
master’s thesis

R I S K - AV E R S E D I S T R I B U T I O N A L R E I N FO RC E M E N T
L E A R N I N G

a cvar optimization approach

silvestr stanko

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University

May, 2018

supervisor: Mgr. et Mgr. Karel Macek Ph.D.
field of study: Open Informatics
subfield: Artificial Intelligence

DECLARATION

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university thesis.

Prague, May, 2018

Silvestr Stanko

ACKNOWLEDGMENTS

I would like to express gratitude towards my supervisor Dr. Karel Macek for moti-
vating the thesis, constant encouragement and optimism, and for letting me indepen-
dently shape the thesis topic.

Computational resources were provided by the CESNET LM2015042 and the
CERIT Scientific Cloud LM2015085, provided under the programme "Projects of
Large Research, Development, and Innovations Infrastructures".
Last but not least, I would like to thank my parents and my grandfather for their

continued financial and other support during my delayed studies.

ABSTRACT

Conditional Value-at-Risk (CVaR) is a well-known measure of risk that has been
used for decades in the financial sector and has been directly equated to robust-
ness, an important component of Artificial Intelligence (AI) safety. In this thesis we
focus on optimizing CVaR in the context of Reinforcement Learning, a branch of
Machine Learning that has brought significant attention to AI due to its generality
and potential.

As a first original contribution, we extend the CVaR Value Iteration algorithm
(Chow et al. [20]) by utilizing the distributional nature of the CVaR objective. The
proposed extension reduces computational complexity of the original algorithm from
polynomial to linear and we prove it is equivalent to the said algorithm for continuous
distributions.
Secondly, based on the improved procedure, we propose a sampling version of

CVaR Value Iteration we call CVaR Q-learning. We also derive a distributional
policy improvement algorithm, prove its validity, and later use it as a heuristic for
extracting the optimal policy from the converged CVaR Q-learning algorithm.
Finally, to show the scalability of our method, we propose an approximate Q-

learning algorithm by reformulating the CVaR Temporal Difference update rule as
a loss function which we later use in a deep learning context.
All proposed methods are experimentally analyzed, using a risk-sensitive gridworld

environment for CVaR Value Iteration and Q-learning and a challenging visual en-
vironment for the approximate CVaR Q-learning algorithm. All trained agents are
able to learn risk-sensitive policies, including the Deep CVaR Q-learning agent which
learns how to avoid risk from raw pixels.

keywords: Reinforcement Learning, Distributional Reinforcement Learning, Risk,
AI Safety, Conditional Value-at-Risk, CVaR, Value Iteration, Q-learning, Deep Learn-
ing, Deep Q-learning

ABSTRAKT

Podmíněná hodnota v riziku (Conditional Value-at-Risk, CVaR) je známá míra ri-
zika používaná ve finančním sektoru po dekády. CVaR je zároveň ekvivalentní s ro-
bustností, důležitou komponentou bezpečnosti Umělé Inteligence. V této diplomové
práci se soustředíme na optimalizaci CVaRu v kontextu posilovaného učení, větví
strojového učení která nabývá na popularitě díky své obecnosti a potenciálu.

Naším prvním originálním příspěvkem je rozšíření algoritmu Iterace užitkové funkce
CVaRu (CVaR Value Iteration, Chow et al. [20]), využívající distribučního charak-
teru CVaRu. Navrhovaný způsob výpočtu snižuje výpočetní složitost algoritmu z
polynomiální na lineární, což formálně dokážeme pro spojitá pravděpodobnostní
rozdělení. Na základě tohoto nového způsobu výpočtu formulujeme Monte Carlo
verzi Iterace užitkové funkce CVaRu, kterou nazýváme Q-učení CVaRu. Dále navr-
hujeme distribuční algoritmus vylepšení strategie (policy improvement), dokážeme
jeho správnost a použijeme ho jako heuristiku pro extrakci optimální strategie z
Q-učení CVaRu.
Závěrem, abychom ukázali praktičnost a použitelnost algoritmu na velkých sta-

vových prostorech, navrhujeme přibližnou metodu Q-učení CVaRu. Toho docílíme
přeformulováním iterace Temporální Diference na ztrátovou funkci, kterou později
použijeme v kontextu hlubokého učení.

Všechny navržené metody jsou experimentálně ověřeny. Iterace užitkové funkce
CVaRu a Q-učení CVaRu na 2D prostředí citlivém na riziko, přibližné Q-učení
CVaRu na náročnějším vizuálním prostředí. Všechny testované přístupy jsou schopny
naučit se strategie citlivé k riziku, a to včetně algoritmu hlubokého Q-učení CVaRu,
který se naučí vyhýbat se riziku pouze z obrazové informace - pixelů.

klíčová slova: Posilované učení, Riziko, Bezpečnost v Umělé Inteligenci, Pod-
míněná hodnota v riziku, CVaR, Iterace užitkové funkce, Q-učení, Hluboké učení

CONTENTS

1 introduction 1
1.1 Motivation 1
1.2 Thesis Outline and Original Contributions 2

2 preliminaries 4
2.1 Reinforcement Learning 4

2.1.1 Markov Decision Processes 5
2.1.2 Return 5
2.1.3 Bellman equations 6
2.1.4 Contraction 6

2.2 Distributional Reinforcement Learning 7
2.2.1 Distributional Bellman Operators 7
2.2.2 The Wasserstein Metric 8

2.3 Risk-Sensitivity 8
2.3.1 Value-at-Risk 9
2.3.2 Conditional Value-at-Risk 10

2.4 Problem Formulation 11
2.4.1 Time-consistency 11
2.4.2 Robustness 12

2.5 Literature Survey 13

3 value iteration with cvar 15
3.1 Value Iteration 15
3.2 CVaR Value Iteration 16

3.2.1 Bellman Equation for CVaR 16
3.2.2 Value Iteration with Linear Interpolation 17
3.2.3 Optimal policy 18

3.3 Efficient computation using quantile representation 19
3.3.1 CVaR Computation via Quantile Representation 19
3.3.2 ξ-computation 21

3.4 Experiments 22

4 q-learning with cvar 25
4.1 Q-learning 25
4.2 CVaR estimation 26
4.3 CVaR Q-learning 27

4.3.1 Temporal Difference update 27
4.3.2 Note on convergence 28

4.4 Optimal Policy 28
4.4.1 VaR-based Policy Improvement 29
4.4.2 CVaR Q-learning extension 31

4.5 Experiments 33

contents viii

5 deep q-learning with cvar 35
5.1 Deep Q-learning 35

5.1.1 Deep Learning 35
5.1.2 DQN 36
5.1.3 Distributional Reinforcement Learning with Quantile Regres-

sion 36
5.2 Deep CVaR Q-learning 37
5.3 Experiments 40

5.3.1 Atari 40
5.3.2 Ice Lake 40
5.3.3 Network Architecture 41
5.3.4 Parameter Tuning 41
5.3.5 Results 42

6 conclusion 44

a appendix 46

b cd contents 47

bibliography 48

L I ST OF F IGURES

Figure 2.1 The Reinforcement learning cycle 4
Figure 2.2 Comparison of risk-sensitive behaviors. 9
Figure 2.3 VaR and CVaR of a general probability distribution. 11
Figure 2.4 MDP showing time-inconsistency of the CVaR objective. 12
Figure 3.1 Comparison of a discrete distribution and its approximation

according to the CVaR linear interpolation operator. 20
Figure 3.2 Faster CVaR computation. 20
Figure 3.3 CVaR Value Iteration Grid-world simulations. 24
Figure 4.1 The VaR-based heuristic. 31
Figure 4.2 Grid-world CVaR Q-learning simulations. 33
Figure 4.3 Grid-world CVaR Q-learning histograms. 34
Figure 4.4 Example CVaR Q-learning outputs. 34
Figure 5.1 Comparison of quantile loss function and Mean Squared Er-

ror. 38
Figure 5.2 The Ice Lake environment. 40
Figure 5.3 CVaR DQN outputs for different positions in the Ice Lake

environment. 42

L I ST OF TABLES

Table A.1 CVaR DQN training parameters 46

1
INTRODUCTION

A staple of an intelligent agent is the ability to reason and act over time in an
environment, while working towards a desirable goal. This is the setting explored in
reinforcement learning (RL), a branch of machine learning that focuses on dynamic
decision making in unknown environments.

Recent advances in artificial intelligence (AI) are encouraging governments and cor-
porations to deploy AI in high-stakes settings including driving cars autonomously,
managing the power grid, trading on stock exchanges, and controlling autonomous
weapon systems. As the industry steps away from specialized AI systems towards
more general solutions, the demand for safe approaches to artificial intelligence in-
creases.
In this thesis, we tackle one aspect of safe reinforcement learning, robustness, by

considering the risk involved in acting in a non-deterministic, noisy environment.

1.1 motivation

Lately, there has been a surge of successes in machine learning research and applica-
tions, ranging from visual object detection [35] to machine translation [5]. Reinforce-
ment learning has also been a part of this success, with excelent results regarding
human-level control in computer games [40] or beating the best human players in
the game of Go [51]. While these successes are certainly respectable and of great
importance, reinforcement learning still has a long way to go before being applied
on critical real-world decision-making tasks. This is partially caused by concerns of
safety, as mistakes can be costly in the real world.
One of the problems encountered when training a reinforcement learning agent

is sample efficiency, or the large amount of training time needed for the agent to
successfully learn new and correct behaviors. The solution used by many is to train
the agent in simulation - it is indeed faster (as the simulation can run in parallel
or faster than real-time), safer (we do not face any real danger in simulations) and
cheaper than to train the agent in the real world. This approach then raises the
question whether an agent trained in simulation would perform well outside of the
simulation.
Robustness, or distributional shift, is one of the identified issues of AI safety [2,

37] directly tied to the discrepancies between the environment the agent trains on
and is tested on. Chow et al. [20] have shown that risk, a measure of uncertainty of
the potential loss/reward, can be seen as equal to robustness, taking into account
the differences during train- and test-time. This point is discussed in more detail in
chapter 2 and we use it as further motivation for pursuing risk-averse objectives.

1.2 thesis outline and original contributions 2

While the term risk is a general one, we will focus on a concrete notion of risk - a
particular risk metric called Conditional Value-at-Risk (CVaR). Due to its favorable
computational properties, CVaR has been recognized as the industry standard for
measuring risk in finance, as in 2014 the Basel Committee on Banking Supervision
changed its guidelines for banks to replace VaR (a previously used metric) with
CVaR for assessing market risk [21]. The metric also satisfies the recently proposed
axioms of risk in robotics [38].
Aside from robustness, another motivational point might be one of general decision-

making. Commonly encountered in finance, decision makers face the problem of
maximizing profits while keeping the risks to a minimum. The solutions to problems
encountered in this thesis can therefore be seen as ones of general time-dependent
risk-averse decision making.
The aim of this thesis is to consider reinforcement learning agents that maximize

Conditional Value-at-Risk instead of the usual expected value, hereby learning a
robust, risk-averse policy. The word distributional in the title emphasizes that our
approach takes inspirations from the recent advances in distributional reinforcement
learning [10, 23].

1.2 thesis outline and original contributions

We begin the thesis with a preliminary Chapter 2 that focuses on introducing all
necessary concepts to understand the rest of this thesis. We start by formally defining
the reinforcement learning framework we work with and familiarize the reader with
distributional reinforcement learning. This is followed by a brief introduction to risk
and risk-sensitivity, together with a formal definition of Conditional Value-at-Risk
and the exact problem tackled in this thesis in Section 2.4. We end the chapter with
a short literature survey.
In Chapter 3 we remind the reader of the standard Value Iteration algorithm and

describe the CVaR Value Iteration algorithm (Chow et al. [20]) in detail, together
with its practical discretized variant. We follow up with the first original contribution
of this thesis.

1. Fast CVaR Value Iteration:We leverage a connection between the αCVaRα
function and the quantile function of the underlying distributions, and propose
a procedure for computing fast CVaR Value Iteration updates. The original
approach requires computing a linear program each iteration, separately for
each probability atom. In contrast, our proposed procedure is linear in time and
therefore allows running CVaR Value Iteration on much larger environments.
We demonstrate the validity of the improved procedure by showing it is equiva-
lent to solving the original convex problem. We formally prove this for strictly
increasing distributions and empirically verify the algorithm with general dis-
tributions.

The true strength of reinforcement learning lies in sampling algorithms such as
Q-learning, as it is not necessary to have a perfect knowledge about the environment
- particularly the transition probabilities between states are often unavailable in real-
world environments. In Chapter 4 we first describe the standard Q-learning algorithm
and touch on convergence conditions.

1.2 thesis outline and original contributions 3

The new and improved CVaR Value Iteration procedure opens a door for a sam-
pling version of the algorithm which is our second original contribution.

2. CVaR Q-learning: Using methods of recursive VaR-CVaR estimation, we for-
mulate a Temporal Difference update equation, based on the improved CVaR
Value Iteration, that finds the optimal value function in expectation and for-
mulate a new algorithm called CVaR Q-learning.
We then experimentally verify the correctness of our approach by showing that
the algorithm learns risk-sensitive policies on different confidence levels.

While in standard reinforcement learning it is straightforward to extract the opti-
mal policy once an optimal value function has been learned, this is not the case in
CVaR Q-learning, due to the time-inconsistency of the CVaR criterion.

3. CVaR policy improvement: We propose a policy improvement algorithm
for distributional reinforcement learning and prove its correctness. This pro-
cedure is then used as a consistent heuristic for extracting the optimal policy
from CVaR Q-learning, and we empirically show its validity when used in con-
junction with linear interpolation.

The holy grail of reinforcement learning is the ability to successfully learn in vast
state spaces. The methods proposed in this thesis should also ultimately be usable on
large state spaces where exact Q-learning becomes intractable, and this is something
we explore in Chapter 5. We start with a brief introduction to deep learning followed
by deep Q-learning. We also touch on quantile regression Q-learning, a recent dis-
tributional reinforcement learning algorithm, that serves as an introduction to the
concepts explored later.

4. Deep CVaR Q-learning: We extend CVaR Q-learning to its approximate
variant by formulating the Temporal Difference update rule as arguments to
minimizing the LVaR and LCVaR loss functions. We then combine the loss func-
tions with the well-known DQN [40] algorithm and show that the new Deep
CVaR Q-learning algorithm is capable of learning risk-sensitive policies from
raw pixels, hereby demonstrating the scalability and practicality of proposed
approaches.

2
PREL IMINARIES

The goal of this chapter is to provide a formal background on the covered material,
together with a unified notation (which differs quite a lot from publication to publi-
cation). After we establish some basics of reinforcement learning in Section 2.1, we
follow up with the recently explored and useful distributional reinforcement learning
in Section 2.2. Next we tackle the basics of risk together with the crucial CVaR
measure in Section 2.3.
The interested reader is welcome to explore the books and publications referenced

throughout this chapter and in Section 2.5. An informed reader may choose to skip
to Section 2.4 where we formalize the problems tackled in this thesis.

2.1 reinforcement learning

The idea that we learn by interacting with our environment is probably the first to
occur to us when we think about the nature of learning. Reinforcement learning [53]
is a sub-field of machine learning that deals with time-dependent decision making in
an unknown environment. The learner (often called agent) is not told which actions
to take, but instead must discover which actions yield the most reward by trying
them out. In the most interesting and challenging cases, actions may affect not
only the immediate reward but also subsequent situations and rewards. These two
characteristics, trial-and-error search and delayed reward are the most important
distinguishing features of reinforcement learning.
The general interaction between the agent and an environment can be seen in

Figure 2.1. In each time-step t, the agent receives an observation xt and a reward rt
and picks an action at and the process repeats. Below we formalize all the necessary
notions of states, actions and rewards as a Markov Decision Process.

Agent

Environment

atrt

rt+1
xt+1

xt

Figure 2.1: The Reinforcement learning cycle

2.1 reinforcement learning 5

2.1.1 Markov Decision Processes

Markov Decision Process (MDP, Bellman [12]) is a classical formalization of sequen-
tial decision making, where actions influence not just immediate rewards, but also
subsequent situations, or states, and through those future rewards. They are a math-
ematically idealized form of the reinforcement learning problem for which precise
theoretical statements can be made.
The word Markov points to the fact that we assume that the state transitions of an

MDP satisfy the memoryless property. This means that the conditional probability
distribution of future states of the process depends only upon the present state and
not the whole history of events that preceded it.

Definition. MDP is a 5-tupleM = (X ,A, r, p, γ), where
X is the finite state space
A is the finite action space
r(x, a) is a bounded deterministic1 reward generated by being in state x and select-

ing action a
p(·|x, a) is the transition probability distribution
γ ∈ [0, 1) is a discount factor

We will denote x or xt as the states visited in time t and x′ or xt+1 states visited
in time t+ 1.

Definition. A stationary (or Markovian) policy is a mapping from states to actions
π : X → A.

2.1.2 Return

The ultimate goal of any reinforcement learning agent is to maximize some notion of
reward, which is captured by the return. The two most commonly considered types
of returns are the sum of rewards, and the mathematically convenient expected
discounted reward. In this thesis we focus on the latter.
We define the return Zπ(x) as a random variable representing the discounted

reward along a trajectory generated by the MDP by following policy π, starting at
state x:

Zπ(x) =
∞∑
t=0

γtr(xt, at)

xt ∼ p(·|xt−1, at−1), at ∼ π,x0 = x

(2.1)

As a useful notation, we denote Zπ(x, a) as the random variable representing the
discounted reward along a trajectory generated by first selecting action a and then
following policy π.

Zπ(x, a) =
∞∑
t=0

γtr(xt, at)

xt ∼ p(·|xt−1, at−1), at ∼ π,x0 = x, a0 = a

(2.2)

1 All the presented results are extendable to the case with random reward and with reward being a
function of the transition R(x, a, a′). In fact, we use R(x, a, a′) in all our experiments. We avoid
these extension for the sake of cleaner notation.

2.1 reinforcement learning 6

We will sometimes omit the superscript π when the policy is clear from context
or is unimportant.

2.1.3 Bellman equations

The value function V π : X → R of policy π describes the expected return received
from state x ∈ X and acting according to π:

V π(x) = E [Zπ(x)] =E

[∞∑
t=0

γtr(xt, at)
]

x0 = x, at ∼ π
(2.3)

The action-value function Qπ : X ×A → R of policy π describes the expected return
of taking action a ∈ A in state x ∈ X , then acting according to π:

Qπ(x, a) = E [Zπ(x, a)] =E

[∞∑
t=0

γtr(xt, at)
]

x0 = x, a0 = a, at ∼ π
(2.4)

Fundamental to reinforcement learning is the use of Bellman’s equation [12] to
describe the value and action-value functions by a recursive relationship:

V π(x) = r (x,π(x)) + γ E
p,π

[V π(x′)] (2.5)

Qπ(x, a) = r(x, a) + γ E
p,π

[V π(x′)] (2.6)

As stated before, we are typically interested in maximizing the expected return. The
most common approach for doing so involves the optimality equation

Q∗(x, a) = r(x, a) + γEp

[
max
a′∈A

Q∗(x′, a′)
]

(2.7)

This equation has a unique fixed point Q∗ - the optimal value function, corresponding
to the set of optimal policies Π∗ (π∗ is optimal if Ea∼π∗ Q

∗(x, a) = maxaQ∗(x, a)).
We view value functions as vectors in RX×A, and the optimal value function as one
such vector. In this context, the Bellman operator T π and the optimality operator
T are

T πQ(x, a) := r(x, a) + γ E
P ,π

[Q(x′, a′)] (2.8)

T Q(x, a) := r(x, a) + γE
P

[
max
a′∈A

Q(x′, a′)
]

(2.9)

These operators are useful as they describe the expected behaviour of popular learn-
ing algorithms such as SARSA and Q-Learning [53]. In particular they are both
contraction mappings (see below), and their repeated application to some initial Q0
converges exponentially to Qπ or Q∗, respectively [14].

2.1.4 Contraction

An important concept used in convergence analysis of reinforcement learning algo-
rithms is that of a contraction.

2.2 distributional reinforcement learning 7

Definition. A fixed point of a mapping T : S → S of a set S into itself is s ∈ S
which is mapped onto itself, that is Ts = s.

Let S = (S, d) be a metric space (d is a metric on S). A mapping T is called
a contraction on S if there exists a positive real number γ < 1 such that for all
s, t ∈ S we have d(Ts,Tt) ≤ γd(s, t).

Theorem 1 (Banach Fixed Point Theorem, Contraction Theorem). Consider a
metric space S = (S, d), where S 6= ∅. Suppose that S is complete (every Cauchy
sequence in S converges) and let T be a contraction on S. Then T has precisely one
fixed point.

The takeaway for reinforcement learning is, that if T is a contraction, by recursively
applying Vt+1 = T Vt (here the operator maps value function Vt ∈ R to a new
Vt+1 ∈ R), we converge to the single fixed point of this operator. This is used in
convergence proofs for various RL operators, usually in combination with the infinity
norm.
See e.g. Kreyszig [34] for a complete treatment of all mentioned concepts.

2.2 distributional reinforcement learning

In contrast to standard reinforcement learning, where we model the expected return,
in distributional reinforcement learning we aim to model the full distribution of the
return. This is advantageous in cases where we want to e.g. model parametric un-
certainty or design risk-sensitive algorithms [41, 42]. Bellemare, Dabney, and Munos
[10] also argue, that the distributional approach is beneficial even in the case when
we optimize the expected value, as the distribution gives us more information which
helps the now commonly used approximate algorithms (such as DQN [40]).

2.2.1 Distributional Bellman Operators

At the core of the distributional approach lies the recursive equation of the return
distribution:

Z(x, a) D
= r(x, a) + γZ(x′, a′)

x′ ∼ p(·|x, a), a ∼ π,x0 = x, a0 = a
(2.10)

where D
= denotes that random variables on both sides of the equation share the

same probability distribution.
In the policy evaluation setting [53] we are interested in the value function V π

associated with a given policy π. The analogue here is the value distribution Zπ.
Note that Zπ describes the intrinsic randomness of the agent’s interactions with its
environment, rather than some measure of uncertainty about the environment itself.
We define the transition operator P π : Z → Z as

P πZ(x, a) D
= Z(x′, a′)

x′ ∼ p(·|x, a), a′ ∼ π
(2.11)

and the distributional Bellman operator T π : Z → Z as

T πZ(x, a) D
= r(x, a) + γP πZ(x, a). (2.12)

2.3 risk-sensitivity 8

Note that this is a distributional equation and the distributional bellman operator
is therefore fundamentally different from the standard bellman operator.
Bellemare, Dabney, and Munos [10] have shown, that the distributional bellman

operator T π is not a contraction in the commonly used KL divergence [36], but is
a contraction in the infinity Wasserstein metric which we describe bellow, as it will
become useful as a tool for evaluating algorithms in the rest of the thesis. Another
important fact is, that the bellman optimality operator T : Z → Z

T Z = T πZ for some π in the set of greedy policies (2.13)

is not a contraction in any metric. The distribution does not converge to a fixed
point, but rather to a sequence of optimal (in terms of expected value) policies. We
encourage the interested reader to explore these topics in the excellent papers by
Bellemare, Dabney, and Munos [10] and Dabney et al. [23].

2.2.2 The Wasserstein Metric

One of the tools for analysis of distributional approaches to reinforcement learning is
the Wasserstein metric dp between cumulative distribution functions (see e.g. Bickel
and Freedman [15]). The metric has recently gained in popularity and was used
e.g. in unsupervised learning [3, 11]. Unlike the Kullback-Leibler divergence, which
strictly measures change in probability, the Wasserstein metric reflects the underlying
geometry between outcomes.

For F , G two c.d.fs over the reals, it is defined as

dp(F ,G) := inf
U ,V
‖U − V ‖p,

where the infimum is taken over all pairs of random variables (U ,V) with respective
cumulative distributions F and G. The infimum is attained by the inverse c.d.f.
transform of a random variable U uniformly distributed on [0, 1]:

dp(F ,G) = ‖F−1(U)−G−1(U)‖p.

For p <∞ this is more explicitly written as

dp(F ,G) =
(∫ 1

0

∣∣∣F−1(u)−G−1(u)
∣∣∣pdu)1/p

. (2.14)

meaning it is an integral over the difference in the quantile functions of the random
variables. This will become important later, as the quantile function has a direct
connection to the CVaR objective (2.21) explored in this thesis.

2.3 risk-sensitivity

The standard reinforcement learning agent that maximizes the expected reward
which we discussed in the previous chapter does not take risk into account. Indeed in
a mathematical sense, the shape of the reward distribution is unimportant as wildly
different distributions may have the same expectation. This unfortunately is not the
case in the real world, where there exist catastrophic losses - an investment company

2.3 risk-sensitivity 9

u(r)

r

Figure 2.2: Standard in economic literature, these figures depict the differences between risk-
averse (red), risk-neutral (grey) and risk-seeking (orange) behaviors.
Left: A subjective utility u(r), based on the reward, is concave for risk-averse
behaviors. Right: Risk-averse utility contour lines in standard deviation-expected
value space are upward sloped.

may have a good strategy that yields profit in expectation, but if the strategy is
too risky and the company’s capital drops under zero, the investment strategy is
useless. This leads us to defining risk, which describes the potential of gaining or
losing reward and is therefore more expressive than a simple expectation.

The finance literature differentiates between three risk-related types of behavior,
namely risk-neutral, risk-averse and risk-seeking. We offer the following example to
illustrate the differences between mentioned behaviors: Imagine you are facing two
options, either (a) you get $1 or (b) you get $5 with 90% probability, but lose $35
with 10% probability. A risk-neutral agent wouldn’t differentiate between the two
choices, as the expected value of reward is the same. A risk-averse agent would prefer
option (a), as there is a risk of high losses in option (b). Risk-seeking agent would
pick (b). The difference between the risk-sensitive behaviors can be visualized as in
Figure 2.2.
The desired behavior for most critical applications is risk-averse and indeed it is

the behavior of choice for financial institutions [21, 60]. It has also been suggested
that humans prefer risk-averse behaviors when making decisions [50].
As we stated in the introduction, we are interested in reinforcement learning that

maximizes a certain risk-averse objective. Below we formally describe the metrics
used to measure risk which we then use to formulate the exact problem tackled in
this thesis.

2.3.1 Value-at-Risk

Value-at-risk (VaR, see e.g. Wipplinger [60]) is one of the most popular tools used
to estimate exposure to risk used risk management and financial control.
Let Z be a random variable representing reward, with cumulative distribution

function (c.d.f.) F (z) = P(Z ≤ z). The Value-at-Risk at confidence level α ∈ (0, 1)
is the α-quantile of Z, i.e.

VaRα(Z) = F−1(α) = inf {z|α ≤ F (z)} (2.15)

2.3 risk-sensitivity 10

We will use the notation VaRα(Z), F−1(α) interchangeably, often explicitly de-
noting the random variable of inverse c.d.f. as F−1

Z (α).

Note on notation: In the risk-related literature, it is common to work with losses
instead of rewards. The Value-at-Risk is then defined as the 1− α quantile. The
notation we use reflects the use of reward in reinforcement learning and this some-
times leads to the need of reformulating some definitions or theorems. While these
reformulations may differ in notation, they characterize the same underlying ideas.

2.3.2 Conditional Value-at-Risk

Conditional Value-at-Risk (CVaR, see Rockafellar and Uryasev [47, 48]), sometimes
called Expected Shortfall (ES), Average Value-at-Risk (AVaR) or Tail Value-at-Risk
(TVaR), is a risk measure that aims to fix inadequacies of measuring risk introduced
by Value-at-Risk. Firstly, it has the desirable mathematical properties of monotonic-
ity, translation invariance, positive homogeneity and subadditivity (see Artzner et al.
[4]), which makes CVaR computation much easier compared to VaR. its properties
were also recently identified as suitable for measuring risk in robotics [38]. Another
strong point of CVaR is that unlike VaR, it is able to distinguish between large and
catastrophic losses. For these reasons, CVaR is starting to replace VaR as a standard
measure for risk in financial applications [21] and beyond.
The Conditional Value-at-Risk (CVaR) at confidence level α ∈ (0, 1) is defined as

the expected reward of of outcomes worse than the α-quantile (VaRα):

CVaRα(Z) =
1
α

∫ α

0
F−1
Z (β)dβ =

1
α

∫ α

0
VaRβ(Z)dβ (2.16)

Rockafellar and Uryasev [47] also showed that CVaR is equivalent to the solution of
the following optimization problem

CVaRα(Z) = max
s

{ 1
α

E
[
(Z − s)−

]
+ s

}
(2.17)

where (x)− = min(x, 0) represents the negative part of x and in the optimal point
it holds that s∗ = V aRα(Z)

CVaRα(Z) =
1
α

E
[
(Z − V aRα(Z))−

]
+ V aRα(Z) (2.18)

The last definition we will need is the dual formulation of (2.17)

CVaRα(Z) = min
ξ∈UCVaR(α,p(·))

Eξ[Z] (2.19)

UCVaR(α, p(·)) =
{
ξ : ξ(z) ∈

[
0, 1
α

]
,
∫
ξ(z)p(z)dz = 1

}
(2.20)

We provide basic intuition behind the dual variables as these will become important
later: Since we are minimizing the variables ξ over the set UCVaR(α, p(·)), the optimal
values are ξ(z) = min

(
1
α , 1

p(z)

)
for the lowest possible values z, as these values

influence the resulting CVaRα(Z). Values above VaRα(Z) are not taken into account
so their ξ is 0. If there exists a discrete atom at VaRα(Z), the variables are linearly
interpolated to fit the constraints.
For a concise treatment of duality, see e.g. Boyd and Vandenberghe [18].

2.4 problem formulation 11

Probability Distribution Function

V aR 0.05

CV aR 0.05

Figure 2.3: Value-at-Risk and Conditional Value-at-Risk of a general probability distribution
with the integral α = 0.05 marked in grey. The main flaw of the VaR metric is
clearly visible here, as we could shift the leftmost ’mode’ of the distribution into
minus infinity and the VaR would remain unchanged, while CVaR would change
with the shift.

2.4 problem formulation

The problem tackled in this thesis considers reinforcement learning with optimiza-
tion of the CVaR objective. Unlike the expected value criterion, it is insufficient to
consider only stationary policies, and we must work with general history-dependent
policies. We define them formally below.

Definition (History-Dependent Policies). Let the space of admissible histories up to
time t be Ht = Ht−1 ×A×X for t ≥ 1, and H0 = X . A generic element ht ∈ Ht is
of the form ht = (x0, a0, ...,xt−1, at−1). Let ΠH,t be the set of all history-dependent
policies with the property that at each time t the randomized control action is a
function of ht. In other words, ΠH,t = {π0 : H0 → P(A), ...,πt : Ht → P(A)}. We
also let ΠH = limt→∞ΠH,t be the set of all history-dependent policies.

The risk-averse objective we wish to address for a given confidence level α is

max
π∈ΠH

CVaRα(Zπ(x0)) (2.21)

where Zπ(x0) coincides with definition (2.1).
In words, our goal is to find a general policy π∗ ∈ ΠH , that maximizes Conditional

Value-at-Risk of the return, starting in state x0. We emphasize the importance of
the starting state since, unlike the expected value, the CVaR objective is not time-
consistent.

2.4.1 Time-consistency

There exist several definitions of time-consistency [16, 43]. Informally, if the criterion
is time-consistent, we can limit ourselves to the space of stationary policies, as the

2.4 problem formulation 12

x1

x2

x4x3

p = 0.1
r = 10

p = 0.9
r = 0

p = 1
r = 0

p = 1
r = 0

p = 1
r = 0

p = 0.9
r = 10

p = 0.1
r = -10

a1a2

a0

Figure 2.4: MDP showing time-inconsistency of the CVaR objective.

optimal policy is part of this space. On the other hand, non-stationary policies may
be required to solve a time-inconsistent problem.
We provide the following example to show that the CVaR criterion is indeed not

time-consistent. In Figure 2.4 we can see an MDP with starting state x1 with a single
action a0, followed by state x2 where the agent can choose between actions a1, a2;
states x3,x4 are terminal. We now compare three policies π1(x1) = a1,π2(x1) = a2
and a non-stationary policy π3 that chooses a2, unless the agent was lucky and
received the reward 10 when transitioning from state x1. Let us examine the CVaR
objective with α = 0.19 and γ = 1 (or close to 1):

CVaR0.19(Z
π1(x1)) =

0.19 · 0
0.19 = 0

CVaR0.19(Z
π2(x1)) =

0.09 · (−10) + 0.01 · 0 + 0.09 · 10
0.19 = 0

CVaR0.19(Z
π3(x1)) =

0.09 · (−10) + 0.1 · 10
0.19 =̇0.526

By examining the results, we can see that the non-stationary policy π3 is better than
any stationary one, confirming CVaR as a time-inconsistent objective, explaining the
need for a history-dependent policy in our problem definition 2.21.
As we will see later, the time-inconsistency can be sidestepped by extending the

state space by a continuous parameter y ∈ [0, 1] which represents the different con-
fidence levels we may choose to optimize. Notably, the optimal policy must in this
case look at different confidence levels in each state - otherwise we would consider
only stationary policies.

2.4.2 Robustness

An important motivational point for the CVaR objective (2.21) is its relationship with
robustness. Chow et al. [20] have shown that optimizing the objective is equivalent
to being robust to model perturbations. Thus, by minimizing CVaR, the decision

2.5 literature survey 13

maker also guarantees robustness to modeling errors. For completeness, we repeat
the formulation of the equivalence relation below.
Let (x0, a0, ...,xT) be a trajectory in a finite-horizon MDP problem. The total prob-

ability of the trajectory is p(x0, a0, ...,xT) = p(x0)p(x1|x0, a0) · · · p(xT |xT−1, aT−1).
For each step 1 ≤ t ≤ T consider a perturbed transition matrix P̂ = P ◦ δt where
δt ∈ RX×A×X and ◦ is the element-wise product under the condition that P̂ is a
stochastic matrix. Let ∆t be the set of perturbation matrices that satisfy this condi-
tion and ∆ = ∆1× · · · ×∆T be the set of all possible perturbations to the trajectory
distribution.
We now impose a budget constraint on the perturbations as follows. For some

budget η ≥ 1, we consider the constraint

δ1(x1|x0)δ2(x2|x1) · · · δT (xT |xT−1) ≤ η (2.22)

Essentially, the product in (2.22) states that the worst cannot happen at each time.
Instead, the perturbation budget has to be split (multiplicatively) along the trajec-
tory. We note that (2.22) is in fact a constraint on the perturbation matrices, and we
denote by ∆η ⊂ ∆ the set of perturbations that satisfy this constraint with budget
η. Then the following holds (Proposition 1 of [20])

CVaR 1
η
(R0,T (x1, . . . ,xT)) = inf

(δ1,...,δT)∈∆η
EP̂ [R0,T (x1, . . . ,xT)], (2.23)

where R0,T (x1, . . . ,xT) denotes the random variable representing the reward along
the particular trajectory and EP̂ [·] denotes expectation with respect to a Markov
chain with transitions P̂t.

2.5 literature survey

Risk-sensitive MDPs have been studied thoroughly in the past, with different risk-
related objectives. Due to its good computational properties, earlier efforts focused on
exponential utility [28], the max-min criterion [22] or e.g. maximizing the mean with
constrained variance [52]. A comprehensive overview of the different objectives can
be found in Garcıa and Fernández [25], together with a unified look on the different
methods used in safe reinforcement learning. Among CVaR-related objectives, some
publications focus on optimizing the expected value with a CVaR constraint [17, 45].
Recently, for the reasons explained above, several authors have investigated the

exact objective (2.21). A considerable effort has gone towards policy-gradient [54] and
Actor-Critic [33] algorithms with the CVaR objective. Chow and Ghavamzadeh [19]
and Tamar, Glassner, and Mannor [55] present useful ways of computing the CVaR
gradients with parametric models and have shown the practicality and scalability
of these approaches on interesting domains such as the well-known game of Tetris.
An important setback of these methods is their limitation of the hypothesis space
to the class of stationary policies, meaning they can only reach a local minimum
of our objective. Similar policy gradient methods have also been investigated in the
context of general coherent measures, a class of risk measures encapsulating many
used measures including CVaR. Tamar et al. present a policy gradient algorithm and
a gradient-based Actor-Critic algorithm [56]. Again, these algorithms only converge
in local extremes.

2.5 literature survey 14

Some authors have also tried to sidestep the time-consistency issue of CVaR by
either focusing on a time-consistent subclass of coherent measures, limiting the hy-
pothesis space to time-consistent policies, or reformulating the CVaR objective in a
time-consistent way [39].
Morimura et al. [41, 42] were among the first to utilize distributional reinforcement

learning with both parametric and nonparametric models and used it to optimize
CVaR. They only used the naive approach discussed in Section 2.4.1 in their experi-
ments.
Bäuerle and Ott [8] use a state space extensions and show that this new extended

state space contains globally optimal policies. Unfortunately, because the state-space
is continuous, the design of a solution algorithm is challenging.
The approach of Chow et al. [20] also uses a continuous augmented state-space

but unlike Bäuerle and Ott [8], this continuous state is shown to have bounded error
when a particular linear discretization is used. The only flaw of this approach is
the requirement of running a linear program in each step of their algorithm and we
address this issue in the next chapter.

3
VALUE ITERATION WITH CVAR

Value iteration is a standard algorithm for maximizing the expected discounted re-
ward used in reinforcement learning. In this chapter we extend the results of Chow
et al. [20], who have recently proposed an approximate value iteration algorithm for
CVaR MDPs.

The original algorithm requires a computation of a linear program in each step
of the value iteration procedure. Utilizing a connection between the used αCVaRα
function and the quantile function, we sidestep the need for this computation and
propose a linear-time version of the algorithm, making CVaR value iteration feasible
for much larger MDPs.
After reminding the reader of the standard value iteration, we present the CVaR

Value Iteration algorithm in Section 3.2. Our faster approach is presented in Section
3.3, followed by section Section 3.4, where we test the new method on selected
environments.

3.1 value iteration

Value iteration [53] is a well-known algorithm for computing the optimal action-
value function and hereby finding an optimal policy. Let us remind ourselves of the
Bellman optimality operator T (2.9):

T Q(x, a) := r(x, a) + γ
∑
x′

p(x′|x, a)max
a′∈A

Q(x′, a′)

or rewritten for the value function V

T V (x) = max
a

{
r(x, a) + γ

∑
x′

p(x′|x, a)V (x′)

}
(3.1)

As stated before, T is a contraction (Section 2.1.4). This means that by repeatedly
applying the operator we eventually converge to the optimal point, since we converge
and the definition holds in this point. This leads to the formulation of the Value Iter-
ation algorithm. The only difference between theory and practice is the introduction
of a small parameter ε that allows us to check the converge and end the algorithm
when we reach a certain precision, as the contraction converges only in the limit.

See Algorithm 1.

3.2 cvar value iteration 16

Algorithm 1 Value Iteration
Initialize V arbitrarily (e.g. V (x) = 0 for all x ∈ X)
repeat
v = V (x)

∆ = 0
for each x ∈ X do
V (x) = maxa {r(x, a) + γ

∑
x′ p(x

′|x, a)V (x′)}
∆ = max {∆, |v− V (x)|}

end for
until ∆ < ε

Output a deterministic policy π ≈ π∗:
π(x) = argmaxa {r(x, a) + γ

∑
x′ p(x

′|x, a)V (x′)}

3.2 cvar value iteration

Chow et al. [20] present a dynamic programming formulation for the CVaR MDP
problem (2.21). As CVaR is a time-inconsistent measure, their method requires an
extension of the state space. A Value Iteration type algorithm is then applied on this
extended space and Chow et al. [20] proved its convergence.

We repeat their key ideas and results bellow, as they form a basis for our con-
tributions presented in later sections. The results are presented with our notation
introduced in Chapter 2, which differs slightly from the paper, but the core ideas
remain the same.

3.2.1 Bellman Equation for CVaR

The results of Chow et al. [20] heavily rely on the CVaR decomposition theorem
(Lemma 22, [43]):

CVaRα (Zπ(x)) = min
ξ∈UCVaR(α,p(·|x,a))

∑
x′

p(x′|x,π(x))ξ(x′)CVaRξ(x′)α (Zπ(x′))

UCVaR(α, p(·|x, a)) =
{
ξ : ξ(z) ∈

[
0, 1
α

]
,
∫
ξ(z)p(z)dz = 1

}
(3.2)

where the risk envelope UCVaR(α, p(·|x, a)) coincides with the dual definition of CVaR
(2.20).

The theorem states that we can compute the CVaRα (Zπ(x, a)) as the minimal
weighted combination of CVaRα (Zπ(x′)) under a probability distribution perturbed
by ξ(x′). Notice that the variable ξ appears in both the sum and modifies the confi-
dence level for each state.
Also note that the decomposition requires only the representation of CVaR at

different confidence levels and not the whole distribution at each level, which we
might be tempted to think because of the time-inconsistency issue.

3.2 cvar value iteration 17

Chow et al. [20] extend the decomposition theorem by defining the CVaR value
function1 C(x, y) with an augmented state-space X × Y where Y = (0, 1] is an
additional continuous state that represents the different confidence levels.

C(x, y) = max
π∈ΠH

CVaRy (Zπ(x)) (3.3)

Similar to standard dynamic programming, it is convenient to work with with oper-
ators defined on the space of value functions. This leads to the following definition
of the CVaR Bellman operator T : X ×Y → X ×Y:

TC(x, y) = max
a

[
r(x, a) + γ min

ξ∈UCVaR(α,p(·|x,a))

∑
x′

p(x′|x, a)ξ(x′)C (x′, yξ(x′))
]

(3.4)

or in our simplified notation, this describes the following relationship:

TCVaRy(Z(x)) = max
a

[
r(x, a) + γCVaRy(P π

∗
Z(x, a))

]
(3.5)

where P π denotes the transition operator (2.11).
Chow et al. [20] further showed (Lemma 3) that the operator T is a contraction

and also preserves the convexity of yCVaRy. The optimization problem (3.2) is a
convex one and therefore has a single solution. Additionally, the fixed point of this
contraction is the optimal C∗(x, y) = maxπ∈Π CVaRy(Zπ(x, y)) ([20], Theorem 4).
Naive value iteration with operator T is unfortunately unusable in practice, as the

state space is continuous in y. The solution proposed in [20] is then to represent the
convex yCVaRy as a piecewise linear function.

3.2.2 Value Iteration with Linear Interpolation

Given a set of N(x) interpolation points Y(x) =
{
y1, . . . , yN(x)

}
, we can approxi-

mate the yC(x, y) function by interpolation on these points, i.e.

Ix[C](y) = yiC(x, yi) +
yi+1C(x, yi+1)− yiC(x, yi)

yi+1 − yi
(y− yi),

where yi = max {y′ ∈ Y(x) : y′ ≤ y}. The interpolated Bellman operator TI is then
also a contraction and has a bounded error ([20], Theorem 7).

TIC(x, y) = max
a

[
r(x, a) + γ min

ξ∈UCVaR(α,p(·|x,a))

∑
x′

p(x′|x, a)Ix
′ [C](yξ(x′))

y

]
(3.6)

The full value iteration procedure is presented in Algorithm 2.
This algorithm can be used to find an approximate global optimum in any MDP.

There is however the issue of computational complexity. As the algorithm stands,
the straightforward approach is to solve each iteration of (3.6) as a linear program,
since the problem is convex and piecewise linear, but this is not practical, as the LP
computation can be demanding and is therefore not suitable for large state-spaces.

For completeness, we formulate the full linear program in the appendix (A.1).

1 We use C instead of V in our notation.

3.2 cvar value iteration 18

Algorithm 2 CVaR Value Iteration with Linear Interpolation (Algorithm 1 in [20])
1: Given:

• N(x) interpolation points Y(x) =
{
y1, . . . , yN(x)

}
∈ [0, 1]N(x) for every x ∈ X

with yi < yi+1, y0 = 0 and yN(x) = 1.

• Initial value function C0(x, y) that satisfies:
1. yC0(x, y) is convex in y for all x
2. yC0(x, y) is continuous in y for all x

2: Repeat until convergence:

• For each x ∈ X and each yi ∈ Y(x), update the value function estimate as
follows:

Ck+1(x, yi) = TI [Ck](x, yi),

3: Set the converged value iteration estimate as Ĉ∗(x, yi), for any x ∈ X , and yi ∈
Y(x).

3.2.3 Optimal policy

An important product of any value iteration algorithm is the optimal policy. Since we
know that the CVaR objective isn’t time-consistent, we must change the optimized
confidence level in each state with each sampled transition. The value-function C∗
can be used to extract the optimal policy π∗ of the original problem (2.21), using
the following theorem.

Theorem 2 (Optimal Policies, Theorem 5 in [20]). Let π∗H = {µ0,µ1, . . .} ∈ ΠH be
a history-dependent policy recursively defined as:

µt(ht) = u∗(xt, yt), ∀k ≥ 0, (3.7)

with initial conditions x0 and y0 = α, and state transitions

xt ∼ P (· | xk−1,u∗(xk−1, yk−1)), yt = yk−1ξ
∗
xk−1,yk−1,u∗(xt),∀k ≥ 1, (3.8)

where the stationary Markovian policy u∗(x, y) and risk factor ξ∗x,y,u∗(·) are solution
to the max-min optimization problem in the CVaR Bellman operator T[C∗](x, y).
Then, π∗H is an optimal policy for problem (2.21) with initial state x0 and CVaR
confidence level α.

And the theorem holds for both the original operator T and the linearly interpo-
lated TI .
Chow et al. [20] further showed that the error is bounded and linearly dependent

on parameter θ, where θ describes a logarithmic rule with which we select atoms
yi+1 = θyi.

3.3 efficient computation using quantile representation 19

3.3 efficient computation using quantile representation

We present our original contributions in this section, first describing a connection
between the yCVaRy function and the quantile function of the underlying distribu-
tion. We then use this connection to formulate a faster computation of the value
iteration step, resulting in the first linear-time algorithm for solving CVaR MDPs
with bounded error.

Lemma 1. Any discrete distribution has a piecewise linear and convex yCVaRy
function. Similarly, any piecewise linear convex function can be seen as representing
a certain discrete distribution.
Particularly, the integral of the quantile function is the yCVaRy function

yCVaRy(Z) =
∫ y

0
VaRβ(Z)dβ (3.9)

and the derivative of the yCVaRy function is the quantile function

∂

∂y
yCVaRy(Z) = VaRy(Z) (3.10)

Proof. The fact that discrete distributions have a piecewise linear yCVaRy function
has already been shown by Rockafellar and Uryasev [47].
According to definition (2.16) we have

yCVaRy(Z) = y
1
y

∫ y

0
VaRβ(Z)dβ =

∫ y

0
VaRβ(Z)dβ

by taking the y derivative, we have

∂

∂y
yCVaRy(Z) =

∂

∂y

∫ y

0
VaRβ(Z)dβ = VaRy(Z)

You can get some intuition from Figure 3.1, where the integral-derivation relation-
ship is clearly visible. According to Lemma 1, we can reconstruct the yCVaRy from
the underlying distribution and vice-versa. We utilize the fact that the conversion is
linear in the number of probability atoms to formulate a fast way of computing the
TI operator.

3.3.1 CVaR Computation via Quantile Representation

We propose the following procedure: instead of using linear programming for the
CVaR computation, we use the underlying distributions represented by the yCVaRy
function to compute CVaR at each atom. The general steps of the computation are:

1. transform yCVaRy(Z(x′)) of each reachable state x′ to a discrete probability
distribution using (3.10).

2. combine these to to a distribution representing the full state-action distribution

3. compute yCVaRy for all atoms using (3.9)

3.3 efficient computation using quantile representation 20

0.0 0.2 0.4 0.6 0.8 1.0

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Quantile function

Exact

CVaR VI

0.0 0.2 0.4 0.6 0.8 1.0

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

yCVaRy

Exact

CVaR VI

Figure 3.1: Comparison of a discrete distribution and its approximation according to the
CVaR linear interpolation operator.

Figure 3.2: Visualization of the CVaR computation for a single state and action with two
transition states. Thick arrows represent the conversion between yCVaRy and
the quantile function.

See Figure 3.2 for a visualization of the procedure.
Note that this procedure is linear for discrete distributions. The only nonlinear step
in the procedure is the sorting step in mixing distributions. Since the values are pre-
sorted for each state x′, this is equivalent to a single step of the Merge sort algorithm,
which means it is also linear in the number of atoms.

We show the explicit computation of the procedure for linearly interpolated atoms
in Algorithm 3.
The proposed method draws remarkable similarity to distributional RL (Section

2.2). In fact, if we overlook the action selection phase, the one-step update is identical.
The main differences between the two approaches are 1) action selection - in the
distributional approach, we select a single action (based on the expected value) for
the whole distribution. In CVaR Value Iteration, we select a different action for each
α-level; 2) the approximation step - in distributional RL, we try to minimize the
Wasserstein distance of selected distributions. In CVaR Value Iteration, we construct
a distribution whose CVaRs at given confidence levels are identical to the exact
distribution.

3.3 efficient computation using quantile representation 21

To show the correctness of this approach, we formulate it as a solution to prob-
lem (3.2) in the next section. Note that we skip the reward and gamma scaling for
readability’s sake. Extension to the Bellman operator is trivial.

3.3.2 ξ-computation

Similarly to Theorem 2, we need a way to compute the yt+1 = ytξ
∗(xt) to extract

the optimal policy. We compute ξ∗(xt) by using the following intuition: yt+1 is the
portion of Z(xt+1) that is present in CVaRyt(Z(xt)). In the continuous case, it is
the probability in Z(xt+1) before the VaRyt(Z(xt)) as we show bellow.

Theorem 3. Let x′1,x′2 be only two states reachable from state x via action a in a
single transition. Let the cumulative distribution functions of the state’s underlying
distributions Z(x′1),Z(x′2) be strictly increasing with unbounded support. Then the
solution to minimization problem (3.2) can be computed by setting

ξ(x′i) =
FZ(x′i)

(
F−1
Z(x,a)(α)

)
α

(3.11)

Proof. Since we are interested in the minimal argument, we can ease the computation
by focusing on the αCVaRα function instead of CVaRα. When working with two
states, the equation of interest simplifies to

αCVaRα(Z(x, a)) = min
ξ

p1ξ1αCVaRξ1α (Z(x
′
1)) + p2ξ2αCVaRξ2α (Z(x

′
2))

s.t. p1ξ1 + p2ξ2 = 1

0 ≤ ξ1 ≤
1
α

0 ≤ ξ2 ≤
1
α

therefore

αCVaRα(Z(x, a)) = min
ξ

p1ξ1αCVaRξ1α(Z(x
′
1)) + (1− p1)

1− p1ξ1
1− p1

αCVaR 1−p1ξ1
1−p1

α
(Z(x′2))

= min
ξ

p1

∫ ξ1α

0
VaRβ(Z(x′1)) dβ + (1− p1)

∫ 1−p1ξ1
1−p1

α

0
VaRβ(Z(x′2) dβ

To find the minimal argument, we find the first derivative w.r.t. ξ1

∂αCVaRα
∂ξ1

= p1αVaRξ1α(Z(x
′
1)) + (1− p1)α

−p1
1− p1

VaR 1−p1ξ1
1−p1

α
(Z(x′2)

= p1VaRξα(Z(x′1))− p1VaR 1−pξ
1−p α

(Z(x′2))

By setting the derivative to 0 , we get

VaRξ1α(Z(x
′
1))

!
= VaR 1−pξ

1−p α
(Z(x′2)) = VaRξ2α(Z(x

′
2))

Bernard and Vanduffel [13] have shown that in the case of strictly increasing c.d.f.
with unbounded support, it holds that

VaRξ1α(Z(x
′
1)) = VaRξ2α(Z(x

′
2)) = VaRα(Z(x, a))

F−1
Z(x′1)

(ξ1α) = F−1
Z(x′2)

(ξ2α) = F−1
Z(x,a)(α)

3.4 experiments 22

and we can extract the values of ξ1α, ξ2α using the

F−1
Z(x′1)

(ξ1α) = F−1
Z(x,a)(α) /FZ(x′1)

FZ(x′1)

(
F−1
Z(x′1)

(ξ1α)
)

= FZ(x′1)

(
F−1
Z(x,a)(α)

)
ξ1α = FZ(x′1)

(
F−1
Z(x,a)(α)

)
And similarly for ξ2.

Since the problem is convex, we have found the optimal point.

The theorem is straightforwardly extendable to multiple states by induction. We
conjecture that similar claim holds for general distributions, however this would
require more technical arguments and is out of scope of this thesis. Among other
difficulties, the optimal ξ is not unique for general distributions. See Bernard and
Vanduffel [13] for details on the two-dimensional case for general distributions.

3.4 experiments

We test the proposed algorithm on the same task as Chow et al. [20]. The task of the
agent is to navigate on a rectangular grid to a given destination, moving in its four-
neighborhood. To encourage fast movement towards the goal, the agent is penalized
for each step by receiving a reward -1. A set of obstacles is placed randomly on the
grid and stepping on an obstacle ends the episode while the agent receives a reward
of -40. To simulate sensing and control noise, the agent has a δ = 0.05 probability
of moving to a different state than intended.
For our experiments, we choose a 40× 60 grid-world and approximate the αCVaRα

function using 21 log-spaced atoms with θ = 2 as in [20]. The learned policies on a
sample grid are shown in Figure 3.3.
While Chow et al. [20] report computation time on the order of two hours, our

naive Python implementation converged within 20 minutes and there is ample room
for improvement.

Note on empirical performance: We have encountered slight difficulties when testing
the algorithms. While the CVaR value estimates monotonically converged towards
the contraction fixed points, the same cannot be said about the extracted policies.
Some policies failed to reach the goal via the optimal paths and some even got stuck
in cycles.
After some investigation, we identified that these nonoptimal behaviors happen

around points where a small α−change affects the selected actions and are caused
by the approximation errors around those points. We note that similar problems
also affect the distributional RL approaches, as one can find examples of distribu-
tions whose expected value differs dramatically from the value approximated by the
Wasserstein optimum.

These problems can always resolved by increasing the number of atoms around
these critical points, as both methods are consistent in the limit.

3.4 experiments 23

Algorithm 3 CVaR Computation via Quantile Representation

function extractDistribution
input: vectors C, y
Note: y0 = C(x′, y0) = 0
for i ∈ {1, ..., |y|} do

di =
C(x′, yi)−C(x′, yi−1)

yi − yi−1
end for
output vector d

function extractC
input: vectors d, p
C0 = 0
for i ∈ {1, ..., |p|} do
Ci = Ci−1 + di · pi

end for
output vector C

function mixDistributions
input: tuples (d(1), p(1)), ..., (d(K), p(K)) and vector y
∑K

k=1 pk = 1
for i, k ∈ {1, ...,K} × {1, ..., |y|} do

Weigh atom probabilities by transitions
p
(k)
i = p(k) · (yi − yi−1)

end for
Join all tuples together:
atoms =

{
(d

(1)
1 , p(1)1), ..., (d(1)N , p(1)N), (d(2)1 , p(2)1), ..., (d(K)

N , p(K)
N)

}
Sort atoms by d
Unwrap vectors d, p from sorted tuples
output d, p

Main
input: tuples (C(x′i, •), p(1)), ..., (C(x′i, •), p(K)) and vector y
for i ∈ {1, ...,K} do

d(i) = extractDistribution(C(x′i, •), y)
end for
dmix, ymix = mixDistributions((d(1), p(1)), ..., (d(K), p(K)), y)
Cout = extractC(dmix, ymix)
output: Cout

3.4 experiments 24

S G

α = 0.1

S G

α = 0.2

S G

α = 0.3

S G

α = 1.0

−30

−25

−20

−15

−10

−5

0

−25

−20

−15

−10

−5

0

−20

−15

−10

−5

0

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Figure 3.3: Grid-world simulations. The optimal deterministic paths are shown together with
CVaR estimates for given α.

4
Q-LEARNING WITH CVAR

While value iteration is a useful algorithm, it only works when we have complete
knowledge of the environment - including the probability transitions p(x′|x, a). This
is often not the case in practice and we have to rely on different methods, based
on direct interaction with the environment. One such algorithm is the well-known
Q-learning which we explore in this chapter.
We first remind the reader of Q-learning basics in Section 4.1 and introduce CVaR

estimation in Section 4.2. These concepts are combined together with CVaR value
iteration and in Section 4.3 we propose the new CVaR Q-learning algorithm. We
treat the optimal policy separately in Section 4.4.
The algorithm is then experimentally verified on suitable environments in Section

4.5.

4.1 q-learning

Q-learning (Watkins and Dayan [59]) is an important off-policy Temporal Difference
control algorithm, that works by repeatedly updating the Q value estimate according
to the sampled rewards and states using a moving exponential average.

Qt+1(x, a) = (1− βt)Qt(x, a) + βt

[
r+ γmax

a′
Qt(x

′, a′)
]

x′ ∼ p(·|x, a)
(4.1)

Here Q is an estimate of the optimal action-value function (2.7) and βt is the learning
rate at time t. The expression r+γmaxa′ Qt(x′, a′) is called a target and is sometimes
denoted as T Q. The idea of the algorithm is to bring the value function closer to
the target, which is more ’informed’ than the original value since it has information
about the reward and next state, which came directly from the sampled transition.
The optimal value of Q(x, a) is then the expected target, which we reach in the limit.

The order of the visited states is unimportant, as long as all reachable states are
updated infinitely often and the learning rate meets a standard condition used in
stochastic approximation.

∞∑
t=0

βt =∞
∞∑
t=0

β2
t <∞ (4.2)

See Jaakkola, Jordan, and Singh [29] for details.
While the algorithm would converge if we were using a completely random policy,

in practice we often try to speed up the convergence by using a smarter, yet still
random policy as seen in Algorithm 4.

4.2 cvar estimation 26

Algorithm 4 Q-learning
Initialize Q(x, a) for all x ∈ X , a ∈ A arbitrarily, and Q(xterminal, ·) = 0
for each episode do
x = x0
while x is not terminal do
Choose a using a policy derived from Q (e.g. ε-greedy)
Take action a, observe r,x′
Q(x, a) = (1− βt)Q(x, a) + βt [r+ γmaxa′ Q(x′, a′)]
x = x′

end while
end for

4.2 cvar estimation

Before formulating a CVaR version of Q-learning, we must first talk about simply
estimating CVaR, as it is not as straightforward as the estimation of expected value.

Let us remind ourselves of the primal definition of CVaR (2.17):

CVaRα(Z) = max
s

{ 1
α

E
[
(Z − s)−

]
+ s

}
If we knew the exact s∗ = VaRα, we could estimate the CVaR as a simple expectation
of the 1

α
(Z− s∗)−+ s∗ function. As we do not know this value in advance, a common

approach is to first approximate VaRα from data, then use this estimate to compute
its CVaRα. This is usually done with a full data vector, requiring the whole data
history to be saved in memory.

When dealing with reinforcement learning, we would like to store our current
estimate as a scalar instead. This requires finding a recursive expression whose ex-
pectation is the CVaR value. Fortunately, similar methods have been thoroughly
investigated in the stochastic approximation literature by Robbins and Monro [46].
The RM theorem has also been applied directly to CVaR estimation by Bardou,

Frikha, and Pages [7], who used it to formulate a recursive importance sampling
procedure useful for estimating CVaR of long-tailed distributions.
First let us describe the method for one step estimation, meaning we sample values

(or rewards in our case) r from some distribution and our goal is to estimate CVaR
at a given confidence level α. The procedure requires us to maintain two separate
estimates V and C, being our VaR and CVaR estimates respectively.

Vt+1 = Vt + βt

[
1− 1

α
1(Vt≥r)

]
(4.3)

Ct+1 = (1− βt)Ct + βt

[
Vt +

1
α
(r− Vt)−

]
(4.4)

An observant reader may recognize a standard equation for quantile estimation in
equation (4.3) (see e.g. Koenker and Hallock [32] for more information on quantile
estimation/regression). The expectation of the update E

[
1− 1

α
1(Vt≥r)

]
is the inverse

gradient of the CVaR primal definition, so we are in fact performing a Stochastic
Gradient Descent on the primal.

4.3 cvar q-learning 27

Equation (4.4) is also quite intuitive, representing the moving exponential average
of the primal CVaR definition (2.17). The estimations are proven to converge, given
the usual requirements on the learning rate (4.2) [7].

4.3 cvar q-learning

We now extend the previously established CVaR Value Iteration and combine it
with the recursive CVaR estimation techniques to formulate a new algorithm we call
CVaR Q-learning.

4.3.1 Temporal Difference update

We first define two separate values for each state, action, and atom V ,C : X ×A×
Y → R where C(x, a, y) represents CVaRy(Z(x, a)) of the distribution, similar to
the definition (3.3). V (x, a, y) represents the VaRy estimate, i.e. the estimate of the
y−quantile of a distribution recovered from CVaRy by Lemma 1.
A key to any temporal difference algorithm is its update rule. The CVaR TD

update rule extends the improved value iteration procedure and we present the full
rule for uniform atoms in Algorithm 5.
Let us now go through the algorithm step by step. We first construct a new CVaR

(line 3), representing CVaRy(Z(x′)), by greedily selecting actions that yield the
highest CVaR for each atom. This is in contrast with both standard Q-learning and
Quantile Regression Q-learning (Section 5.1.3) where we select a single action for
the whole distribution. This step is implicit in the CVaR value iteration procedure
since we are not working with action-value functions.
The new values C(x′, •) are then transformed to the underlying distribution (line

5) d and used to create the target T d = r + γd. A natural Monte Carlo approach
would be then to generate samples from this target distribution and use these to
update our estimates V ,C.

Since we know the target distributions exactly, we do not have to actually sample;
instead we use the quantile values proportionally to their probabilities (in the uniform
case, this means exactly once) and apply the respective VaR and CVaR update rules
(lines 7, 8).

Algorithm 5 CVaR TD update
1: input: x, a,x′, r
2: for each i do
3: C(x′, yi) = maxa′ C(x′, a′, yi)
4: end for
5: d = extractDistribution (C(x′, •), y) # See Algorithm 3
6: for each i, j do
7: V (x, a, yi) = V (x, a, yi) + β

[
1− 1

yi
1(V (x,a,yi)≥r+γdj)

]
8: C(x, a, yi) = (1− β)C(x, a, yi) + β

[
V (x, a, yi) + 1

yi
(r+ γdj − V (x, a, yi))−

]
9: end for

If the atoms aren’t uniformly spaced (log-spaced atoms are motivated by the error
bounds of CVaR Value Iteration), we have to perform basic importance sampling

4.4 optimal policy 28

when updating the estimates . In contrast with the uniform version, we iterate only
over the atoms and perform a single update for the whole target by taking an expec-
tation over the target distribution. This is done by replacing lines 7, 8 with

V (x, a, yi) = V (x, a, yi) + βE
j

[
1− 1

yi
1(V (x,a,yi)≥r+γdj)

]
C(x, a, yi) = (1− β)C(x, a, yi) + βE

j

[
V (x, a, yi) +

1
yi

(r+ γdj − V (x, a, yi))−
]

(4.5)

The explicit computation of the expectation term for VaR would then look like

E
j

[
1− 1

yi
1(V (x,a,yi)≥r+γdj)

]
=
∑
j

pj

[
1− 1

yi
1(V (x,a,yi)≥r+γdj)

]

where pj = yj − yj−1 represents the probability of dj . The CVaR update expectation
is computed analogically.
This is a valid approach since sample mean is equal to the mean of the original

distribution. In this case we are performing the updates on batches of samples and
the final expected value remains unchanged.

E[f(Z)] =
∑
i

piE[f(Zi)]

The above equation holds for any function f if Z is a mixture of Zi, so it also holds for
the VaR update 1− 1

yi
1(V (x,a,yi)≥r+γdj) where the learned distribution is a mixture

of the different target distributions.
We conclude the same for the CVaR update, since the expectation remains un-

changed.
We are in fact using more informed updates - similar to the difference between

pure and batch Stochastic Gradient Descent.

4.3.2 Note on convergence

We do not prove the convergence of the CVaR Q-learning algorithm in this thesis
as it would require significant work regarding convergence of the recursive CVaR
estimation procedures. The update rules (4.3, 4.4) have been only shown to converge
if the underlying distributions are continuous [7], which is not the case in our setting.
In the last section of this chapter, we show at least empirical convergence of the

CVaR Q-learning algorithm.

4.4 optimal policy

Recall that in CVaR Value Iteration we can extract the optimal policy by recursively
setting yt+1 = ytξ

∗
xt+1 . This process is not straightforwardly extendable to our sample-

based version of CVaR Value Iteration, since we would have to have access to all
possible transition states and probabilities in order to compute ξ∗.
Instead, we turn to the primal formulation of CVaR in what we call VaR-based

policy improvement algorithm. We first introduce the VaR-based policy improvement

4.4 optimal policy 29

in the context of distributional RL and prove its validity. The policy improvement
procedure is then used as a consistent heuristic for extracting the optimal policy
from converged CVaR Value Iteration.

4.4.1 VaR-based Policy Improvement

Let us now assume that we have successfully converged with distributional value
iteration and have available the return distributions of some stationary policy for
each state and action. Our next goal is to find a policy improvement algorithm that
will monotonically increase the CVaRα criterion for selected α.

Recall the primal definition of CVaR (2.17)

CVaRα(Z) = max
s

{ 1
α

E
[
(Z − s)−

]
+ s

}
Our goal (2.21) can then be rewritten as

max
π

CVaRα(Zπ) = max
π

max
s

1
α

E
[
(Zπ − s)−

]
+ s

As mentioned earlier, the primal solution is equivalent to VaRα(Z)

CVaRα(Z) = max
s

{ 1
α

E
[
(Z − s)−

]
+ s

}
=

1
α

E
[
(Z −VaRα(Z))−

]
+VaRα(Z)

The main idea of VaR-based policy improvement is the following: If we knew the
value s∗ in advance, we could simplify the problem to maximize only

max
π

CVaRα(Zπ) = max
π

1
α

E
[
(Zπ − s∗)−

]
+ s∗ (4.6)

Given that we have access to the return distributions, we can improve the pol-
icy by simply choosing an action that maximizes CVaRα in the first state a0 =

argmaxπ CVaRα(Zπ(x0)), setting s∗ = VaRα(Z(x0, a0)) and focus on maximiza-
tion of the simpler criterion.
This can be seen as coordinate ascent with the following phases:

1. Maximize 1
αE [(Zπ(x0)− s)−] + s w.r.t. s while keeping π fixed. This is equiv-

alent to computing CVaR according to the primal.

2. Maximize 1
αE [(Zπ(x0)− s)−] + s w.r.t. π while keeping s fixed. This is the

policy improvement step.

3. Recompute CVaRα(Zπ
∗
) where π∗ is the new policy.

Since our goal is to optimize the criterion of the distribution starting at x0, we need
to change the value s while traversing the MDP (where we have only access to Z(xt)).
We do this by recursively updating the s we maximize by setting st+1 =

st − r
γ

. See
Algorithm 6 for the full algorithm which we justify in the following theorem.

Theorem 4. Let π be a stationary policy, α ∈ (0, 1]. By following policy π∗ from
algorithm 6, we improve CV aRα(Z) in expectation:

CV aRα(Z
π) ≤ CV aRα(Zπ

∗
)

4.4 optimal policy 30

Algorithm 6 VaR-based policy improvement
a = argmaxaCVaRα(Z(x0, a))
s = VaRα(Z(x0, a))
Take action a, observe x, r
while x is not terminal do
s =

s− r
γ

a = argmaxa E [(Z(x, a)− s)−]
Take action a, observe x, r

end while

Proof. Let s∗ be a solution to maxs
1
α

E [(Zπ(x0)− s)−] + s. Then by optimizing
1
α

E [(Zπ − s∗)−] over π, we monotonously improve the optimization criterion CV aRα(Z(x0)).

CVaRα(Zπ) = max
s

1
α

E
[
(Zπ − s)−

]
+ s =

1
α

E
[
(Zπ − s∗)−

]
+ s∗

≤ max
π′

1
α

E
[
(Zπ

′ − s∗)−
]
+ s∗ =

1
α

E
[
(Zπ

∗ − s∗)−
]
+ s∗

≤ max
s′

1
α

E
[
(Zπ

∗ − s′)−
]
+ s′ = CV aRα(Z

π∗)

When optimizing w.r.t. π we can ignore the scaling term 1
α and a constant term

s∗ without affecting the optimal argument. We can therefore focus on optimization
of E [(Zπ(x0)− s∗)−].

E
[
(Zt − s)−

]
= E [(Zt − s)1(Zt ≤ s)] = E

[
(rt + γZt+1 − s)1(Zt+1 ≤

s− rt
γ

)

]
=

∑
xt+1,rt

P (xt+1, rt | xt, a)E
[
(rt + γZ(xt+1)− s)1(Z(xt+1) ≤

s− rt
γ

)

]

=
∑

xt+1,rt
P (xt+1, rt | xt, a)E

[
γ

(
Z(xt+1)−

s− rt
γ

)
1(Z(xt+1) ≤

s− rt
γ

)

]

= γ
∑

xt+1,rt
P (xt+1, rt | xt, a)E

[(
Z(xt+1)−

s− rt
γ

)
1(Z(xt+1) ≤

s− rt
γ

)

]

= γ
∑

xt+1,rt
P (xt+1, rt | xt, a)E

[(
Z(xt+1)−

s− rt
γ

)−]
(4.7)

where we used the definition of return Zt = Rt+ γZt+1 and the fact that probability
mixture expectations can be computed as E[f(Z)] =

∑
i piE[f(Zi)] for any function

f .
Now let’s say we sampled reward rt and state xt+1, we are still trying to find a

policy π∗ that maximizes

π∗ = argmax
π

E
[
(Z(xt)− s)−

∣∣xt+1, rt]

= argmax
π

E

[(
Z(xt+1)−

s− rt
γ

)−] (4.8)

4.4 optimal policy 31

Where we ignored the unsampled states, since these are not a function of xt+1,
and the multiplicative constant γ that will not affect the maximum argument.

At the starting state, we set s = s∗. At each following state we select an action
according to equation (4.8). By induction we maximize the criterion (4.6) in each
step.

Note that while the resulting policy is nonstationary, we do not need an extended
state-space to follow this policy. It is only necessary to remember our previous value
of s.
The ideas presented here were partially explored by Bäuerle and Ott [8] although

not to this extent. See Remark 3.9 in [8] for details.

4.4.2 CVaR Q-learning extension

We would now like to use the policy improvement algorithm in order to extract the
optimal policy from CVaR Q-learning. This would mean optimizing E [(Zt − s)−] in
each step. A problem we encounter here is that we have access only to the discretized
distributions and we cannot extract the values between selected atoms.
As a solution to this, we propose an approximate heuristic that uses linear inter-

polation to extract the VaR of given distribution.
The expression E [(Zt − s)−] is computed by taking the expectation of the distri-

bution before the value s. We are therefore looking for value y where VaRy = s. This
value is linearly interpolated from VaRyi−1 and VaRyi where yi = min {y : VaRy ≥ s}.
The expectation is then taken over the extracted distribution, as this is the distribu-
tion that approximates CVaR the best.

See Algorithm 7 for the exact procedure and Figure 4.1 for more intuition behind
the heuristic.

0

-4

-3

-2

-1

0

1

2

3

4

0.2 0.4 0.6 0.8 1

Figure 4.1: Visualization of the VaR-based heuristic. Quantile function of the exact distribu-
tion (unknown to the model) is shown in red and the VaR estimates at selected
α-levels are shown in green. Let’s say we now want to know y where VaRy = 0.
We use linear interpolation between the nearest known VaRs, shown in orange.
In this case the interpolation estimate is y = 0.5.

4.4 optimal policy 32

Algorithm 7 CVaR Q-learning policy
input: α, converged V ,C
x = x0
a = argmaxaC(x, a,α)
s = V (x, a, y)
while x is not terminal do

da = extractDistribution (C(x′, a, •), y) for each a
a = argmaxa expMinInterp(s, d,V (x′, a, •), y)
Take action a, observe r,x′

s =
s− r
γ

x = x′

end while

Compute E [(da − s)−] with linear interpolation
function expMinInterp
input: s, vectors d, V, y
z = 0
for i ∈ {1, ..., |y|} do
if S < Vi then

break
end if
z = z + di · (yi − yi−1)

end for
plast =

s− Vi−1
Vi − Vi−1

(yi − yi−1)

z = z + di · plast
output z

4.5 experiments 33

4.5 experiments

We use the same gridworld from Section 3.4 with δ = 0.1. Since the positive reward
is very sparse, we chose to run CVaR Q-learning on a smaller environment of size
10× 15. We trained the agent for 10,000 sampled episodes with learning rate β = 0.4
that dropped each 10 episodes by a factor of 0.995. The used policy was ε−greedy
and maximized expected value (α = 1) with ε = 0.5. Notice the high value of ε. We
found that lower ε values led to overfitting the optimal expected value policy as the
agent updated states out of the optimal path sparsly. This point will be elaborated
further in the experimental section of the next chapter.
With said parameters, the agent was able to learn the optimal policies for differ-

ent levels of α. See Figure 4.2 for learned policies and Figure 4.3 for Monte Carlo
comparisons.

S G

α = 0.1

S G

α = 0.3

S G

α = 0.6

S G

α = 1.0

−35

−30

−25

−20

−15

−10

−5

0

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

−14

−12

−10

−8

−6

−4

−2

0

Figure 4.2: Grid-world Q-learning simulations. The optimal deterministic paths are shown
together with CVaR estimates for given α.

The training was done with N = 50 linearly-spaced atoms. We experimented
with several discretization settings and didn’t find many differences between log-
and linearly-spaced points. Note that learning VaR and CVaR for very low α values
requires large number of samples and we found that extremely small atom values
converged slowly.

Note on convexity: Unlike CVaR Value Iteration, where we maintain convexity of
the yCVaRy function with each update (given we started with convex estimates),
in CVaR Q-learning we can break the convexity in each update for any atom. We
experience this in practice as well as can be gauged from Figure 4.4. Fortunately this
fact does not break the update rule, since the targets we use to update C as well as
V do not have to be ordered.

4.5 experiments 34

−60 −50 −40 −30 −20
0.00

0.05

0.10

0.15

0.20

0.25
Q-learning

CVaR Q-learning

Figure 4.3: Histograms from 10000 runs generated by Q-learning and CVaR Q-learning with
α = 0.1.

0.00 0.25 0.50 0.75 1.00

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

yCVaR

0.00 0.25 0.50 0.75 1.00

−8

−6

−4

−2

0
Extracted Distribution

0.00 0.25 0.50 0.75 1.00
−7

−6

−5

−4

−3

−2

−1

0

VaR

Left

Right

Up

Down

Figure 4.4: Learned C,V estimates for a single state after 10000 episodes. Notice the noncon-
vexities visible from the extracted distribution plot. Both extracted distribution
and VaR functions should be nondecreasing.

5
DEEP Q-LEARNING WITH CVAR

A big disadvantage of value iteration and Q-learning is the necessity to store a sep-
arate value for each state. When the size of the state-space is too large, we are un-
able to store the action-value representation and the algorithms become intractable.
To overcome this issue, it is common to use function approximation together with
Q-learning. Mnih et al. [40] proposed the Deep Q-learning (DQN) algorithm and
successfully trained on multiple different high-dimensional environments, resulting
in the first artificial agent capable of learning a diverse array of challenging tasks.

In this chapter, we extend CVaR Q-learning to its deep Q-learning variant and
show the practicality and scalability of the proposed methods.

5.1 deep q-learning

The ultimate goal of artificial intelligence are agents that exhibit a wide range of skills.
In the past, research was often focused on narrow AI, which was able to perform well
on one particular task, but was unable to generalize to other tasks well. This has
changed with the advent of deep learning [35], that allowed us to train function
approximators with the ability to auto-detect features. Deep learning methods have
become popular across all of machine learning, especially for supervised learning and
vision.

5.1.1 Deep Learning

We include a short glossary of deep learning basics and terminology. There are much
better sources to draw from and we refer the reader to Goodfellow et al. [26] for a
comprehensive overview of the field.
Deep learning considers a particular class of parametrized function approximators

called neural networks. Neural networks are functions of the form

fθ(x) = fn ◦ fn−1 ◦ . . . ◦ f1(x)

where fi(x) = gi(θix) with gi being usually a nonlinear function called the activation
function and θi is a parameter matrix. Every neural network has an input and output
and several layers, where a layer represents one matrix multiplication and application
of an activation function fi(x).

The types of neural networks differ, from the simplest with straightforward matrix
multiplication called multi layered perceprtons (MLP) to more complicated ones. Ar-
guably the most important layer type that kick-started the popularity of deep learn-
ing is called a convolutional neural network or CNN. Convolutional neural network

5.1 deep q-learning 36

consists of several (even hundreds in recent vision applications) so called convolu-
tional layers and its input is usually a 2D image. A convolutional layer consists
of rectangular filters that look for increasingly abstract features by applying the
same weight transformations over the whole image. The takeaway for us is that con-
volutional layers are able to learn from images, which is a fact we utilize in our
experiments.
A necessary component of any deep learning algorithm is a loss function L. The

most common loss function being the mean squared error

L = E
[
(fθ(x)− ŷ)2

]
with samples ŷ representing the outputs drawn from a distribution of interest.

The loss function is then minimized using Stochastic Gradient Descent, a stochastic
version of the well-known gradient descent (see e.g. Boyd and Vandenberghe [18])
where we perform each gradient step only using a subset of available samples. There
exist many improved variants of SGD such as RMS-prop [57] or Adam [31], that
perform significantly better than the vanilla SGD algorithm and are often used in
practice. See Ruder [49] for a concise survey of the used algorithms.

5.1.2 DQN

Deep learning has also been succesfully applied to reinforcement learning. Q-learning
has been used with function approximators in the past, however it suffers from insta-
bilities during learning. In fact, it is well-known that Q-learning does not converge
when used in conjunction with function approximators [6, 53] and this has been
a problem in practice as well. Mnih et al. [40] were able to stabilize the learning
process by introducing two practical techniques. Firstly the model isn’t learned on-
line, meaning we see each example once, but instead a replay buffer is used to store
transitions (x, a, r,x′) and these are later randomly sampled and used repeatedly
for the updates. Secondly, a second network Q′ is used for computing the target
values r + γQ′(x′, a′) and is only slowly updated towards Q. These improvements
have helped to stabilize the learning greatly. See Algorithm 8 for the full procedure.
The DQN algorithm has been applied on the Atari Learning Environment [9], a set

of challenging and diverse tasks, with both inputs and outputs mirroring a human’s
experience of playing and learning the Atari games, and the same algorithm achieved
human and superhuman-level performance on many of these games.

5.1.3 Distributional Reinforcement Learning with Quantile Regression

Before we transition to CVaR Q-learning, we will mention the Quantile Regression
DQN algorithm by Dabney et al. [23], which shares certain similarities with CVaR
Q-learning.
In QR-DQN, the goal is to learn a distribution that minimizes the Wasserstein

distance from the actual return distribution, since the distributional value iteration
operator is a contraction in Wasserstein distance.
The distributions are represented as N discrete uniform atoms with probability 1

N

and are parametrized with a value that, when learned correctly, represents the i+0.5
N

quantile, which is the Wasserstein minimizer.

5.2 deep cvar q-learning 37

Algorithm 8 Deep Q-learning with experience replay
Initialize replay memory M
Initialize action-value function Q with random weights θ
Initialize target action-value function Q′ with weights θ′ = θ

for each episode do
x = x0
while x is not terminal do
Choose a using a policy derived from Q (ε-greedy)
Take action a, observe r,x′
Store transition (x, a, r,x′) in M
x = x′

Sample random transitions (xj , aj , rj ,x′j) from M

Set T Qj = rj + γmaxa′ Q′(x′j , a′)
Perform a gradient step on (T Qj −Q(xj , aj))2 w.r.t. θ
Every Ntarget steps set θ′ = θ

end while
end for

The TD update rule for QR-DQN mimics the quantile estimation introduced in
Chapter 4:

Vi(x, a) = Vi(x, a) + β

[
1− 1

yi
1(Vi(x,a)≥T Vj)

]
where T Vj = r + γVj(x′, a∗) and a∗ is selected as the action that maximizes the
expected value in the next state. The target is created for each atom yj separately
and differs from the one introduced in CVaR Q-learning.
The loss function reflects the asymmetry of the quantile and it is the standard

quantile regression loss

N∑
i=1

E
j

[
(T Vj − Vi(x, a))(yj − 1(Vi(x,a)≥T Vj))

]
(5.1)

See Figure 5.1 for a visual comparison of loss functions used when finding expecta-
tions vs quantiles.
The algorithm is then extended to its deep Q-learning variant and verified empir-

ically, which is a template we follow in the rest of this chapter.

5.2 deep cvar q-learning

The transition from CVaR Q-learning to Deep CVaR Q-learning (CVaR DQN) fol-
lows the same principles as the one from Q-learning to DQN. Recall the TD update
rule for CVaR Q-learning:

V (x, a, yi) = V (x, a, yi) + βE
j

[
1− 1

yi
1(V (x,a,yi)≥r+γdj)

]
C(x, a, yi) = (1− β)C(x, a, yi) + βE

j

[
V (x, a, yi) +

1
yi

(r+ γdj − V (x, a, yi))−
]

5.2 deep cvar q-learning 38

MSE

α = 0.5

α = 0.3

α = 0.7

Figure 5.1: Comparison of quantile loss function and Mean Squared Error.

First significant change compared to DQN or QR-DQN is that we need to represent
two separate values - one for V , one for C. As with DQN, we need to reformulate
the updates as arguments minimizing some loss function.

Loss functions

The loss function for V (x, a, y) is similar to QR-DQN loss in that we wish to find
quantiles of a particular distribution. The target distribution however is constructed
differently - in CVaR-DQN we extract the distribution from the yCVaRy function of
the next state T V = r+ γd.

LVaR =
N∑
i=1

E
j

[
(r+ γdj − Vi(x, a))(yj − 1(Vi(x,a)≥r+γdj))

]
(5.2)

where dj are atoms of the extracted distribution.
Constructing the CVaR loss function consists of transforming the running mean

into MSE, again with the transformed distribution atoms dj

LCVaR =
N∑
i=1

E
j

[(
Vi(x, a) + 1

yi
(r+ γdj − Vi(x, a))− −Ci(x, a)

)2
]

(5.3)

Putting it all together, we are now able to construct the full CVaR-DQN loss
function in Algorithm 9.
Combining the loss functions with the full DQN algorithm, we get the full CVaR-

DQN with experience replay, see Algorithm 10. Note that we also utilize a target
network C ′ that is used for extraction of the target values, similarly to the original
DQN. The network V does not have a target network since the target is constructed
independently of the value V .

5.2 deep cvar q-learning 39

Algorithm 9 Deep CVaR Loss function
input: x, a,x′, r
for each yi do
C(x′, yi) = maxa′ C(x′, a′, yi)

end for
d = extractDistribution (C(x′, y))
LVaR =

∑N
i=1 Ej

[
(r+ γdj − Vi(x, a))(yj − 1(Vi(x,a)≥r+γdj))

]
LCVaR =

∑N
i=1 Ej

[(
Vi(x, a) + 1

yi
(r+ γdj − Vi(x, a))− −Ci(x, a)

)2
]

return LVaR +LCVaR

Algorithm 10 Deep CVaR Q-learning with experience replay
Initialize replay memory M
Initialize the VaR function V with random weights θv
Initialize the CVaR function C with random weights θc
Initialize target CVaR function C ′ with weights θ′c = θc
for each episode do
x = x0
while x is not terminal do
Choose a using a policy derived from C (ε-greedy)
Take action a, observe r,x′
Store transition (x, a, r,x′) in M
x = x′

Sample random transitions (xj , aj , rj ,x′j) from M

Build the loss function LVaR +LCVaR (Algorithm 9)
Perform a gradient step on LVaR +LCVaR w.r.t. θv, θc
Every Ntarget steps set θ′c = θc

end while
end for

5.3 experiments 40

5.3 experiments

To test the approach in a complex setting, we applied the CVaR DQN algorithm
to environments with visual state representation, which would be intractable for
Q-learning without approximation.

5.3.1 Atari

We ran several experiments on the Arcade Learning Environment [9], which is used as
a benchmark for many Deep Q-learning algorithms. The CVaR-DQN algorithm was
able to learn reasonable policies with similar speed and performance as the original
DQN algorithm. Unfortunately, due to the inherent determinism of the ALE, we
didn’t find significant differences between policies optimizing CVaRα on different
confidence levels, which led us to the construction of a new visual environment more
suitable to risk-sensitive decision making.

5.3.2 Ice Lake

Ice Lake is a visual environment specifically designed for risk-sensitive decision mak-
ing. Imagine you are standing on an ice lake and you want to travel fast to a point
on the lake. Will you take the a shortcut and risk falling into the cold water or
will you be more patient and go around? This is the basic premise of the Ice Lake
environment which is visualized in Figure 5.2.
The agent has five discrete actions, namely go Left, Right, Up, Down and Noop.

These correspond to moving in the respective directions or no operation. Since the
agent is on ice, there is a sliding element in the movement - this is mainly done to
introduce time dependency and makes the environment a little harder. The environ-
ment is updated thirty times per second.

The agent receives a negative reward of -1 per second, the episode ends with reward
100 if he reaches the goal unharmed or -50 if the ice breaks. This particular choice
of reward leads to about a 15% chance of breaking the ice when taking the shortcut
and it is still advantageous for a risk-neutral agent to take the dangerous path.

Figure 5.2: The Ice Lake environment. The agent is black and his target is green. The blue
ring represents a dangerous area with risk of breaking the ice. Grey arrow shows
the optimal risk-neutral path, red shows the risk-averse path.

5.3 experiments 41

5.3.3 Network Architecture

During our experiments we used a simple Multi-Layered Perceptron with 64 hidden
units for a baseline experiment and later the original DQN architecture with a visual
representation. In our baseline experiments, the state was represented with x- y-
position and velocity. After tuning training parameters, we switched to a visual
representation of the state including the preprocessing tricks used in Mnih et al. [40]
which we describe next.

Firstly, the input images are scaled to 84× 84 pixels and converted to greyscale
to ease memory requirements. In many visual environments, a single image cannot
capture the full state information - for example detecting the velocity of different
objects necessitates tracking the objects in time. This problem is solved by concate-
nating 4 subsequent images which are then used as a single state representation. The
input for each state is then of size 84× 84× 4.
The neural network used in DQN inputs the state representation and outputs a

value for each discrete action. The first hidden layer convolves 32 filters of 8 × 8
with stride 4 with the input image and applies a rectifier nonlinearity activation
function [30]. The second hidden layer convolves 64 filters of 4× 4 with stride 2,
again followed by a rectifier nonlinearity. This is followed by a third convolutional
layer that convolves 64 filters of 3× 3 with stride 1 followed by a rectifier. The final
hidden layer is fully-connected and consists of 512 rectifier units. The output layer
is a fully-connected linear layer with a single output for each valid action.

The architecture used in our experiments differs slightly from the original one used
in DQN. In our case the output is not a single value but instead a vector of values for
each action, representing CVaRy or VaRy for the different confidence levels y. This
issue is reconciled by having the output of shape |A| ×N where N is the number of
atoms we want to use and |A| is the action space size.

Another important difference is that we must work with two outputs - one for C,
one for V . We have experimented with two separate networks (one for each value)
and also with a single network differing only in the last layer. This approach may
be advantageous, since we can imagine that the information required for outputting
correct V or C is similar. Furthermore, having a single network instead of two eases
the computation requirements.

We tested both approaches and since we didn’t find significant performance differ-
ences, we settled on the faster version with shared weights. We also used 256 units
instead of 512 to ease the computation requirements and used Adam [31] as the
optimization algorithm.
The implementation was done in Python and the neural networks were built using

Tensorflow [1] as the framework of choice for gradient descent. The code was based
on OpenAi baselines [24], an open-source DQN implementation.

5.3.4 Parameter Tuning

During our experiments, we tested mostly with α = 1 so as to find reasonable
policies quickly. We noticed that the optimal policy with respect to expected value
was found fast and other policies were quickly abandoned due to the character of ε-

5.3 experiments 42

greedy exploration. Unlike standard Reinforcement Learning, the CVaR optimization
approach requires to find not one but in fact a continuous spectrum of policies - one
for each possible α. This fact, together with the exploration-exploitation dilemma,
contributes to the difficulty of learning the correct policies.
After some experimentation, we settled on the following points:

• The training benefits from a higher value of ε than DQN. While in DQN the
final ε used during vast majority of the algorithm is 0.1, we settled on 0.3 as
a reasonable value with the ability to explore faster, while making the learned
trajectories exploitable.

• Training with a single policy is insufficient in larger environments. Instead of
maximizing CVaR for α = 1 as in our CVaR Q-learning experiments, we change
the value α randomly for each episode (uniformly over (0, 1]).

• The random initialization used in deep learning has a detrimental effect on the
initial distribution estimates, due to the way how the target is constructed and
this sometimes leads to the introduction of extreme values during the initial
training. We have found that clipping the gradient norm helps to mitigate these
problems and overall helps with the stability of learning.

See table A.1 for a full list of hyperparameters and their values.

5.3.5 Results

With the tweaked parameters, both versions (baseline and visual) were able to con-
verge and learned both the optimal expected value policy and the risk-sensitive policy.
See Figure 5.3 on the next page for an overview of the final value function. See Video
1 and 2 on the attached CD for sample runs with α = 1 and α = 0.3 respectively.

Although we tested with the vanilla version of DQN, we expect that all the DQN
improvements such as experience replay [27], dueling [58], parameter noise [44] and
others (combining the improvements matters, see [27]) should have a positive effect
on the learning performance. Another practical improvement may be the introduction
of Huber loss, similarly to QR-DQN.

Figure 5.3: Next page: CVaR DQN outputs for different positions in the Ice Lake environ-
ment.
In the starting state (top left), the model chooses Right for α > 0.5 and Up for
lower values, which is in accordance with a risk-sensitive agent. Near the target
(bottom right), yCVaRy is close to linear - meaning the model is confident it will
recieve a positive reward most of the time.

6
CONCLUS ION

In this thesis, we tackled the problem of dynamic risk-averse reinforcement learning.
Specificaly we focused on optimizing the Conditional Value-at-Risk objective in a
time-dependent Markov Decision Process, using methods of Reinforcement Learning.

The work mainly builds on the CVaR Value Iteration algorithm [20], a dynamic
programming method for solving CVaR MDPs.
Our first original contribution is the proposal of a different computation procedure

for CVaR value iteration. The novel procedure reduces the computation time from
polynomial to linear. More specifically, our approach does not require solving a series
of Linear Programs and instead finds solutions to the internal optimization problems
in linear time by appealing to the underlying distributions of the CVaR function. We
formally proved the equivalence of our solution for a subset of probability distribu-
tions.
Next we proposed a new sampling algorithm we call CVaR Q-learning, that builds

on our previous results. Since the algorithm is sample-based, it does not require per-
fect knowledge of the environment. In addition, we proposed a new policy improve-
ment algorithm for distributional reinforcement learning, proved its correctness and
later used it as a heuristic for extracting the optimal policy from CVaR Q-learning.
We empirically verified the practicality of the approach and our agent is able to learn
multiple risk-sensitive policies all at once.
To show the scalability of the new algorithm, we extended CVaR Q-learning to

its approximate variant by formulating the Deep CVaR loss function and used it in
a deep learning context. The new Deep CVaR Q-learning algorithm is able to learn
different risk-sensitive policies from raw pixels.

We believe that the CVaR objective is a practical framework for computing control
policies that are robust with respect to both stochasticity and model perturbations.
Collectively, our work enhances the current state-of-the-art methods for CVaR MDPs
and improves both practicality and scalability of the available approaches.

future work

Our contributions leave several pathways open for future work. Firstly, our proof of
the improved CVaR Value Iteration works only for a subset of probability distribu-
tions and it shall be at least theoretically beneficial to prove the same for general
distribution. The result may also be necessary for the convergence proof of CVaR
Q-learning. Another missing piece required for proving the asymptotic convergence
of CVaR Q-learning is the convergence of recursive CVaR estimation. Currently the

conclusion 45

convergence has been proven only for continuous distributions and more general
proof is required to show the CVaR Q-learning convergence.
In Chapter 4, we highlighted a way of extracting the current policy from converged

CVaR Q-learning values. While the method is consistent in the limit, for practical
purposes it serves only as a heuristic. It remains to be seen if there are better, perhaps
exact ways of extracting the optimal policy.
The work of Bäuerle and Ott [8] shares a connection with CVaR Value Iteration

and may be of practical use for CVaR MDPs. The relationship between CVaR Value
Iteration and Bauerle’s work is very similar to the c51 algorithm [10] and QR-DQN
[23]. Bauerle’s work is also a certain ’transposition’ of CVaR Value Iteration and a
comparison between the two may be beneficial. Of particular interest is the ease of
extracting the optimal policy in a sampling version of the algorithm.
Lastly, our experimental work focused mostly on toy problems that demonstrated

the basic functionality of the proposed algorithms. Since we believe our methods are
practical beyond these toy settings, we would like to see the techniques applied on
relevant problems from the financial sector and in the future on practical robotics,
and other risk-sensitive applications.

A
APPENDIX

min
ξ,Ix′

1
y

∑
x′

p(x′|x, a)Ix′

s.t. 0 ≤ ξ ≤ 1
y

Ix′ ≥ yiC(x, yi) +
yi+1C(x, yi+1)− yiC(x, yi)

yi+1 − yi
(yξ(x′)− yi) ∀i, ∀x′∑

x′

p(x′|x, a)ξ(x′) = 1 ∀x′

(A.1)

Table A.1: CVaR DQN training parameters

Hyperparameter Value Description
minibatch size 32 Number of samples over which each SGD

update is computed.
replay memory size 300000 SGD updates are sampled from this num-

ber of recent frames.
target network update frequency 5000 The frequency Ntarget with which the tar-

get network C ′ is updated.
update frequency 4 We perform single gradient step each 4

frames.
learning rate 0.0001 We use Adam with β1 = 0.9,β2 =

0.999, ε =1e-8.
initial exploration 1. Initial value of ε in ε-greedy.
final exploration 0.3 Initial value of ε in ε-greedy.
final exploration frame 1000000 ε is linearly annealed from initial to final

value over this number of frames.
training length 10000000 Train over this many environment steps.

2m for the baseline.
training starts 10000 First update is performed after what num-

ber of steps.
number of atoms 100 Number of uniformly spaced atoms to es-

timate quantiles.
gradient norm clipping 10 We clip the gradient if it’s norm exceeds

this value.

B
CD CONTENTS

• /code

Contains all the code necessary for running the learning algorithms, for usage
see README.md

• /software

Contains the necessary python libraries.

• /tex

Contains the thesis (thesis.pdf) and the TEXsource files

• /videos

1. cvar_dqn_1.ogv

2. cvar_dqn_03.ogv

BIBL IOGRAPHY

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
“TensorFlow: A System for Large-Scale Machine Learning.” In: OSDI. Vol. 16.
2016, pp. 265–283.

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schul-
man, and Dan Mané. “Concrete problems in AI safety.” In: arXiv preprint
arXiv:1606.06565 (2016).

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein gan.” In:
arXiv preprint arXiv:1701.07875 (2017).

[4] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. “Coher-
ent measures of risk.” In: Mathematical finance 9.3 (1999), pp. 203–228.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine
translation by jointly learning to align and translate.” In: arXiv preprint arXiv:1409.0473
(2014).

[6] Leemon Baird. “Residual algorithms: Reinforcement learning with function
approximation.” In:Machine Learning Proceedings 1995. Elsevier, 1995, pp. 30–
37.

[7] Olivier Bardou, Noufel Frikha, and Gilles Pages. “Recursive computation of
value-at-risk and conditional value-at-risk using MC and QMC.” In: Monte
Carlo and quasi-Monte Carlo methods 2008. Springer, 2009, pp. 193–208.

[8] Nicole Bäuerle and Jonathan Ott. “Markov decision processes with average-
value-at-risk criteria.” In: Mathematical Methods of Operations Research 74.3
(2011), pp. 361–379.

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. “The Arcade Learn-
ing Environment: An Evaluation Platform for General Agents.” In: Journal of
Artificial Intelligence Research 47 (2013), pp. 253–279.

[10] Marc G Bellemare, Will Dabney, and Rémi Munos. “A distributional perspec-
tive on reinforcement learning.” In: arXiv preprint arXiv:1707.06887 (2017).

[11] Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lak-
shminarayanan, Stephan Hoyer, and Rémi Munos. “The cramer distance as a
solution to biased wasserstein gradients.” In: arXiv preprint arXiv:1705.10743
(2017).

[12] Richard Bellman. “A Markovian decision process.” In: Journal of Mathematics
and Mechanics (1957), pp. 679–684.

[13] Carole Bernard and Steven Vanduffel. “Quantile of a mixture with application
to model risk assessment.” In: Dependence Modeling 3.1 (2015).

bibliography 49

[14] Dimitri P Bertsekas and John N Tsitsiklis. “Neuro-dynamic programming: an
overview.” In: Decision and Control, 1995., Proceedings of the 34th IEEE Con-
ference on. Vol. 1. IEEE. 1995, pp. 560–564.

[15] Peter J Bickel and David A Freedman. “Some asymptotic theory for the boot-
strap.” In: The Annals of Statistics (1981), pp. 1196–1217.

[16] Kang Boda and Jerzy A Filar. “Time consistent dynamic risk measures.” In:
Mathematical Methods of Operations Research 63.1 (2006), pp. 169–186.

[17] Vivek Borkar and Rahul Jain. “Risk-constrained Markov decision processes.”
In: Decision and Control (CDC), 2010 49th IEEE Conference on. IEEE. 2010,
pp. 2664–2669.

[18] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

[19] Yinlam Chow and Mohammad Ghavamzadeh. “Algorithms for CVaR optimiza-
tion in MDPs.” In: Advances in neural information processing systems. 2014,
pp. 3509–3517.

[20] Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. “Risk-sensitive
and robust decision-making: a CVaR optimization approach.” In: Advances in
Neural Information Processing Systems. 2015, pp. 1522–1530.

[21] Basel Committee et al. “Fundamental review of the trading book: A revised
market risk framework.” In: Consultative Document, October (2013).

[22] Stefano Paulo Coraluppi. “Optimal control of Markov decision processes for
performance and robustness.” In: (1998).

[23] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. “Distribu-
tional Reinforcement Learning with Quantile Regression.” In: arXiv preprint
arXiv:1710.10044 (2017).

[24] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Ope-
nAI Baselines. https://github.com/openai/baselines. 2017.

[25] Javier Garcıa and Fernando Fernández. “A comprehensive survey on safe re-
inforcement learning.” In: Journal of Machine Learning Research 16.1 (2015),
pp. 1437–1480.

[26] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning. Vol. 1. MIT press Cambridge, 2016.

[27] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Os-
trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David
Silver. “Rainbow: Combining Improvements in Deep Reinforcement Learning.”
In: arXiv preprint arXiv:1710.02298 (2017).

[28] Ronald A Howard and James E Matheson. “Risk-sensitive Markov decision
processes.” In: Management science 18.7 (1972), pp. 356–369.

[29] Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. “Convergence of
stochastic iterative dynamic programming algorithms.” In: Advances in neural
information processing systems. 1994, pp. 703–710.

https://github.com/openai/baselines

bibliography 50

[30] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. “What is the best multi-
stage architecture for object recognition?” In: Computer Vision, 2009 IEEE
12th International Conference on. IEEE. 2009, pp. 2146–2153.

[31] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” In: arXiv preprint arXiv:1412.6980 (2014).

[32] Roger Koenker and Kevin F Hallock. “Quantile regression.” In: Journal of
economic perspectives 15.4 (2001), pp. 143–156.

[33] Vijay R Konda and John N Tsitsiklis. “Actor-critic algorithms.” In: Advances
in neural information processing systems. 2000, pp. 1008–1014.

[34] Erwin Kreyszig. Introductory functional analysis with applications. Vol. 1. wiley
New York, 1989.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks.” In: Advances in neural infor-
mation processing systems. 2012, pp. 1097–1105.

[36] Solomon Kullback. Information theory and statistics. Courier Corporation,
1997.

[37] Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt,
Andrew Lefrancq, Laurent Orseau, and Shane Legg. “AI Safety Gridworlds.”
In: arXiv preprint arXiv:1711.09883 (2017).

[38] Anirudha Majumdar and Marco Pavone. “How Should a Robot Assess Risk?
Towards an Axiomatic Theory of Risk in Robotics.” In: arXiv preprint arXiv:1710.11040
(2017).

[39] Christopher W Miller and Insoon Yang. “Optimal control of conditional value-
at-risk in continuous time.” In: SIAM Journal on Control and Optimization
55.2 (2017), pp. 856–884.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. “Human-level control through deep reinforcement learn-
ing.” In: Nature 518.7540 (2015), p. 529.

[41] Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya,
and Toshiyuki Tanaka. “Nonparametric return distribution approximation for
reinforcement learning.” In: Proceedings of the 27th International Conference
on Machine Learning (ICML-10). 2010, pp. 799–806.

[42] Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya,
and Toshiyuki Tanaka. “Parametric return density estimation for reinforcement
learning.” In: arXiv preprint arXiv:1203.3497 (2012).

[43] Georg Ch Pflug and Alois Pichler. “Time-consistent decisions and temporal
decomposition of coherent risk functionals.” In: Mathematics of Operations
Research 41.2 (2016), pp. 682–699.

[44] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard
Y Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz.
“Parameter space noise for exploration.” In: arXiv preprint arXiv:1706.01905
(2017).

bibliography 51

[45] LA Prashanth. “Policy gradients for CVaR-constrained MDPs.” In: Interna-
tional Conference on Algorithmic Learning Theory. Springer. 2014, pp. 155–
169.

[46] Herbert Robbins and Sutton Monro. “A stochastic approximation method.” In:
The annals of mathematical statistics (1951), pp. 400–407.

[47] R Tyrrell Rockafellar and Stanislav Uryasev. “Optimization of conditional
value-at-risk.” In: Journal of risk 2 (2000), pp. 21–42.

[48] R Tyrrell Rockafellar and Stanislav Uryasev. “Conditional value-at-risk for gen-
eral loss distributions.” In: Journal of banking & finance 26.7 (2002), pp. 1443–
1471.

[49] Sebastian Ruder. “An overview of gradient descent optimization algorithms.”
In: arXiv preprint arXiv:1609.04747 (2016).

[50] Yun Shen, Michael J Tobia, Tobias Sommer, and Klaus Obermayer. “Risk-
sensitive reinforcement learning.” In: Neural computation 26.7 (2014), pp. 1298–
1328.

[51] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. “Mastering the game of go without human knowledge.” In: Nature
550.7676 (2017), p. 354.

[52] Matthew J Sobel. “The variance of discounted Markov decision processes.” In:
Journal of Applied Probability 19.4 (1982), pp. 794–802.

[53] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. Vol. 1. 1. MIT press Cambridge, 1998.

[54] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
“Policy gradient methods for reinforcement learning with function approxima-
tion.” In: Advances in neural information processing systems. 2000, pp. 1057–
1063.

[55] Aviv Tamar, Yonatan Glassner, and Shie Mannor. “Optimizing the CVaR via
Sampling.” In: AAAI. 2015, pp. 2993–2999.

[56] Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. “Se-
quential decision making with coherent risk.” In: IEEE Transactions on Auto-
matic Control 62.7 (2017), pp. 3323–3338.

[57] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude.” In: COURSERA: Neural
networks for machine learning 4.2 (2012), pp. 26–31.

[58] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot,
and Nando De Freitas. “Dueling network architectures for deep reinforcement
learning.” In: arXiv preprint arXiv:1511.06581 (2015).

[59] Christopher JCHWatkins and Peter Dayan. “Q-learning.” In:Machine learning
8.3-4 (1992), pp. 279–292.

[60] Evert Wipplinger. “Philippe Jorion: Value at Risk-The New Benchmark for
Managing Financial Risk.” In: Financial Markets and Portfolio Management
21.3 (2007), p. 397.

Silvestr Stanko: Risk-Averse Distributional Reinforcement Learning, a CVaR Opti-
mization Approach, © May, 2018

	Declaration
	Acknowledgments
	Abstract
	Abstrakt
	Contents
	List of Figures
	List of Tables
	Listings

	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline and Original Contributions

	2 Preliminaries
	2.1 Reinforcement Learning
	2.1.1 Markov Decision Processes
	2.1.2 Return
	2.1.3 Bellman equations
	2.1.4 Contraction

	2.2 Distributional Reinforcement Learning
	2.2.1 Distributional Bellman Operators
	2.2.2 The Wasserstein Metric

	2.3 Risk-Sensitivity
	2.3.1 Value-at-Risk
	2.3.2 Conditional Value-at-Risk

	2.4 Problem Formulation
	2.4.1 Time-consistency
	2.4.2 Robustness

	2.5 Literature Survey

	3 Value Iteration with CVaR
	3.1 Value Iteration
	3.2 CVaR Value Iteration
	3.2.1 Bellman Equation for CVaR
	3.2.2 Value Iteration with Linear Interpolation
	3.2.3 Optimal policy

	3.3 Efficient computation using quantile representation
	3.3.1 CVaR Computation via Quantile Representation
	3.3.2 -computation

	3.4 Experiments

	4 Q-learning with CVaR
	4.1 Q-learning
	4.2 CVaR estimation
	4.3 CVaR Q-learning
	4.3.1 Temporal Difference update
	4.3.2 Note on convergence

	4.4 Optimal Policy
	4.4.1 VaR-based Policy Improvement
	4.4.2 CVaR Q-learning extension

	4.5 Experiments

	5 Deep Q-learning with CVaR
	5.1 Deep Q-learning
	5.1.1 Deep Learning
	5.1.2 DQN
	5.1.3 Distributional Reinforcement Learning with Quantile Regression

	5.2 Deep CVaR Q-learning
	5.3 Experiments
	5.3.1 Atari
	5.3.2 Ice Lake
	5.3.3 Network Architecture
	5.3.4 Parameter Tuning
	5.3.5 Results

	6 Conclusion
	A Appendix
	B CD contents
	 Bibliography

