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Abstract

In the real world, we have to deal with situations requiring cooperation of participating agents
keeping their rationality. These problems are addressed by the game theoretical concept
of correlated equilibrium. There are some works focusing on the problem of computing
correlated equilibria in stochastic games. So far there is no algorithm capable of computing
correlated equilibria in general partially observable stochastic games.

In this work, we propose the �rst algorithm for approximating correlated equilibria in
partially observable stochastic games that iteratively solves these games using gradually
expanding generated subset of belifestates. Even though the algorithm has no optimality
guarantees, we show that it is capable to compute reasonable solutions.

Abstrakt

V reálném sv¥t¥ se musíme vypo°ádávat se situacemi vyºadujícími kooperaci zú£astn¥ných
agent· p°i zachování jejich racionality. Takovéto problémy odpovídají hern¥ teoretickému
konceptu korelovaného ekvilibria. Existuje n¥kolik prací, které se zabývají výpo£tem ko-
relovaného equilibria v stochastických hrách. V sou£asnosti v²ak neexistuje ºádný algorit-
mus, který by byl schopen po£ítat korelované ekvilibrium pro obecné £áste£n¥ pozorovatelné
stochastické hry.

V této práci p°edstavujeme první algoritmus pro aproximaci korelovaného ekvilibria
v £áste£n¥ pozorovatelných stochastických hrách, který °e²í tyto hry iterativn¥ pomocí pos-
tupného zv¥t²ování vygenerované podmnoºiny belief stav·. P°estoºe ná² algoritmus nemá
ºádné garance optimality, ukazujeme, ºe je schopen nalézt p°ijatelná °e²ení.
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Chapter 1

Introduction

There are many real-world situations involving group of players called multi-agent problems.
For many of these problems, agents can get better outcomes when they cooperate. However,
they will not agree with just any cooperative strategy since they are rational and they want
primarily to maximize their own outcome. Thus they will cooperate with other agents only
if this is the best option for them. In other words, an agent will participate in cooperative
strategy only if his action is the best response to actions of other agents.

These conditions also hold for problems addressed by game theory and the best �tting
class of games are stochastic games. There are several game-theoretical solution concepts
for such problems. When we want agents to coordinate but not to make alliances we need
to choose an action for each agent such that it is the best response to actions taken by
other players. This is exactly what correlated equilibrium does. The main idea of correlated
equilibrium solution concept is that we have some correlation device that knows the real
state of the game and provides a recommendation to each player about the action he should
take. These recommendations are chosen in such way that any player cannot do any better
by deviating from his recommendation, which means the recommended action is a best
response.

There exist several works dealing with computing correlated equilibria in stochastic
games. There are also some works addressing this computation in partially observable envi-
ronments. However, solutions for partially observable environments do not assume general
partially observable stochastic games but only special subsets. Probably computationally
easiest to solve and the best-mapped subset of partially observable stochastic games are par-
tially observable stochastic games with common payo� also know as decentralized partially
observable Markov decision processes.

In this work, we address the problem of computing correlated equilibria in general par-
tially observable stochastic games. To the best of our knowledge, there does not exist such
algorithm yet. We provide the �rst algorithm for approximating correlated equilibria in
general partially observable stochastic games and its experimental evaluation.

One of the most interesting types of games where we want a group of players to act in a
coordinated manner is pursuit-evasion games. In these games, a group of pursuers tries to
catch an evader. Since such games correspond to important real-world problems, we decided
to choose our running example from this type of problems.

1



CHAPTER 1. INTRODUCTION

In the game, we chose we have highway patrols trying to catch a bank robber on the
run. The situation can be that highway patrols are resting at their base when they receive
information about a bank robbery. They do not hesitate and immediately start the hunt
on the robber. The robber wants to get away as fast as possible and tries to escape using
a network of high-speed roads. Unfortunately for patrols all vehicles using these high-speed
roads move really fast and therefore they can catch and spot the robber only at speci�c
places such as crossings and exits and not on the road itself. Since patrols want to catch as
fast as possible they do not have time for long communications thus each patrol has to act
without knowing where exactly the other patrols are. We can think of correlation device as
police central with full information about current state. The police central cannot control
the patrols directly but can give them some advice what should they do. The game does not
have a strict horizon and when patrols catch the robber the game starts from the beginning.

In this work we provide an algorithm that computes strategies that can be used in de-
scribed scenarios. The work itself is structured as follows. First of all, we provide the
technical background needed for understanding our work in Chapter 2. We de�ne di�erent
classes of games (Section 2.1) namely Markov decision processes (Subsection 2.1.1), par-
tially observable Markov decision processes (Subsection 2.1.2), stochastic games (Subsection
2.1.3), partially observable stochastic games (Subsection 2.1.4), Bayesian games (Subsection
2.1.5), decentralized partially observable Markov decision processes (Subsection 2.1.6), value
iteration baseline algorithm (Subsection 2.2.1) and solution concept of correlated equilibrium
(Subsection 2.3.1). In Chapter 2 we also review current literature focusing on solving stochas-
tic games (Subsection 2.4.1) and partially observable stochastic games (Subsection 2.4.2).
In Chapter 3 we provide our approximate algorithm for computing correlated equilibria in
partially observable stochastic games. Results obtained from the experimental evaluation
are presented in Chapter 4. And �nally, in Chapter 5 we summarize the results of our work
and outline future work we want to make on this topic.
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Chapter 2

Technical Background

In this chapter, we provide the technical background of our work. In separate sections, we
describe Markov decision processes, partially observable Markov decision processes, stochas-
tic games and partially observable stochastic games and show how they work on examples.
These de�nitions are from my Bachelor's project [21]. Then we brie�y describe Bayesian
games and decentralized partially observable Markov decision processes based on the com-
mon de�nitions. And �nally, we provide concepts of correlated equilibria ([15]) and value
iteration. At the end of this chapter, we also provide a review of current works focusing on
solving stochastic games and partially observable stochastic games.

2.1 Classes of Games

2.1.1 Markov Decision Processes

Markov decision processes (MDPs) provide a mathematical framework for modelling decision-
making in situations where outcomes are partly random and partly under the control of a
decision maker (agent). The goal is to choose an optimal action in every state to increase
the expected reward. MDPs are useful for studying a wide range of optimization problems,
solved via dynamic programming and reinforcement learning. They are used in a wide area
of disciplines, including robotics, automated control, economics, and manufacturing.

More precisely an MDP is a discrete time stochastic control process and can be viewed
as an extension of Markov chains with a set of actions and state-based reward function.
An MDP is described by 5-tuple (S,A, T,R, γ), where:

• S is a �nite set of possible states

• A is a �nite set of actions

• T is a transition function, T : S x A → ∆(S)

• R is a reward function, R: S x A → R

• γ is the discount factor representing the di�erence between weights of actual and future
rewards, γ ∈ [0, 1]

3



CHAPTER 2. TECHNICAL BACKGROUND

2.1.1.1 States and Actions

A state represents the environment at a particular point in time. Since the state space S is
�nite and the process is stochastic, a particular state can be viewed as a random variable sk
whose domain is the state space. Each state contains a �nite set of agent's possible actions
A. The set A can be the same for all states but it may di�er. Moreover for process to be
Markovian, a state has to contain enough information for next state prediction. In other
words the history is irrelevant to predict the future.

2.1.1.2 Transition Function

In every state, the agent chooses an action from action set and executes it. This a�ects the
state transition probabilities according to transition function T . This function gives a prob-
ability distribution over possible future states for each state and action. That means for
each sk, sk+1 ∈ S and a ∈ A, the function T determines the probability of ending up in state
sk+1 after executing action a in state sk.

2.1.1.3 Reward Function

Reward function R assigns a numeric reward to each pair (sk, a). Thus for each sk ∈ S and
a ∈ A, the function R gives a reward obtained by the agent after executing action a in state
sk.

2.1.1.4 Strategy

A strategy in MDP is a direct mapping from a state to a distribution over the possible
actions set A.

π : S → ∆(A) (2.1)

2.1.1.5 Example

Searching

Numbat found

Search [0.7]

Low Battery

Search [0.3]

Wait [0.6]

Numbat came

Wait [0.4]

Recharge

Recharge

Recharge

Reward

0

Reward

+5

Reward

+20

Reward

-10

Figure 2.1: Example of Markov decision process
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2.1. CLASSES OF GAMES

To show how MDPs work we assume the situation of a robot photographing numbats in their
natural habitat (Figure 2.1). For higher clarity of example scheme, we included the rewards
into the states.

Australian scientists want to study numbats in their natural habitat. Therefore they
placed the robot in the Dryandra Woodland in Western Australia and gave him very simple
task: take photos of numbats in the best quality possible.

The robot has two possible ways of encountering numbats, wait for them near the base
or actively search for them. If he actively searches for numbats he has quite high chance of
encounter. But numbats are easily scared, thus taken photos do not have the highest quality.
If he chooses to wait for numbats near his base he can take photos in high quality but there
is also high chance of getting low on battery.

When robot �nds a numbat he takes a photo and obtains a positive reward according to
the photo quality, then he recharges his battery and continues his task. If he gets low on bat-
tery during searching or waiting for numbat he obtains a negative reward as a representation
of wasted time.

2.1.2 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) is a generalization of a Markov
Decision Process (MDP) to situations in which an agent cannot directly observe the states.
This generalization increases the complexity of problems that can be represented. It is general
enough to model real-world sequential decision processes. The goal is to �nd the optimal
action for each possible belief state which maximizes the expected utility. Applications
include robot navigation problems, machine maintenance, and planning under uncertainty
in general.

Formally a POMDP is comprised of an underlying MDP, extended with an observa-
tion set O and observation function Ω. In other words POMDP is described by 7-tuple
(S,A,O, T,Ω, R, γ), where:

• S is a �nite set of possible states

• A is a �nite set of actions

• O is a �nite set of observations

• T is a transition function, T : S x A → ∆(S)

• Ω is a observation function, Ω: S x A → ∆(O)

• R is a reward function, R: S x A → R

• γ is the discount factor representing the di�erence between weights of actual and future
rewards, γ ∈ [0, 1]

5



CHAPTER 2. TECHNICAL BACKGROUND

2.1.2.1 Observations and Observation Function

In MDPs, the agent has full knowledge of the system state, thus O ≡ S. In POMDPs
observations are only probabilistically dependent on the underlying environment state which
makes determining the state the agent is in problematic, because the same observation can
be observed in di�erent states. It is assumed that agent has perfect recall of actions he took
and observations he observed.

An observation function Ω speci�es the relations between states and observations. This
is made by assigning a probability to triplets (sk+1, a, ok+1). Thus the function Ω returns
the probability of observing observation ok+1 after executing action a and ending up in
state sk+1.

2.1.2.2 Strategy

A strategy in POMDP is a mapping from observation history h to a distribution over the
possible actions set A.

π : h→ ∆(A) (2.2)

2.1.2.3 Example

Start

Right Door

Open right

Left Door

Open left

Listening

Listen

Open right

Open left

Listen

Observation Probability

Tiger on left 0.5

Tiger on right 0.5

Observation Probability

Tiger on left 0.85

Tiger on right 0.15

Observation Probability

Tiger on left 1

Tiger on right 0

Observation Probability

Tiger on left 1

Tiger on right 0

Reward

0

Reward

-1

Reward

-100

Reward

+100

Figure 2.2: Example of partially observable Markov decision process

To show how POMDPs work we assume the situation of an agent closed in a room with two
possible exits and tiger behind one of them (Figure 2.2).

James Bond, a British Secrete Service agent code number 007, was captured and placed
in cell by sir Hugo Drax. Drax likes to play games with his prisoners, thus he left possibility
to escape. James' cell has two possible exits, door on left-hand side and other door on right-
hand side, but only one of them can set James free. Because Drax is an insidious villain he
placed a tiger behind the door on the left. Unfortunately James doesn't know that. Could
he escape and stop Drax or will he be eaten?

6



2.1. CLASSES OF GAMES

Being inside the cell James has three possible actions to take, open the door on the left,
open the door on the right and listen. Choosing to open the door results in direct reward
according to surviving or dying. If James chooses to listen he wastes some time and gains
negative reward, on the other hand he obtains observation that can make his chances to
survive and stop Drax higher.

Imagine James just wakes up and realizes the situation he is in. Thus James is in the
"Start" state and needs to make his �rst decision. His belief of the tiger being hidden behind
door on the left is the same as tiger behind door on the right. Directly choosing one door
can be the quickest way to get out but also the quickest one to die. Therefore James chooses
to spend a little bit longer in cell and listen to improve his chances ending up in "Listening"
state and obtains negative reward of -1 for wasted time. He receives observation that the
tiger is on the side he is really hidden with probability 0.85 or tiger being on the other side
with probability 0.15. This observation changes his belief about the environment and he
decides again whether he is sure enough to pick one door to open or he still needs to listen.
The process repeats until he picks one door. If he �nally chooses the wrong door on the left
he dies and gets negative reward -100 ending up in "Left Door" state. If he chooses the right
door he ends up in "Right Door" state receiving positive reward of +100 for surviving and
stopping Drax.

2.1.3 Stochastic Games

A fully observable stochastic game is a dynamic game with probabilistic transitions played
by one or more players. The particular game state at any time depends probabilistically on
the previous state and the actions taken by players in that state. Stochastic games are widely
used for modelling and analysing discrete systems operating in an adversarial environment
such as in economics, evolutionary biology or computer networks.

Stochastic games generalize both Markov Decision Processes (MDPs) and repeated games.
Therefore, there are many key ingredients in common. A stochastic game is described by:

• a �nite set of players I

• a �nite set of possible states S

• a �nite action set Ai for each player i

• transition function ψ: S x A1 x A2 x ... x A|I| → ∆(S)

• reward function ρ: S x A1 x A2 x ... x A|I| → R|I|

2.1.3.1 States and Actions

A state represents the current state of the game. Each state contains a �nite set of possible
actions for each player, which may di�er across states. Moreover each state also contains
enough information for making a decision. That means the history is irrelevant for decision
and it is enough to use a direct mapping from a state to a distribution over possible actions
as strategy. This fact was proved by Shapley in his seminal paper [19] where he proved that
each player has an optimal strategy that depends only on the current state and not on past
history.
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2.1.3.2 Transition Function

In every state, players independently choose an action from their action sets and execute
it. This a�ects the state transition probabilities according to transition function ψ. This
function returns a probability distribution over possible future states for each state and joint
action. In two-player case for each sk, sk+1 ∈ S, a1 ∈ A1 and a2 ∈ A2, the function ψ
determines the probability of ending up in state sk+1 after executing joint action (a1, a2) in
state sk.

2.1.3.3 Reward Function

Reward function ρ assigns a vector from R|I|, containing numeric reward for every agent, to
each pair sk and joint action a. In two-player case for each sk ∈ S, a1 ∈ A1 and a2 ∈ A2,
the function ρ returns vector (r1, r2) where r1 is reward obtained by the agent 1 and r2 is
reward received by agent 2 after executing joint action (a1, a2) in state sk.

2.1.3.4 Strategy

As we already stated and Shapley proved in his seminal paper [19] it is su�cient to use a
direct mapping from a state to a distribution over the possible actions set Ai as a strategy
in stochastic game.

σ : S → ∆(Ai) (2.3)

2.1.3.5 Example

1

2

3

4 50

Figure 2.3: Example of stochastic game

To show how stochastic games with perfect information work we use the game shown in Fig-
ure 2.3. This game is an instance of our running example used for experiments and represent
the situation when a group of pursuers is trying to catch an evader. For demonstration, lets
assume that there are two pursuers in team starting at the diamond node and an evader
starting at hexagon node.

A stochastic game is played as follows. Players independently and simultaneously choose
and execute their actions for the game state they are in. Then stage rewards and transition
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are calculated. Information about actions, rewards and new stage is told to players and game
proceeds to next stage and the procedure repeats for the rest of the game.

In our case players (pursuers) start in the diamond node 1 and their possible actions are
moving to node 0, node 2 or node 3. The evader starts in hexagon node 4 and uniformly
randomly moves to node 2, node 3 or node 5. Players choose and take their actions. For
example, player 1 moves to the node 2 and player 2 to the node 3. This can result in catching
evader at node 2 by player 1 with probability 0.33, catching evader at node 3 by player 2
with probability 0.33 or the evader escaping to the node 5 also with probability 0.33. Assume
that according to the probabilities the evader randomly chose to move to the node 5. Thus
the players are told that game is now in the state where player 1 is at node 2, player 2 at
node 3 and the evader is hiding at node 5 and players get rewards according to their reward
functions. Then players choose and play their actions for the current state of the game,
transition probabilities and rewards are calculated and the game proceeds to the next stage.

2.1.4 Partially Observable Stochastic Games

Formally a partially observable stochastic game (POSG) is comprised of an underlying
stochastic game, extended with set of observations Oi for each player i. In other words
a stochastic game with imperfect information is described by:

• a �nite set of players I

• a �nite set of possible states S

• the initial state distribution b0 ∈ ∆(S)

• a �nite action set Ai for each player i

• a �nite set of observations Oi for each player i

• transition function ψ: S x A1 x A2 x ... x A|I| → ∆(O1, O2, ..., O|I|, S)

• reward function ρ: S x A1 x A2 x ... x A|I| → R|I|

2.1.4.1 States and Actions

A state represents the environment at a particular point in time. Since the state space S is
�nite and the process is stochastic, a particular state can be viewed as a random variable sk
whose domain is the state space. Each state contains a �nite set of agent's possible actions
A. The set A can be the same for all states but it may di�er. Moreover for process to be
Markovian, a state has to contain enough information for next state prediction. In other
words the history is irrelevant to predict the future.
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2.1.4.2 Transition Function

In every state, the agent chooses an action from action set and executes it. This a�ects the
state transition probabilities according to transition function T . This function gives a prob-
ability distribution over possible future states for each state and action. That means for
each sk, sk+1 ∈ S and a ∈ A, the function T determines the probability of ending up in state
sk+1 after executing action a in state sk.

2.1.4.3 Reward Function

Reward function R assigns a numeric reward to each pair (sk, a). Thus for each sk ∈ S and
a ∈ A, the function R gives a reward obtained by the agent after executing action a in state
sk.

2.1.4.4 Observation Sets and Transition Function

When playing a partially observable stochastic game only the initial state distribution b0

is told to the players. Further orientation in the game is possible only through signals
provided to players by environment based on probabilities calculated by transition function,
which works quite similar as in fully observable stochastic game. Therefore players cannot
determine current state of the game for sure. However game state is not the only thing they
have to consider. Since current state of the game is unknown to all players each player has
his own belief about current state of the game.

Decision of each player is a�ected by his belief. The reward of player i is calculated based
on played join action which means it depends not only on belief of player i but also on the
actions taken by other players. However actions of other players depends on their beliefs
thus each player should have belief also about beliefs of other players. Unfortunately also
these beliefs a�ects played actions and rewards. Therefore each player needs belief about
these beliefs too. We can easily see that nesting of beliefs can be in�nite.

In every state, each player independently chooses an action from his action set and
executes it. This a�ects not only the state transition probabilities but also the information
obtained by other players according to transition function ψ. This function gives a probability
distribution over possible future states and signals received by players for each state and joint
action. Thus in two-player case for each sk, sk+1 ∈ S, a1 ∈ A1, a2 ∈ A2, o1 ∈ O1 and o2 ∈ O2,
the function ψ determines the probability of ending up in state sk+1 when player 1 observed
signal o1 and player 2 signal o2 after executing joint action (a1, a2) in state sk.

2.1.4.5 Strategy

A strategy in partially observable stochastic game is a mapping from belief bi to a distribution
over the possible actions set Ai.

σ : bi → ∆(Ai) (2.4)
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2.1.4.6 Example

To show how partially observable stochastic games work we use just the same game we used
for explaining stochastic games (shown in Figure 2.3). The only di�erence will be that we
assume that the game is not fully observable.

A partially observable stochastic game is played as follows. At each timestep of game
players independently and simultaneously choose and execute their actions from their action
sets. Then stage rewards, transitions and observations are calculated. Only observations are
provided to players and game proceeds to next stage. This stage is unknown to the players.
Thus every time the procedure repeats they need to take into account observations they
received. The procedure is repeated for the rest of the game.

Lets assume the same scenario we used for stochastic games. Players (pursuers) start in
the diamond node 1 and their possible actions are moving to node 0, node 2 or node 3. The
evader starts in hexagon node 4 and uniformly randomly moves to node 2, node 3 or node
5. Players choose and take their actions. For example player 1 moves to the node 2 and
player 2 to the node 3. This can again result in catching evader at node 2 by player 1 with
probability 0.33, catching evader at node 3 by player 2 with probability 0.33 or the evader
escaping to the node 5 also with probability 0.33. Then players get their observations. Since
the game is just partially observable the observation does not automatically reveal the real
state the game is in and can be only used by a player to make his belief about possible states
the game can be in. After establishing their beliefs players need to choose their next actions.

If players immediately catch the evader the game proceeds to initial state. If the evader
is not caught it means that the evader moved to the node 5. In such situation the belief of
player 1 will be that player 2 can be in node 0 or node 3 with equal probability of 0.5 and
the evader can be in node 3 or node 5 with the probability of 0.5.

The belief of player 2 will be almost similar. Player 2 will believe that player 1 is in node
0 or node 2 each with probability 0.5 and the evader is in node 2 or node 5 again with equal
probability of 0.5.

Thus when players choose their next actions they need to take these possibilities into
account and try to choose an action which seems to be the best one over all of them.

2.1.5 Bayesian Games

Bayesian games model single state problems in which each agent has private information
about something relevant to the decision making process. Formally a Bayesian game is
described by:

• a �nite set of players I

• a �nite set of actions Ai for each player i

• a type space of player Θi for each player i

• a probability distribution p over type pro�le space Θ = {Θ1,Θ2, ...,Θ|I|} used to assign
types to agents

• a reward function R: A1 x A2 x ... x A|I| → R

11
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It is assumed that probability distribution p is common knowledge.

2.1.5.1 Strategy

By de�nition an agent's strategy in Bayesian game must assign an action for each of its
possible types.

π : Θ→ ∆(A) (2.5)

2.1.6 Decentralized Partially Observable Markov Processes

Decentralized partially observable Markov processes (DecPOMDPs) are an extension of the
standard POMDPs (by adding more players). They are also known as common-payo�
POSGs. As the alternative name common-payo� POSGs indicates they are a special case of
POSGs. Since that they are described and work the exact same way as standard POSGs.
The only di�erence is that all players share their payo�s (all agents have identical reward
function).

2.2 Baseline Algorithms

2.2.1 Value Iteration

Value iteration is a popular and common method for computing an optimal policy and its
value. At �rst, it was designed for solving single agent problems like MDPs. In each iteration
the algorithm evaluates all states. During backup step it re�nes an estimate of either Q∗ or
V ∗ depending on whether the q-function or value function is chosen. In our work we used
the variant with value function, therefore remaining description will assume this variant.

Let Vk be the value function assuming there are k stages left to play. Such function
can be easily de�ned recursively. Value iteration starts with an arbitrary function V0 and
performs maximization over actions. Following equation is used to get the function for k+ 1
stages left from the function for k stages:

Vk+1(s) = max
a

∑
s′

P (s′|s, a)(R(s, a, s′) + γVk(s′)) ∀k ≥ 0 (2.6)

Algorithm 1 shows the pseudocode of baseline value iteration algorithm. This algorithm
converges no matter what is the initial value function V0. However, the convergence can be
faster when using V0 which approximates V ∗.

We can also modify the single agent variant of this algorithm into multi-agent one. This
involves replacing the maximization over actions (in Algorithm 1 on row 20 and row 24) with
an equilibrium computation. This modi�ed version achieve a few successes particularly in the
zero-sum case where strong convergence guarantees have been achieved [7]. Unfortunately
in general-sum cases for both Nash and correlated equilibria we can encounter phenomenon
known as cyclic equilibria [9].

The cyclic equilibria appears when we have states that form a cycle and are connected in
such manner that these states are forced to periodically change their equilibrium solutions
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Algorithm 1 Value Iteration

1: procedure ValueIteration(S,A, P,R,Θ, γ)
2: Input:
3: S is the set of all states
4: A is the set of all actions
5: P is state transition function specifying P (s′|s, a)
6: R is a reward function R(s, a, s′)
7: Θ is a threshold Θ > 0
8: γ is a discount factor 0 < γ < 1
9: Output:

10: π[S] approximately optimal policy
11: V [S] value function
12: Local:
13: real array Vk[S] is a sequence of value functions
14: actions array π[S]
15: assign V0[S] arbitrarily
16: k ← 0
17: repeat
18: k ← k + 1
19: for s ∈ S do
20: Vk[s] = maxa

∑
s′ P (s′|s, a)(R(s, a, s′) + γVk−1[s

′]))
21: end for
22: until |Vk[s]− Vk−1[s]| < Θ ∀s ∈ S
23: for s ∈ S do
24: π[s] = arg maxa

∑
s′ P (s′|s, a)(R(s, a, s′) + γVk−1[s

′]))
25: end for
26: return π, Vk
27: end procedure

and values. Since the di�erence between values can be greater then termination threshold,
the value iteration may run forever. The commonly used solution is to add cycle detection.
To be able to detect the cycle we need to store the history of previously reached equilibria
for the particular state. This can be done either for all states or just a subset of states we
are concerned about. When we reach the same equilibrium in some later iteration the cycle
is detected and the value iteration terminates. As a result we can use either last obtained
solution or we can choose the best solution among the ones forming the cycle based on our
criteria.

2.3 Solution Concepts

2.3.1 Correlated Equilibrium

Correlated equilibrium is a solution concept generalizing the well know Nash equilibrium.
The high-level idea is that players are receiving recommendation what action they should
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take from correlation device (e.g. tra�c lights). If no player wants to deviate from the
recommendation assuming the other will not deviate too, the resulting strategy is called
correlated equilibrium.

Lets assume an one-shot N-player matrix game where each player p has a �nite set of pure
strategies Ap. The set A =

∏n
p=1Ap is called the set of strategy pro�les. Strategy pro�le

without player p is denoted as A−p =
∏

p6=q Aq. The utility function of player p at state s
is a function up mapping set of strategy pro�les A to the numerical values. A distribution
x on A is a vector of nonnegative real numbers, one for each strategy pro�le in A, summing
up to 1.

The correlated equilibrium is a distribution x on A such that for all players p and all
pure strategies i, j ∈ Ap the following statement is true. Conditioned on p − th component
of strategy pro�le drawn from x being action i, the expected utility for player p of playing
action i is no smaller than that of playing action j. This can be mathematically expressed
as: ∑

a∈A−p

[upia − u
p
ja]xia ≥ 0 ∀i, j ∈ Ap (2.7)

∑
a∈A

xa = 1 (2.8)

xa ≥ 0 ∀a ∈ A (2.9)

Lets assume two player chicken game showed in Figure 2.4. These players are two com-
petitive drivers speeding from di�erent streets to an intersection. Each of them with two
strategies S1 = S2 = stop, go. The utility function is speci�ed by the matrix. When both
players stop before intersection they get an equal reward of 4. In the situation when only
one of the players stops before intersection the one who did not stop gets a reward of 5 and
the one who stopped gets 2. And in the situation when neither of them stops they crash and
obtain reward 0.

go

go

stop

stop

4, 4 2, 5

5, 2 0, 0

Figure 2.4: Chicken game

Now consider a correlation device (for example some kind of tra�c lights) that draws
one of three strategy pro�les (stop, stop), (stop, go), (go, stop) with uniform probability 1/3.
After drawing strategy pro�le the correlation device informs the players of strategy assigned
to them, but not the strategy assigned to their opponent. Suppose a player is assigned go,
he would not want to deviate supposing the other player played their assigned strategy since
he will get the highest possible payo�. Suppose a player is assigned stop. Then the other
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player has been assigned stop with probability 0.5 and go with probability 0.5. The expected
utility for go is 0.5 ∗ 5 + 0.5 ∗ 0 = 2.5 and the expected utility for stop is 0.5 ∗ 4 + 0.5 ∗ 2 = 3.
Thus player will prefer to play action stop which means he would not want to deviate from
suggested strategy.

Since neither player has an incentive to deviate from assigned, playing strategy pro�les
(stop, stop), (stop, go), (go, stop) with uniform probability 1/3 is a correlated equilibrium
of chicken game.

The solution concept of correlated equilibrium can be easily transformed to be used for
stochastic games too. In each state of a stochastic game we solve a matrix game. Thus we
can compute correlated equilibrium for the state games. The only di�erence is in the utility
function since we do not play just a one-shot game but we also have to consider rewards
from future states usually weighted by the discount factor γ.

Lets assume an N-player stochastic game with set of game states S. Each game state s
can be represented as a stage matrix game. In game state s has each player p a �nite set of
pure strategies Ap(s). The set A(s) =

∏n
p=1Ap(s) is the set of strategy pro�les available in

state s. Strategy pro�le without player p is denoted as A−p(s) =
∏

p 6=q Aq(s). Lets denote
the set of states reachable from state s by strategy pro�le a as S(s, a). The continuation
utility after playing action pro�le a in state s is cpa(s) =

∑
s′∈S(s,a) Vk−1[s

′]P (s′|s, a). Finally
the constraints needed for computing correlation equilibria in stochastic games will be for
each state s ∈ S:∑

a∈A−p(s)

[[upia + γcpia(s)]− [upja + γcpja(s)]]xia ≥ 0 ∀i, j ∈ Ap(s) (2.10)

∑
a∈A(s)

xa = 1 ∀i, j (2.11)

xa ≥ 0 ∀a ∈ A(s) (2.12)

These constraints are su�cient to form linear program for computing correlated equi-
libria. Such program will replace the maximization over actions used in value iteration
algorithm (in Algorithm 1 on row 20 and row 24).

2.4 Literature Review

2.4.1 Stochastic Games

Despite the fact that stochastic games (SGs) assume fully observable environment they can
be used to model many problems. Since SGs generalize MDPs many attempts to solve them
tries to extend Bellman equation (used in value iteration for MDPs) to domains with multiple
agents.

One of the �rst attempts to solve stochastic games was made by Littman [6] and focuses
on two-player zero-sum games. The algorithm presented in this work (minimax-Q) is just
a slight modi�cation of Q-learning algorithm used for solving MDPs (also know as value
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iteration). A stochastic game is divided into states, where each state corresponds to one
matrix game. In every state the matrix game is solved using minimax theorem with the
assumption that players will continue optimally (Q-function). Then the value of a state is
updated according to Q-function. Littman and Szepesvári showed that minimax-Q converges
to the game-theoretic optimal value [8].

The algorithm developed by Littman was than extended by Hu and Wellman to two-
player general-sum games [5] considering only stationary strategies. Unlike in zero-sum
games in general-sum games, players need no longer have opposite interests and each player's
reward depend on other players' actions. Thus the minimax approach does not work for
these situations. Because of that, they adopted Nash equilibrium solution concept instead
of minimax. Which means that in every state the corresponding matrix game is solved using
Nash equilibrium (therefore this algorithm is known as Nash-Q). The convergence conditions
of the algorithm were clari�ed by Bowling [1].

Although the Nash-Q algorithm is highly general, the assumptions to guarantee its con-
vergence are quite restrictive. Only coordination or adversarial equilibrium games with
speci�c intermediate results of learning are guaranteed to be solved. Therefore another algo-
rithm (friend-or-foe Q-learning - FFQ) was presented by Littman [7]. This algorithm always
converges and for games with adversarial or coordination equilibria converges to the exact
same values as Nash-Q. To achieve this improvement FFQ algorithm needs other players
to be identi�ed as 'friend' or 'foe'. According to other players' type appropriate learning is
used. In two player scenario for 'foe' it uses minimax and for 'friend' ordinary Q-learning.
The key idea of FFQ algorithm is that player's 'friends' are assumed to work together to
maximize its value, while its 'foes' are working together to minimize the value. Therefore
n-player FFQ can treat any game as a two-player zero-sum game with an extended action
set.

Another algorithm based on negotiation was developed by Gordon and Murray [13]. This
algorithm �nds subgame-perfect Nash equilibria for general-sum stochastic games with cheap
talk (the players observe the state of the world, discuss their plans with each other and then
simultaneously select their actions). In such equilibrium every possible deviation from plan
is eliminated by the threat of a suitable punishment which is believable. There may be many
subgame-perfect equilibria with di�erent payo�s (some are better for one group of players,
some are better for another group). In the majority of cases it is infeasible to compute
full set of subgame-perfect equilibria and even in cases where it is, there is no obvious way
to select the one to be implemented. Thus agents must negotiate until they �nd the one
acceptable by all of them. It is assumed that algorithm knows possible punishment policies
for each player triggered on a deviation of the particular player from plan and players agreed
beforehand on a subgame-perfect equilibrium (disagreement policy), which will be played in
case the negotiation fails. In each state of the game every player computes the equilibrium
which is most advantageous from its point of view. After all players have their equilibria
calculated the negotiation phase starts. In �rst phase agents take turns on revealing their
equilibria to others. On agent's turn the equilibrium is revealed or agent passes. If all
agents pass consecutively the negotiation proceeds to the second phase. When a player
states a policy for its equilibrium, other players verify that it is really a subgame-perfect
equilibrium and calculate their value for this policy. The player who stated non-equilibrium
policy loses its turn. At the end of the �rst phase there will be a set of revealed policies.
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For each revealed policy it is calculated the gain against disagreement policy. Joint gains for
policies are represented as a set of points in the space and then the convex hull of the set is
created. In second phase players take turns on proposing points from the convex hull along
with policies needed to achieve them. After each proposal all agents except proposer decide
whether the proposition will be accepted or rejected. If everyone agrees, the proposal is
implemented, agents execute their actions according to it and game proceeds to next stage.
If the proposal is rejected, those agents who agreed on it are removed from decision process
and their utilities are �xed to the value achievable by the rejected proposal. That means all
future proposals must give to those players exactly the same utility as the proposal they are
willing to accept. When the negotiation fails (we hit ε chance of having the current round of
negotiation end) all players without �xed utility are assigned to their values for disagreement
policy. The players execute the proposed policy (or disagreement policy if there is no valid
proposal). And any player whom value for policy to execute is higher than their assigned
value voluntarily lowers their utility to the correct level. Failure to do so results in all players
reverting to disagreement policy. The subgame-perfect Nash equilibrium selected by players
is guaranteed to be Pareto-optimal (any single player's value cannot be improved without
lowering the value to another player) and approximately fair (it is near the so-called Nash
bargaining point).

Gordon and Murray improved their algorithm [14] by removing the assumption of having
set of punishment policies as an input (preparing a set of suitable punishment policies can
be computationally di�cult). They improved the algorithm also in sense of tractability. The
previous version of the algorithm was intractable since it operates on arbitrary convex sets.
By representing each convex set only using a �nite number of points, which can be easily
done, they achieved a tractable version of their algorithm.

Another improvement to Gordon's and Murray's algorithm was done by MacDermed and
Isbell [11]. They use general-sum stochastic games with cheap talk as Gordon and Murray
did and assume that past joint actions are part of the state and that each player is rational.
They found out that there are three main bottlenecks in the exact algorithm. The �rst one
is that the size of the game is exponential in the number of players (since joint actions are
exponential in the number of players). The second one is that although the exact algorithm
always converges it is not guaranteed to converge in �nite time. And �nally, the third one
is that maintaining an exact representation of a feasible set can cause intractability. The
�rst problem is unavoidable unless the game is approximated. Thus they focused mainly
on the latter two problems and made two modi�cations to the exact algorithm. First of all
they added a stopping criterion. This ensures that at each iteration at least one feasible
set changes by more than user-de�ned threshold. The second modi�cation is representing
each feasible-set as a bounded number of points. For computing expected feasible sets and
correlated equilibria of sets, they use a multiobjective linear program.

2.4.2 Partially Observable Stochastic Games

Partially observable stochastic games are very general and can be used to model a wide range
of real-world problems, which make them really attractive in sense of usability. However,
their biggest advantage (their generality) is at the same time their biggest problem. As we
have already mentioned players do not know the current state of the game but they just
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have a belief about it. Since each player has his own belief, a player has to take into account
beliefs of other players when he is making the decision about what action he is going to
execute. Which results in need of belief about other players belief. But it is even worse since
every player has his own belief about other players beliefs he needs another belief about
beliefs which players hold about each other's beliefs. As we can see such way of reasoning
can continue forever. Therefore the problem of solving POSGs is very di�cult.

To the best of our knowledge there is no algorithm computing optimal or reasonable
policies for general POSGs and all existing algorithms focus on limited subsets of POSGs.
Probably computationally the easiest to solve and the best-mapped subset of POSGs are
common-payo� POSGs (which are also known as decentralized Partially Observable Markov
Decision Processes - DecPOMDPs).

Most of the algorithms solving common-payo� POSGs uses the fact, that these games can
be transformed into a sequence of Bayesian games. This transformation (Emery-Montemerlo
et.al [3]) is non-trivial since a POSG does not naturally correspond to the sequence of
Bayesian games (unlike a fully observable stochastic game does). The high-level idea of
this transformation is approximating of entire POSG by constructing a smaller Bayesian
game at each timestep. Each smaller game models a subset of possible observations up to
that time step and �nds a one-step lookahead policy for each agent contingent on that subset.
To model a time slice game it is essential to represent each sub-path through POSG game
tree up to the desired timestep as a single entity. Such a single sub-path corresponds to a
speci�c set of action histories and observations for all agents in the team. When all agents
know that a speci�c sub-path has occurred the problem becomes fully observable and the
payo�s of each joint action are known with certainty, which is analogous to the utility in
the Bayesian games being conditioned on speci�c belief pro�les. Each sub-path in POSG up
to time t is considered as a speci�c belief pro�le Θt. Pro�les consist of the beliefs of each
agent Θt

i, which represents agent's own observations and actions and can appear in multiple
Θt. Bayesian games also need agents having common prior over the belief pro�le space Θ.
If all agents have common knowledge of starting conditions of POSG (e.g. a probability
distribution over possible start states), then Θt+1 and p(Θt+1) can be calculated iteratively
based on Θt, p(Θt), action set, observation set and transition function. Additionally, since
the solution of the game is set of policies for all agents each agent knows its own policy for
the next step and the policies of its teammates as well. This information can be then used to
update the belief pro�le space too. Because of the fact that the set of possible histories can
become very large, it is advised to use only beliefs with a prior probability higher than some
threshold and renormalize p(Θ). Finally, there has to be a utility function that represents
the payo�s of actions conditioned on the belief pro�le space. This function should re�ect
not only the immediate value of joint action but also the expected future value. The natural
way to do this is to �nd the value in the �nal timestep and back it up through time. This
approach cannot be applied to POSG, because it means solving a Bayesian game in the �nal
time step which requires as much work as solving original POSG since we need to build a
Bayesian game for each previous timestep to be able to build and solve Bayesian game for
the �nal one. Therefore the value function needs to be heuristic, which results in locally
optimal policies with respect to the used heuristics. There are two biggest possible problems
of this approach, the belief space Θ can be extremely large and �nding a good heuristic for
value function can be di�cult (in some domains QMDP function had good results).
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This approach was improved by MacDermed and Isbell [10]. First of all, they brought
a novel integer linear program which can e�ciently solve Bayesian games. Second, they
present an optimal belief compression method, that can transform any DecPOMDP into a
Bounded Belief DecPOMDP (BB-DecPOMDP, a special case of DecPOMDP where each
player has upper bound on a number of beliefs at each timestep). This method involves
agents choosing the best way to compress their own beliefs and it is divided into two phases.
The �rst phase behaves like the original DecPOMDP. In the second one an agent's actions
are decisions about how to compress its belief. Each agent must choose its next belief from
a �xed number of beliefs to choose from (the number of beliefs is a free parameter). Finally,
they extended results of the work of Dibangoye et.al [2] (each �nite horizon DecPOMDP can
be converted into a �nite horizon POMDP where a probability distribution over histories is
a su�cient statistics that can be used as POMDP state) to in�nite horizon DecPOMDPs
with bounded belief (BB-DecPOMDPs). Since DecPOMDPs can be approximated by BB-
DecPOMDPs and than transformed into POMDPs, in which selecting an optimal action
is equal to solve a Bayesian game, it is possible to use existing POMDP algorithms. The
only di�erence is that instead of maximizing over actions (which is exponential for POMDPs
created from BB-DecPOMDPs) a Bayesian game equivalent to the stage decision problem
must be solved.

Another algorithm to solve decPOMDPs (common-payo� POSGs), which does not use
transformation into a sequence of Bayesian games, was presented by Wu et.al and it is called
Decentralized Rollout Sampling Policy Iteration (DecRSPI) [22]. This algorithm heuristically
generates stochastic policies using an approximate policy improvement operator trained with
Monte-Carlo simulation. The approximate operator simulates and evaluates a joint policy
at game state by drawing some sample trajectories of the joint policy starting at particular
game state. After that policy is improved by solving series of linear programs.

There were also tries to solve DecPOMDPs using dynamic programming. The �rst
algorithm using dynamic programming was developed by Hansen et.al [4] to solve �nite
horizon POSGs. This algorithm is a synthesis of dynamic programming for POMDPs and
iterative elimination of very weakly dominated strategies in normal-form games. It's based
on the fact that every �nite horizon POSG can have normal form representation. The
problem of this representation is that it can be much larger than original POSG. Therefore
the algorithm performs iterative elimination of dominated strategies without constructing the
normal form representation. The key ingredient of the algorithm is a multi-agent dynamic
backup operator which generalizes dynamic programming operator for POMDPs. First, the
operator is given a set of depth-t policy trees Qt

i and corresponding value vectors V t
i for

each agent i. The operator performs an exhaustive backup on each of the sets of trees to
form Qt+1

i for each agent i. Then it recursively computes value vectors V t+1
i . In the second

phase multi-agent operator prunes dominated strategies. Removal of policy tree results in
a reduction of other agents' belief state spaces dimensionality and can be repeated until no
more policy trees can be pruned from any agent's set. Since the algorithm removes very
weakly dominated policies it does not guarantee optimal results for general-sum POSGs but
it yields optimal strategy pro�les for DecPOMDPs.

Unfortunately, this approach can solve only games with very limited horizon due to time
and space complexity. These problems were addressed by the improved algorithm developed
by Seuken and Zilberstein [17]. They observed that the original algorithm keeps too many
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policies in memory, even though only very few of them are necessary for optimal or near-
optimal behaviour, which is mostly due to its bottom-up way. The improved algorithm
combines top-down heuristics (in practice MDP heuristic and random policy heuristic have
proven useful) for selecting a set of most promising policy trees, bounded by the prede�ned
maximal number of policy trees, with the original bottom-up pruning algorithm, which can
be done in two di�erent ways. First, after a full backup is performed dominated policy
trees can be eliminated using the pruning algorithm. Which means no dominated policy
tree will be selected by the heuristics. Second, the pruning algorithm is applied after the
heuristics selected policy trees for next iteration, which leads to more memory-e�cient next
iteration. However, this approximate algorithm guarantees linear space and time complexity
with respect to the game horizon it still grows exponentially with the size of the observation
set. Therefore Seuken and Zilberstein created the improved version of their algorithm [18].
In order to reduce the number of observations, they use a technique similar to the one for
selecting promising policy trees. In the �rst step algorithm identi�es a set of belief states
using top-down heuristics. Then for each belief state at timestep t the best joint policy is
added. In the second step the set of most likely observations for every agent is found, bounded
by the prede�ned maximal number of observations. For each joint observation is calculated
its probability and then k most likely observations are selected based on ranking according
to the probability of joint observation, where k is the maximum number of observations. For
policy trees selected in the �rst step partial backup using only k observations for each agent
is performed, which leads to a feasible number of policy trees (with missing branches).

Another dynamic programming approach to improve the original algorithm was devel-
oped by Szer and Charpillet [20]. Unlike the original one, this algorithm is top-down and
works as follows. First, it is needed to generate joint policies, but generating an exhaustive
set of prior policies is impractical. Therefore the strategy used for single-agent scenario
(Pineau et.al [16]) is adopted. Given sets of (t-1)-step policies Q(t − 1)i for each agent i,
sample from the set of possible prior policies. Those policies that are most likely to be spread
out far away from each other are retained (Manhattan distance can be used as a metric).
Then it is needed to generate belief states. Generating all possible beliefs states is computa-
tionally demanding due to the exponentially many possible assignments of horizon-t policies
candidates. To avoid testing all possible policy subtrees they are assigned at random. Thus
this algorithm computes policies based on a subset of the reachable belief states.

Besides the common-payo� POSGs there exists another subset of POSGs with attempts
to solve it. This subset is called Markov Games of Incomplete Information (MGIIs) and was
introduced by MacDermed et.al [12]. MGIIs generalize stochastic games and POMDPs but
not decentralized models or POSGs since they can't e�ciently represent private beliefs and
thus MGIIs are a weaker model. An MGII is de�ned as a sequence of Bayesian games where
both the next game and the beliefs of players in that game depends on the previous game and
belief. MGIIs also have a special Markov property on players' beliefs that ensures players
need to reason only about zero-level beliefs and is quite similar to the Markov property for
states. Since MGIIs are by default de�ned as a sequence of Bayesian games they are closer
to fully observable stochastic games than to POSGs. Therefore an MGII can be converted
into a fully observable stochastic game and solved.
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Chapter 3

Computing Correlated Equilibria

in Partially Observable

Stochastic Games

In this chapter, we describe our approximate algorithm to compute correlated equilibria in
partially observable stochastic games. For the sake of simplicity, we will describe how the
algorithm works on our running example described in Section 3.1. The rest of the chapter
is structured as follows. First, we outline the high-level principle of our algorithm. Then in
following sections we will describe important parts in more details. And �nally in Section
3.7 we provide brief information about actual implementation.

3.1 Running Example

As we already mention we are using a pursuit-evasion game as our running example and this
game represents a real-life problem when highway patrols are trying to catch a bank robber
on the run.

We represent the environment of this game as a planar graph where nodes stand for the
places where patrols can spot and catch the robber and edges stand for the roads connecting
these places. Individual patrols are our players and the robber is represented as nature
player, who uniformly randomly chooses the next place he will move to. An action is a
selection of neighbouring place a player will move to.

3.2 High Level Idea

In partially observable environment players do not know the true state of the game. Instead
of it they only have a distribution of possible states called belief and each belief can be
represented as a state called beliefstate. When solving partially observable stochastic games
the beliefstate space can be in�nite. However many of these beliefstates may not be necessary
for �nding a solution. The main reasons can be that these unnecessary states have too low
probability and have almost no impact on the solution or the outcome from these states is

21



CHAPTER 3. COMPUTING CORRELATED EQUILIBRIA IN PARTIALLY

OBSERVABLE STOCHASTIC GAMES

so bad that we never reach them. Recognizing beliefstates needed for �nding a solution is a
nontrivial problem since beliefstates which seems to be promising at �rst can show as not as
good later and vice versa. Our algorithm overcomes this hardness by an iterative extending
subset of beliefset space until the values converge and approximate solution is found. The
algorithm works as follows.

First, we generate a subset of the desired size from beliefstate space. We �nd correlated
equilibrium solution using value iteration for this subset. Then we add the desired number of
new beliefstates to our subset and again �nd correlated equilibrium solution for the extended
subset. The procedure repeats until the di�erence between values from last two iterations is
smaller than a threshold.

3.3 Generating Beliefstate Subset

When generating beliefstates from beliefstate space there are two situations which can hap-
pen.

First, we are trying to expand beliefstate we do not have computed correlated equilibrium
for. In such situation just expand this state using all possible joint actions that can be played
in it.

Second, we already calculated correlated equilibrium for beliefstate to expand in one of
the previous iterations. In such case we expand the state with probability p according to
the computed equilibrium and with probability 1−p using all possible joint actions that can
be played. This behaviour results in expanding the parts of beliefstate space which seems
promising according to actual strategy and at the same time not completely throw away the
parts which are not as promising.

Setting the threshold for termination criterion can be di�cult. Therefore we expand the
current subset by adding newly generated states only if the di�erence between root state
values from last two iterations is greater than 1% of the older one. It is also possible to set
the minimum number of beliefstates we want to generate before terminating.

3.4 Computing Correlated Equilibrium

To show how we compute correlated equilibrium lets assume following situation. Since same
constraints for selecting actions applies to all players we can use for the demonstration just
point of view of one player. We are playing game showed in Figure 3.1 with two pursuers
and one evader. Player 1 is at node 2 and knows that evader can be at node 3 or node 5
both with equal probability 0.5. To select the best action to perform, a player needs to know
the position of player 2. Unfortunately, due to partial observability, he does not have this
information and he has just belief that player 2 is either at node 0 or node 3, both with
equal probability 0.5. Thus from point of view of player 1, the game can be in two possible
situations and we are looking for an action for player 1 that it is the best choice for both
situations.

In Figure 3.2 we can see two matrix games representing the possible state of the game
from point of view of player 1 (row player). The matrix on the left corresponds to the
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Figure 3.1: Game example

situation with player 1 in node 2 and player 2 in node 3. The right one represents the
situation with player 1 in node 2 and player 2 in node 0. And as we already stated both
situations are equally probable. Now we need to select an action for player 1 such that it
would be the best one among all possible situations.

Since the correlation device knows the current state of the game we do not need to
consider beliefs of other players. For now lets assume that the real state of the game is
situation represented by the leftmost matrix. Therefore we are looking for distribution x
over strategy pro�les (1, 1), (1, 4), (4, 1) and (4, 4).
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Figure 3.2: Belief of player 1

If this would be perfect information scenario we will just use solution concept presented
in Section 2.3.1 and �nd a correlated equilibrium for leftmost matrix game. However, in the
partially observable environment, we must consider also other states which are possible from
player's point of view. This means we need to modify the original condition.

The probability of player p playing an action i at state s is xpi (s) =
∑

a∈A−p(s)
xia(s). Lets

denote the real state as s∗ and the beliefstate set of player p as Bp. The set Bp
−s = Bp\{s}

and belief of player p of being at state s is P p(s). Now lets de�ne function vpi (s) for computing
expected value for playing action i by player p in state s:

vpi (s) =
∑

a∈A(s)

[upia + γcpia(s)]xia (3.1)

When evaluating function vpi (s) for states form set Bp
−s∗ the values of xia are constants

based on solution computed in previous iterations or uniform strategy. Thus expected value
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for playing action i in state s ∈ Bp
−s∗ can be pre-computed, since they are constants too.

The modi�ed version of constraints for each s∗ ∈ S will be:

P p(s∗)
∑

a∈A−p(s∗)

[[upia+γcpia(s∗)]−[upja+γcpja(s∗)]]xia+xpi (s
∗)

∑
s∈Bp

−s∗

P p(s)[vpi (s)−vpj (s)] ≥ 0

∀i, j ∈ Ap(s∗) (3.2)

xpi (s
∗) =

∑
a∈A−p(s∗)

xia(s∗) (3.3)

∑
a∈A(s∗)

xa = 1 ∀i, j (3.4)

xa ≥ 0 ∀a ∈ A(s∗) (3.5)

These equations must hold for each player p from the set of players N .

If we recall our example from Figure 3.2 the conditions for player 1 will be:

0.5 ∗ [[0− 10]x(1,1) + [5− 10]x(1,4)] + 0.5 ∗ 2.5 ≥ 0 (3.6)

0.5 ∗ [[10− 0]x(4,1) + [10− 5]x(4,4)] + 0.5 ∗ 7.5 ≥ 0 (3.7)

x(1,1) + x(1,4) + x(4,1) + x(4,4) = 1 (3.8)

x(1,1) ≥ 0 (3.9)

x(1,4) ≥ 0 (3.10)

x(4,1) ≥ 0 (3.11)

x(4,1) ≥ 0 (3.12)

Without setting objective function this linear program will still work. However, it will
return the �rst correlated equilibrium found. When we do not want just any correlated
equilibrium but in some manner optimal one, we can choose an objective function ful�lling
our requirements. For example, when we want to �nd such correlated equilibrium that
maximizes social welfare we must add the following objective function:

max
∑
p∈N

∑
a∈A(s∗)

upa(s∗)xa(s∗) (3.13)

The objective function from Equation 3.13 guarantees to �nd a correlated equilibrium
which maximizes social welfare. However, the solution can be unfair (one player is preferred).
If we want our solution to maximize social welfare and be fair at the same time we must
add di�erent objective function. Lets substitute expected value of player p with variable
V (p) =

∑
a∈A(s∗) u

p
a(s∗)xa(s∗) and introduced new constant w that represents how much we

care about the fairness of our strategy. Then one of the possible solutions can be:

max
∑
p∈N

V (p)− w[max
p∈N

V (p)−min
p∈N

V (p)] (3.14)
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3.5 Value Iteration

In our algorithm, we use the multi-agent version of value iteration described in Section 2.2.1
with cycle detection on root state. We terminate value iteration in two situations. First
when no value changed by more than 1%. Second when we detect cycle equilibria on root
state.

3.6 Speeding Things up

To handle typical problems when solving partially observable stochastic games we use com-
monly used solutions.

3.6.1 Curse of Exponentiality

The biggest typical problem is the problem of nested belief. To �nd really optimal solution
players should have beliefs not only about the game states but also the beliefs of other players.
Unfortunately, nesting of such beliefs can be in�nite. Therefore we use common solution and
we assume just level 1 beliefs. Which means a player takes into account only his own belief
and not the beliefs of other players.

3.6.2 States with low Probability

Another problem can be in many states with very low probability. The common solution
to this is setting up a threshold and states with probability lower than the threshold are
thrown away. We use this method too with the value of threshold set to 0.01.

3.6.3 Small Di�erences in Probabilities

We also encountered situations when we have many belief states with only small di�er-
ences in probabilities of being in states. Most of the time the di�erences were so small that
they can be spotted only by computer and in the real world they, would have no impact
on the solution. To reduce those unnecessary belief states we used probabilities with the
precision of two decimal places.

3.7 Implementation

We implemented our algorithm using JAVA programming language and for solving linear
programs we used IBM ILOG CPLEX. In this section we provide the format of input �les
used for loading games and describe how and where the parameters of the program can be
changed.
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3.7.1 Input

Each game is loaded as an undirected planar graph from the input �le. For input �les we
use the following format. The �rst line contains two numbers n and e where n is the number
of nodes and e is the number of edges in the graph. Then follows e lines each of them
representing an edge. These lines consist of two numbers a and b which are nodes connected
by the edge. After these lines there is one line with the number of pursuers in team followed
by a line with two numbers sp and se where sp is number of the node where pursuers start
and se is the starting node of evader. The input �le can be passed to the algorithm as input
argument or speci�ed as a parameter inside the code.

3.7.2 Setting Parameters

The core of the algorithm is main class Runner.java. In this class the most of parameters
can be speci�ed namely the following ones:

• INPUT - path to the input �le (can be empty when passing input �le as argument)

• SEED - value of random seed

• DIFF_THRESHOLD - minimum percentage change of value between iterations
needed to proceed to next iteration

• NEED_MIN_NUMBER_OF_STATES - speci�es whether we want to reach
minimum number of generated states before termination

• MIN_NUMBER_OF_STATES - minimum number of states we want to generate
before termination

• THRESHOLD - initial number of states generated

• INCREASE - number of states we want to add after each iteration

• MAX_SOCIAL_WELFARE - speci�es whether we want to maximize social welfare

• FAIRNESS - speci�es whether we want our solution to be fair

• PRINT_STRATEGIES - speci�es whether computed strategies are printed to stan-
dard output

There are three more parameters which can be speci�ed in other classes. In class GameS-
tate.java it is parameter FOLLOW_RECOMMENDATION_PROBABILITY which
speci�es the probability of following currently computed suggested action when expanding
states. In class Info.java we can specify THRESHOLD parameter which is the minimum
percentage change in value between iterations of value iteration needed to proceed to next
iteration. And in class Solver.java we have argument FAIR_WEIGHT, this argument
represents how much we care about the fairness of solution when maximizing social welfare
and trying to �nd a fair solution at the same time.
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Experiments

In this chapter, we present the results of the experimental evaluation of the algorithm in-
troduced in Chapter 3. First, we specify used hardware settings. Then we provide settings
used for experiments. Finally, we show and discuss obtained results.

4.1 Hardware Settings

All experiments were conducted on a desktop PC running Debian GNU/Linux 9 (Stretch)
64-bit with 24 GB of RAM and eight-core processor AMD FX-8350 on its base clock
4.2 GHz. For solving linear programs we used IBM ILOG CPLEX 12.4.

4.2 Experiment Settings

All experiments were conducted on a games from our running example. We start with simple
games to show that algorithm �nds correct solutions proceeding to harder ones to show its
scalability. In each game we use following settings. When an evader is caught a pursuer can
obtain reward of 10 when he is the catcher or reward of 5 when the evader is caught by one of
his teammates, cost for performing an action is -1. For computation of correlated equilibria
we used discount factor 0.9. All experiments were repeated 20-times with di�erent random
seed. We used seeds: 7, 9, 11, 13, 18, 21, 23, 34, 40, 45, 57, 64, 382, 548, 666, 1492, 1815,
1997, 2033 and 1568123.

When adding newly generated beliefstates from beliefstate space we expand states ac-
cording to currently computed recommended strategy with probability 0.6. We also tried
other values for the probability of expanding state according to recommended strategy but
we achieve the best results with this value. Setting the probability lower resulted in gener-
ating too much beliefstates outside optimal section of beliefstate space and caused not that
good solutions. On the other hand, setting the probability higher than 0.6 pushes solver too
hardly to a speci�c part of beliefstate space which could result in missing better solutions.

To be able to handle large numbers of beliefstates a little bit faster all experiments were
run with VM option -XX:+UseG1GC and assigned maximum possible memory.
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In the �rst experiment, we were looking for a solution that maximizes social welfare
and is fair at the same time with parameter FAIR_WEIGHT set to 0.1. However, this
constraint on solution drastically increases the time needed for one iteration of value iteration.
Therefore in the rest of experiments, we were looking for any solution that maximizes social
welfare. This approach still �nds a solution that guarantees maximal social welfare but not
the fairness thus expected values of players may di�er.

4.3 Results

In this section, we present the results of the experimental evaluation. For each experiment,
we attach the graphical representation of the used game. In each graphical representation the
node where pursuers start is diamond shaped and the start of an evader is hexagon shaped.
In �rst experiment (Subsection 4.3.1) we show how the algorithm works on real problems,
what can be a�ected by changing some parameters and that it is capable of �nding the
optimal solution or at least a relatively close one. Then we will show how the algorithm
behaves on harder games.

4.3.1 Experiment 1

For the �rst experiment we used the game in Figure 4.1 with two pursuers and one evader.
This game is really simple and the optimal solution can be easily seen. Since evader can
move only to nodes 2, 3 and 5 �rst actions of players should result in one player being in node
2 and the second one being in node 3. If they catch the evader they receive their rewards,
game restarts and they perform the same action. If they do not catch the evader they know
he is hiding in node 5 and in the next step he can move only to node 4. Therefore the best
action is for both pursuers to move to node 4.

1

2

3

4 50

Figure 4.1: Graphical representation of experiment 1

This solution is exactly the one our algorithms �nds. Since the probability of evader
being in nodes 2 and 3 after one round is equal it does not matter which pursuer goes to
node 2 and which one goes to node 3. Furthermore there is no need for mixed strategy
either. Thus our algorithm suggests player 1 to move to node 2 and player 2 to node 3 with
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probability 1 and in the case they did not catch the evader they are both suggested to move
to node 4 again with probability 1.

The beliefstate space of this game is really small containing 430 beliefstates and even
with generating all of them it can be solved in approximately 38.6 seconds with converged
expected value 38.55 for both players.

However, it is quite obvious that we do not need all these 430 beliefstates. If we set
the initial threshold for generated beliefstates to 100 and in each next iteration we add 10
newly generated beliefstates we can solve this problem in two iterations with total runtime
approximately 10.15 seconds. In this scenario, we use only 110 beliefstates obtaining exactly
the same strategy and the expected reward of 38.44 for both players. In this case results
were the same for all random seeds we used.

And we can lower threshold and its increase furthermore. Setting the initial threshold
to 40 and adding 10 newly generated states in each iteration. The number of iterations we
need varies from 2 to 5 depending on the used seed. In this setting we obtained for some
seeds suggested strategies which were di�erent from the optimal one. However, the average
expected value was 37.82 for both players with the minimal expected value 35.74 and the
maximal expected value 38.60, which is still quite close to the optimal solution. The average
runtime was 6.9 second, the fastest time was 2.69 second and the slowest one was 10.87
seconds.

Further lowering the initial value of threshold or the between iterations increase still
resulted in strategies which ensure catching an evader in maximally two steps. However, the
number of non-optimal suggested strategies increased. We also notice that expected values
decreased but this is the result of generating a small number of beliefstates and not that
these strategies are actually that bad. For example with threshold 10 and its increase 5,
we need only two iterations with an average runtime of 0.73 second to �nd a solution. For
this setting, we were able to �nd optimal strategy only with 9 from 20 seeds. The average
expected value was 30.66 for both players, the minimal value was 23.78 and the maximal
one was 35.74.

4.3.2 Experiment 2

In this experiment we used the quite similar game as in the previous one. We just ex-
tended the distance to place players need to correlate and change the starting positions. The
graphical representation of game can be seen in Figure 4.2. Again we used two pursuers.

0 1 92 3
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Figure 4.2: Graphical representation of experiment 2
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This game still has a quite obvious solution. Pursuers need to move to node 3 as fast as
possible, then one of them must go to node 4 and the second one to node 5. If the evader
is not caught they move to node 6 and try to catch the evader in node 7, 8 or 9 or if they
missed him on. Although this game is still quite simple the size of beliefstate space increased
signi�cantly and after 14 consecutive steps without restart there are 1, 112, 581 beliefstates.
When computing solution for such huge amount of states we need something about 5 hours
for one iteration of value iteration. Thus it is impossible to �nd a solution in reasonable
time.

First of all, we observe how the algorithm will behave when we use only �xed number
of states and we will not add any other states. We focused on how the time needed for
one iteration of value iteration will change with increasing number of states and what will
be the expected values achieved by players. Since bigger amounts of beliefstates need very
long time to be solved we used smaller instances. However obtained results are still very
interesting and illustrate capabilities of our algorithm.
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Figure 4.3: Experiment 2 - Dependency of time needed for one iteration of value iteration
on number of states

As we can see in Figure 4.3 the time required for computing one iteration of value
iteration increases almost linearly with the number of states for both versions of social
welfare maximization. However we can see that insisting on the fairness of solution results
huge increase in time needed, thus we decided to �nd solutions without fairness. This can
result in a di�erence between expected values for individual players but the social welfare
remains the same as in case of fair solutions. We experienced the same behaviour for all
games we have tested during our experiments.

On Figure 4.4, Figure 4.5 and Figure 4.5 we can see that for iterative adding newly
generated states the expected values for both players and social welfare converge faster then
for �xed sized subsets of beliefstates.

30



4.3. RESULTS

100 200 300 400 500 600 700 800 900 1000

Number of states

-6

-4

-2

0

2

4

6

E
xp

ec
te

d 
so

ci
al

 w
el

fa
re

(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.4: Experiment 2 - Convergence of expected social welfare

100 200 300 400 500 600 700 800 900 1000

Number of states

-3

-2

-1

0

1

2

3

E
xp

ec
te

d 
va

lu
e

(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.5: Experiment 2 - Convergence of expected value for player 1
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.6: Experiment 2 - Convergence of expected value for player 2
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4.3.3 Experiment 3

For our third experiment we used game showed in Figure 4.7 with two pursuers and one
evader. Again the best strategy to follow can be easily spotted but it is not completely
intuitive. Since the evader can escape from node 4 to part of the graph where catching
him becomes very di�cult pursuers need to make sure that he cannot do this. In perfect
information setting it would be su�cient for only one player to move to node 4 and the
second one could move either to node 1 or node 3. However, in a partially observable setting
when a player does not move to node 4 the possibility of evader escaping remains. Therefore
�rst both players should move to node 4 to make themselves sure that evader cannot escape.
This means that in the situation they did not catch the evader in node 4 the evader must be
either in node 1 or node 3 both with equal probability 0.5. Thus after next move the evader
will be in node 0 with probability 0.5 or in the node 2 with the same probability. Because
of this the second suggestion is moving to node 0 for one player and moving to node 2 for
the second one.
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Figure 4.7: Graphical representation of experiment 3

The same solution was found using our algorithm. Again as in the case of previous
experiments we present convergence graphs for expected values and expected social welfare
with a �xed number of bleliefstates and iterative adding beliefstates between iterations. Since
pursuers need at maximum two moves to catch the evader the optimal strategy we do not
need many beliefstates because adding additional states does not bring much more.

First lets focus on the convergence of expected social welfare. Comparing results obtained
for a �xed number of beliefstates (Figure 4.8a) and iteratively adding newly generated states
(Figure 4.8b) we can see that for both the expected value somewhat converges. However,
the properties of convergence for iterative adding are better. As we can see the convergence
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is much smoother, faster and we can actually see the values converging. In case of a �xed
number of beliefstates the convergence is not that smooth. However, the obtained results
are pretty close to results obtained using iterative adding. The reason for such good results
for completely random generating a �xed number of states is that this particular game does
not need many states for �nding the optimal strategy.
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.8: Experiment 3 - Convergence of expected social welfare
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.9: Experiment 3 - Convergence of expected value for player 1

As we can see in Figure 4.9 and Figure 4.10 the expected values converges in a similar
way like expected social welfare. However, we can spot bigger standard error for iterative
adding newly generated states. After deeper analysis of obtained results we found out that
the cause to this is that the preferred player di�ers with seed.
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.10: Experiment 3 - Convergence of expected value for player 2

4.3.4 Experiment 4

In this experiment we want to show that our algorithm is capable of �nding some solution
even for more complex games than we already presented. To achieve this we used the game
in Figure 4.11. As in previous experiments we use setting with two pursuers and one evader.
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Figure 4.11: Graphical representation of experiment 4

This game is too complex for a human to �nd the solution. Thus we cannot evaluate the
quality of strategy better way then looking at expected values. As in previous experiments
we show the convergence graphs of expected social welfare and values for the �xed number
of beliefstates and iteratively increasing number of beliefstates.

As we can see for this game iterative adding of newly generated states behave signi�cantly
better than using �xed sized subsets of beliefstates. The expected social welfare and expected
values for both players converges faster and to better rewards when using iterative adding.
The main reason for this is that the iterative adding allow us to observe a longer horizon
with the same number of states compared to �xed sized subsets.
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.12: Experiment 4 - Convergence of expected social welfare
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.13: Experiment 4 - Convergence of expected value for player 1
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(a) Fixed number of beliefstates

1 2 3 4 5 6 7 8 9 10

Number of states (in thousands)

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xp

ec
te

d 
va

lu
e

(b) Iterative adding new beliefstates

Figure 4.14: Experiment 4 - Convergence of expected value for player 2
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4.3.5 Experiment 5

We already showed that our algorithm works in scenarios with two pursuers. Now we would
like to show that it works for higher numbers of pursuers too. In this experiment we use
the game presented in Figure 4.15. This game is exactly the same as the one we used in the
previous experiment but this time there are three pursuers instead of two.
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Figure 4.15: Graphical representation of experiment 5

Again we provide the convergence graphs of expected social welfare and values for the
�xed number of beliefstates and iteratively increasing number of beliefstates.
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.16: Experiment 5 - Convergence of expected social welfare

As we can seen when we increase the number of players the di�erence between using �xed
number of beliefstates and iteratively adding newly states becomes more visible. On Figure
4.16, Figure 4.17, Figure 4.18 and Figure 4.19 we see that expected values for social welfare
and player rewards converges much faster and to higher values for iterative adding. That is
again because iterative adding allows us to observer longer horizon with the same number
of beliefstates generated.
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.17: Experiment 5 - Convergence of expected value for player 1
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(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.18: Experiment 5 - Convergence of expected value for player 2

1 2 3 4 5 6 7 8 9 10

Number of states (in thousands)

-1

0

1

2

3

4

5

E
xp

ec
te

d 
va

lu
e

(a) Fixed number of beliefstates
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(b) Iterative adding new beliefstates

Figure 4.19: Experiment 5 - Convergence of expected value for player 3
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Chapter 5

Conclusion and Future Work

In the real world we have to deal with situations requiring the cooperation of participating
agents keeping their rationality. These problems are well addressed by the game-theoretical
concept of correlated equilibrium. There exist some works dealing with the problem of
computing correlated equilibria in partially observable stochastic games but they assume only
speci�c subsets of these games (mainly partially observable stochastic games with common
payo�s). Thus, so far there is no algorithm capable of computing correlated equilibria in
general partially observable stochastic games.

In this work we present an overview of current literature on computing correlated equi-
libria in stochastic games and partially observable stochastic games. We focus on computing
correlated equilibria in partially observable stochastic games and provide an approximate
algorithm. To the best of our knowledge, it is the �rst approximate algorithm for general
partially observable stochastic games. Even though we have no theoretical guarantees of its
convergence, in experimental evaluation we empirically show that our algorithm is capable
of �nding reasonable solutions for computing correlated equilibria in partially observable
stochastic games and the expected values for these solutions converge. Furthermore, for
problems with known optimal solution we showed that our algorithm can �nd this solution
using only a small fraction of beliefstate space.

There are many ways for future research. Since we have no theoretical guarantees of
convergence of our algorithm �nding them is the �rst target of the future research. Another
target should be to con�rm the good results achieved on our running example also on other
problems represented as partially observable. There can be also done some improvements
to the algorithm itself. For example implementing more sophisticated for handling cyclic
equilibria. We can also focus on time and memory e�ciency of our algorithm and try to
achieve some improvements in this area, probably by using some kind of pruning. It is also
possible to test how would the algorithm behave when we introduce some heuristics, either
for better estimate of initial values or for deciding which parts of beliefstate set are the most
promising ones and thus worth to explore.
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Appendix A

CD Content

Attached CD contains pdf version of this thesis, LATEXsource code of this thesis and the the
java implementation of algorithm presented in this work. More detailed structure of CD
content is presented on the next page.

• tomaspe7_2018MAST.pdf - pdf version of this thesis

• Algorithm - folder containing implementation of introduced algorithm

• experiments - folder containing all inputs used for experiments

• src - folder containing sources of our algorithm

• JointAction.java - representation of join action

• Belief.java - representation of belief of one player

• GameState.java - representation of beliefstate

• Info.java - class that holds all information needed about a game state

• Situtaion.java - representation of possible situation in game

• TransitionProbability.java - class holding transitions with their probabilities for a be-
liefstate

• GameInfo.java - representation of game instance

• Runner.java - implementation of our algorithm

• Solver.java - implementation of solver used for computing correlated equilibria

• CorrelatedEquilibrium.jar - runnable version of our algorithm

• input_example.txt - example of input �le for CorrelatedEquilibrium.jar

• README.txt - manual for running CorrelatedEquilibrium.jar

• LaTex - folder containing LaTeX sources of this thesis

• �gures - folder containing all �gures used in this thesis
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APPENDIX A. CD CONTENT

CD

Source
Algorithm

exper iments
experiment1 . txt
experiment2 . txt
experiment3 . txt
experiment4 . txt
experiment5 . txt

s r c \ cz \ cvut \ f e l \ tomaspe7

Action
Jo intAct ion . java

B e l i e f
B e l i e f . java

State
GameState . java
In f o . java
S i tua t i on . java
Tran s i t i onProbab i l i t y . java

GameInfo . java
Runner . java
So lve r . java

Corre la tedEqu i l ib r ium . j a r
input_example . txt
README.TXT

LaTeX
f i g u r e s

tomaspe7_2018MAST . pdf
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