and is widely used for malware static analysis
[11].
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We used Retdec [7], an open-source decompiler capable of transforming a
binary into a high-level language like C or Python. We do not necessarily
need that, so we use an intermediate output of Retdec in the form of assembly
code. Retdec also tries to unpack the binary using either generic unpacker or
UPX unpacker [19]. The problem is that Retdec cannot handle all binaries.
In our dataset, 73% binaries could be disassembled properly. The rest was
packed with a packer that is not supported or was compiled for a 64-bit
system (currently not supported by Retdec). The output of Retdec is a list
of sections containing functions or data all together in a text file, an example
of the output is in Figure [5.2. The list of used features follows:

® Assembly file size

® Opcodes
Opcodes (operational codes) are assembly instructions describing oper-
ations to be performed by CPU. We use opcode 1-grams as a feature.
This feature detects unusual opcodes usage (can be used to evade detec-
tion), or other unusualities can be detected. We extracted 1,550 distinct
opcodes from the train set.

® Abstract opcodes
We transform operands of the opcode to a new representation we call
abstract opcode (aop). Operands can be registers, constants or addresses
in memory as explained in Section 2.4. Examples of transformation are
shown in Table |5.7. We use n-grams with n € {1,2,3} as features. We
also use relative frequency of onegrams in the file as a feature. A total
number of 2,627 abstract opcodes was extracted from the train set.

® Registers
Registers are built-in units in a CPU to store intermediate values and
thus make computations faster. A frequency of used registres can help
to assign a binary to a malware family. We use register name as features.
We also use relative frequency of registers in the file as a feature.

® Section properties [5]
PE files consist of sections that contain code and data. These sections
can have various names, and there is no fixed set of them. Usage of
specific names of sections can help to detect some malware families, so
we extract statistics of sections in the assembly file produced by Retdec.
We consider

.text, .data, .bss, .rdata, .edata, .idata, .rsrc, .tls, .reloc

as known sections, others are considered unknown. We count a number of
known sections in a file. We also count lines that belong to each section
in a file with assembly code. Then we compute ratios between unknown
and known sections, particular sections and all sections, number of lines
in known and unknown sections.
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Original opcode Abstract opcode
adc eax, 0x4029c400 add register constant
push esi push register

mov eax, dword ptr [0x40601c] | mov register memory

Table 5.7: Transforming opcode to abstract opcode.

® Data define properties [5]

Some samples do not contain any imports and instead consist only of
dd, db, and dw instructions. These instructions declare data locations
that can have assigned value and can be referenced later (similar to
variables). These instructions help to initialize data of the program on
the run, and therefore it can be a good sign of packing. We count a
number of occurrences of these opcodes and compute ratio to all opcodes.
dd opcode can have a different number of operands, and therefore we
count separately dd instructions with 1, 4, 5, 6 parameters and again
compute ratio to the total number of opcodes and also to the number of
dd instructions.

® Symbols
We count number of occurrences of specific symbols: -, +, * [, ], 7, Q.
These symbols may reveal indirect calls and can be a sign of detection
evasion. Indirect calls can serve for dynamic library loading, so libraries
are not discovered easily.

. 5.2 Feature selection

Previously, we described all the features used in our model. The dimension
of combined feature space is 1,276, 759. Features with the highest dimension
are those represented with hashing trick [3I]: exports, import functions,
strings, assembly bigrams, assembly trigrams. The dimension is too high to
be computationally feasible. Therefore we use feature selection algorithm to
select 10,000 the most relevant features. The model is then reasonably small
and can be trained fast.

Shabtai et al. [29] reviewed feature selection method used for malware
detection. They mention Document Frequency, Information Gain, Gain
Ratio and Fisher Score. Computing Fisher score is easy and has linear
complexity. More sophisticated methods are difficult to use because of the
size of data. Since Fisher score provides an optimal balance between speed
and performance, we decided to apply it to our data. A detailed description
of this technique is given in [I2]. Fisher score is defined as:

|jpositive - a_jnegative|
2 ., 2 .
\/5 positive + \/3 negative

where Z is sample mean and s? is sample variance. It computes the score of
each feature as a difference between its distribution of positive and negative

score =
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;; Code Segment

5.3. Classifier

function_481800 at Ox491000 -- Ox48104f

68 fc 8b 49 80
ff 15 b4a 90 46 00
<InitializeCriticalSectionAndSpinCount>

cc 90

c@
ae o7

88 46
55 af
ee B3

88 46
ec 8b
ee 03

46 00

80

Qe
49 @0 01
e

e
49 00 28 0O 00 ©O
e

push ©
push 0x498bfc
call dword ptr [Ox469@b4]

test eax, eax
jne 0x40103a

call dword ptr [Ox469@cc]

test eax, eax
jle Ox401025

movZx eax, ax

or eax, Ox80070000
test eax, eax

jns 0x40103a

push 0Ox468860

mov byte ptr [@x49af55], 1

call @x43febc <function_43febc>
pop ecx

ret

push 0©x468860

mov dword ptr [@x498bec], Ox28
call ex43febc <function_43febc>
pop ecx

ret

function_401050 at Ox401050 -- 0x40109T

68 c4 8b 49 00
ff 15 b4 90 46 00
<InitializeCriticalSectionAndSpinCount=>

ff 15 cc 90 46 00

ce

6d 00 00 07 80

; section: .text

; function:

0x401000: 6a 00
0x401002:

0x401007:

0x40100d: 85 cb
0x40100f: 75 29
<function_401008+8x3a>
0x401011: ff 15
<GetlLastError=>
0x401017: 85 co
0x401019: 7e Ba
<function_401008+8x25>
0x40101b: of b7
0x40161e: ad 08
0x401023: 85 c@
0x401025: 79 13
<function_401000+0x3a>
0x401027: 68 60
0x40102c: ch 85
0x401033: ed B4
0x401038: 59
0x401839: c3
0x401034a: 68 60
0x40103f: c7 85
0x401049: ed 6e
0x40184e: 59
0x40104f: c3

» function:

0x401050: 6a 00
0x401052:

0x401057:

0x40105d: 85 c@
0x40105fT: 75 27
<function_401058+8x38>
0x401061:
<GetlLastError>
0x401067: 85 c@
0x401069: 7e Ba
<function_401058+0x25>
0x40106b: af b7
Ox40106e:

0x401073: 85 c@
0x401675: 79 11

push ©
push ©x498bc4
call dword ptr [@x4696b4]

test eax, eax
jne 0x401088

call dword ptr [@x4696cc]

test eax, eax
jle 9x401075

movZX eax, ax
or eax, Ox80070000
test eax, eax

jns 0x401088

Figure 5.2: Output of Retdec disassembler.

class. The difference is expressed in terms of mean and variance. The
reasoning of this method is clearly visible in Figure The higher the
distance between means the better, and smaller variances are preferred. The
score for each feature is computed on data from the train set and 10,000

features with the highest score are selected.

. 5.3 Classifier

Our goal is to train a model that for a given binary produces a label (mali-
cious or legitimate). Previously we described how we represent each binary
by a vector of dimension 10,000. We propose to use LightGBM [I6] as a
classification model because it is suitable for large datasets and provides
interpretability of the model. We want to find out which features give the
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Figure 5.3: Example of two pairs of normal distributions with different mean
and variance. Fisher score is computed and the pair on the right with higher
difference between means and smaller variance is preferred.

best performance, and therefore we train a model with the same configuration
on different sets of features and compare results. When we find the best set
of features, we use it to tune the classifier. We use Light GBM version 2.1.0
and its default parameters. The only parameters that we changed are:

B n_estimators=200

® num leaves=1024
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Chapter 6

Results

We trained several models on features described in Section [5.1] using dataset
described in Chapter 4. Results are reported in the form of True Positive Rate
(TPR) and False Positive Rate (FPR) as described in Section 4.4, Our positive
class corresponds to the malicious class and negative class to legitimate.

Firstly, we compare results on different sets of features and select the set
having the best performance. Secondly, we analyze the model trained on the
best set of features and optimize its hyperparameters to further improve its
performance.

. 6.1 Feature results

We want to compare only the performance of individual groups of features,
so the configuration of the classifier is fixed, and we change only feature sets.
We try several combinations of features to obtain the best performing model.
All results are in Table 6.1, TPR are compared in Figure [6.2, FPR in Figure
6.1l

B 6.1.1 Models Comparison

A model used by many researchers based on PE header performed well on
our dataset but was not sufficient. The FPR 0.00171 is the highest compared
to other models and therefore should be combined with other features. TPR
0.85579 shows good ability to recognize malicious samples.

Better in FPR (0.00077) but worse in TPR (0.83552) is the model using
image features. This model, despite the limitation of the unnatural trans-
formation of a binary into an image, showed comparably good results. It
can be caused by recognition of legitimate resources in a file as samples from
the same families have very similar images [2I]. This fact can cause easier
classification too. It should be further investigated in future work.

The model with features extracted only from raw binary shows better
performance than the one with PE header features. This result is surprising
because we expected structured information to be more discriminative. In the
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6. Results

TPR FPR
PE header 0.85579 0.00171
Images 0.83552  0.00077
Strings 0.82576 0.00107
Tokenized strings 0.82320 0.00098
Raw binary features 0.85422  0.00072

PE header + Raw binary features 0.86258 0.00066
PE header + Raw binary features
+ Assembly features 0-87363 0.00061

Table 6.1: Results of classification on different sets of features. 10,000 features
were selected in all cases. True positive rate (TPR) and false positive rate (FPR)
are reported. Positive class corresponds to malicious, negative to legitimate.

raw binary features model, 9978 strings were selected alongside with haralick
features and entropy. The model with haralick features and entropy shows
better ability to recognize malicious samples compared to the model only
with strings. It can be caused by recognizing packers based on entropy, or by
discovering similarities in the resource section modeled by image features.

Model using raw binary features was mainly based on strings. Therefore,
we evaluated the performance of strings separately. Results indicate that
strings are a good indicator of maliciousness but provide lower TPR. The
problem is that packed binaries do not usually contain any readable strings.

We also used strings after tokenization because there may be only single
words indicating the maliciousness of a file. We can see that with TPR 0.82576
for strings and 0.82320 for tokenized strings, the impact of tokenization is
negligible. It can be caused by selecting strings corresponding to imports that
are not changed by tokenization. Another problem is that we hash strings
using 4 - 2'6 values. When strings are tokenized, much more of them are
mapped on the same value due to collisions in hashing which can diminish
the improvement gained by more accurate tokens.

When all features extracted from raw binary and PE header are used
together, we obtain a model improving performance compared to the model
without features from the header. It already shows a good ability to recognize
malicious binaries (TPR 0.86258 with low FPR 0.00066) and the extraction
of these features is much less complicated than disassembling.

Note that we do not evaluate a model with only assembly features in this
section. It does not make sense on the full dataset because 27% of binaries
could not be disassembled.

Even though not all binaries were disassembled, we use assembly features
together with all others and mark them as missing values. Missing values are
handled differently during training by the classifier [I§]. When we used all
features together with assembly features, we obtained a model performing
the best on our dataset. TPR 0.87363 is the highest while FPR 0.00061 the
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Figure 6.1: FPR of models trained on different sets of features.

lowest. Assembly trigrams were selected in feature selection replacing more
than half of strings compared to the model without assembly features. Being
satisfied with the results we must further admit that expectations of assembly
features were a bit higher. The extraction of these features is time-consuming,
and the gain should be higher. However, more sophisticated features can
be developed. We take into account only the prevalence of opcodes and
some other basic statistics. We do not try to understand the program and
discover its true functionality. Another problem is that the model is very
dependent on opcodes found. An attacker can insert redundant opcodes to
obfuscate the code and then our features based on opcodes do not work. It
is also questionable whether samples without disassembled features should
be evaluated together. In this model, half of the features are dependent on
disassembling, so their absence harms the overall model. We evaluate model
using only assembly features in Section |6.2

B 6.2 Only disassembled classification

We use Retdec [7] for disassembling binaries, but it fails on some of them.
Detailed statistics of disassembling are listed in Table [6.2. We can see that
most of the malicious binaries were disassembled successfully compared to
only 71.6% of disassembled legitimate binaries. It suggests that legitimate
software uses more sophisticated way of protection against disassembling or it
can simply mean that Retdec does not support used packers or architecture.

We used all samples that have been disassembled to create a new dataset.
Using this dataset, we can evaluate the real gain of assembly features. Details
of this dataset are summarized in Table We evaluated gain of each group
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Figure 6.2: TPR of models trained on different sets of features.

Total Disassembled

malicious 71928 64110 (89.1%)
legitimate 825527 590326 (71.6%)

Table 6.2: Disassembling statistics.

of features. All results are summarized in Table [6.4.

We can see that PE header features give results similar to the dataset of
all binaries. FPR 0.00201 is higher compared to other features. PE header
features combined with raw binary features result in higher TPR 0.86366
while decreasing FPR significantly to 0.00068. Assembly features used by
themselves show quite poor performance with TPR 0.77350. When all features
are combined, we obtained a model with TPR 0.87406 and FPR 0.00065
which is similar to the performance on the full dataset.

B 63 Tuning the classifier

In all previous experiments, the classifier had the same configuration, and we
have found the best set of features. We tune hyperparameters of the classifier
in this section to further improve its performance.

In malware detection, our primary goal is minimizing FPR. Therefore, we
select the best performing model based on FPR while relatively maintaining
high TPR. We evaluated each parameter using 5-fold cross-validation [14].
In each step, we evaluate each setting of given parameter and select the one
with the best performance, and continue in tuning other parameters. We
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malicious legitimate

train set | 38145 375376
test set 25965 214950
total 64110 590326

Table 6.3: Labels distribution in dataset of disassembled binaries.

TPR FPR
PE header 0.85165 0.00201
PE header + raw binary features 0.86366 (0.00068
Assembly features 0.77350 0.00094

PE header + raw binary features

+ assembly features 0.87406  0.00065

Table 6.4: Results of classification on different sets of features on the dataset of
disassembled binaries. 10,000 features were selected in all cases. True positives
(TPs), false positives (FPs) are reported. Positive class corresponds to malicious,
negative to legitimate.

repeat this procedure until no further improvement is encountered.

Light GBM has many tunable parameters, and we list parameters recom-
mended for tuning and values that we tried:

® num_ leaves € {256, 512,1024, 2048, }

® min_data_in_leaf € {10, 20,30, }

® max_depth € {—1,5,30,50}

® bagging fraction € {0.8,0.5} and bagging freq € {0, 1,3}

® max_bin € {512,1024, 2048, 4096}

® learning rate € {0.001,0.1,1} and num_ iterations € {100,200}

® lambda_12 € {0,0.1,0.5,1}

Changing most of the parameters harmed the performance, or caused only
a very little change in the performance. We ended up changing only two
parameters:

® max bin=2048

® num_ leaves=512

This setup results in average TPR, of 0.87599 and FPR 0.00065 which is the
best performance presented in this thesis.
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Figure 6.3: Histogram of antivirus hits for false positive samples.

B 64 The optimal model analysis

We have found out that the best performing model is the one using all the
features we designed. We analyze which features are the most important in
the model, so we better understand how the predictions are made. Then we
analyze incorrectly classified samples to see where and why the model makes
mistakes. We resolved samples in antivirus engines to obtain more detailed
information. Antivirus engines return label of a sample which can contain a
type of malware or malware family (e.g., Eset NOD32: Win32/Sality virus).
If an antivirus engine classifies a binary as malicious we call it a hit.

B 6.4.1 False positives (FP)

Since we are interested in further minimizing FPs of the model, we looked
at legitimate samples incorrectly classified as malicious. We checked their
antivirus hits and discovered that many of them have some hits even from
established antivirus engines. Histogram of antivirus hits for FPs is shown in
Figure 6.3

We tried to query all FPs of our model again after 2 months. We found out
that out of 190 legitimate samples that we classified as malicious 15 changed
its label to malicious and 4 to suspicious. There were samples with only 3
hits that turned into malicious as well as with 17 hits, so we cannot easily set
a threshold on hits to decide that the binary is malicious. Of all 19 samples
that changed the label, 8 were PUA, 6 Trojans, 3 Adwares, 2 Downloaders.

Some FPs are hard to classify even for human experts because we found
samples that do activity similar to malicious samples. Those can be toolbar ex-
tensions that check typed URLs, software for tracking employees, applications
tracking mouse movement and keystrokes.
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Figure 6.4: Malware families with the highest number of false negatives.

B 6.4.2 False negatives (FN)

Our classifier did not recognize many malicious samples, so we investigated
them too. The most misclassified families are shown in Figure 6.4, The figure
shows that by far the biggest unrecognized family was malicious_Symmi.
Additionally, we checked antivirus hits of FN samples, and a histogram is
in Figure |6.5. There are some samples with 0 hits, and many samples have
only a few hits, so their maliciousness is questionable. There is a big spike
in the histogram on number 4. It is caused by Symmi family where most
of the samples have 4 hits. Many false negative samples do not have hits
from established antivirus engines (like Eset, Avast, McAfee, etc.), but they
have hits from engines that generally produce more false positives. Many
times binaries are not matched with any malware signature, but rather have
negative file reputation (e.g., Symantec-online outputs WS.Reputation.1).
These files do not have to be necessarily malicious.

We manually analyzed some FN samples. There were cases when the
binary was packed, so our raw binary features did not work well, since packed
binaries do not have readable strings, and our model uses them a lot. These
samples often could not be disassembled because of packing, so our assembly
features did not work either. There were also samples hidden in Inno setup
(Windows installer), and we did not catch them because the real program
was hidden behind the installer.

We queried all FNs of our dataset again after 2 months. We found out that
out of 3,703 malicious samples that we classified as legitimate 49 changed
their label to legitimate and 8 to suspicious.

In further sections, we analyze the most prevalent misclassified families:

B Symmi

It is a family with the most misclassified samples in our dataset. According
to Symantec report [3], it is Trojan that opens a backdoor and may download
files. There were only 66 training samples in our train set but 1,708 in the
test set. We classified 1,611 as legitimate and 97 as malicious. We tried to
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Figure 6.5: Histogram of antivirus hits for false negative samples.

malicious legitimate

malicious  0.92419 0.07581
legitimate 0.00061 0.99939

Table 6.5: Confusion matrix for a model trained on all features, computed
without Symmi malware family.

run some of these samples to see what they do, but all of the selected samples
were somehow corrupted and could not be run. We found out that 1,579 out
of 1,592 FNs have 0 imports. We did not find a runnable sample between
those without imports, and Pe-tool returned an error code on them. We can
conclude that most of those binaries are corrupted, but there may be some
that are really false negatives. If we compute results without Symmi family,
we get results in Table 6.5. TPR is then significantly improved to 0.92419.

B Agent

It is the second most misclassified family in our dataset. There were 1,425
samples in the train set and 932 in the test set where we classified 155 of them
as legitimate. We analyzed some of these samples manually. Binaries ran
without any problems. We could see their malicious behavior (e.g., opening
ports to listen to attacker’s commands). We focused on samples that were
labeled as legitimate. These binaries were usually packed (encrypted) and
had only a few imports. Our model is heavily based on imports (either from
PE header or found as strings) and their absence helps to evade detection.
There were also samples hidden in Inno setup, so we analyzed the setup tool
instead of the actual binary.

Many samples also contained statically linked libraries, so the code of
libraries is embedded in the binary code. When we search for strings inside
the binary, we also collected strings from imported binaries. Other features
are affected by static linking as well (e.g., entropy).
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malicious legitimate
malicious 0.86115 0.13885
legitimate 0.00034 0.99966

Table 6.6: Confusion matrix for all features (raw binary + pe header + assembly)
with threshold on malicious probability 0.9

B 6.4.3 Generalization

The ability of the model to generalize to previously unseen samples and
families is crucial for malware detection models. We evaluate this ability in
this section.

Each sample gets a family label from Titanium Cloud [26]. Titanium
Cloud does not provide details how those labels are obtained. They are
probably extracted from results that antivirus engines return. Those labels
are sometimes noisy because there can be more names for the same family
(e.g., 4e660515-eldorado and 4e75f222-eldorado).

There are 1031 malware families in the train set and 836 in the test set.
There are 588 families that are present only in the train set while 393 families
are only in the test set. Out of all 393 previously unseen families we had at
least one true positive sample in 100 families, and 88 malware families have
detection rate 100%.

B 6.4.4 Thresholding

We noticed that in some cases, the classifier was very uncertain about mali-
ciousness of a binary and returned probability slightly in favor of the malicious
class. The uncertainty led us to thresholding of probability needed to mark
sample as malicious. This approach should minimize the number of false
positives because we will say that a binary is malicious only when the model
is very sure about it.

We say that a sample is malicious if its probability of being malicious
(returned by the classifier) is higher than a certain threshold. Otherwise, we
assign the sample to the legitimate class. Example for threshold 0.9 is shown
in Table 6.6, This model improves FPR from 0.00061 to 0.00034, but TPR
dropped from 0.8736 to 0.86115.

B 6.4.5 Feature importances

It is important to understand how the classifier makes its decisions. Decisions
depend on used features, so we want to know which features are more
important in the model. Generally, it is possible to extract feature importances
from decision trees. Light GBM returns two types of feature importance: split
(number of times a feature is used in a model), gain (total gains of splits that
use a given feature). If a feature is valuable, then the model will likely select
it more often, and the gain of the feature will be higher. We plotted obtained

39



6. Results

5000
4000
@
g
g
£
8-3000
o
£
2 5000
5
2
5 =
3
g
1000
o
2 254
cj_ = EINES ‘:E'j- 8 = = a o
v X = > nw o w0 v w w wn w o wu
& 2 2 g 3 8 8 2o 8 £ 58 2 2 £ 8 8 2 B¢ £ % & % £ 8 E
£ § £ € © w ER £ 5 &% 8 E s > T § ¢ 8 £ N > 08 & T8
£ ® 9 g 59 g a2 2 §v 2 2 & S § 8« N2 s 8 ©
5 & % 8 £ £ ¢ €N g 5 xfE B €% L £ 8 £ 2853 T o ° 5 8 5
"’EEstogﬁg-:aocgNwont"’-—E%Eummg-ﬁ
E=1 S 5 o= § & = @ o
2 s $ 5Ea s =282 sgs §og 8 TEggs s 208 5 g >
g S 8 S5 2 g Eg g SE S g § & 2 ¢ ¢ 2 > 3
£ 3 gc § ©° °" £ 85 5 2 5 ° g5 g ¢ ¢ § 3 5 E
c g & B 6 6€ 8 @ 3 ® X & 9 ¢ & © g
5 g s g8 E ° g % v 3 B g E @
E 2 2
o £E o 2 8 @ = 9 a2 °©
N | @
o 5 2
3

Feature name

Figure 6.6: Feature importances (split parameter) of the best set of features on
full dataset. Feature importance is given by a number of times a feature is used
in a model.
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Figure 6.7: Feature importances (gain parameter) of the best set of features
on full dataset. Feature importance is given by total gains of splits that use a
feature.

importances: split in Figure 6.6, gain in Figure |6.7.

We can see that entropy from sliding window is considered the best feature.
It is interesting that entropy of particular sections returned by Pe-tool is not
rated as high. Haralick features have high variance in feature importances,
and it should be investigated which ones are rated higher and why. List of
features with the highest split feature importance is given in Table [6.7. This
table shows especially the importance of entropy and Haralick features.

We further checked some features and their most important values are
listed in Table [6.8. There are more features belonging to Assembly bigrams,
trigrams and strings because we used hashing. Hashing collisions cause that
more values are mapped to the same index. In case of strings, there are a
lot of values mapped to the same index, and it should be checked whether
increasing the number of hashed values changes performance.
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Assembly
Entropy Q3 5059 | Haralick 3745 | onegram 2709 | Haralick 2090
normalized
Assembly
Entropy Q1 4802 | Haralick 3705 | Haralick 2535 | onegram 1891
normalized
Haralick 4496 | Entropy mean 3359 | Haralick 2534 | Haralick 1798
Assembly
Entropy median 4382 | Haralick 3339 | Haralick 2523 | onegram 1792
normalized
Assembly
Haralick 3857 | Haralick 2799 | Haralick 2251 | onegram 1742
normalized

Table 6.7: Features with the highest importances given by Light GBM classifier.
"Q1" and "Q3" mean first respectively third quartile.

B 65 Selecting more features

During our experiments, we always selected 10,000 features based on Fisher
score. In this section, we compare performance when we select a different
number of features. Increasing the number of features gives the model more
features that can be used to discover malicious/legitimate behavior. Some
features may be useful, but they were not selected during the feature selection
procedure because their score is too low. Selecting more features gives more
space even for low scoring features. However, increasing the size of the model
comes at a price of time needed for training and memory usage.

We selected 10, 100, 1000, 2000, 5000, 10000, 30000, 50000, and 80000
features, and we compared their performance and time needed for training.
We used Amazon EC2 instance mb.12xlarge with 48 CPUs and 192GB memory
for training all the models. We trained each model 5 times and averaged
obtained results. Times needed for training are plotted in Figure [6.8. We can
see that the training time grows linearly with the number of used features.
For example, training a model on 10000 features takes 556 seconds in average,
whereas model on 80000 features trains for 4197 seconds.

We examine how TPR and FPR change with increasing number of features.
Figure 6.9/ shows TPR, and Figure 6.10| FPR. We can see that TPR is almost
constant from 1000 to 30000 features, and a little increase comes with 80000
features. The model with 80000 has 0.87411 TPR on average, and the model
with 10000 has TPR 0.87236 for comparison. FPR is decreasing with rising
number of features. However, the change between 1000 and 5000 features is
negligible. The model trained on 50000 features has the lowest FPR 0.00053.

Results indicate that more features provide better results in classification,
but the time needed for training grows linearly with the number of features.
With the rising number of features also comes higher memory usage, and
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Feature name

Feature importance

Feature key

AOP onegram normalized

2709

add memory register

AOP onegram normalized 1891 pop register
AOP onegram normalized 1792 push constant
AOP onegram normalized 1742 call constant
AOP onegram normalized 1634 mov register memory
AOP onegram normalized 1470 call memory
AOP onegram normalized 1451 push register
Entropy per section type 914 native
Entropy per section type 762 packed
Section entropy 440 .ISTC
Resource locale 427 en_ US
Packer 213 pklite32
Import library 126 comctl32
push constant 4+ push register
AOP bigrams 407 jp constant 4+ rol memory register
bswap register + cmp register constant
AOP trigrams 375 push egister + pust constut
(only some) getcommandline; chartStyle;
Strings 341 COMODO RSA Certification Authority;

GetCurrentProcessld; set_ IsMonitorOn

Table 6.8: Selected features and their importance in the classification model.

80000 features were the maximum on the used machine. Choosing 10000
features seems optimal because the training takes only 556 seconds on average,
TPR and TPR are very similar to models with more features.

B 66 Comparison with previous work

Several approaches were proposed in the literature as we mentioned in Chapter
3l We used features from the majority of papers we surveyed, but we altered
them to need a minimum of human work. In our approach, we do not need
to manually select values of opcodes, imports, or any other feature; but we
represent and select the features automatically based on our current data.
The goal of our work was comparing feature sets, and therefore we compare
features used in other papers with our final set of features. We neglect other
differences in methods, so we test only gain of particular features.
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Figure 6.8: Training time dependency on number of used features.

We use the same method of feature selection as described in Section 5.2,
and we train the classifier described in Section [5.3l We compare two papers
with our model:

® Elovici et al.[9] used features from PE header. They do not give a
complete list of used features, so we use all the features from PE header
that we described in Section [5.1.2l

® Ahmadi et al.[27] proposed several categories of features, and we imple-
mented most of them. However, we could not extract features specific
for IDA output because we used a different disassembler. They also
selected only 93 most frequent opcodes and 794 imported functions, but
we select 1000 opcodes and 1000 libraries based on Fisher score. Another
difference is that they only used a histogram of string lengths instead
of strings by themselves. They used properties of just some selected
libraries as features, but we take all sections into account. Our changes
should improve the model because we improved the features that had
the worst score in their paper.

The results are compared in Table 6.9 We compared our final model with
a model using only PE headers in Section [6.1.1. Set of PE header features
has FPR 0.00171 compared to 0.00061. Whereas model inspired by [27] with
TPR 0.87419 shows comparable results to our model having 0.87363, but
our model has slightly better FPR 0.00061 compared to 0.00076. It can
be caused by changing the feature selection method. Fisher score does not
take into account already selected features, and when there are redundant
features with a higher score, we select them anyway. Therefore, selecting
features per categories can help overcome this shortcoming. Another solution
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Figure 6.9: TPR dependency on number of used features.

would be selecting more features in total, because as we showed in Section
increasing number of features helps to improve the performance.
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Figure 6.10: FPR dependency on number of used features.

TPR FPR Remarks

PE header features
Our model 0.87363 0.00061 + Raw binary features
+ Assembly features

Elovici et al.[9] 0.85579 0.00171 PE header features

imported functions, strings,

number of sections, file size,

entry point, haralick,

local binary patterns, entropy window,
byte onegrams, size of assembly file,
special symbols, registers,

opcode onegrams,

section properties, data define

Ahmadi et al.[27] 0.87419  0.00076

Table 6.9: Comparison of our model with previous work.
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Chapter 7

Conclusion

In this thesis, we compared features used in the static analysis for detecting
malicious PE files. We extracted features from raw byte code, PE header,
and assembly code. We evaluated each feature separately as well as various
combinations. We found out that the best performing set of features is the
one using all features we described in this thesis. We summarized feature
importances and concluded that raw byte code features are rated the highest.
On the contrary, assembly features did not meet our expectations. They
provided only a slight improvement in the performance and showed poor
performance when used by themselves. To make our analysis more concrete,
we named the most important features in the model to see which n-grams,
sections, etc. have the highest weight during classification.

Furthermore, we added a detailed analysis of obtained classification model.
Rescaning binaries showed that our model discovered several binaries that
used to be misclassified by many antivirus engines. It indicates that we are
meeting the edge of malware detection where labels can be unstable and still
evolving. Additionally, we examined a set of false negative samples manually
and realized that we are meeting borders of static analysis because many
binaries are packed or use other techniques that make static analysis almost
impossible.

Besides, we tested several parameters of used Light GBM classifier as well
as parameters of feature selection. We tuned the classifier to improve its
detection rate further and obtained a model with TPR 0.87599 and FPR
0.00065. In case of feature selection, we examined how altering number of
features influences the performance and training time of the model. We
concluded that time grows linearly with the number of used features, and
more features help to improve the performance up to some limit.

In future work, we suggest extracting more sophisticated features from
assembly code. It contains the full functionality of the binary, so methods for
mining this information should be developed. Secondly, more time should
be invested in improving unpacking of binaries. Packing helps to evade
detection by static analysis, and therefore robust unpacker should be proposed.
Concerning particular features, strings contain valuable information about
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the binary, but unfortunately, they are very noisy. There is a great potential
in identifying relevant strings and representing them efficiently. Finally,
transforming binaries into images shows promising potential and the method
should be analyzed and interpreted properly.
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