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Abstract
This thesis focuses on modelling environ-
mental changes depending on the time
for long-term mobile robot visual navi-
gation and integrating these models into
an existing functional navigation system.
The goal of this thesis is to create a tem-
poral environment model, which would
allow to capture and predict operational
environment changes providing long-term
autonomous operating of a mobile robot
in a changing environment. This thesis
divides the problem of a temporal model
creation into two sub problems: "How
recorded changes should be interpreted?"
and "How to predict current environment
model usable for navigation?". This thesis
extends a system that uses image features
for visual navigation, but the abstraction
of the solution allows using different meth-
ods instead. The system is implemented
in the Robotic Operating System in C++
programming language.

Keywords: environment temporal
model, long-term navigation

Supervisor: Ing. Tomáš Krajník, Ph.D.

Abstrakt
Tato práce se zabývá modelováním změn
prostředí v čase pro dlouhodobou vizu-
ální navigaci mobilních robotů a integrací
těchto modelů prostředí do existujícího
funkčního navigačního systému. Cílem
této práce je vytvořit temporální model
prostředí, který by umožnil postihout a
předpovídat změny operativního prostředí
a ummožnit tak dlouhodobé autonomní
působení mobilního robota v měnícím se
prostředí. Tato práce dělí problém tvorby
temporálního modelu na dva hlavní pod-
problémy, které je možné řešit odděleně:
„Jak interpretovat zaznamenané změny?“
a „Jak predikovat aktuální model pro-
středí použitelný pro dlouhodobou navi-
gaci?“. Tato práce rozšiřuje systém, který
používá pro navigaci vyznačné body v
obraze, ale abstrakce řešení dovoluje pou-
žití jiných method pro visualní navigaci.
Celý systém je implementován v systému
„Robotic Operating System“ v programo-
vacím jazyce C++.

Klíčová slova: Temporální model
prostředí, dlouhodobá navigace

Překlad názvu: Temporální modely pro
vizuální navigaci mobilních robotů
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Chapter 1
Introduction

The autonomous robot navigation is a challenging problem that has been
studied for over 30 years. Tremendous progress has been made since the very
beginning. The research has already brought us success in the form of some
vision-based autonomous robots (e.g. domestic robots, autonomous cars or
Mars rovers) or range-sensor based autonomous robots (e. g. Google car).

Figure 1.1: CGI rendering of Mars rover surroundings. On the right side is an
example of an autonomous vehicle - Mars rover. Courtesy of [1].

There are three major problems of robot’s autonomous movement: "Where
am I?", "Where am I going?" and "How should I get there?" [8]. First two
questions are associated with the estimation of robot’s location and desired
destination relatively within the environment. The third question desire the
solution of motion and path planning.

The environment the robot operates in can be either structured or un-
structured. The structured environment contains modification that improve
navigation (e.g. roads, sidewalks, runways etc.). The unstructured environ-
ment is in its raw form without supporting modifications. The primary task
of autonomous vehicles moving in structured environment is to recognize
the road and stay in the right line or identify obstacles. The car follows
road marks to guide itself. However lines fade away over time due to tear or
disappear entirely due to changes in daylight. It brings us to the fact that
there are two types of changes: in appearance and in structure. Appearance
changes are caused by a variation or a lack of the light, so vehicles use lights
to prevent lines disappearance. Structure changes are associated with object
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1. Introduction .....................................
itself, no matter light or where the objects are placed and therefore the roads
are maintained to prevent structure changes. Autonomous navigation is
usually supported with additional sensors, which help determine the location
(e.g. GPS, 2D scanner etc.) [9] [10].

Using a GPS localization in underground tunnels, on Mars or indoors is
problematic, or the device is not equipped with a GPS tracker at all. Thus
we focus on vision-based navigation only to achieve higher robustness. Rovers
are able to travel tens of kilometres autonomously without a GPS tracker
in an environment similar to the one on Mars or the Moon [11]. Although
the surroundings of Mars rovers differ from the surroundings we can see
outdoors in nature on Earth, there are changes again due to illumination and
structure. Structure changes are observed during seasons. The environment
looks different in summer and winter especially on Earth, where the plants
bloom, the leaves fall from the trees or it snows. The seasonal changes
occur on Mars too, in the form of Martian polar ice caps melting - the caps
grow or shrink according to the season. For long-term navigation, day-light
changes are not easy to understand and map correctly but there have been
several approaches to model surroundings visibility during the whole day. It
is essential for domestic robots to detect whether an object cannot be seen
or was removed. Navigation of domestic robots is challenged by daylight
changes, object replacement and movement. Fortunately large furniture
remains consistent over time. Indoors the change in structure is usually
imposed by the movement for small furniture.

The structured environment has a lower uncertainty due to the defined
structure. Compared to that, the unstructed environment has a higher uncer-
tainty due to typically higher dynamics. To answer all of the aforementioned
questions, a robot should have a suitable model of the environment. If a
robot has to operate perpetually, the model should encompass not only the
world structure, but also how the world changes over time. In this work, we
focus on modelling, understanding and predicting the environment changes
that occur over time.

1.1 Motivation

The goal of our work is to create a robust temporal model of surroundings,
which is meant to support the visual navigation in long-term scenarios. We
intend to achieve the result by using probabilistic methods, that model
uncertainty caused by environmental changes and variations.

We have to deal with operational environment changes. This requires
new information captured during autonomous runs over time to answer the
primary questions. There are more ways to cope with it. Robot builds a
map to navigate itself. The map is updated to capture the difference as
the environment alternates. This approach presumes that once the change
occurs, it is permanent. In another approach, a map is created at the start
and abnormalities are captured, processed and saved in a model. We aim to
indicate which objects from currently processed map should be used. The

2



..................................... 1.1. Motivation

decision is supposed to be based on rides that occurred in history. Once we
detect s landmark it is marked as either correctly matched, not matched or
incorrectly matched. We divide the problem into two parts: evaluation of
saved data and submaps selection. We plan to keep those parts separated for
flexibility. This work answers two primary questions:..1. How should the probability of visibility be calculated?..2. What strategy should we use for correct submap selection?

We claim that learning from the past and using this knowledge in the
future is crucial for long-term visual navigation.

3
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Chapter 2
State of the art

Reliable navigation is essential for any autonomous vehicle. The reliability
problem becomes more challenging for long-term navigation systems, because
of the environmental variations. It is easier for people to understand and
predict gradual changes of environment appearance due to their experience
gained over time. We present a solution in the form of a temporal model
of the environment to help the system gain and understand this experience.
For creating a temporal model to improve the visual based self-guiding
robot navigation, it is essential to understand how the entire process works.
As mentioned earlier, the navigation process is divided into three primary
questions: "Where am I?", "Where am I going?" and "How should I get there?"
[8]. In practice the deployment of a robot is typically performed as follows:

Figure 2.1: Process diagram of a visual autonomous navigation.

5



2. State of the art....................................
2.1 Initialization

Before a mobile robot is able to navigate itself autonomously, it must learn
the paths it’s allowed to go and what the operational environment looks like.
To do so, a person operates the robot manually for the first time [11]. The
robot builds an inner spatial representation using data from on-board sensors
[9]. A process of creating spatial-model is called mapping. After the robot
stores the map of the whole operational environment, it can..1. determine its position..2. determine a position of the desired destination..3. plan its path.

It generates motion commands itself, and a human aspect is not needed for
navigation anymore. It is typically problematic to derive the inner spatial
representation from the robot’s position and therefore we use SLAM to build
the model.

2.1.1 Simultaneous Localization And Mapping (SLAM)

The SLAM is a class of online map building methods [3] where the robot
performs localization and mapping concurrently. SLAM combines position
estimation and on the fly environment map building. Robot’s location is
usually described by a position and an orientation in space but other quantities
can be used as the state description, e.g. robot velocity, sensor biases or
calibration parameters [9], representing the uncertainty of the environment.
Current approaches assume that the uncertainty originates mainly from the
sensor noise. The map represents aspects of interest including a position
of landmarks and its descriptors. The SLAM problem is formulated as a
maximum a posteriori estimation problem [12]. Robot calculates the join
a posterior density [11] of latent variables, which includes a sequence of
positions in trajectory and the state of interesting features in the environment.

It is possible to use the SLAM to deal with environmental variations. SLAM
can update environmental model and take significant changes into account,
the map remains static after the update [12].

2.1.2 Mapping

To answer the questions "Where am I?" and "Where am I going?", we need
to be able to remember and recognize the visited places in the future. We
create maps to provide a system with an ability to recognize the environment
that has been already visited. The map is an integrated representation
of an environment the vehicle operates in. It is supposed to be compared
to the incoming sensory data [3]. The map can be built online with on-
board sensors or be known a priori. The online building method is SLAM,
described in the previous section. It is possible to create simple environmental

6



..................................... 2.1. Initialization

models manually, e.g. beacons positions. We can divide maps into four types
according to the data representation [13] and the abstraction level.

Sensory Maps

Sensory maps consist of pure sensory data representation. An example of a
sensory map is a 3D point cloud that is created by a laser scanner. Although
this technique is simple for data storing, it’s not practical, because of the
large memory demands. Sensory maps are useful for further processing. If
the purpose of the environment model is a place visualization, the 3D point
cloud is used for creating a 3D mesh.

(a) : 3D point cloud. Courtesy of [14] (b) : Occupancy grid. Courtesy of [15]

Figure 2.2: Different models representing the same place

Occupancy Grid

Occupancy grid represents the environment models as a grid consisting of
uniform cells where each cell is either occupied or free [14]. Each cell
stores the probability of its occupancy [16]. We calculate the probability
of occupancy separately for each cell because the probabilities are modeled
as independent. The occupancy grids are suitable for both motion and path
planning and localization, which is the purpose of occupancy grid environment
representation introduced in [16].

Geometric Maps

Geometric Maps represent the world as a set of geometrical primitives [14].
A two-dimensional representation is created with lines and polygons and a
three-dimensional with planes or bodies. The abstraction associated with
the geometric primitives usage brings memory efficiency; therefore geometric
maps are more suitable for a mobile navigation than sensory maps [13]. Since
the real world consists of more complex objects than used primitives, creation
process becomes difficult.

7



2. State of the art....................................

Figure 2.3: Two-dimensional geometric map. Courtesy of [2]

Landmark Maps

Landmark maps include information about significant points or objects in
the view and are frequently used in the vision-based navigation domain. The
landmarks are primarily used for localization [14]. Typically once they are
detected, robot compares landmarks stored in the map and the landmarks
from the current view and then calculates the horizontal landmarks shift
and uses this information to estimate its position. A visual navigation
system called ORB-SLAM presented in [17] uses the landmark map for
the environment representation. The landmarks are represented in the 3D
world coordination system. The robot positions is then estimated by the
triangulation method using the matched landmarks from the view to the
landmarks in a map.

Figure 2.4: An example of a landmark map. Courtesy of [3]

8



..................................... 2.1. Initialization

Topological Maps

The advantage of the topological maps lies in the abstraction level. The
data stored in topological maps represent a graph where nodes constitute
of distinguishable places and paths between them. Topological maps are an
abstraction, memory efficient and suitable for a mobile navigation and a high
level path planning. An example of a topological map is a public transport
map (in figure 2.5) where stations represent nodes and edges are paths
between them. The system introduced in [18] uses only a visual topological
map for the navigation. The system distinguishes roads and places of roads
crossings. The environment is represented by a topological map where nodes
represent roads crossings and edges represent existing roads that connect two
crossings.

Figure 2.5: Trams and Metro in Prague map. Courtesy of [4]

Hybrid maps

The hybrid map combines two or more map types and therefore a usage of
more maps allows to reduce problems associated with a certain map type.
The disadvantage of a landmark map being used separately can cause for
example the Perceptual aliasing problem [19]. The problem occurs when
the two places are mismatched because they look alike (e.g. hallways in
different floors of the same building or hedges on the same countryside). The
problem can be resolved by adding a topological map which refines localization.
The Large Maps Framework [20] represents the world as the topological

9



2. State of the art....................................
map with additional information. The vertices of the map represent places
of interest and edges of the topological map represent possible roads that
connect places of interest. Vertices and edges are described with additional
information, which is used for planning, interfacing and reasoning about the
environment. The Atlas framework [21] also uses hybrid map, which consists
of topological and metrical map. It represents the world as a graph of multiple
local maps, where vertices represent local frames and edges represent the
transformation between frames. It creates a map per every frame describing
the local environment and robot pose including uncertainties of each. The
Atlas framework enables a robot to map and localize within an unknown
environment. In [22], the operational domain is represented as 3D Occupancy
Grid, where the cell occupancy probability is described by time depending
function. The Fourier Transform is used for retrieving the probability function.
This model is able to predict the periodic environment variations.

2.1.3 Image processing

One type of landmarks that are stored in landmark maps is so-called image
features. The image features identify significant points in images, usually
points with the high localized contrast in a small space. The set of image
features can identify an object or a scene or a location. The features are
extracted from images in two phases feature detection and feature description
[23]. Detectors search the input image to identify significant points. The
enable the feature reidentification we stored its descriptors, which goal is
to identify the image features which are invariant to the illumination in the
future even though the viewpoint is shifted or the illumination has changed.

2.1.4 Localization

The knowledge of own location relatively to the goal destination is essential
for a successful navigation. We determine the robot’s location in the relative
or the absolute frame [13]. We present three types of localization: Dead
Reckoning, Beacons based localization and map-based localization [14].

Dead Reckoning

Dead reckoning localization method is a process that determines the position
in the relative coordinate frame. Location in the relative frame is calculated
relatively to the starting or the previous point. In dead reckoning the
position is not measured directly. Instead, the robot measures its velocity or
acceleration, which is integrated over time [14]. The odometry is measured
by motion sensors and then we calculate the difference from the previous
point. Although precise sensors and careful calibration decrease measurement
difference from reality, the error accumulates with time [14]. Thus dead
reckoning is not suitable for a long-term navigation.

10



..................................... 2.1. Initialization

Figure 2.6: Demonstration of cumulated error using Dead Reckoning localization.
Courtesy of [5].

Map based localization

Map based localization uses previously constructed maps to compare incoming
sensory data with the additional data stored in the environment model. The
map based localization is usually combined with dead reckoning localization
method because this approach is able to reduce the accumulated error when
the position is calculated relatively to the previous location [10]. It is a
process when we build a map to be compared with the current view to adjust
the location derived from the odometry and reduce the error.

Beacons based localization

Beacons based localization determines the position in the absolute frame
defined by beacons. The system is either global or local. The beacons are
artificial objects placed in the environment with known position. The robot is
equipped with the a priori known map which contains only beacon positions
[3] and a detection system to find beacons and determine robot’s position in
the system. The vehicle finds beacons in robot’s surroundings and estimates
its position using visible beacons [3] by a triangulation method [13]. An
example of the beacon localization method is the Global Positioning System
(GPS).
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2.1.5 Motion planning

To answer the "How do I get there?" question, we generate a series of control
signals to reach the goal, e.g. in [10]. We can divide motion planning into
two parts: path planning and the motion control [14]. In [10], the system
uses a hybrid map for a world representation, consisting of a topological
map which represents the path as line segments and places of interest as end
of segment, and landmark map, which models the robot view in places of
interest. Robot drives along the straight line segment and rotates to face
the end of a segment at every segment’s starting point. To find the right
direction, the robot compares coordinates of the image features stored in the
landmark map. The histogram voting method estimates a modus of each
horizontal feature difference. The angle of the rotation is calculated from the
histogram bin with the greatest number of features. The robot plans its path
to decrease the angle and head toward the next end of the segment. Then the
appropriate motion commands are sent to the robot and it moves towards
the next mapped location.

2.2 Autonomous navigation

Autonomous navigation requires the knowledge of the trajectory and sur-
roundings. We use the teach-and-repeat method to provide the robot with
necessary information. The robot first learns the environment model and
trajectory during the manual navigation. Once the robot gains knowledge
about its surroundings, it navigates itself autonomously. The whole process
starts with localization. Once the vehicle is aware of its position, it plans
where it should go to get closer to the next goal position. The last part of
the process is motion planning and the robot generates motion commands to
reach the goal. Once the robot can autonomously operate within the mapped
environment, it must decide what to do with environmental changes. The
easiest approach is to ignore all changes, the model becomes obsolete, which
makes the uncertainty grow over time. Another approach is to remap the
environment when a change is detected. A failure can occur when remapping
which can completely destroy the map. The last approach to deal with
environment variations is to learn the behaviour of environment dynamics
within changes and predict the feature environment alternations in future.

2.3 Long-term autonomous navigation

Typical autonomous navigation assumes the inner world model created by
SLAM or teach-and-repeat techniques to be static [12]. But the world we
live in is affected by changes. We face daylight or natural season changes but
there are changes induced by a human activity (e.g. an object movement or
removal) [24]. In the short-term perspective, we can neglect the changes and
keep the map static. The long-term navigation is influenced by environmental
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changes and therefore we create a tool for the system to deal with and
understand the environment evolution. To represent the changes, we develop
a temporal model and use it to improve the spatial model by adding time
dependence, which results in the temporal-spatial model building and map
updating.

Figures 2.7 and 2.8 demonstrate the need for temporal models. The
figures 2.7a and 2.7b show how the environment appeared to a robot when
it was building a map in 2006 and figure 2.7c shows what the robot’s view
would be today in 2018.

(a) : Robot’s view in
2006.
Courtesy of [15].S

(b) : A part of cre-
ated map
in 2006. Courtesy of
[15]

(c) : View from the
robot
position in 2018.

Figure 2.7: The views of CTU Charles square campus from robot position

(a) : Final environment map in 2006.
Courtesy of [15]

(b) : Today’s appearance of the
mapped environment in 2018.

Figure 2.8: The CTU Charles square campus appearance

2.3.1 Environment changes modelling

In long-term navigation, we are forced to face a dynamic environment with
moving objects in it, however the model is often assumed to be static [12].
Although many maps and real-world differences can be corrected by map
updates, we create a temporal model to learn and predict the environment
evolution. The purpose of the model is to represent changes throughout the
time according to the observed variations. To keep the problem simple, we
built the model for one viewpoint feature, landmark or object depending
on what the map data represents. We learn the state of the monitored
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object while the robot performs localization and compares its view with an
appropriate map. The object is matched correctly, mismatched or not seen
at all. This information can be explained in multiple ways and therefore we
present multiple types of dealing with environmental changes in the following
section.

Map updating

It is possible to deal with changes by updating the spatial model of the
operational environment. An overview to map update approaches is presented
in [9]. The Simultaneous Localization And Mapping (SLAM) consists of the
environment model and the robot position estimation. The SLAM is defined
as a maximum a posterior estimation problem [9] where the robot’s position
is estimated according to on-board sensory incoming data. Each location
is associated with the map, the sensory data are processed and compared
to maps, and the robot location is estimated as the place described by the
sensory data. The problem of the map updating is that the SLAM system
has to recognize if the map update is needed. When the map is updated
the environment model is usually permanent until the next update is made.
This approach does not support the understanding the changes and their
subsequent prediction.

Environment mapping

In [3], the author poses a fundamental question: "What is a place for a
robot?" and represents several types of environment models as point or line
image feature representation, a model using a 3D scanner for creation and
recognition to avoid the light changes, but this approach does not model
changes of image features or whole objects within a map describing the view.
It creates multiple types of one place representation and selects the one to be
used according to incoming sensory data or gained knowledge of cyclic changes
of world representations. Once the place is considered as problematic, new
"experience" of a place is created and ready to be used in future. Trajectory
consisting of experiences is shown in figure 2.9a.

Moving objects detection

The problem of creating environmental models from on-board incoming
sensory data is that the final environment map consists of both static and
dynamic object. The dynamic object is such which changes its position
frequently in a small amount of time and the static object usually occupies
one place for a long time or doesn’t move at all. We consider the static objects
to be, e.g. trees, houses, roads, furniture etc. The examples of dynamic
objects are people, cars, animals etc. The change modelling in [24] is meant
to detect a dynamic object and predict its trajectory using an average of flow
vectors associated with the object.
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Generated BRIEF

The visual-based navigation system using a video camera as the main sensor
for the world detection is prone to the light changes, which was the motivation
in [23] article. It creates a new feature descriptor based on a combination
of Binary Robust Independent Elementary Features (BRIEF). BRIEF uses
binary strings as features, which make the feature processing more efficient,
and evolutionary algorithms. The final descriptor is called Generated BRIEF
(GRIEF). The principle of GRIEF is to learn the feature descriptors from oc-
curring changes, which makes the feature that uss this descriptor to be robust
and resistant to environment changes. GRIEF uses the BRIEF descriptor
which consists of interest points. The interest points are divided into two
sets: correct and false, by, e.g. histogram voting scheme [23]. The sets serve
as positive and negative training samples. The GRIEF descriptor improves
the feature description with every iteration and therefore the environment
changes are included in the descriptor training sets, which makes it more
robust for the changeable environment.

(a) : Trajectory consisting of multi-
ple experiences. Courtesy of [25] (b) : Feature persistence filter.

Courtesy of [12]

Figure 2.9: Method of environmental changes capturing.

Feature persistence filter

In [12], the world is considered as continuously changing which is represented
by a persistence filter that is supposed to filter the image features that
probably disappeared and are likely not to be seen anymore. The world is
represented by a collection of a maps each of which one corresponds to a one
place. The place is repeatedly visited and the persistence filter calculates an
explicit Bayesian belief of feature appearance. The belief is in [0,1] interval and
consequently the removal threshold is selected. The threshold is represented
by a function that depends on the feature appearance observation. Once the
feature crosses the belief threshold, it is removed from the environment model.
The feature visibility prediction using the Persistence filter is displayed in
the figure 2.9b.
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Frequency Map Enhancement(FreMEn)

FreMEn temporal model describes the feature visibility by a harmonic function.
The function shows the probability of environment states over a period. The
model learns from a set of observed variables of time and state where the
state describes if the feature was visible or not. The model creates a harmonic
function of visibility over the period. The period length changes according
to the feature behaviour. The model predicts if the feature will be visible
in given time. This allows predicting which particular features are the most
likely to be visible at a point in time. Figure 2.10 shows the learning of one
feature visibility and its prediction.

Figure 2.10: Feature visibility prediction using FreMEn. Courtesy of [6]
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Chapter 3
Navigation System Description

Our navigation system is based on an existing system called BearNav [26], we
chose this system for the simplicity of use, its ability of long-term navigation
using an elegant spatial model of the environment, teach-and-repeat method
and open source availability at www.github.com/gestom/stroll_bearnav.
The system structure based on the stationary model is displayed in figure
3.1a and further in this chapter we will describe each module in details.

(a) : The original system (b) : Extended system

Figure 3.1: Navigation system structure

The navigation system is divided into initialisation and repeat phases. The
initialization phase was explained theoretically in the section 2.1. In the
first phase initialisation, the robot is guided manually along the path that
is supposed to be travelled through autonomously in the future. While the
robot is navigated by a human operator, the robot extracts significant image
features 2.1.3 from incoming data from an onboard camera. It stores the
extracted features as well as its velocity and the travelled distance along the
taught trajectory. In the repeats phase, the robot uses directional localization
and repeat velocity commands taught by a human operator while correcting
its heading based on the previously remembered and currently visible image
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3. Navigation System Description .............................
features.

3.1 Sensors

To keep the focus of this work on the vision-based navigation, we select the
video camera to be used for map building and heading estimation. The
system can be enriched by additional sensors, e.g. a compass to determine
the orientation and sonar sensors to avoid collisions.

3.2 Image processing

Image processing is essential for a visual navigation. The Speeded Up Robust
Features (SURF) method is used for features identification in this system. The
extractor has two functionalities, and it is features detection and description.
SURF provides features coordinates within the image.

3.3 Map

The map used in the system is a hybrid map ( 2.1.2) which consists of a global
topological and a local landmark map. Unlike in [26], where only the map
from a human-guided tour is used, we update our map from autonomous runs.
The hybrid map is used to solve the Perceptual aliasing mentioned in Section
2.1.2. In the initialization process the robot measures and saves the travelled
distance and changes in forward or angular acceleration which constitutes
the path profile [27] which represents the topological map. The topological
map is the only one for the path. Every 1 m travelled distance saves the
processed image from the on-broad camera which represents landmark local
maps consisting of image features. The used image processing is described in
3.2. Each feature is represented as a set of variables which are the image, the
first and the last the visible distance and its descriptor.

3.4 Autonomous navigation

Autonomous navigation uses the simple repeat principle. When the robot
is supposed to navigate itself, it relays the commands. To prevent the error
accumulation, the robot compares the features extracted from the incoming
camera data to the features from the relevant local map chosen according to
the travelled distance. The robot computes the horizontal difference between
the mapped and the currently visible corresponding features by the histogram
voting method (represented in section 2.1.5) and saves it into a histogram to
the appropriate bin. The bin with the largest amount of features represents
the angle the robot turns wheels to face towards the feature which corrects
the error and provides a reliable navigation.
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Figure 3.2: The ilustration of global topological map consisting of local landmark
maps.

3.5 Long-term autonomous navigation

We modified the navigation system to enable its deployment of the aforemen-
tioned system for long-term use. We changed its spatial representation in
a way which allows it to reflect the environment changes. In particular, we
used a spatio-temporal model to generate a temporally local spatial model
that is used by the system for the navigation. We presented two primary
question necessary for reliable long-term navigation:..1. How does the probability of visibility depend on time?..2. How should we build the temporally local map?

We added two separate modules that allow us to study these questions. The
module related to the first question is the Temporal model module and the
module related to the second question is the Strategy module. Developement
and integration of these modules are the goal of this thesis. The extended
system with integrated Temporal and Strategy modules is shonw in the figure
3.1b.

The temporal model module learns from past observations of the same
locations performed by the robot during a routine operation and assigns each
feature to a visibility probability, and therefore the module relates to the
first primary question. The strategy module filters image features according
to the probability calculated by the previous module which relates to the
second primary question. The system structure of the modified navigation
system is shown in the figure 3.1b. The figure 3.3 shows sequence diagram
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representing the process of predicting the probability of feature visibility and
filtering.

Figure 3.3: Sequence diagram of feature evaluating and filterings

3.6 Spatial-temporal model

The spatial-temporal model provides knowledge of operational environment
evolution. We learn from history of observations; the observation contains
feature identification and its state and time when the observation occurred.
When matching currently visible features to the ones from the map, a given
feature can be either correctly matched, not matched or incorrectly matched.
Our goal is to filter the features that are likely to be matched incorrectly. This
reduces the chance that the robot will turn in incorrect direction and cause
navigation failure. The filtration is demonstrated in the figure 3.4. In other
words we want to predict features that are more likely to be correctly matched
to estimate the direction estimation of the navigating robot correctly.

3.7 Temporal model

The Temporal model is supposed to solve the first aforementioned primary
question for reliable long-term autonomous navigation: "How does the proba-
bility of visibility depend on time?" The goal is to calculate a visibility score
of each feature that is supposed to model the feature visibility probability.
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(a) : Feature matching without a filter. (b) : Feature matching with a filter.

Figure 3.4: Feature matching

The model creates an inner representation of features and predicts what the
visibility likelhood will be.

We use a statistics based approach to calculate the score of visibility, which
is directly proportional to the probability of visibilty.

Sum

This temporal model calculates a sum of past states over time. The purpose
of this temporal model is to separate stable features from the unstable, which
are usually not seen or mismatched. The result score of the feature is given
by the following equation:

σ =
n∑
i=1

si, (3.1)

where si is the i-th state detected in history, n is the total number of measured
states.

Weighted Sum

This temporal model calculates a sum of given states over time as the previous
model, but the negative state is weighted to separate the features that are
incorrectly matched and features that are not detected. The purpose of this
temporal model is to separate stable features from the unstable ones which
are the usually not seen or mismatched. In contrast with the previous model
the weight of negative state is assigned to the model, which is supposed to
filter the incorrectly matched features faster than the ones that were only not
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seen. This temporal model is given a weight, how many times is it worse for
the feature to be mismatched than match correctly. The result score of the
feature is given by the following equation:

σ =
n∑
i=1

si +
m∑
j=1

wsj , (3.2)

where si is the i-th correctly matched state detected in history, n is the total
number of correctly matched feature states, sj is the j-th incorrectly matched
state, w is given the weight of sj , and m is the total number of incorrectly
matched features.

If the final score of visibility is positive, we can say that the feature was at
least w times more correctly matched that mismatched.

Sliding average

The Sliding average temporal model evaluates the observed feature state with
respect to the observation time. The older the observation the smaller value
it gains. The purpose of this temporal model is to assign the states that
occurred in older history lower weight than of the latest one. It assumes that
the environment has gradually changed over time and the latest visit describes
the environment the best but every state affects the model. This temporal
model works a lot alike the presistance filter (presented in the section 2.3.1)
except this approach does not use Bayesian statistics. The result score of the
feature is given by following equation:

wi = e− t−ti
τ , (3.3)

σ =
∑n
i=1wi∑n
i=1wisi

, (3.4)

where t is current time, ti is time, when data was collected, τ is predefined
time interval, in our case τ = 12 hours, si is the right matched label, (It is 1,
if feature was matched correctly and it is -1, if it was matched incorrectly).

Frequency Map Enhancement(FreMEn)

The FreMEn temporal assumes that the feature visibility is possible to be
represented as a harmonic function. The most significant changes of feature
appearence are caused by light changes. The most significant light changes
are observed periodically as day turns to night and opposite. This temporal
model uses the Furrier transformation to estimate the harmonic function
describing the feature visibility. The model uses cosinus harmonic funtion for
feature visibility probability estimation. The temporal model description in
detailes is provided in [6]
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3.8 Strategy

The strategy relates to the aforementioned second primary question: :How
should we build the temporally local map given the likelyhood of feature
visibility?". The purpose of the strategy is to select enough features for a
reliable navigation while filtering out the ones that are more likely to be
incorrectly matched. When we filter features, then the filtered ones are hidden
to the robot completely so it doesn’t try to find them in its view. It means
we don’t get the information about filtered features state, and therefore we
face another problem and it is known as the exploration vs. exploitation
problem [28]. Our goal is to select features, which are the most likely to
be recognized correctly, that present the exploitation. If we always select
the same features, we don’t get the information about the rest of unselected
features and they stay hidden because the visibility score doesn’t update.

We created three selection strategies that are described in the following
section. Each strategy method is associated with an illustrative figure where
the strategy is given by the visibility scores, which are displayed in red color.
The width and saturation of color illustrate the size of visibility score. The
white array represents the final features selection.

N best

The N Best strategy assumes that for a reliable navigation we need n features,
which are most likely to be visible. The figure 3.5 shows two examples of
the N Best filtration strategy.

Figure 3.5: Example of N Best strategy selection.

Quantile

The Quantile strategy selects the fraction of the total number of image features.
This strategy represents the idea that we need a predefined percentage of
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image features for reliable navigation. This strategy selects the fraction of
total amount of features. Unfortunately features with the lowest probability
of visibility won’t be selected as long as the other features will have a higher
probability. The figure 3.6 demonstrates two examples of the Quantile feature
selection strategy.

Figure 3.6: Example of Quantile strategy selection.

Monte-Carlo

The Monte-Carlo strategy is based on a roulette wheel selection [29]. The
probability of being selected is directly proportional to the calculated score
of visibility by temporal model. This approach solves the exploration vs.
exploitation by adding a random factor into selection. Features with a higher
probability of visibility are more likely to be selected but the set of selected
features is not determined. The figure 3.7 represents two examples of the
Quantile feature selection strategy.

3.8.1 Software architecture and implementation

This section describes, how the actual software is implemented. The whole
platform is implemented in Robotic Operating System (ROS) which is de-
scribed in the next section. The system is written in C++. We created three
temporal models and three strategies for the feature selection.

3.8.2 Robotic Operating System

The system is implemented in an open source Robotic Operating system
[30] available at http://www.ros.org/, which is a "middle ware" system for
robots. It provides hardware abstraction, low-level device control, implemen-
tation of commonly-used functionality, message-passing between processes
and package management [30]. The system works on a subscribe - publish
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Figure 3.7: Example of Monte-Carlo strategy selection.

principle. One module publishes a topic to which the other model is sub-
scribed to receive all topic messages which is realized as an assynchronous
communication. ROS provides multiple types of communication i.e. syn-
chronous over services, asynchronous over topics. ROS also implements an
infrastructure for a data storage on Parameter server which provides the
ability to a change parameter while the system is running. Another advantage
of ROS is that it is a language-independent system. The supported languages
are Python, Lisp and C++. The ROS system is suitable for practical and
theoretical testing of algorithms because of the feature ability of low level
and high level abstration. The ROS inner representation of extended system
is shown in the figure 3.9.

3.8.3 Temporal models

We created three temporal models Sum,Weighted Sum and Sliding Average.
Each temporal model implements the CTemporal virtual class. This virtual
class was used in project FreMEn [10] available at https://github.com/
strands-project/fremen. We use the main functions add, predict and
update where the prediction has two parameters: time in seconds and state
of the feature in a float number. The state value is either 1, 0 or -1 where 1
represents a correctly matched feature, 0 is assigned when the feature was not
seen at all and the value -1 corresponds to mismatched feature. In our system
"The virtual class" was modified to accept string ID and a new function
setParameter was added to allow changes in runtime. One temporal model is
assigned to one particular feature described by the string ID.

3.8.4 Strategy

We created three temporal models N best, Quantile and Monte Carlo. Each
temporal model implements the CStrategy virtual class that we created. The
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Figure 3.8: Component diagram

Figure 3.9: Diagram representation of system using ROS. Vertices represent
modules and edges represest publishing and subscribed rostopics.

strategy is initialized only once for all features.

N best

The N Best strategy assumes that for a reliable navigation we need N features
which are most likely to be visible. The Best strategy has one argument
and it is n, the number of features that are supposed to be selected. If n is
greater than the total number of features, the vector of features is returned
unchanged. The best n features are selected and the rest of it is removed
from the vector. The robot will no longer try to match the removed features
which doesn’t solve the exploration vs. exploitation problem.
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Quantile

The Quantile strategy selects the fraction of the total number of image features.
This strategy represents the idea that we need a predefined percentage of
image features for a reliable navigation. The Quantile strategy has one
argument and it is p, the minimum probability a feature has to gain to be
selected. The scores are sorted by ascending. Then the threshold index is
calculated. We calculate the index i:

i = pn, (3.5)

where n is the total number of features, and p is the given probability. If
the result i we calculate the threshold value as mean of i-th and following
score: σi+σi+1

2 . Then we filter features with a score σ lower than the threshold
value. Because this approach uses the threshold value to select features, not
the total number of selected features, the strategy is more abstract than
the previous one. This strategy selects the fraction of the total amount of
features. Unfortunately features with the lowest probability of visibility won’t
be selected as long as the other features will have a higher probability.

Monte-Carlo

The Monte-Carlo strategy is based on a roulette wheel selection [29]. The
probability of being selected is directly proportional to the calculated score
of visibility by the temporal model. The strategy is provided with n, the
number of features to be selected. If n is greater than the total number of
features, no filtering occurs. The Monte-Carlo strategy assigns each feature
an interval according to its score. It finds the lowest score and if it is negative,
it adds an opposite value to every feature score. The interval starts at zero
then each feature is given the end of its interval. We store the end of the last
feature interval as m. Then the n numbers are generated by random; the
feature is selected if the generated number is in its interval. If one feature is
selected more than once, we generate a new number. All unselected features
are removed. This approach solves the exploration vs. exploitation by adding
a random factor into the selection. Features with a higher probability of
visibility are more likely to be selected but the set of selected features is not
determined.
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Chapter 4
Datasets and Evaluation

We chose to test our long-term navigation system outdoors. The place where
the dataset was collected on was the Hostibejk hill in the Kralupy nad Vltavou
town, the Czech Republic in the middle of August 2017, shown in figure 4.1a.
Hostibejk was declared a natural heritage in 2002 [31]. The hill is covered
by the forest, and therefore the natural changes in appearance and structure
are significant.

(a) : Map of Hostibejk hill. [32] (b) : Robot used for data collection.
Courtesy of [33]

Figure 4.1: Dataset lacation and used robot for its collection

We created datasets from the experiments that occurred from 8th August
2017 to 17th August 2017 [34]. These experiments of autonomous navigation
were saved into rosbag files, which is the ROS primary storage format for
sensory data. The rosbag file stores sensory data from robot autonomous
drives. The rosbag files represent an example of a sensory map (section
2.1.2). The data stored in rosbag files contain data unnecessary for our
purposes and therefore we created a subset called a local map by extracting
the relevant data from rosbag files. The final local maps consist of images
from the on-board camera and list of image features and its descriptors saved
every 1 m of travelled distance. The small amount of data guarantees the
repeatibility of experiments. The robot used for rosbag collection is shown in
figure 4.1b and 4.3 and described in details in the following section.

We divide the datasets into two sets: the training set and the testing set.
The training set is used for history collection and spatial model creation which
is used for navigation. The training data were collected within five days in
the different day phases such as in the morning, afternoon and evening to
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capture the daylight changes. The testing set consists of 6 drives occurred in
three days from 15th to 17th August in different day phases. The figure 4.2
shows the initial robot view and demonstrates the changes.

(a) : Supermap (b) : 8th August
morning

(c) : 8th August
evening

(d) : 8th August
evening

(e) : 8th August
evening

(f) : 9th August af-
ternoon

(g) : 10th August af-
ternoon

(h) : 10th August af-
ternoon

(i) : 10th August af-
ternoon

(j) : 11th August
evening

(k) : 11th August
evening

(l) : 12th August
morning

Figure 4.2: Initial robot views of training drives

4.1 Rosbag

The sensory map created by recording the incoming robot on-board sensory
data (i.e. images, odometry etc.) using ROS system is called the "rosbag"
file. The saved sensory data provides a possibility to replay the sensory
data stream, which would allow us to test the created temporal models and
strategies. Unfortunately replaying the rosbag file is processed asynchronously
and results of two experiments with the same input could differ and therefore
we use rosbag to create local maps to make our experiments repeatable. The
order of local maps is guaranteed by its topological linearization.
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4.2 Robot description

The robot used for data collection and evaluation is shown in figure 4.3. It is
a military robot equipped with an on-board stereo video camera. The robot
is able to travel even over a challenging type of terrain due to its continuous
tracks. On the other hand, the continuous tracks measure the odometry less
precisely than wheels. The dataset for our experiment was collected with the
robot which uses BearNav system for navigation, described in chapter 3.

Figure 4.3: Mobile robot used for data collection and experiments.

4.2.1 Collected data

number of used rosbags 17
travelled distance 1020 m

number of lacal maps 5100
weather varying

Table 4.1: Collected data

4.3 Evaluation method description

We split the evaluation process into two phases: the training and the evaluation
phase. We collect features observation history in the training phase by
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simulating the robot’s movement. Since we focus on the robot directional
correction aspect of autonomous navigation, three question arise:..1. How many map features are associated with the current view and what

is the ratio of the correct association?..2. How does the calculated direction correction, using the predicted map,
differ from the real horizontal shift?..3. How does the created long-term navigation system work on the real
mobile robot?

The first two questions can be assessed through statistical methods applied
to gathered datasets contrary to the third question which has to be evaluated
through the field trial.

4.3.1 Evaluation system implementation

The extended system (figure 4.4a) is used for the experiment evaluation where
the robot movement is simulated by a tester node to make the evaluation
more time efficient and repeatable. The system structure is shown in figure
4.4b.

(a) : Extended system for mobile
robot navigation

(b) : Extended system for data eval-
uation

Figure 4.4: Navigation system structure

The collected datasets consist of local maps, one for every 1 m of travelled
distance storing processed image features and the current view image from
on-board video camera. These local maps store image features and current
view image from onboard video camera. The evaluation principle is simple
because the chosen system for modification uses the directional correction
localization. We create a supermap, that stores all features and history of their
detection. The supermap can be used for both environment representation
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and camera simulation. This ensures that the images, which are processed
by the navigation pipeline, are relevant to the maps provided by the map
preprocesor module that ensures a repetition ability.

4.3.2 Training phase

To create the temporal models, we processed all observations to teach the
model the feature behaviour. In the initial phase, the feature filtration is
not used to collect states of all possible features. In this phase, we simulate
the robot movement and create the history file which is supposed to be used
by temporal models to learn the feature probability of visibility. We save
the feature ID for identification and its position, size, angle, response and
an octave. Whenever the feature state is observed the time of observation
occurrence and the state are added to feature values. Each history file
line describes one feature history observation. The history file structure is
represented by the following table:

feature id x y size angle response octave time state ... time state
id1 x1 y1 s1 α1 r1 o1 t1,1 st1,1 ... t1,j st1,j
id2 x2 y2 s2 α2 r2 o2 t2,1 st2,1 ... t2,k st2,k
...

...
...

...
...

...
...

...
...

...
...

idi xi yi si αi ri oi ti,1 sti,1 ... t2,m st2,m

Table 4.2: History file

The history file contains i features. The n-th feature is described by a set
of variables: identification idn and its position xn and yn, size sn, angle αn,
response rn and an octave on. When the feature is served, we save the time
of observation tn,m and its state stn,m.

Once we have the history of observations, we simulate the runs of testing
datasets. The tested datasets are evaluated with the use of multiple spatial-
temporal models. We remember the number of matched, correctly matched
and incorrectly matched features and the directional correction for each local
map and use spatial-temporal model.

4.3.3 Testing phase

We create spatial-temporal models from the created history file according to
the model type and parameter and strategy type and parameter. The system
then compares the created spatial-temporal models and view images from
testing data collection.

In the testing phase we use the previously created map with the feature
visibility history. Using a given temporal model and a selection strategy we
chose a subset of features and use the subset for robot navigation. Using the
aforementioned processing pipeline (figure 4.4b) we can simulate the robot
movement as if it was given the using temporal model and selecting strategy.
The quality of navigation is evaluated according to aforementioned criteria
(section 4.3.1).
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4. Datasets and Evaluation................................
4.3.4 Matching features criteria evaluation

The first criterion question that follows from the principle of robot navigation
system is "How many map features are associated with the current view and
what is the ratio of the correct feature association?". Our goal is to predict
the features that are more likely to be associated correctly. This could be
evaluated by the Precision and Recall metrics [35], however we don’t have the
information about the false negative labeled features, that were considered
not matched but were actually visible. And therefore we are able to calculate
only the precision which answers the question "How many selected features
are relevant?" [35], as:

rc/a = ncorrect
nallmatched

(4.1)

where the ncorrect is a number of correctly matched features and nallmatched
is a total number of matched features.

We add another ratio to see how much greater the number of correctly
matched features was the incorrectly matched features number, calculated as:

rc/i = ncorrect
nincorrect + 1 (4.2)

where the ncorrect is a number of correctly matched features and nincorrect
is a number of incorrectly matched features. To prevent dividing by zero we
add +1 to the denominator.

We are well aware of that the these ratios are related but we intent to use
them for better results visualization.

4.3.5 Direction correction criteria evaluation

The criterion related to the calculated horizontal shift is associated with the
second criteria question and it is the actual accuracy of the robot navigation.
We simulate the robot movement and capture the calculated directional
correction dc by the "histogram voting" method (section 2.1.5) which is
compared to the manually established ground truth. Then we calculate the
deviation d of the calculated shift from the real one with the equation:

d = |dr − dc| (4.3)
where dr is the real horizontal difference, dc is the calculated one and d is the
final deviation.

We display the deviations in graphs that show what is the probability
that the error will be lower than the defined deviation value d using certain
spatial-temporal model. We also test if the deviations using temporal models
are growing or decreasing using statistical T test.

Ground truth

The ground truth represents the real directional correction and is created
by shifting the local maps images horizontally and comparing them to the
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appropriate local view. The method that proposes the shift difference is
presented presented in [36]. In particular the two images are displayed on
the screen with the proposed shift and the human operator is allowed to
change the shift if he assumes it was incorrect. The final result is saved into
the Ground truth statistics when the human operator confirms the shift.

Paired Samples T test

To test if the calculation of the directional correction was improved by
using spatial-temporal models, we use the statistical t test of the Student’s
distribution. We have two random variables X and Y , where both random
variables consist of the calculated deviations. The X and Y random variables
represent deviations calculated using different spatial-temporal models. The
size of X and Y is big enough to assume normal distribution due to the
Central limit theorem . To calculate the Paired Samples T test, we create a
new random variable Z:

Zi = Xi − Yi (4.4)

We set the zero hypothesis so that the mean value of the random variable Z
is zero and therefore we test the mean µ of the random variable Z on being
equal, lower or greater than zero. Because the variance of the Z distribution
is unknown we use the One-sample t test. Because we assume the µ to be
zero, we calculate the t statistic with the following equation:

t = z̄

sz

√
n (4.5)

where z̄ is realization of the sample mean, n is the sample size and sz is the
sample standard deviation realization of sample calculated as:

sz =

√√√√ 1
n− 1

n∑
i=1

(zi − z̄n)2 (4.6)

The realization of the sample mean is computed as:

sz = 1
n

n∑
i=1

zi (4.7)

The t value is then compared with quantile of Student’s distribution with
n − 1 degrees of freedom qt(n−1). The statistical significance is calculated
using the distribution function of Student’s distribution with n− 1 degrees
of freedom Ft(n−1). Because we test if the spatial-temporal models make a
change in calculating the directional correction and if so, if the change is
positive or negative to the heading correction, we test three hypotheses H0.
The tested hypothesis, rejection conditions and the final significance value is
shown in the following table 4.3.
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4. Datasets and Evaluation................................
H0 rejection condition statistical significance
µ = 0 |t| > qt(n−1)(1− α

2 ) 2(1− Ft(n−1)(|t|))
µ ≤ 0 t > qt(n−1)(1− α) 1− Ft(n−1)(t)
µ ≥ 0 t < −qt(n−1)(1− α) Ft(n−1)(t)

Table 4.3: The hypothesis rejection conditions and statistical significance.
Countesy of [7]

4.3.6 Field trial evaluation

To prove that the extended navigation system using spatial-temporal models
is suitable for mobile robot navigation we provide the practical experiment
using a real mobile robot described in section 4.2. We chose several temporal
models and several strategies to be used for a practical experiment. Then
the robot is navigated autonomously using the modified system (chapter 3)
for a long-term autonomous navigation. The trajectory length is 60 m and
we evaluate the practical experiment by comparing the travelled distance.
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Chapter 5
Experimental Results

The navigation system used for spatial-temporal models evaluation is based on
the teach-and-repeat method and the directional correction. The robot simply
repeats the motion commands taught by a human operator and corrects its
own direction by matching image features stored in local maps to image
features extracted from the current view and therefore we use three criteria
to test the created spatial-temporal models, mentioned previously in section
4.3.1...1. How many map features are associated with the current view and what

is the ratio of the correct association?..2. How does the calculated direction correction, using the predicted map,
differ from the real horizontal shift?..3. How does the created long-term navigation system work on the real
mobile robot?

Unlike the third question which has to be evaluated through the field trial,
the first two questions can be assessed through statistical methods applied to
gathered datasets. To evaluate the first two criteria, we simulate the robot’s
movement using the real data retrieved almost a year ago and observe the
feature matching results. The third method is practical, where the robot
uses our extended system for an autonomous navigation. All methods are
described in detail in the previous section.

We took the created FreMEn temporal model from the opensource gitHub
project FreMEn [10] provided at https://github.com/strands-project/
FreMEn to demonstrate how easy it is to integrate the new temporal model
into the system and to compare our temporal models to the more complex
one.

5.1 Feature matching

As we mentioned in the previous section one of the temporal model evaluation
methods is to count nc the number of correctly matched features. The
count nc itself is not a strong identification of the temporal model reliability
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5. Experimental Results .................................
because of the aforementioned Precision and recall problem. The greater
value of features can be infected by the greater value of false positive labels
and therefore we compare the result nc to the rest of matched features. To
compare used models we calculate the ratio of correctly matched to incorrectly
matched features rc/i and correctly matched to the total number of features
rc/a. The table 5.1 presents the results of matching feature criteria sorted
descending according to rc/i ratio.

5.1.1 Results

The results clearly show that it is better to use a lower number of precise
features than a higher number of features. Monte-Carlo does not always
provide the consistent result, however it is more likely to provide the correct
feature selection than not. We can also see that image feature persistence
trained on observation only day old selects submodel that represent the
current surroundings better than periodicity. The main outcome is that using
temporal models does not impair the ability to match features, it more likely
improves it.

5.2 Directional correction

To decide if the spatial-temporal models held the directional correction
estimation, we calculated the deviation d of the real and calculated horizontal
shift as the square of its difference. We visualize the deviation change by
creating a graph, where the x-axis represents the magnitude of deviation
and the y-axis represents the probability that the deviation of the calculated
horizontal shift will be lower or equal to the deviation value on the x-axis.
The resulting graphs are shown in figure 5.1.

T-test results

To verify the deviation change empirically, we calculate the Paired Samples
Student’s t-test per each pair of tested spatial-temporal model. The principle
of this test is that if two models predict heading with similar deviation, the
mean µ of the sample of the deviation difference would be equal to zero. If the
use of certain temporal model improves the calculation of horizontal shift, the
mean of the sample will be either µ > 0 or µ < 0 according to the difference
calculation. We use the significance level α = 0.05 for our calculations.

The following table 5.2 shows the t-test results and number nd of models
that tested model dominates to and number ns of models that dominates to
the tested one and domination difference δ.

δ = nd − ns (5.1)

The spatial-temporal models are sorted descending according by δ.
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Spatal-temporal model correctly matched rc/i rc/a
Sliding Average 43200 Monte-Carlo 1000 134987 17.594 0.946
Sliding Average 43200 Monte-Carlo 500 63701 15.210 0.938
Sliding Average 43200 Monte-Carlo 250 28188 11.984 0.922
Sum Best 250 8636 2.587 0.721
Weighted Sum 2 Best 250 7984 2.502 0.714
FreMEn Monte-Carlo 1000 36231 2.415 0.707
Sliding Average 43200 Best 250 7761 2.060 0.673
Sum Best 500 12176 1.829 0.646
Weighted Sum 2 Best 500 11231 1.749 0.636
Sliding Average 43200 Best 500 11932 1.698 0.629
Sliding Average 43200 Quantile 0.75 12517 1.575 0.611
FreMEn Best 250 6038 1.295 0.564
Sum Best 1000 16077 1.245 0.554
Sliding Average 43200 Best 1000 15903 1.198 0.545
Weighted Sum 2 Best 1000 14556 1.162 0.537
Sliding Average 43200 Quantile 0.5 16193 1.107 0.525
FreMEn Monte-Carlo 500 8926 1.096 0.523
FreMEn Monte-Carlo 250 4561 1.090 0.521
Sum Quantile 0.5 19319 0.999 0.499
Sum Quantile 0.75 17875 0.980 0.495
FreMEn Best 500 8622 0.977 0.494
Sum Monte-Carlo 250 3517 0.965 0.491
Weighted Sum 2 Quantile 0.5 17342 0.965 0.491
Weighted Sum 2 Quantile 0.75 16459 0.953 0.488
Sliding Average 43200 Quantile 0.25 19665 0.899 0.473
Sum Monte-Carlo 500 6767 0.898 0.473
Sum Monte-Carlo 1000 13054 0.884 0.469
FreMEn Best 1000 14757 0.876 0.467
Weighted Sum 2 Monte-Carlo 250 3198 0.875 0.466
Weighted Sum 2 Monte-Carlo 500 6282 0.842 0.457
Weighted Sum 2 Monte-Carlo 1000 12315 0.832 0.454
FreMEn Quantile 0.5 19673 0.829 0.453
Sum Quantile 0.25 21939 0.815 0.449
Weighted Sum 2 Quantile 0.25 21044 0.806 0.446
FreMEn Quantile 0.75 11398 0.798 0.443
without 24744 0.722 0.419
FreMEn Quantile 0.25 24329 0.714 0.416

Table 5.1: Matching features criteria for all datasets using spatial-temporal
models

5.2.1 Results

The graph results support the outcome of the previous experiments that using
fewer features improves the directional correction. We can also say that the
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Figure 5.1: The probabilities of deviation according to used spatial-temporal
model.

use of appropriate temporal models affects the horizontal shift in a positive
manner which is also the outcome of the statistical t-test experiments.

5.3 Field trial

Although we can calculate which spatial-temporal model is the best to use,
the real system aspects are not considered, e.g. realtime issues or wrong
direction estimation. We integrated the spatial-temporal model usage into
functional visual autonomous system BearNav [?]. To test if the integration
was successful and the modified system is still functional in field trial, we
deployed the modified system for a long-term navigation on the robot. We
did experiments with different temporal models. We also let the robot use
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Spatal-temporal model ns nd δ

Sliding Average 43200 Monte-Carlo 500 0 35 35
Sliding Average 43200 Monte-Carlo 250 0 34 34
Sliding Average 43200 Monte-Carlo 1000 0 33 33
Weighted 2 Best 250 1 30 29
Weighted 2 Monte-Carlo 250 2 28 26
Sum Best 250 3 29 26
Sliding Average 43200 Best 250 3 27 24
Weighted 2 Best 500 4 25 21
Sum Monte-Carlo 250 3 21 18
Sum Best 500 5 21 16
Fremen 0 Best 250 6 16 10
Sliding Average 43200 Quantile 0.75 7 16 9
Sliding Average 43200 Best 500 7 16 9
Sliding Average 43200 Quantile 0.25 9 16 7
Sum Monte-Carlo 1000 8 12 4
Sum Monte-Carlo 500 8 10 2
Sliding Average 43200 Best 1000 8 9 1
Weighted 2 Best 1000 10 9 -1
Sum Best 1000 10 9 -1
Fremen 0 Monte-Carlo 250 9 8 -1
Weighted 2 Monte-Carlo 500 10 8 -2
Sliding Average 43200 Quantile 0.5 10 7 -3
Weighted 2 Quantile 0.75 14 6 -8
Weighted 2 Quantile 0.5 14 6 -8
Sum Quantile 0.75 14 6 -8
Sum Quantile 0.5 14 6 -8
Weighted 2 Quantile 0.25 15 6 -9
Sum Quantile 0.25 15 6 -9
Weighted 2 Monte-Carlo 1000 16 2 -14
Fremen 0 Quantile 0.25 19 1 -18
Fremen 0 Quantile 0.5 21 2 -19
Fremen 0 Best 1000 22 1 -21
without.txt 28 0 -28
Sum 2 Best 1000 28 0 -28
Fremen 0 Monte-Carlo 500 28 0 -28
Fremen 0 Best 500 28 0 -28
Fremen 0 Monte-Carlo 1000 30 0 -30
Fremen 0 Quantile 0.75 32 0 -32

Table 5.2: Results of statistical Paired Sample T test

the original system to compare the difference in travelled distance. The
experiments occurred in two different day phases: afternoon and evening. We
chose these day phases to capture the appearance changes due to daylight
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variations. View images from the robot initial positions are shown in the
figure 5.2. The figure 5.3 shows the robot and its surroundings during
experiments.

(a) : Initial view in the afternoon (b) : Initial view in the evening

Figure 5.2: Initial robot views

(a) : The robot at the time of after-
noon
experiments.

(b) : The robot at the time of evening
experiments.

Figure 5.3: The robot during experiments.

The trained trajectory length was 60 m. The robot used local maps from
every 1 m, describing the current view of the relevant path section. The
experiments occurred on the 15th April 2018 and the weather was ranging
from direct sunlight to light rain. The used spatial-temporal models are
shown in tables 5.3 and 5.4. The tables show how long the robot travelled
autonomously before it got lost. If the travelled distance is 60 m, the robot
completed the whole path autonomously.

Temporal model Selection strategy Travelled distance
FreMEn 100 Best 60 m
FreMEn 500 Best 35 m

Sliding Average 500 Best 10 m
Sum 500 Best 11 m
Static All 45 m

Table 5.3: Afternoon runs
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Temporal model Selection strategy Travelled distance
FreMEn 500 Best 60 m

Sliding Average Quantile 0.5 9 m
Sum Quantile 0.5 9 m
Static All 10 m

Table 5.4: Evening runs

5.3.1 Results

The temporal models were using sparsal maps (1 m apart from each other)
while the original static map consisted of local maps every 0.2 m. This
might have affected the results in favor of the static model. However the
FreMEn model surpassed spatial model and therefore we say that the modified
system is possible to be used in practice and an appropriate spatial-temporal
model is likely to improve the autonomous navigation. We observe that the
Sliding Average temporal model environment representation became obsolete
when the history observations had occured almost a year ago. In contrast
to the empirical results, the periodic representation selected more reliable
environment submap than persistence model Sliding Average.

5.4 Summary

We tested the extended system which uses spatial-temporal models to repre-
sent the operational domain, empirically and in the field trial. The empirical
experiments assessed the number and ratio of correct feature matching and
the impact of the used spatial-temporal models on the directional correction
calculation. The field trial experiment was took place almost a year after
the training and testing data collection. The empirical experiments clearly
verifies that the hypothesis that the use of appropriate spatial-temporal model
improves the correct feature matching and directional navigation. It also
proved that it is better to use a lower number of precise features then a
higher number of features. In other words the great number of unfiltered
features are occupied with the noise causing the robot to misleading. The
results clearly demonstrate that persistence Sliding Average temporal model
represents a solid environmental model when training data are old within days.
The FreMEn spatial-temporal model that captures the features periodicity
represents the environment reliably, although the training datasets occured
long ago. Thus we can say that it is possible to choose the temporal model
according to the training data time accuracy.
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Chapter 6
Conclusion

This thesis presented an approach to spatial-temporal environment represen-
tation for long-term visual navigation and divided the problem of its creation
into the two primary subproblems that were introduced at the beginning of
this thesis: 1) How should the probability of visibility be calculated? 2) What
strategy should we use for correct submap selection? The goal of this thesis
was to study the environment evolution to build an authentical interpreta-
tion capable of learning and predicting the appearance of surroundings and
therefore we suggested multiple types of temporal environment models.

The developed modular flexible system provides a possibility to easily add
new spatial-temporal representation and model creation strategies because of
the separate abstract modules. Each module solves one primary subproblem
and offers an independent study and development of the subproblem. We
integrated our spatial-temporal model into an existing functional visual based
navigation system BearNav [?], that is implemented in Robotic Operating
System in C++ programming language.

The created system was tested empirically and practically. The empirical
experiments focused on the spatial-temporal model usage. The empirical
experiments confirmed the hypothesis that the appropriate environment
model with the ability to learn and predict visual changes improves the image
feature recognition and thus the visual navigation. The practical experiment
verified that the modified system improved the ability to navigate outdoors
using maps created almost year ago. The results also bring conclusion on the
feature filtration. It was confirmed that the less number of precise features,
the better.

We extended the existing functional teach-and-repeat system for a visual
mobile robot navigation to use time- and space- dependent operational envi-
ronment model. We integrated the spatial-temporal model in a way to be
easily modified, upgraded or extended by additional spatial-temporal models.
We also tested the created model empirically and practically with the use
of one verified complex temporal model created within the FreMEn project
[10]. We, therefore, are convinced that this thesis accomplished its goal.

Considering the future work on this project first I intend to use a database
rather than a file to store the maps and history to make the data collection
more efficient. I would like to create new more complex spatial-temporal
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models and determine the optimal number for selecting features and perform
more practical experiments to verify the spatial-temporal model in field trial.
The results of these experiments will be presented in [37].
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Appendix A
CD Content

In table A.1 are listed names of all root directories on CD

Directory name Description
bp bachelor thesis in pdf format.
sources source codes
dataset local maps from 17 runs in August 2017

Table A.1: CD Content
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