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Abstrakt / Abstract

Tato práce se zabývá problémem
representace Stackelbergových strategii
v kompaktně representovaných sekvenč-
ních hrách pomocí strategií s pamětí, a
hledáním takových strategií.

Dokazujeme že pro hry, které jsou re-
prezentované orientovaným acyklickým
grafem bez náhodných stavů, stejně
jako pro stochastické hry na grafech
bez náhodných stavů, postačuje line-
ární množství pamětových stavů. Pro
případ orientovaných acyklických grafů
předkládáme polynomiální algoritmus
pro hledání Stackelbergových strategií s
pamětí.

Pro hry na orientovaném acyklickém
grafu s náhodnými stavy existuje kva-
dratická mez na potřebné paměťové
stavy, avšak nalezení takové strategie
je NP-těžké. Prezentujeme aditivní
aproximační algoritmus pro tuto třídu
her a experimentálně jej testujeme na
náhodně generovaných hrách.

Klíčová slova: teorie her, sekvenční
hry, Stackelbergova rovnováha, strategie
s pamětí

Překlad titulu: Výpočet Stackelbergo-
vých strategií s pamětí v sekvenčních
hrách

In this thesis we consider the prob-
lem of representing Stackelberg equi-
libria (sometimes called leader-follower
equilibria) in compactly represented
sequental games as strategies with
memory, and the problem of finding
such equilibria.

We show that in games represented by
a directed acyclic graph without chance
nodes and in stochastic games without
chance nodes, linear number of memory
states suffice. We provide polynomial
time algorithm for the DAG case.

In games represented by a DAG with
chance nodes, we give a quadratic bound
on used memory states. We show that
the problem of finding such strategies is
NP-hard. We provide an additive aprox-
imation algorithm for such games, and
experimentally evaluate this algorithm
on randomly generated games.

Keywords: game theory, sequential
games, Stackelberg equilibrium, strate-
gies with memory
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Chapter 1
Introduction

Imagine you are walking on a sidewalk, looking to the ground. When you raise your
eyes, you chatch the eysight of a stranger coming towards you. Both of you know that
if you continue walking like you are, you will clash. Both of you decide which way to
sidestep. Both of you sidestep in the same direction. You try to step aside once again,
and once again both of you sidestep in the same direction. After many more sidesteps,
and a somewhat awkward smile, you manage to dodge each other. Such situations, and
many, many more, are studied in the field of game theory.

The field of game theory studies situations in which multiple actors act to maximize
their own profit. While the term game theory originated from considering game in the
everyday sense of the word, as chess or rock-paper-scissors, it encompasses much richer
kinds of situations. The players of a game can be two companies selling shoes, the ticket
inspectors and passangers who do not want to pay, or security officers at the airport
and smugglers of rare species of birds.

Many different formalizations of such situations are used. Ever since the establish-
ment of the field, a distiction is made between normal-form games, in which all players
act simultaneously, and extensive-form games, in which the players take turns. Games
may include uncertainty, either in outcomes of some actions, in which case a special
player often called nature randomizes over outcomes, or in information about the state
of the game, in which case the game is said to be of imperfect information. A classic
example of a game with imperfect information and uncertainty is the game of poker
– no player knows the hand of other players, and the cards are dealt from the deck
randomly.

When considering solutions of these formalizations, many different concept arise and
are used. The traditional solution is a Nash equilibrium, which is a strategy in which no
player wants to single-handedly play another strategy. Another solution is a Stackelberg
equilibrium, in which case there is a special player called leader who has the ability to
decide beforehand how he wants to play. When the Stackelberg equilibrium is used,
other players must believe that the leader will actually follow his commitment. In
practice, this can be because the leader is a big company with a monopoly (which
was the original motivation for this solution concept), or perhaps because the leader
is a security protocol of a state, which has to be decided beforehand. In this thesis,
Stackelberg equilibria are considered.

While game theory began as a theoretical subject, with the invention of computers
the problem of computing solutions arose. In order to be computed effectively, one has
to input a description of the problem which is compact enough. While there is already
an exponential step between normal-form games and extensive-form games, even the
extensive-form games are in practice too huge to be computed. For example, a variant
of poker 2 player limit Texas Hold’em has 1017 states. Therefore, there is a need for
event more compact representations. One way to reduce the size of extensive-form
games is to consider directed acyclic graphs (DAGs) instead of trees. As an example,
consider a game of chess. In the traditional extensive-form game description, there is
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one state for every possible way a certain configuration of the board can be reached.
In the case of DAGs, there can be just one game state for every configuration of the
board.

However, it may happen that by considering DAGs instead of game trees, we lose the
ability to efficiently compute a solution if we require just one strategy for each game
state, or that this solution is worse than that of the game on a tree. To overcome this
hurdle, a compromise is used in the form of strategies with memory. In such strategies,
the players are allowed to remember some information about the past progress of the
game, but ideally not the complete history as it is in extensive-form games. In this
thesis, we show that there are bounds on the size of the memory needed to represent
optimal strategies, and that for some games it can be efficiently found.

1.1 Related work

The solution concept of Stackelberg equilibria was first introduced in [14], when rea-
soning about an economic problem of duopoly. The existence of Stackelberg equilibria
in mixed strategies was studied by von Stengel and Zamir [15], who also showed that
in a two-player normal-form game, commiting to a strategy can never hurt a player
when compared to a Nash equilibrium. The problem of computing Nash equilibria
was first considered by Conitzer and Sandholm [2]. They show that for a normal-form
game, a Stackelberg equilbrium in pure strategies can be found in polynomial time for
any number of players. They provide a polynomial algorithm for computing Stack-
elberg equilibria in mixed strategies for two players, but show that for three players
the problem of finding such an equilibrium is NP-hard. The same authors considered
Stackelberg strategies in extensive-form games [8]. They show that almost all problems
of finding Stackelberg equilibria in extensive-form games are NP-hard, with some no-
table exceptions. They show that the problem is polynomial for the cases of two-player
games without chance nodes on a tree when considering both mixed and pure strate-
gies, and for the case of a game on a DAG without chance nodes when considering
pure strategies. Later, the same authors focused on commitement in stochastic games
[9]. Bošanský et al [1] considered commitment to correlated strategies, and provided
an approximation algorithms for two player games on a tree with chance nodes.

Another line of work is on the subject of stochastic games. Notably, Gupta et al.[4]
considered Stackelberg equilibria with memory in discounted sum games. Discounted
sum games are played on directed graphs without sinks, with utilities assigned to edges,
and each turn are discounted by some discount factor λ. The players try to maximize
discounted sum of their utilities. The authors show that in such games, sometimes
an infinite memory is needed to represent pure-strategy Stackelberg equilibria. Later,
Gupta [3] considered Stackelberg equilibria in mean payoff games. They are played
on the same structure as discounted sum games, but the goal is different - the players
try to reach average utility. As for the real-world applications of not only Stackelberg
equilibria, Tambe [13] provides an overview of applications of game theory to the domain
of security.

1.2 Outline of this thesis.
In this thesis, we address the problem of compact representation of Stackelberg equilib-
ria on compactly represented games. In the second chapter, we provide the necessary
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theoretical background to game theory. We introduce compact game representations –
games represented by directed acyclic graphs, or even graphs with cycles.

In the third chapter, we present our main results. For games without chance nodes
on a directed acyclic graph, we show that for every Stackelberg equilibrium there is a
strategy with memory which uses no more than |S2| + |Z| + 1 states. We present an
algorithm that finds this strategy in O(|S2|2 |S|3). Then, we examine stochastic games
without chance nodes on general graphs. We show that the memory bound |S2|+|Z|+1
still holds, and show that in fact every Stackelberg equilibrium is finite. Finally, we
examine games on directed acyclic graphs with chance nodes. We show that the memory
bound becomes quadratic, namely |S1| |S2|+ 1. We show that finding optimal strategy
with memory is NP-hard. Finally, we present an approximation algorithm which find
a strategy for which the expected utility is withing ε of the optimal one.

In the last chapter, we experimentally evaluate our implementetion of ε aproximation
algorithm for games on directed acyclic graphs on randomly generated games. We
confirm that the runtime of the algorithm indeed behaves according to our theoretical
guarantees. We examine how many memory states are actually needed, and find that
the bound on memory states is rather loose in practice.

3



Chapter 2
Game Theory

Game Theory deals with rational decisions when multiple decision makers are involved.
Despite it has a somewhat misleading name, it does not only concern games in the
everyday use of that word, but a much broader class of problems which concern multiple
actors. These actors can either cooperate to achieve a good collective outcome, which is
the subject of cooperative game theory, or to selfishly maximize their own profit, which
is the domain of competitive game theory. In this chapter, we introduce the concepts
used in this field.

2.1 Normal-form games
Normal form games are the simplest class of games studied. They represent one-shot
games, where all players make a single decision how to act, and are rewarded according
to the combination of their actions. Although this thesis deals with games in extensive
form, which will be introduced later, many of the concepts used to describe and solve
normal-form games translate to games in extensive form, and are much more easily
explained on games in normal form.
Definition 2.1. [12] A normal-form game is a tuple (N,A, u), where

. N = {1, . . . n} is a finite set of players,. A = A1 × . . .×An, where Ai is a finite set of actions available to player i. A vector
a = (a1, . . . , an) ∈ A is called an action profile and. u = (u1, . . . , un), where ui : A→ R is a real-valued utility function of player i.

Player 2

Rock Paper Scissors

Rock 0, 0 −1, 1 1,−1

Player 1 Paper 1,−1 0, 0 −1, 1

Scissors −1, 1 1,−1 0, 0

1

Figure 2.1. A normal-form representation of rock-paper-scissors. The labels of rows and
columns represent actions of both players, the tuples in the cells of matrix represent utilities

of both players.

In Figure 2.1 there is an example of a normal form game, a game of rock-paper-
scissors, represented as a matrix. Rows represent actions of player 1, columns actions
of player 2. The pairs of numbers in the cells represent utilities of both players. If a
player wins, he is given utility 1, if he loses, he is given −1. If the game results in a
draw, both players are awarded 0. A simpler game is shown in figure 2.2. In this game,
two players are walking on a sidewalk towards each other, and try to avoid collision.
If they both coose the same direction (they are facing opposite ways) to sidestep, they

4
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Player 2

Left Right

Player 1
Left 1, 1 0, 0

Right 0, 0 1, 1

1

Figure 2.2. A coordination game. Two people walk towards each other, trying to avoid
collision. If they both choose the same direction to sidestep, they pass each other suc-
cesfully, receiving utility 1. Otherwise, they bump into each other, receiving lower utility.
This game has two pure-strategy Nash equilibria, and illustrates the famous equilibrium

selection problem.

succesfully dodge each other, receiving utility 1. Otherwise, they bump into each other,
receiving utility 0.

These two examples lead us to the way normal form games are played. In the simplest
form, both players choose one action to play. Such strategies are called pure strategies,
and a collection of pure strategies of all players is called a pure strategy profile. Pure
strategy profiles, however, do not provide a strong-enough solution concept. Consider
a game of rock-paper-scissors. If your opponent knows what action you are planning to
do, he can always choose a winning moves. Therefore, for every pure strategy profile
we can find a player that can change his action to obtain better results. In formal
terms, such a strategy profile is not stable. Therefore, we need to indtroduce stronger
strategies - the players are allowed to choose an action according to some probability
distribution.
Definition 2.2. [12] Let (N,A, u) be a normal-form game, and for any set X let ∆(X)
be the set of all probability distributions over X. Then the set of mixed strategies of
player i is Πi = ∆(Ai), and a member σ of the cartesian product of strategy sets for
each player Π1 × . . .×Πn is a mixed strategy profile.

To make reasoning about reasoning about strategy profiles easier, we can also define
a strategy profile of all players except i as σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn), and write
σ = (σi, σ−i). This definition of strategies overcomes the problems with pure strategies.
Note that pure strategy profiles now became a special case of mixed strategy profile –
each player can choose to play a certain strategy with probability 1. To fully define the
concept of mixed strategies, we have to define the utility of playing a certain strategy
profile. Without surprise, we define it as the expected value of the utility obtained by
playing the strategy profile.
Definition 2.3. [12] In a normal form game (N,A, u), the expected utility ui of player i
in a strategy profile σ = (σ1, . . . , σn) is defined as

ui(s) =
∑
a∈A

ui(a)
n∏
j=1

σj(aj).

Using this definition of utility, we can now focus our attention to solving normal
form games. To do so, we formalize the concept we discussed when reasoning about
pure strategies – the motivation of individual players to switch a strategy from a pre-
determined one.
Definition 2.4. [12] A best response of player i to the strategy profile σi is a mixed
strategy σ∗i ∈ Πi such that ui(σ∗i , σ−i) ≥ ui(σi, σ−i) for all strategies σi ∈ Πi. The set
of all best responses to σ−i is denoted as BR(σ−i).

In plain terms, a strategy si is a best response to s−i if player i cannot obtain better
utility by playing another action. Consider the coordination game in Figure 2.2, and

5
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a strategy where player 1 plays Left and player 2 plays Right. Then the strategies are
not best responses to each other - player 1 can obtain a better utility by playing Right,
and player 2 can obtain a better utility by playing Left. Using the definition of best
response we can now define the most famous solution concept in game theory, the Nash
equilibrium.
Definition 2.5. [12] A strategy profile s is a Nash equilibrium if for all agents i for all
players i it holds that si is a best response to s−i.

As an example, consider the coordination game in Figure 2.2. We can see two Nash
equilibria, one when both players play Right, and one when both players play Left.
On the other hand, the game of rock-paper-scissors in Figure 2.1 does not have a pure
strategy Nash equilibrium – each player can always best-respond by plaing the winning
move. The equilibrium in mixed strategies exists – both players can play each action
with probability 1

3 . This leads us to the question of existence of a Nash equilibrium,
which was famously answered by John Nash (hence the name of the equilibrium).
Theorem 2.1. [10] Every game with a finite number of players and action profile has at
least one Nash equilibrium.

As we saw on the example of the coordination game, a game may have multiple
Nash equilibria. This leads to an interesting problem. Imagine two opponents playing
the coordination game. Each one of them computes a Nash equilibrium (as they both
know game theory), but player 1 finds an equilibrium (Left, Left) and player 2 finds
(Right,Right). When playing according to these computed equilibria, they both receive
the utility 0. This is called an equilibrium selection problem, and is widely studied as
it is important when applications of game theory are considered (see for example [5]).

Another concept of solution adresses, among other things, this problem. Consider a
situation in which one player, called the leader, has the ability to anounce his strategy
beforehand, and the other players, called followers, play a Nash equilbrium with respect
to the leader’s strategy. This solution concept is called a Stackelberg equilibrium, as it
was first defined by von Stackelberg [14].
Definition 2.6. [3] A Strong Stackelberg equilibrium in a normal-form game (N,A, u) is
a strategy profile σ = (σ1, . . . , σn) such that

σ = argmax
σ′1∈Π1,σ′i∈BR(σ′−i)

u1(σ)

While it may seem that by the requirement to commit to the strategy before the
game is played and letting the other players exploit the knowledge hurts the leader,
the opposite is actually true. Indeed, the leader can always commit to playing a Nash
equilibrium. In the real world applications, one has to ensure that the leader can
actually credibly commit to playing a certain strategy. This happens for example if the
actors in the game are companies, one of which is much bigger (this was the original
motivation of the definition of Stackelberg equilibrium).

While equilibria provide good solutions when considering self-interested players, the
give the player no guarantee should his/her opponents choose to harm them. However,
there is another solution concept which provides a guaranteed minimal outcome.
Definition 2.7. [12] The maxmin strategy for player i is

argmax
σi∈Πi

min
σ−i∈Π−i

ui(σi, σ−i)

The maxmin value of player i is

µi = max
σi∈Πi

min
σ−i∈Π−i

ui(σi, σ−i)

6
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This definition assumes the worst - that the other players play to collectively harm
i, and then maximizes the outcome. As such, when playing his maxmin strategy the
player is always guaranteed at least his maxmin value (as deviation by another player
can ony increse his utility). We now turn our attention to sequential games.

2.2 Sequential games
Many of the problems solved by game theory have a sequential nature. Consider for
example a game of chess, in which both players take turns, moving one figure at a time.
While it is possible to represent such a game in normal form, it is not practical. One
would need one action for every possible sequence of moves from start of the game to
the end. To solve this, we turn to another model, where the games are represented as
decision trees, or (more-generally), graphs. Because this thesis deals with two-player
games only, we will state the definitions only for such games. When talking about
Stackelberg equilibria, we will call player 1 the leader and player 2 the follower.
Definition 2.8. A two-player sequential game is a tuple G = (N ,S,Z, ρ,A, u, T , σ0, s0)
where

. N = {1, 2} is a set of players,. S is a set of non-terminal states (also called nodes),. Z is a set of terminal states (also called leaves). ρ : S → N ∪ {0} is a function which defines which player plays in s, or whether
the node is a chance node (ρ(s) = 0); we denote Si = {s ∈ S|ρ(s) = i} the set of all
states in which player i plays,. A =

⋃
s∈S A(s) is the set of actions, where A(s) is the set of actions available in a

state s; we denote Ai the set of actions available to player i ∈ N ∪ {0},. u = (u1, u2) where ui : Z → R is the utility function of player i ∈ N ,. T : S×A → S∪Z is a transition function which determines what state follows when
player ρ(s) plays action a ∈ A(s) in state s ∈ S,. σ0 : S0×A0 → [0, 1] are the probabilities of actions in every node such that ρ(s) = 0,
such that

∑
a∈A0(s) σ0(s, a) = 1 and. s0 is the initial state.

Because we are interested in playing sequences of actions starting in s0, we assume
that in the graph (S, {(s1, T (s1, a)|a ∈ A(s)}) every state is reachable from s0. We will
call a history (or path) a sequence π = v0a0 . . . vk−1ak−1vk such that v0 = s0, for all
0 ≤ i ≤ k − 1 it holds that vi ∈ S, vk ∈ S ∪ Z and for all 0 ≤ i ≤ k − 1 it holds that
T (vi, ai) = ai+1. That is, a history is a valid path through the game. Additionaly we
let π[i] = v0a0 . . . vi be a prefix of π up to the node vi (note that the action ai is not
included), and π[i:j] = viai . . . vj a part of π between indexes i and j. Finally, let πa
be a history obtained by playing action a after π, that is πa = v0a0 . . . vkaT (vk, a).

The definition of a two-player sequential game is quite general, and engulfs several
classes of games studied in game theory. We will split the discussion into three sections,
depending on the type of graph induced by the transition function T . It can be a tree,
(in which case the game is called a game in extensive form), a directed acyclic graph
or a general graph (in which case the game is called a stochastic game).

2.2.1 Extensive-form games
Extensive form games are sequential games in which the graphG = (S, {(s1, T (s1, a)|a ∈ A(s)})

is a tree. An example is given in Figure 2.3. It is a modification of the coordination

7
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v1

v2 v3

(0, 0)(1, 1) (0, 0) (1, 1)

1

Figure 2.3. An example of a game in extensive form. It is an analogue of the coordination
game from Figure 2.2, with the modification that player 1 is allowed to move first.

game from Figure 2.2. Player one, whose states are depicted as circles, plays first,
deciding whether to move Left or Right. Then, player two, who controlls the square
nodes, moves, facing the same decision.

Because the transition fuction of extensive-form games defines a tree, for each state
there is a unique way it can be reached. Therefore, the strategy of a player in such a
game only needs to assign an action to each state the player controlls (as opposed to
assigning a strategy to every path from the root node, as we will do with games on
more complex graphs).
Definition 2.9. [12] Let G be an extensive-form game. A pure strategy σi of player i is
a member of the Cartesian product

∏
s∈Si
A(s).

Note that this definition of strategy requires us to choose an action for every node in
which the player plays, regardles of whether this node can be reached when following
this strategy. This property is actually useful - it allows us to create a normal-form
game by letting the actions of player i in the normal form games be all pure strategies
in the original extensive form game. For example, the extensive form game in Figure
2.3 corresponds to the normal-form coordination game in Figure 2.2. We now turn our
attention to randomized strategies. There are two options in which these strategies can
be formalized. One option is to assign probability to every pure strategy (as we did
with normal-form game). The second option is to assign a probability distribution to
each node of the tree. This motivates the two following definitions
Definition 2.10. [11] A mixed strategy µi of player i in an extensive-form game G is a
probability measure over the set of player i’s pure strategies. A strategy profile in mixed
strategies µ = (µ1, µ2) is a collection of strategies for both players.
Definition 2.11. [11] A behavioral strategy σi of player i is a collection (σi(s, ·))s∈Si of
independent probability measures, where σi(s, ·) is a probability measure over A(s),
with σi(s, a) being the probability of playing action a in s.

Once again, we call Πi the set of all behavioral strategies of player i. To make our
lives easier, we will drop the index i when speaking about behavioral strategies, as the
player whose turn it is is uniquely determined by the state, that is σ(s, a) = σρ(s)(s, a).
Because this thesis concerns only games with perfect information (that is games in which
both players always know the state of the game, for formal definition we encourage the
reader to see [12]), due to Kuhn [6] we know that the mixed and behavioral strategies
are in fact equivalent. Therefore, we will proceed with only behavioral strategies in
mind.

Because extensive form games are played on a tree, for each state n ∈ S ∪ Z there
is a unique history leading to it, that is there is a unique π = v0a0 . . . vk−1ak−1n. To
express the probability of reaching n when playing according to a strategy profile σ, we

8
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v1

v2 (0, 1)

(0, 2) (2, 0)

1

Figure 2.4. An example of an extensive form game to illustrate the properties of Stackelberg
equilibrium.

u2

u1

(2, 0)

(0, 2)(0, 1)

1

Figure 2.5. The visualisation of possible outcomes of the game in Figure 2.4 in the space
of utilities. The red dashed line signifies the maxmin value µ(v1) of the follower’s node
v1. It splits the space into two half spaces, where the half space to the left of this line is

unreachable at v1 - the follower can always play right.

can use this unique π and define p(n) =
∏k−1
i=0 σ(vi, ai). Using this, we can express the

expected utility of a strategy.
Definition 2.12. [11] An expected utility of a behavioral strategy profile σ for player i
is ui(σ) =

∏
z∈Z p(z)ui(z).

Using this definition, we can define the best response to a strategy.
Definition 2.13. [1] A strategy σi is a best response to the opponent’s strategy σ−i
if ui(σi, σ−i ≥ ui(σ′i, σ−i) for all σ′i ∈ Πi. Again, let BR(σ−i) be the set of all best
responses of player i to strategy σ−i.

Now, we can define the Nash and Stackelberg equilibria as with normal-form games.
Definition 2.14. [12] A strategy profile σ is a Nash equilibrium if for all agents i for all
players i it holds that σi ∈ BR(σ−i).
Definition 2.15. [1] A strategy profile σ in an extensive-form game G is a Strong
Stackelberg equilibrium if

σ = argmax
σ′1∈Π1,σ′2∈BR(σ′1)

u1(σ′1, σ′2).

When commiting to mixed strategies, it may happen that the follower’s best response
is not uniquely determined. In such case, we assume that he breaks such ties in the
leader’s favor.

As an example of a Stackelberg equilibrium, consider the game in figure 2.4. In
a Nash equilibrium, the leader, who plays in v2, maximizes his outcome by playing
right, receives utility 2 while giving the follower utility 0. Therefore, the follower plays
right, and the leader’s node is never reached, giving the leader utility 0. However, if
we consider a Stackelberg equilibrium, the leader can commit to playing left and right
with probability 1

2 . This secures both players utility 1. The follower, breaking ties in
the leader’s favor, plays left. The expected utilities for both players are now 1.

9
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v1

v2 (0, 5)

v3 v4

(0, 0) v5 (0, 0)

v6 v7

(4, 0)(3, 4) (2, 0) (1, 6)

1

Figure 2.6. An example of a game on a DAG. The leader plays in circular nodes, the
follower plays in square nodes.

In Stackelberg strategy profiles, it sometimes happens that the leader wants to com-
mit so that the follower does not reach a certain subtree. To do so, he can choose to
play a strategy which guarantees the follower his maxmin value, as it is the minimum
value the leader can force the follower to obtain. The maxmin value of the follower,
denoted µ, can be computed via an algorithm called bacwards induction. It is a dy-
namic programming pass from bottom to top. For leaves, the follower’s maxmin value
is simply µ(z) = u2(z). For leader’s node s, µ(s) is the minimum of µ(s′), where s′
is a child of s. For follower’s node s, µ(s) is maximum over the maxmin values of s’s
children. Finally, for a chance node s the maxmin value is the weighted average of all
children’s maxmin values.

Before moving on to more complex classes of games, let us know present a useful
visualisation of outcomes of two player games due to [8]. We can identify a leaf node
with utilities (u1, u2) with a point in a two dimensional space. A set of all mixtures over
two leaf nodes z1, z2 with utilities (u1

1, u
1
2) and (u2

1, u
2
2) is then a line segment connecting

these two points. To illustrate this concept, look to Figure 2.5. We can see that the
leader, who plays second, has the option of mixing between two leafs with utilities (2, 0)
and (0, 2), hence the line segment. The vertical line positioned at u2 = 1 signifies the
minimum utility the leader is willing to accept when playing Left. This visualisation
will become handy when computing Stackelberg equilibria of games without chance
nodes.

2.2.2 Extensive-form games on DAGs
We now turn our attention to extensive form games on directed acyclic graphs. For

an example game, look in Figure 2.6. As we can see, we no longer have the guarantee
of having a unique history for every node in the game. This poses problems with
definition of behavioral strategies. One option is to define a single strategy for every
node. However, the computation of a Stackelberg equilibrium then becomes NP-hard
[7]. A second option is to define a strategy for every history π that can arrise in the
game. This effectively transforms the DAG into a tree, with states being histories.
The equivalent tree form of our example game is in Figure 2.7. However, such trees
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v1

v2 (0, 5)

v3 v4

v5(0, 0)

v7v6

(1, 6)(2, 0)(3, 4)(4, 0)

v′5 (0, 0)

v′6 v′7

(4, 0) (3, 4) (2, 0) (1, 6)

1

Figure 2.7. A tree equivalent of the game in Figure 2.6.

u2

u1

(3, 0)

(2, 4)

(1, 0)

(0, 6)

1

u2

u1

(3, 0)

(2, 4)

(1, 0)

(0, 6)(0, 0) (0, 5)

1

v2 v5

Figure 2.8. A visualisation of achievable utilities in nodes v2 and v5 of the game in Figure
2.6. Vertical red line signifies the maxmin value of the follower in node v1.

can become exponentially large. There is, however, a middle ground – strategies with
memory. Before we get to them, let us define strategy profiles on paths. Let P be the
set of all valid paths in the game. Then
Definition 2.16. A behavioral strategy σi of player i is a collection (σi(π, ·))π∈P of
independent probability measures, where σi(π, ·) is a probability measure over A(s), s
is the last node of π and σi(s, a) is the probability of playing action a in s.

Again, because the player in π is uniquely determined by the last node of π, we drop
the index and write σ(π, a). The expected utility of such a strategy can be computed
analogously to the extensive-form case. For every path π = v0a0 . . . vk, we can define
it’s probability in a strategy profile as σ(π) = Πk−1

i=0 σ(π[i], ai). For each leaf z, let the
probability of reaching z when following σ be pσ(z). We can then define the expected
utility of σ as ui(σ) =

∑
z∈Z p

σ(z)ui(z). Also, let uσ(π) be the expected utility obtained
by fixing π and then continuing to play according to σ. That is, uσ(π) represents the
utility the players can expect to obtain after π has already happened. Lastly, let σ(π ↓)
be the strategy in the whole subgraph defined by π.

With this definition in place, the definiton of Stackelberg equilibrium is completely
identical to the case of games on trees. To see an example of such a Stackelberg
equilibrium, consider the game in Figure 2.6. To visualize the utilities more clearly,
in Figure 2.8 are the visualisations of achievable utilities of nodes v2 and v5. In the
equilibrium strategy, the leader wants to make the follower play left in v1, as he has a
better utility anywhere else. In v2, he gains the option to randomize between the leaves
with utilities (2, 4) and (0, 6), an option he did not have before. Therefore, when playing
left, he wants to commit so as to reach the leaf (2, 4). To do so, he commits to punish
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v1

v2(a, b)

(c, d)

1

Figure 2.9. An example of a stochastic game. The leader plays in circular nodes, the
follower plays in square nodes.

the leader if he chooses to play to v6, playing to leaf (1, 0). Similarly, when playing right
in v1, he commits to playing (3, 0) in v7. Thus, the follower’s strategy in v5 depends
on the leader’s decision in v2. The expected utility of this equilibrium is (1, 5). Note
that it is the intersection between a line representing mixture and a line representing
maxmin value. This property will later be used when computing Stackelberg equilibria.

We now turn our focus to strategies with memory. When playing according to a
strategy with memory, players do not make decisions according to whole histories, but
according to memory state. Every time an action is played in some node, the memory
state is allowed to change. Thus, this memory model is an outputless finite state
machine.
Definition 2.17. [3] A strategy with memory is a tuple (σ,M,M,m0), where

. σ = (σ1, σ2) are the strategies of players, such that σi : M × (S × A) → [0, 1] is a
probability distribution on every state s ∈ Si, such that σi(m; s, a) is the probability
of playing action a in state s while the memory state is m,. M is a set of memory states.M : M × (S × A) → M is the memory update function, where M(m; s, a) is the
memory state to which the memory changes if action a is played in state s when the
memory state is m and. m0 ∈M is the initial memory state.

The expected utility of such a strategy can be once again expressed as ui(σ) =∑
z∈Z p

σ(z)ui(z), where pσ(z) is the probability of reaching z if playing according to
sigma while changing the memory according to M. Consider the example game in
figure 2.6. The Stackelberg equilibrium we described before can be easilly represented
by a strategy with two memory states M = {m0,m1}. We can start in m0, and in
v2 set M(m0; v2, Left) = m0 and M(m0; v2, Right) = m1. All other transitions of
M just keep the same state. Doing so allows us to represent the strategy in v5 by
two memory states. In chapter Results, we find strategies with memory for which the
memory set M is bounded by the size of the game tree, thus providing exponentially
smaller representation of strategies.

2.2.3 Stochastic games

If the sequential game is played on a general graph with cycles, it is called a stochastic
game. In this thesis, we focus on stochastic games without chance nodes only. To see an
example of a stochastic game, refer to Figure 2.9. As before, the stochastic games can
have a tree form, although an infinite one, as in Figure 2.10. To avoid problems with
infinite cycles, we consider indefinite horizon games. In an indefinite horizon game,
there has to exist a number k (although not known beforehand) such that no history
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v1

v2(a, b)

(c, d) v′1

v′2(a, b)

(c, d)

1

Figure 2.10. A tree equivalent of the game in Figure 2.9. To the right of v′
2, the tree

continues to infinitely repeat itself.

π of length at least k is reached with probability greater than zero. This allows us to
keep formalism from games on DAGs.

2.3 Solving Stackelberg equilibria
In this section we turn our focus to known algorithms for finding Stackelberg equilibria.
First, we consider games on trees without chance nodes. For such games, Letchford
and Conitzer [8] provided a polynomial time algorithm. For games on trees with chance
nodes, Letchford proved that finding a solution is NP-hard [7]. However, there is an
approximation algorithm that can find an additive approximation for arbitrary ε [1].

2.3.1 Trees without chance nodes

Theorem 2.2. [8] In a two-player extensive-form game without chance nodes, the Stack-
elberg equilibrium can be found in O(|S2| |S1|2).

The algorithm consists of three dynamic programming passes. First, it will compute
the follower’s maxmin value for every node v using backwards induction. Second, it
will traverse the tree from bottom to top, computing the set Sn of possible mixtures
over leaf nodes reachable from n. It will do so by considering these mixtures as points
in the utility space (see 2.8). Third, there will be a top to bottom pass determinign the
optimal strategy σ.

Upward pass Because we are interested in finding the strategy that maximizes the
leaders utility, it is sufficient to find the upper envelope of Sn, and not the whole set. For
each node n, we will therefore construct two sets. A set S1

n will contain line segments
in the form of (p1, p2). It will contain line segments which form the upper envelope of
S, and some more segments for computational reasons. A second set, S2

n will contain
the ending points of some, but not all, segments in S1

n.
In a leaf node l, simply set S1

l = {(l, l)} and S2
l = {l}. In a node n in which

the leader plays, he has two options. He can either commit to a pure strategy, thus
being able to reach any point from any of his children. Or, he can play a mixed
strategy. Because we have a two player game, it is never optimal to mix between
more than two actions (as such strategies would be dominated). Therefore, for every
pair of children u, v of n, the leader can achieve points on all line segments which
have one end in S2

u and the other and in S2
v . This gives us S2

n =
⋃
v∈children(n) S

2
v and

S1
n = (

⋃
v∈children(n) S

1
n)∪{(p, p′)|p ∈ S2

v ; p′ ∈ S2
w; v, w ∈ children(n); v < w}. Note that

in order to avoid duplicates, arbitrary ordering of nodes is assumed.
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As for the follower’s nodes, it may happen that not all outcomes of followers node

n can be reached. For any action the follower will not accept any outcome in which
his utility would be less than the best minimum utility he can get if he plays another
action. Formally, let v be a child of n and let µ(v) be the maxmin value of v for the
follower. Note that we can get this value for free by taking the minimal follower’s
utility over nodes in S2

v , as S2
v always contains the leftmost point of segments in S1

v .
Let in(v) = maxw 6=v,w∈children(n) u2(µ(n)). This is the lowest utility that the follower
will accept, if he is to play to v (as he is always guaranteed to get at least in(v)
elsewhere). Therefore, we can construct the reachable line segments from S1

v by cutting
them vertically at in(v). We will do this in two steps. First, we will create sets Ŝ1

v of
cut line segments and sets Ŝ2

v of newly generated line endpoints. Second, we then find
which endpoints from Ŝ2

v we actually need to keep.
For each child v of n and each line segment (p, q) ∈ S1

v , if:

. u2(p) ≥ in(v) and u2(q) ≥ in(v), add (p, q) to Ŝ1
v ,. u2(p) < in(v) and u2(q) < in(v), throw the segment away,. u2(p) < in(v) and u2(q) ≥ in(v), cut (p, q) at in(v), that is find λ such that u2(λp+

(1− λ)q) = in(v) and add (λp+ (1− λ)q, q) to Ŝ1
v and λp+ (1− λ)q to Ŝ2

v ,. u2(p) ≥ in(v) and u2(q) < in(v), swap p and q and repeat the point above.

Now, let S1
n =

⋃
v∈children(n) Ŝ

1
v . As for the line endpoints, we know that the cuts were

done at in(v), which is defined as maximum of maxmin value over all other children
of n except v. This means, that for all but one (the maximizer) this value is the
same. Let us call this maximizing child mn. From all children of n except for mn,
we need to keep only one endpoint a - the one with the highest utility of the leader
(as mixtures with this endpoint will dominate mixtures from the endpoints bellow
it), that is a ∈ argmaxi∈⋃w 6=mn

Ŝ2
w
u2(i). The second point b will be the one in Ŝ2

mn

maximizing the leader’s utility, b ∈ argmaxi∈Ŝ2
mn
u2(i). Therefore, set S2

n = {a, b} ∪⋃
v∈children(n)

{
p ∈ S2

w|u2(p) ≥ iv(w)
}
.

In the root node r, we can simply obtain the value of the game as p∗ ∈
argmax i ∈ S2

ru1(i).
Downward pass During the downward pass, a procedure strategy(v, p′′) is called to

determine how to commit so that p′′ results in the subtree rooted by v. If v ∈ S1, we
calculate α ∈ [0, 1] and find (p, p′) such that p′′ = αp + (1 − α)p′, find children w,w′

of v such that p ∈ S2
w and p′ ∈ S2

w′ and commit to playing to w with probability α
and to w′ with probability 1 − α, and call strategy(w, p) and strategy(w′, p′). (Note
that if w = w′, we can play a pure stragy to w and make just one recursive call) In a
follower’s node, we find a descendant w such that there is a line (p, p′) ∈ S1

w for which
p′′ = αp+ (1− α)p′ for some α ∈ [0, 1]. Then, we call strategy(w, p′′) and for all other
children w′ of v call strategy(w′, µ(w′)), where µ(w′) is the leader’s maxmin value of
w′.

2.3.2 Trees with chance nodes

A second algorithm we will use in our thesis deals with approximating optimal strategies
in games with chance nodes, and is due to Bošanský et al [1]. This algorithm computes
for any ε a strategy profile that differs from the optimal one by at most ε. However,
it’s runtime depends polynomially on the inverse of ε.
Theorem 2.3. [1] There is an algorithm that takes as an input an extensive form game
on tree with chance nodes and leader’s utilities in the range [0, 1] and a parameter ε
and computes a behavioral strategy for the leader. This strategy achieves an expected
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utility that differs by at most ε from the utility of a Stackelberg equilibrium in behavioral
strategies. The algorithm runs in time O(S(HT /ε)3), where HT is the height of the tree.

The idea of the algorithm is to compute a table for every node, such that the indicies
of the table represent utilities of the leader and the entries in the table represent utilities
of the follower. To achieve the desired approximation factor, the utilities in the table
are scaled by (HT +1)/ε. We can call U the highest scaled leader’s utility. We can now
compute the table AT for every subtree T . The authors of the algorithm guarantee
following properties for the table:

. If AT [k] > −∞, the leader has a behavioral strategy for the game tree T that offers
the follower utility AT [k] while offering at least k to the leader,. no behavioral strategy of the leader can offer the follower strictly more than AT [k]
while securing at least k +HT for the leader and. the entries of AT are non-increasing, and AT [U + 1] = −∞.

The entries of the table are computed by following procedure.
If T is a leaf node, we can fill the table from definition as

Av[k] =
{
u2 if k ≤ u2,
−∞ otherwise.

If v is a leader’s node with children L and R played with probabilities p and 1− p, if
the leader obtains a guarantee i in the child L and j in child R he obtains a guarantee
pi+ (1− p)j, while the follower gets a utility of pAL[i] + (1− p)AL[j]. Therefore,

Av[k] = max
i,j,p
{pAL[i] + (1− p)AR[j]|pi+ (1− p)j ≥ k} .

This maximization can be done by looping over all i and j. For fixed i and j, the
maximization over p is a maximum over a linear function, and thus is attained in one
of the extremal feasible values.

If v is a chance node, the process is similar to the leader’s node, except the mixture
probability is fixed. This gives us

Av[k] = max
i,j
{pAL[i] + (1− p)AR[j]|pi+ (1− p)j ≥ k} .

And finally, if v is a follower’s node, for AT [k] he can either achieve AL[k], if the
leader commits to playing follower’s maxmin strategy in the right subtree, or AR[k], if
the leader commits to maxmin strategy in the left subtree. This gives us

Av[k] = max
{
AL[k] ↓µ(R), AR[k] ↓µ(L)

}
,

where
x ↓µ=

{
x if x ≥ µ,
−∞ otherwise.

At each node, the table can be filled in at most O(U3), as at the worst case there
are three nested loops in the case of the follower’s node and chance nodes. Because the
utilities were scaled by (HT + 1)/ε, this gives us the desired runtime.
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Chapter 3
Results

In this chapter we show our results. For games without chance nodes on a directed
acyclic graph, we show that for every Stackelberg equilibrium there is a strategy with
memory which uses no more than |S2|+ |Z|+ 1 states. We present an algorithm that
finds this strategy in O(|S2|2 |S|3). Then, we examine stochastic games without chance
nodes on general graphs. We show that the memory bound |S2|+ |Z|+1 still holds, and
show that in fact every Stackelberg equilibrium is finite. Finally, we examine games on
directed acyclic graphs with chance nodes. We show that the memory bound becomes
quadratic, namely |S1| |S2| + 1. We show that finding optimal strategy with memory
is NP-hard. Finally, we present an approximation algorithm which find a strategy for
which the expected utility is withing ε of the optimal one.

3.1 No chance, DAG
The first studied class of games are two player games represented by a directed acyclic
graph without chance nodes. Letchford and Conitzer [8] provided a polynomial al-
gorithm for computing Stackelberg equilibrium, if the game is represented by a tree.
However, they also proved that when the game is represented by a DAG and we allow
only memoryless behavioral strategies, the problem of finding a Stackelberg equilibrium
is NP-hard [7]. We show that if this restriction is lifted and the players are allowed to
keep some information about the past progression of the game, the problem becomes
polynomial.

In Lemma 3.1, we first show that the strategy which results in the follower’s maxmin
value is positionally determined. Then, we examine the structure of an equilibrium
strategy. We use extensively the geometric representation of outcomes of the games in
the space of 2D utilities. We first prove some technical inequalities, and later use them
to get an insight into the structure of Stackelberg equilibria. We show that for every
randomized strategy there is a follower’s node which justifies playing this strategy, and
that for every follower’s node only one node in which the leader randomizes exists. This
allows us to use the follower’s states as memory state labels. Finally, we present an
algorithm for computing the equilibrium strategy with memory.

First, we examine the strategy realizing the follower’s maxmin value, as it is an
important part of Stackelberg equilibria - it represents the worst follower’s utility that
the leader can enforce.
Lemma 3.1. In a two player sequential game on a DAG without chance nodes , there is
a pure and positionally determined strategy σ such that for every node n uσ2 (n) = µ(n).

Proof: Suppose for contradiction that the leader mixes in some node n after reach-
ing it with history π = v0a0 . . . vlaln, playing actions an1 , . . . , a

n
k with probabilities

p1, . . . , pk. The expected utility of such strategy is uσ2 (π) =
∑k

i=1 piu
σ
2 (πani ). Let m =

argmin1≤i≤k u
σ
2 (πani ). Playing anm with probability 1 has the utility uσ2 (πanm). But since

anm is the minimizer of follower’s utility, for all i we have uσ2 (πanm) ≤ uσ2 (πani ). Hence,
for the expected utility of π we obtain uσ2 (π) =

∑k
i=1 piu

σ
2 (πani ) ≥

∑k
i=1 piu

σ
2 (πanm) =
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v0

vi

vi+1

vk

c ai

π[i+1:k]

a b

π[i]

1

Figure 3.1. The situation where the leader mixes twice in a row, as in Lemma 3.3. The
dashed line represents a pure strategy, the wavy line path π[i].

uσ2 (πanm). Therefore, by changing the strategy to playing am with probability 1 the
follower’s utility can only decrease. For the follower, who maximizes his utility, the
proof is similar, except that the action with maximum utility is taken.

As for the positional determinancy, suppose that some leader’s node can be reached
via two histories π1 and π2. Without loss of generality, let uσ2 (π1) ≥ uσ2 (π2). Then
by changing σ such that both players follow σ(π2) after π1 the follower’s utility can
only decrease, thus following σ(π1) after π1 does not achieve the follower’s maxmin
value. For the follower, the positional determinancy is now trivial - the leader plays
positionally, and the follower always maximizes his utility. �

Now, let us examine the bound on the number of memory states which are needed
to obtain the optimal strategy, and how this strategy can be found. To do so, we first
prove some useful properties of Stackelberg equilibria.
Lemma 3.2. In a Stackelberg equilibrium σ in a two player sequantial game on a DAG
without chance nodes , let π be a history such that the leader mixes between actions
a1 and a2 with probabilities p and 1 − p after π. Then either uσ1 (πa1) ≥ uσ1 (πa2) and
uσ2 (πa1) < uσ2 (πa2), or uσ1 (πa1) ≤ uσ1 (πa2) and uσ2 (πa1) > uσ2 (πa2).

Proof: Suppose for contradiction that the leader plays such that uσ1 (πa1) < uσ1 (πa2)
and uσ2 (πa1) < uσ2 (πa2). Then by playing a2 with probability 1 and then following
σ we obtain a strategy σ′ that is strictly better for the leader and not worse for the
follower, is thus dominated and not optimal. The argument reamins exactly the same
for the case when uσ1 (πa1) ≥ uσ1 (πa2) and uσ2 (πa1) ≥ uσ2 (πa2) and the other direction
of inequalities. �

This lemma has a nice implication in the 2D space of utilities. It tells us that the
slope of the line going through the points uσ(πa1) and uσ(πa2) is negative, that is
slope(uσ(πa1), uσ(πa2)) ≤ 0. Note that the slope is always defined, as the inequalities
for u2 from Lemma 3.2 are strict. We can prove another useful property of slopes –
when playing successive randomized strategies, the slopes of the utilities
Lemma 3.3. Let σ be a Stackelberg equilbrium in a sequential game on a DAG without
chance nodes. Let there be a path π = v0a0 . . . viaivi+1 . . . vk such that the leader
randomizes in vi between actions ai and c, the strategy between vi+1 and vk is pure
(σ(π[i+ 1:k]) = 1) and in vk he randomizes between actions a and b. Let uσ1 (π[k]a) ≤
uσ1 (π[k]b) and uσ2 (π[k]a) > uσ2 (π[k]b). Then

slope(uσ(π[k]a), uσ(π[k]b)) ≤ slope(uσ(π[k]), uσ(π[i]c)).
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uσ′
(π[i])
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Figure 3.2. The situation from Lemma 3.3 for the case uσ2 (π[i]c) ≤ uσ2 (π[k]). The dashed
line represent the follower’s utility of both the old strategy σ and the new strategy σ′ at

π[i].
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u1
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uσ(π[k]a)
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uσ(π[i])

uσ′
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1

Figure 3.3. The situation from Lemma 3.3 for the case uσ2 (π[k]) < uσ2 (π[i]) ≤ uσ2 (π[k]a).
The dashed line represent the follower’s utility of both the old strategy σ and the new

strategy σ′ at π[i].

Proof: The situation in which the leader mixes in two states is depicted in Figure
3.1. Suppose for contradiction that

slope(uσ(π[k]a), uσ(π[k]b)) > slope(uσ(π[k]), uσ(π[i]c)).

We split the proof to three cases. Either uσ2 (π[i]c) ≤ uσ2 (π[k]), uσ2 (π[k]) < uσ2 (π[i]c) ≤
uσ2 (π[k]b) or uσ2 (π[k]b) < uσ2 (π[i]c). In each of these cases, we will show that if the
inequality does not hold, there is a strategy σ′ whitch is better for the leader. Also,
note that because slopes in an equilibrium are always negative, for the absolute values
it holds that

|slope(uσ(π[k]a), uσ(π[k]b))| ≥ |slope(uσ(π[k]), uσ(π[i]c))| .
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uσ′
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Figure 3.4. The situation from Lemma 3.3 for the case uσ2 (π[k]) < uσ2 (π[i]) ≤ uσ2 (π[k]a).
The dashed line represent the follower’s utility of both the old strategy σ and the new

strategy σ′ at π[i].

Case 1: uσ2 (π[i]c) ≤ uσ2 (π[k]). Our aim to find a better strategy is depicted in Figure
3.2. We can find γ such that

γuσ2 (π[i]c) + (1− γ)uσ2 (π[k]a) = uσ2 (π[i]),

and set σ′(π[i], c) = γ, σ′(π[i]ai) = 1−γ and σ′(π[k], a) = 1, copying σ everywhere else.
Because σ(π[i+ 1:k]) = 1,

uσ
′(π[i]) = γuσ(π[i]c) + (1− γ)uσ(π[i]a).

Because uσ2 (π[k]a) > uσ2 (π[k]b), we have uσ′2 (π[k]) > uσ2 (π[k]) and the follower is offered
strictly more in all vl, i < l < k and does not deviate from σ′. In vi, we have defined
the strategy so that uσ′2 (π[i]) = uσ2 (π[i]) and the follower does not deviate in any π[l],
l < i. As for the leader, because

slope(uσ(π[k]a, uσ(π[k]b)) > slope(uσ(π[k]), uσ(π[i]c))

and uσ
′(π[i]) lies on the line connecting uσ(π[i]c) and uσ(π[k]a), we have uσ′1 (π[i]) >

uσ1 (π[i]) and σ′ is strictly preffered by the leader.
Case 2: uσ2 (π[k]) < uσ2 (π[i]) ≤ uσ2 (π[k]a), as in Figure 3.3. We can find γ such that

γuσ2 (π[k]a) + (1− γ)uσ2 (π[k]b) = uσ2 (π[i]),

and set σ′(π[k], a) = γ, σ′(π[k], b) = 1 − γ and σ′(π[i], ai) = 1 and copy σ everywhere
else. Because σ(π[i+ 1:k]) = 1, we have

uσ
′(π[i]) = γuσ(π[i]a) + (1− γ)uσ(π[i]b).

Because uσ2 (π[i]) > uσ2 (π[k]), we know that uσ′2 (π[k]) = uσ2 (π[i]) > uσ2 (π[k]). The
follower is therefore offered strictly more in all vl, i < l < k and does not deviate from
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c aj
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1

Figure 3.5. The situation where the leader mixes twice in a row, as in Lemma 3.5. The
dashed lines represent pure strategies, the wavy line path with some nonzero probability.

The node vl is the follower’s node found in Lemma 3.5.

σ′. Again, by definition of σ′ we have uσ′2 (π[i]) = uσ2 (π[i]) and the follower does not
deviate in any π[l], l < i. Because

slope(uσ(π[k]a), uσ(π[k]b)) > slope(uσ(π[k]), uσ(π[i]c)),

uσ2 (π[i]c) ≥ uσ2 (π[i]) > uσ2 (π[k]) and uσ
′(π[i]) lies on the line between uσ(π[k]a) and

uσ(π[k]b), it holds that uσ′1 (π[i]) > uσ1 (π[i]). Thus, σ′ is strictly preffered by the leader.
Case 3: u2σ(π[i]) > uσ2 (π[k]a), as in Figure 3.4. We can find γ such that

γuσ2 (π[k]a) + (1− γ)uσ2 (π[i]c),

and set σ′(π[k], a) = 1, σ′(π[i], ai) = γ and σ′(π[i], c) = 1−γ. Because σ(π[i+1:k]) = 1,
we have

uσ
′(π[i]) = γuσ(π[i]a) + (1− γ)uσ(π[i]c).

By the same argument as in the first case, the follower does not deviate from σ′ and
the leader strictly preffers σ′. �

It will be useful later to limit ourselves to strategies for which the inequality from
Lemma 3.3 is strict.
Lemma 3.4. Let σ be a Stackelberg equilbrium in a sequential game on a DAG
without chance nodes. Let there be a path π = v0a0 . . . viaivi+1 . . . vk such that the
leader randomizes in vi between actions ai and c, the strategy between vi+1 and vk
is pure (σ(π[i + 1:k]) = 1) and in vk he randomizes between actions a and b. Let
uσ1 (π[k]a) ≤ uσ1 (π[k]b) and uσ2 (π[k]a) > uσ2 (π[k]b) and slope(uσ(π[k]a), uσ(π[k]b)) =
slope(uσ(π[k]), uσ(π[i]c)). Then there exists an equilibrium σ′ with uσ = uσ

′ in which
the leader randomizes in at most one of π[i] and π[k].

Proof: The proof is analogous to the proof of Lemma 3.3. We consider three cases,
uσ2 (π[i]c) ≤ uσ2 (π[k]), uσ2 (π[k]) < uσ2 (π[i]c) ≤ uσ2 (π[k]b) or uσ2 (π[k]b) < uσ2 (π[i]c). In each
of such case, the argument from proof of Lemma 3.3 holds, giving us an equilibrium σ′

with uσ′(π[i]) = uσ(π[i]) and thus (as σ = σ′ everywhere else) uσ′ = uσ. �
From now on, we therefore limit ourselves to strategy profiles in which the inequality

in Lemma 3.3 is strict.
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Figure 3.6. The situation from Lemma 3.5 for the case uσ2 (π[i]) ≤ µ ≤ uσ2 (π[j]). The
dashed line represent the expected utility of the strategy being changed.
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Figure 3.7. The situation from Lemma 3.5 for the case if µ ≤ uσ2 (π[j]) ≤ uσ2 (π[j]c). The
dashed line represent the expected utility of the strategy being changed. The red line is

the value of µ.

Now we come to reasoning about the structure of equilibria. We show that between
two nodes in which the leader randomizes there is a follower’s state for which the
maxmin value is attained. In other words, the follower’s states justifies playing the
second mixture. This will leave us with all mixtures justified except for the first one on
any path. With such mixtures we will deal later.
Lemma 3.5. Let σ be a Stackelberg equilibrium in a sequential game on a DAG without
chance nodes. Let π = v0a0 . . . vk−1ak−1vk be a history played with nonzero probability
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Figure 3.8. The situation from Lemma 3.5 when µ < uσ2 (π[i]) < uσ2 (π[j]). The dashed line
represent the expected utility of the strategy being changed. The red line is the value of

µ.

in σ. Then for every 0 ≤ i < j < k such that the leader randomizes after histories π[i]
(between actions ai and b with probabilites α and 1 − α) and π[j] (between aj and c
with probabilities β and 1−β) and σ(π[i+1:j]) = 1 there exists an i < l < k such that
the leader plays in π[l] and uσ2 (π[l]) = µ(vl).

Proof: The situation is depicted in Figure 3.5. Suppose for contradiction that there
is a history π and indices i, j such that the leader randomizes after π[i] and π[j],
σ(π[i + 1:j]) = 1 but for every i < l < k such that the follower plays uσ2 (π[l]) 6= µ(vl).
If for some l uσ2 (π[l]) < µ(vl), the follower has an incentive to deviate as he can always
achieve utility at least µ(vl) in vl. Therefore, for every i < l < j it holds that uσ2 (π[l]) >
µ(vl). We will find a strategy that has better utility for the leader and the same utility
for the follower, and for which there exists a follower’s node with desired properties. We
aim to find γ and δ such that the leader can play a with probability γ, b with probability
1− γ, ai with probability δ and c with probability 1− δ. By copying σ everywhere else
we obtain a new strategy σ′. Our aim is depicted in the space of utilities in Figures
3.6, 3.8 and 3.7.

From Lemma 3.3, we know that

slope(uσ(π[j + 1]), uσ(π[j]c)) < slope(uσ(π[i]b), uσ(π[i+ 1]))

. By Lemma 3.2, let uσ2 (π[j + 1]) > uσ2 (π[j]c) and uσ1 (π[j + 1]) ≤ uσ1 (π[j]c). Also note
that because σ(π[i + 1:j]) = 1, uσ(π[i + 1]) = uσ(π[j]). If there is no follower’s node
between vi and vj , mixing both in vi and vj is equivalent to mixing between three nodes
and therefore not optimal. If there is at least one follower’s node, we will find µ such
that the follower does not deviate in any π[l], i < l < j if offered utility at least µ. Let
µ′ = maxi<l<j µ(π[l]) and µ = max {µ′, uσ2 (π[j]c)}. Because for all l uσ2 (π[l]) > µ(vl), it
also holds that uσ2 (π[l]) > µ′ and thus uσ2 (π[k]) > µ′. Also, because

uσ2 (π[k]) = βuσ2 (π[j + 1]) + (1− β)uσ2 (π[j]c),

0 < α < 1 and uσ2 (π[j + 1]) > uσ2 (π[j]c), it holds that uσ2 (π[l]) > µ.
We will now proceed with two cases. For the first case, either uσ2 (π[i]b) ≤ µ ≤ uσ2 (π[j])

or µ ≤ uσ2 (π[j]) ≤ uσ2 (π[j]c). For the second case, we deal with µ < uσ2 (π[i]b) < uσ2 (π[j]).
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Case 1: uσ2 (π[i]) ≤ µ ≤ uσ2 (π[j]) or µ ≤ uσ2 (π[j]) ≤ uσ2 (π[j]c). This corresponds to
Figures 3.6 and 3.7. We can find an γ such that

γuσ2 (π[j + 1]) + (1− γ)uσ2 (π[j]c) = µ

and set σ′(vj , aj) = γ and σ′(vj , c) = 1− γ. Thus

uσ
′(π[j]) = γuσ(π[j + 1]) + (1− γ)uσ(π[j]c).

This allows us to find δ such that

uσ2 (π[i]) = δuσ
′

2 (π[j]) + (1− δ)uσ2 (π[i]b),

and set σ′(vi, ai) = δ and σ′(vi, b) = 1− δ. Thus

uσ
′(π[i]) = δuσ

′(π[j]) + (1− δ)uσ(π[i]b).

We copy σ everywhere else.
We defined σ′ such that uσ′2 (π[i]) = uσ2 (π[i]), therefore the follower will not deviate

in some l < i. However, we need to see that he is not incentivized to deviate in some
vl, i < l < j. From the definition of σ′, we have uσ′2 (π[l]) = uσ

′

2 (π[j]) = µ. But from the
definition of µ we have µ ≥ µ(π[l]), and thus uσ′2 (π[l]) ≥ µ(π[l]) and the follower is not
incentivized to deviate. We now just need to ensure that the leader will obtain better
utility by playing σ′. I holds that

slope(uσ(π[j + 1]), uσ(π[j]c) < slope(uσ(π[i]b), uσ(π[i+ 1]))

and both uσ(π[j]) and uσ′(π[j]) lie on the line between uσ(π[j + 1]) and uσ(π[j]c). But
because uσ′2 (π[j]) ≤ uσ2 (π[j]), for any point p′ on the line segment between uσ′(π[j]) and
uσ(π[i]b) and any point p on the line segment between uσ(π[j]) and uσ(π[i])b it holds
that p′1 > p1. Hence uσ′1 (π[i]) > uσ1 (π[i]) and σ′ is strictly preffered by the leader.

Case 2: µ < uσ2 (π[i]) < uσ2 (π[j]), as in Figure 3.8. We can find δ such that

uσ2 (π[i]b) = δuσ2 (π[j + 1]) + (1− δ)uσ2 (π[j]c)

and set σ′(π[j], aj) = δ, σ′(π[j], c) = 1 − δ and σ′(π[i], ai) = 1. Because the strategy
between vi and vj is now pure (σ′(π[i:j] = 1), we have

uσ
′(π[i]) = uσ

′(π[j]) = δuσ(π[j + 1]) + (1− δ)uσ(π[j]c).

From the definition of σ′ we again know that the follower does not deviate in any vl,
l < i. For all i < l < j, we know that uσ′2 (π[l]) = uσ2 (π[i]b) > µ. This gives us again
uσ
′

2 (π[l]) > µ(vl) and the follower does not deviate. As ford the leader, because

slope(uσ(π[j + 1]), uσ(π[j]c) < slope(uσ(π[i]b), uσ(π[i+ 1]))

and uσ′(π[i]) now lies on the line segment between uσ(π[j]c) and uσ(π[j+1]), necessarilly
uσ
′

1 (π[i]) > uσ1 (π[i]) and σ′ is again strictly preffered by the leader. �
The previous lemma lefts unadressed what happens before the leader mixes for the

first time. To solve this, we prove the following lemma, which contains no new ideas
from before. To visualize the situation, we encourage the reader to refer to Figure 3.5
and imagine that the node vi+1 is in fact the root node. From this visualisation we can
also see that the proof method will remain exactly the same.
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Lemma 3.6. Let σ be a Stackelberg equilibrium in a sequantial game on a DAG without
chance nodes. Let π = v0a0 . . . vkakvk+1 be a history such that σ(π[k− 1]) = 1 and the
leader randomizes in vk between actions ak and b with probabilities α and 1−α. Then
there exists a j < k such that the follower plays in vj and uσ2 (π[j]) = µ(vj).

Proof: Suppose for contradiction that there is a history π in which for all j < k such
that the follower plays in vj u

σ
2 (π[j]) 6= µ(vj). From Lemma 3.3, let uσ2 (π[k + 1]) >

uσ2 (π[k]b) and uσ1 (π[k+1]) ≤ uσ1 (π[k]b). We will find a strategy σ′ which is better for the
leader without incentivizing the follower to deviate. As in Lemma 3.5, we can prove that
for all j uσ2 (π[j]) > µ(vj) and define µ′ = maxi<l<j µ(π[l]) and µ = max {µ′, uσ2 (π[j]c)}.
We can find β ≤ α such that

µ = βuσ2 (π[k + 1]) + (1− β)uσ2 (π[k]b)

and define σ′(π[k], ak) = β and σ′(π[k], b) = 1 − β. As in Lemma 3.5, we obtain
uσ
′

2 (π[j]) ≥ µ(π[j]) for every j < k and the follower does not deviate. Because uσ1 (π[k+
1]) ≤ uσ1 (π[k]b) and β ≤ α, we have uσ′1 (π[k]) ≥ uσ1 (π[k]) and σ′ is no worse than σ. �

Up until now, we were finding a follower’s node for every randomized strategy we
could think of. Now, we focus our attention the other way. We now examine what
happens when a follower’s node n is reached. We show that when it is reached via two
paths such that the leader commits to offering the leader utility µ(n), the strategy for
the to paths has to be identical. This will then leave us in an excellent position to define
memory states - for every follower’s state, we will have at most one mixed strategy, and
for every mixed strategy a follower’s node.
Lemma 3.7. Let σ be a Stackelberg equilibrium in an extensive form game on a DAG.
Let π1, π2 be two histories ending in a follower’s node n such that uσ2 (π1) = uσ2 (π2) =
µ(n). Then uσ1 (π1) = uσ1 (π2).

Proof: Suppose that there are two such histories, π1 = u0a0 . . . uiain and π2 =
v0a0 . . . vjajn with uσ2 (π1) = uσ2 (π2) = µ(n), such that uσ1 (π1) > uσ1 (π2). We can create
a strategy σ′ by copying σ everywhere except in the subgraph under σ(π2), setting
σ′(π2 ↓) = σ(π1 ↓). By doing so, the follower obtains the same utility after π2, while
the leader’s utility increases. Thus, σ′ is strictly preffered by the leader and σ is not an
equilibrium. Because the same argument can be made for uσ1 (π1) > uσ1 (π2), necessarilly
uσ1 (π1) = uσ1 (π2). �

This lemma tells us that for all histories π that reach some follower’s node n for
which uσ2 (π) = µ(n), it suffices to consider a single strategy in all histories which follow
after π. By combining this with Lemmas 3.5 and 3.6, we find that for every follower’s
node there is at most one leader’s node in which the leader randomizes, and no other
randomizations happen. Therefore, whenever the follower randomizes in v and then
plays a pure strategy to w, where he randomizes again, there is a unique followers node
n which identifies the path between v and w. This allows us to represent the strategy
compactly using memory - we can simply keep track of the identifying followers node,
or the target leaf node after the leader mixed for the last time. For strategies off the
equilibrium path, we add one more memory state signifying that maxmin should be
played.
Theorem 3.1. In a sequential game a DAG without chance nodes, for every Stackelberg
equilibrium σ : Π × A → [0, 1] there is a strategy with memory (σ′,M,M,m0) with
|M | ≤ |S2|+ |Z|+ 1 such that u(σ) = u(σ′).

Proof: Let M = {lv|v ∈ S2} ∪ {lz|z ∈ Z} ∪ {l∗}. By Lemmas 3.5, 3.7 and 3.6, for
every path π = v0a0 . . . vmamz from the root to a leaf played with nonzero probability
in σ we have indices i1 . . . il such that σ(π[ik + 1:ik+1]) = 1, σ(aik) < 1, σ(aik+1) < 1
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(the leader mixes in vik and vik+1) and there is a ik < jk < ik+1 such that the follower
plays in vjk

and uσ2 (π[jk]) = µ(vjk
). Therefore, for all 1 ≤ k < l and ik < n < ik+1 set

M(lvjk
; vn, an) = lvjk

σ′(lvjk
; vn, an) = 1

M(lvjk
; vik+1 , aik+1) = lvjk+1

σ′(lvik
; vik , aik) = σ(π[ik], aik).

After the last index il, the path continues to a leaf z with σ(π[il+1:m]) = 1. Therefore,
set

M(lvjl−1
; vil , ail) = lz

σ′(lvjl−1
; vil , ail) = σ(π[il], ail);

and for all n > il let
M(lz; vn, an) = lz

σ′(lz; vn, an) = 1.
Before the first index i1, the leader plays a pure strategy (as i1 is the index of the first
mixture). Due to Lemma 3.6, there is an index j0 such that the follower plays in vj0

and uσ2 (π[j0]) = µ(vj0). Thus, set

M(lvj0
; vi1 , ai1) = lvj1

σ′(lvj0
; vi1 , ai1) = σ(π[i1], ai1)

and for all n < i1 let
M(lvj0

; vn, an) = lvj0

σ′(lvj0
; vn, an) = 1.

Set all undefined transitions toM(m; v, a) = l∗, so that deviations end up in the strat-
egy realizing follower’s maxmin value. Finally, for every node σ′(l∗;n, a) = σµ(n, a).
The initial memory state m0 = lvj0

.
Let us now show that σ′ andM are defined correctly. Suppose there are two histories

π1 = v1
0a

1
0 . . . v

1
k and π2 = v2

0a
2
0 . . . a

2
l such that for some i < k and j < l we have

v1
i = v2

j = w, the follower plays in w and uσ2 (π1[i]) = µ(w) and uσ2 (π2[j] = µ(w).
By Lemma 3.7 the strategies after π1[i] and π2[j] are the same, and thus σ′ and M
are defined correctly. From Lemmas 3.5 and 3.6, we know that randomized strategies
happen only after such w. Thus, the strategy σ′ yields the same result as the strategy
σ, with |M | = |S2|+ |Z|+ 1. �

Knowing how much memory is needed and what the memory states should represent
allows us to adapt algorithm of Letchford and Conitzer [8] to work on directed acyclic
graphs.
Theorem 3.2. Stackelberg equilibrium with memory in a sequential on a DAG without
chance nodes can be found in O(|S2|2 |S|3).

Proof: The algorithm consists of three dynamic programming passes. First, it will
compute the follower’s maxmin values. Second, it will perform a dynamic programming
pass identical to that in Theorem 2.2. Third, there will be a top to bottom pass
determinign the optimal strategy σ, the memory update functionM and the necessary
memory labels M .

Upward pass The upward pass is identical to that in Theorem 2.2, computing the
sets S1

n and S2
n for every node n, obtaining the solution p∗ ∈ argmax i ∈ S2

ru1(i) in the
root.
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Downward pass During the downward pass, we will construct the set of memory

states M , the memory update function M and the equilibrium strategy profile σ. For
each node n we will create a set Pn. If p ∈ Pn, it means that the players should commit
in p with memory state lp (simply a label associated with p) so that p will result. We
will do so layer-by-layer in the DAG, which ensures that when a node n is considered,
all it’s parents were already processed, and therefore the set Pn is complete. For playing
strategies off the equilibrium path, we designate a special memory state l0.

To start, set Pr = {p∗} and M = {p∗, l0} and begin processing the root. In a node
n in which the leader plays, for each p ∈ Pn, we find a line (p′, p′′) ∈ S1

n such that p lies
on this line, that is find λ such that p = λp′+(1−λ)p′′. For both p′ and p′′ we find the
children of n from which these points originated, that is find u and v such that p′ ∈ S2

u

and p′′ ∈ S2
v . If u = v, we can simply commit to playing to u and keeping the memory

state the same, as we still target the same point, that is M(lp;n, au) = lp (where au
is the action leading to u), σ(lp, n, au) = 1. Finally, add p to Pu. If u 6= v, the line
segment originated in n and we have to commit to mixing between u with probability
λ and v with probability 1 − λ, while updating the memory states accordingly. That
is σ(lp, n, au) = λ, σ(lp, n, av) = 1 − λ, M(lp;n, au) = lp′ and M(lp;n, av) = lp′′ . If M
does not contain lp′ and lp′′ , add them there. Finally, add p′ to Pu and p′′ to Pv.

In a node n in which the follower plays, we simply need to find the child v from which
p came, that is find v such that there exists (p′, p′′) ∈ S1

v so that p = λp′ + (1 − λ)p′′.
We then set σ(lp, n, av) = 1,M(lp;n, av) = lp and add p to Pv. For every other child w
of n, the leader wants to discourage the follower from playing there by playing maxmin.
We can therefore set M(lp;n, aw) = l0.

Finally, to provide the players a maxmin strategy to default to, we set all previously
undefined transitions of M to l0 and compute maxmin strategy σ(l0, ·) by backwards
induction (which can be done in O(|S| (|S|+ |Z|) time).

Correctness The upward pass remains unchanged from [8]. Because every subtree
under a node n in the tree version of a DAG is identical, the upward pass reamins
correct. During the downward pass, the construction of M and M ensures that for
every targetted outcome p there is a corresponding memory state, and therefore no
information about the played strategy is lost as compared to the tree case. Moreover,
this construction implements the scheme from Theorem 3.1.

Complexity To reason about the complexity of the algorithm, let us now first bound
the sizes of S1

n and S2
n for each n.

In S2
n, the endpoints may come from two different sources. They can be generated by

a leaf, or by cutting some line segment of some follower’s node. However, as we argued
before, each follower’s node may add only one new endpoint. We may thus bound the
number of these endpoints both in the union of all S2’s and in each of them sepparately
by |S2|+ |Z|.

As for S1
n, the line segments may come from three sources. One, the can be generated

by a leaf. Two, they can be generated in a leader’s node by mixing over some two
children. Because the number of points in union of all S2’s is bounded by |S2|+ |Z|, we
can bound the number of lines generated by picking pairs of them by (|S2|+ |Z|)2. And
finally three, the lines can be generated by cutting another lines in a follower’s node.
Note that we can consider cutting only the lines that originated in a leader’s node, as
cutting previously cut line is equivalent to cutting the original line directly. Because
at each follower’s node the cut happens only at one level, we can bound the number
of these lines (again in the union of all S1’s) by |S2| (|S2|+ |Z|)2. The total size of S1

n

therefore lies in O(|S2| (|S2|+ |Z|)2).
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During the upward pass in the leader’s node n, we need to accumulate the line points
from n’s children. To do so, we must traverse S1

v for every v and for each line spend
a constant time adding in to S1

n. Because n has at most |S| children, this step takes
|S|
∣∣S1
∣∣ operations. We also have to consider all pairs of n’s children and mix between

the possible end points. For one pair of children this takes (|S2|+ |Z|)2, for every pair
of children this takes |S|2 (|S2| + |Z|)2. Because we are processing every leader’s node
once, the time required to process them all is in O(|S1| |S|2 (|S2|+ |Z|)2).

In the followers node, we need to traverse line segments of all it’s children and for
each such segment decide, whether to cut it or not. Therefore, processing one child
node takes O(|S| |S2| (|S2| + |Z|)2) time, and processing all followers nodes therefore
takes O(|S| |S2|2 (|S2|+ |Z|)2) The total time required for the upward pass is therefore
O(|S|3 (|S2|+ |Z|)2)

During the downward pass, in a leader’s node n we find for each p ∈ Pn a line
segment in S2

n on which it lies. This therefore takes O(
∣∣S1
n

∣∣) operations. For the two
ending points of this line, we traverse S2

v for every child v of n. This therefore takes
O(|S| (|S2|+ |Z|)). Because the number of possible p’s is O(|S2|+ |Z|), processing the
leader’s node takes O(|S| (|S2|+ |Z|)2. In a follower’s node n, we simply traverse all line
segments of n’s children. This therefore takes O(|S| |S2| (|S2| + |Z|)2). Because we do
these operations in every node, the total time required is again in O(|S|3 (|S2|+ |Z|)2),
which is therefore the total runtime of the algorithm. �

3.2 No chance, General graph
Now, let us relax the requirement that the graph representing the extensive form game
should be acyclic, while keeping the property that the players receive utility only after
they reach a leaf. First, we examine the memory needed to represent optimal strategies.
We show that the memory requirements do not change from the DAG case, as we are
able to use exactly the same arguments. However, it might still be the case that the
optimal strategy would consist of a cycle through the memory states. Therefore, we
will show that in fact there are no infinite strategies, because in the optimal strategy
no point in the utility space is visited twice.
Theorem 3.3. In a stochastic game on a graph without chance nodes, there is a posi-
tionally determined strategy without cycles realizing the leader’s maxmin value.

Proof: The maxmin strategy is pure and positionally determined by the same ar-
gument as in Lemma 3.1. Suppose that the strategy containts a cycle, visiting v at
least twice in the history π = n0a0 . . . ni−1ai−1va

1
vniai . . . nj−1aj−1va

2
v . . .. It is a pure

strategy, so we can skip the part between ni and nj−1 and go to nj directly. �
Theorem 3.4. For every Stackelberg equilibrium σ in a stochastic game on a graph
without chance nodes there is a strategy with memory (σ′,M,M,m0) such that u(σ) =
u(σ′) and |M | ≤ |S2|+ |Z|+ 1.

Proof: The proofs of Theorem 3.1 and all lemmas before it considered only paths
from root to some node. Therefore, the proof is still valid even on general graphs. �

While we have a limited number of memory states (and corresponding points in the
utility space), to obtain finite strategies we need to prove that it is not the the case
that some state is visited infinitely often. To do that, we first extend Lemma 3.3. To
visualize this, imagine several Figures 3.1 chained after each other.
Lemma 3.8. Let σ be a Stackelberg equilbrium in a stochastic game on a graph without
chance nodes. Let there be a path π = v0a0 . . . vjajvj+1 . . . vk such that the leader
randomizes in vj between actions aj and c and in vk he randomizes between actions a
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and b. Let uσ1 (π[k]a) ≤ uσ1 (π[k]b) and uσ2 (π[k]a) > uσ2 (π[k]b). Then

slope(uσ(π[k]a), uσ(π[k]b)) ≤ slope(uσ(π[k]), uσ(π[i]c)).

Proof: We will prove this using induction using Lemma 3.3. Let i1, . . . , il be indices
such that the leader randomizes after every π[im] between actions aim and bm; and for
all 1 ≤ m < l σ(π[im + 1:im+1]) = 1. We continue via induction along m. For the base
case, we have

slope(uσ(π[i1]ai1), uσ(π[i1]b1)) ≤ slope(uσ(π[i2]ai2), uσ(π[i2]b2))

from Lemma 3.3. For the induction step, suppose we know that

slope(uσ(π[i1]ai1), uσ(π[i1]b1)) ≤ slope(uσ(π[im]aim), uσ(π[im]bm)).

From Lemma 3.3 we obtain

slope(uσ(π[im]aim), uσ(π[im]bm)) ≤ slope(uσ(π[im+1]aim+1), uσ(π[im+1]bm+1)),

which gives us

slope(uσ(π[i1]ai1), uσ(π[i1]b1)) ≤ slope(uσ(π[im+1]aim+1), uσ(π[im+1]bm+1)).

�
By our limitation to strategies where the inequality from Lemma 3.3 is strict, we

obtain slope(uσ(π[k]a), uσ(π[k]b)) < slope(uσ(π[k]), uσ(π[i]c)).
Theorem 3.5. For every Stackelberg equilibrium σ in an extensive form game on a
graph there is a finite Stackelberg equilibrium σ′ with equal expected utilities for both
players in which for every path π from root to leaf with σ(π) > 0 no state is visited
more than |S2|+ 1 times.

Proof: Suppose we have a Stackelberg equilibrium σ such that there is a history
π = v0a0 . . . vk such that the leader randomizes at least |S2| + 1 times in some π[i].
According to Lemma 3.7, each node in which the leader randomizes has a corresponding
node of the follower, and strategies with the same corresponding noder have the same
expected utility for both players. Because it is possible to mix more than |S2| times,
there has to be a followers node u such that two leader’s nodes va, vb on π correspond
to u. But again, due to Lemma 3.7, we have uσ(π[a]) = uσ(π[b]), and due to Lemma
3.5 the strategies after π[a] and π[b] are the same – the leader randomizes between the
same actions f and g with the same coefficient λ. But from Lemma 3.8 we have

slope(uσ(π[a]f), uσ(π[a]g)) < slope(uσ(π[b]f), uσ(π[b]g)

which contradicts that the strategies after π[a] and π[b] are the same. Therefore, after
playing |S2| mixtures there has to be a pure strategy going to leaf. Each state can
therefore be visited at most |S2|+ 1 times. �

As this theorem limits the depth of optimal strategies, it could be used in the future
to devise an algorithm for computing equilibria on general graphs.
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3.3 Chance, DAG

If we allow randomness to play a role in the game in the form of chance nodes, the
problem of finding equilibrium becomes harder. Specifically, even on trees the problem
of finding a Stackelberg equilibrium is NP-hard [7], and as trees are a subgroup of
directed acyclic graphs, we cannot hope any better. However, our interest lies in the
memory requirements. With the addition of nature states, we lose the ability to nicely
trace the strategy via a string of pure strategies and pairs of follower’s nodes and
mixtures caused by them, as it was before (see Lemma 3.5). However, we can still show
that the memory requirements do not grow. To do so, we once again establish that to
each mixture, there is a follower’s node that enforces this mixture and for each follower’s
node, we can consider only one strategy if we play to reach follower’s maxmin value.
This will allow us to break the whole game graph into pieces we can reason about, and
in which the memory update scheme can be explained.
Lemma 3.9. Let σ be a Stackelberg equilibrium in a game in extensive form on a DAG
with chance nodes. Let π = v0a0 . . . vk be a history such that the leader mixes between
actions ak and bk with probabilities α and 1−α after π. Then either uσ1 (πak) ≥ uσ1 (πbk)
and uσ2 (πak) < uσ2 (πbk), or uσ1 (πak) ≤ uσ1 (πbk) and uσ2 (πak) > uσ2 (πbk).

Proof: The proof from Lemma 3.2 holds also here, as chance nodes make convex com-
binations of utilities of their children, and convex combinations preserve inequalities.
�

Lemma 3.10. In a two player game in extensive form on a DAG with chance nodes,
there is a pure and positionally determined strategy σ such that for every node n
uσ2 (n) = µ(n).

Proof: Again, due to the fact that chance nodes make convex combinations only, the
proof from Lemma 3.1 holds. �

Lemma 3.11. Let σ be a Stackelberg equilibrium in an extensive form game on a DAG
with chance nodes. Let π1, π2 be two histories ending in a follower’s node n such that
uσ2 (π1) = uσ2 (π2) = µ(n). Then uσ1 (π1) = uσ1 (π2).

Proof: The proof of Lemma 3.7 concerned only swapping probabilities to obtain a
dominating strategy, therefore it holds also here. �

This allows us again to limit ourselves to a single continuing strategy whenever we
reach a follower’s node n via a history π such that µ(n) = uσ2 (π). This splits the
strategy into parts we can reason about, and will eventually provide us with a way
how to update memory such that the strategy remains optimal. We now consider the
opposite problem - we examine a situation in which the leader randomizes, and show
there has to be a follower’s node that is the cause of this randomization.
Lemma 3.12. Let σ be a Stackelberg equilibrium in an extensive form game on a DAG
with chance nodes. Let π = v0a0 . . . vk be a history played with nonzero probability such
that the leader randomizes between actions a and b with probabilities α and 1−α after
π. Then there exists a j < k such that the follower plays in vj and uσ2 (π[j]) = µ(vj).

Proof: Suppose that for all j < k such that the follower plays in vj it holds that
uσ2 (n) 6= µ(n). By Lemma 3.9, let uσ2 (πa) < uσ2 (πb) and uσ1 (a) ≥ uσ1 (b). If for any j
uσ2 (π[j]) < µ(vj), then the follower has better utility if he plays another action in vj ,
and σ is not an equilibrium. Hence, for all j we have uσ2 (π[j]) > µ(vj). However, then
there has to exist an ε > 0 such that the leader can play a after π with probability
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v0

u

v1k v2l

π1[i] π2[j]

π1[i:k] π2[j:l]

c1
b1

b2

c2

1

Figure 3.9. A situation from Lemma 3.9. Dashed lines represent paths with nonzero prob-
ability, straigh lines represent actions.

α+ ε, because for each j we have

uσ2 (π[j]) = σ(π[j:k])uσ2 (π[k]) + (1− σ(π[j:k]))Rj
= σ(π[j:k])(αuσ2 (π[k]a) + (1− α)uσ2 (π[k]b))
> µ(vj),

where Rj is the utility obtain from all other continuations of π[j] except for π. But by
doing so, the utility of the leader can only increase, because uσ1 (a) ≥ uσ1 (b). Thus, σ is
not optimal. �

As before, we turn our focus to limiting the number of randomizations the leader
does. Due to the introduction of chance nodes we loose the nice geometric view on the
problem, and have to turn to inequalities. To see the situation we are trying to avoid,
refer to Figure 3.9.
Lemma 3.13. Let σ be a Stackelberg equilibrium in an extensive form game G on a
DAG with chance nodes. Let π1 = v1

0a
1
0 . . . v

1
k and π2 = v2

0a
2
0 . . . v

2
l be two histories such

that there is a follower’s node u such that u = v1
i = v2

j , i is the largest index for which
uσ2 (π1[i]) = µ(u), j is the largest index for which uσ2 (π2[j]) = µ(u). Let v2

l 6= v1
m for all

m < k and v1
k 6= v2

n for all n < l. Then there is an equilibrium σ′ with uσ1 (G) = uσ
′

1 (G)
in which the leader randomizes at most after one of π1 and π2.

Proof: Let π1 = v1
0a

1
0 . . . v

1
k and π2 = v2

0a
2
0 . . . v

2
l be two histories such that there is a

follower’s node u such that u = v1
i = v2

j , i is the largest index for which uσ2 (π1[i]) = µ(u),
j is the largest index for which uσ2 (π2[j]) = µ(u). Let v2

l 6= v1
m for all m < k and v1

k 6= v2
n

for all n < l. If the leader does not randomize after both π1 and π2, we can set σ′ = σ.
Therefore, suppose that after π1 the leader randomizes between actions b1 and c1 with
probabilities α and 1 − α, and after π2 between actions b2 and c2 with probabilities β
and 1− β, as shown in Figure 3.9. Without loss of generality, let

slope(uσ(π1b1), uσ(π1c1)) ≤ slope(uσ(π2b2), uσ(π2c2). (1)

By Lemma 3.9, let uσ2 (π1b1) < uσ2 (π1c1), uσ1 (π1b1) ≥ uσ1 (π1c1), uσ2 (π2b2) < uσ2 (π2c2) and
uσ1 (π2b2) ≥ uσ1 (π2c2).

Because of Lemma 3.12, we know that both players play the same strategy after π1[i]
and π2[j], that is σ(π1[i] ↓) = σ(π2[j] ↓). This means that uσ(π1[i]π2[j:l]) = uσ(π2).
Because also for all m < k v2

l 6= v1
m and for all n < l v1

k 6= v2
n, by changing σ(π[k]) we

do not affect σ(π[l]), and vice versa. Moreover, we can express uσ(π1[i]) as

uσi (π1[i]) = σ(π1[i:k])uσ(π1) + σ(π2[j:l])uσ(π1) + (1− π1[i:k]− π2[j:l])Ri,

where Ri is the utility of player i obtained in all other continuations of π1[i] except for
π1 and π1[i]π2[j:l]. Hence, we aim to change σ, creating a strategy σ′, such that the
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follower receives the same utility in π1[i] and π2[j] as before, while the leader’s utility
becomes greater or equal to the old one.

As in Lemma 3.12, we know that for all i < m < k such that the follower plays
in v1

m uσ2 (π1[m]) > µ(v1
m) and for all j < n < l such that the follower plays in v2

n

uσ2 (π2[n]) > µ(v2
n). Again, we have

uσ2 (π1[m]) = σ(π1[m:k])uσ2 (π1[k]) + (1− σ(π1[m:k]))R2
m

= σ(π1[m:k])(αuσ2 (π1[k]b1) + (1− α)uσ2 (π1[k]c1)) + (1− σ(π1[m:k]))R2
m

> µ(v1
m).

Hence, there has to exists an ε > 0 we can add to α without breaking any of the
constraints that uσ′2 (π1[m]) ≥ µ(vm). Also, subtracting some δ from β cannot invalidate
these constraints, because by doing so the follower’s utility increases. Therefore, let
ε′ > 0 be the maximum number such that α + ε′ ≤ 1 for which there exists a δ′ such
that β − δ′ ≥ 0, for all i < m < k it holds that

σ(π1[m:k])((α+ ε′)uσ2 (π1b1) + (1−α− ε′)uσ2 (π1c1)) + (1−σ(π1[m:k]))R1
m ≥ µ(v1

m) (2)

and the utility in u remains unchanged, which requires

−σ(π[i:k])ε′(uσ2 (π1b1)− uσ2 (π1c1)) = σ(π[j:l])δ′(uσ2 (π2c2)− uσ2 (π2b2)). (3)

Because no condition on ε′ is a strict inequality, we are sure that ε′ is defined correctly.
We can now create σ′ by copying σ everywhere except after π1 and π2, and setting

σ′(π1, b1) = α+ ε′, σ′(π1, c1) = 1−α− ε′, σ′(π2, b2) = β− δ′ and σ′(π2, c2) = 1− β+ δ′.
Because of the definition of ε′ and δ′, we have 0 ≤ α + ε′ ≤ 1 and 0 ≤ β − δ′ ≤ 1, and
σ′ is defined correctly. Because of constraint (2), we have for all i < m < k

uσ
′

2 (π1[m]) = σ(π1[m:k])((α+ ε′)uσ2 (π1[k]b1)
+ (1− α− ε′)uσ2 (π1[k]c1)) + (1− σ(π1[m:k]))R1

m

≥ µ(v1
m)

and the follower does not deviate in any such m. Because uσ2 (π2b2) < uσ2 (π2c2), we have

uσ
′

2 (π2) = (β − δ′)uσ2 (π2b2) + (1− β + δ′)uσ2 (π2c2)
= uσ2 (π2) + δ′(uσ2 (π2c2)− uσ2 (π2b2))
> uσ2 (π2).

Hence, uσ′2 (π2) is strictly better for the follower and he does not deviate.
Because we set ε′ to be the maximum ε such that the constraints hold, then either

. α+ ε′ = 1. In such case σ′(π1, b1) = 1 and the leader does not randomize after π1.. β − δ′ = 0. Then σ′(π2, c2) = 1 and the leader odes not randomize after π2.. uσ
′

2 (π1[m]) = µ(v1
m) for some i < m < k.

Therefore, either the leader does not mix after one of π1, π2, or i is not the largest
index for which uσ′2 (π1[i]) = µ(v1

i ). We now just have to show that the expected utilities
of σ′ are not lower than those of σ.
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Let us now examine the utilities in u for both players. For the follower, we have

uσ
′

2 (π1[i]) = σ(π1[i:k])u2σ
′(π1) + σ(π2[j:l])u2σ

′(π2) + (1− σ(π1[i:k])− σ(π2[j:l]))R2
i

= σ(π1[i:k])((α+ ε′)uσ2 (π1b1) + (1− α− ε′)uσ2 (π1c1))
+ σ(π2[j:l])((β − δ′)uσ2 (π2b2) + (1− β + δ′)uσ2 (π2c2)) + (1− σ(π1[i:k])− σ(π2[j:l]))R2

i

= σ(π1[i:k])uσ2 (π1) + σ(π1[i:k])ε′(uσ2 (π1b1)− uσ2 (π1c1))
+ σ(π2[j:l])u2σ(π2) + σ(π2[j:l])δ′(uσ2 (π2c2)− uσ2 (π2b2)) + (1− σ(π1[i:k])− σ(π2[j:l]))R2

i

= σ(π1[i:k])uσ2 (π1) + σ(π2[j:l])u2σ(π2) + (1− σ(π1[i:k])− σ(π2[j:l]))R2
i

= uσ2 (π1[i]),

where R2
i is the follower’s utility from all continuations of π1[i] except for π1[i:l] and

π1[i]π2[j:l]. Hence, the follower’s utility remains the same.
As for the leader, from the condition (1) on slopes of mixtures and equation (3) we

obtain

−σ(π[i:k])ε′(uσ1 (π1b1)− uσ1 (π1c1)) ≤ σ(π[j:l])δ′(uσ1 (π2c2)− uσ1 (π2b2)).

Hence, we obtain

uσ
′

1 (π1[i]) = σ(π1[i:k])u1σ
′(π1) + σ(π2[j:l])u1σ

′(π2) + (1− σ(π1[i:k])− σ(π2[j:l]))R1
i

= σ(π1[i:k])((α+ ε′)uσ2 (π1b1) + (1− α− ε′)uσ2 (π1c1))
+ σ(π2[j:l])((β − δ′)uσ2 (π2b2) + (1− β + δ′)uσ2 (π2c2)) + (1− σ(π1[i:k])− σ(π2[j:l]))R1

i

= σ(π1[i:k])uσ2 (π1) + σ(π1[i:k])ε′(uσ2 (π1b1)− uσ2 (π1c1)) + σ(π2[j:l])u2σ(π2)
+ σ(π2[j:l])δ′(uσ2 (π2c2)− uσ2 (π2b2)) + (1− σ(π1[i:k])− σ(π2[j:l]))R1

i

≥ σ(π1[i:k])uσ2 (π1) + σ(π2[j:l])u2σ(π2) + (1− σ(π1[i:k])− σ(π2[j:l]))Ri
= uσ2 (π1[i]),

where R1
i is the leader’s utility from all continuations of π1[i] except for π1[i:l] and

π1[i]π2[j:l]. We have found σ′ with uσ
′

1 (G) ≥ uσ1 (G) and uσ
′

2 (G) = uσ2 (G) in which the
leader randomizes after at most one of π1, π2. �

Note that the conditions of this lemma allow for v1
k = v2

l . This means that after
passing a node n via any history π with uσ2 (π) = µ(n), the leader randomizes at most
once per leader’s node v, provided the path between n and v doesn’t contain a follower’s
node u for which the strategy would yield utility µ(u). This opens up a way to construct
strategies with memory. To do so, let us first prove a helpful lemma.
Lemma 3.14. Let σ be a Stackelberg equilibrium in an extensive form game on a DAG
with chance nodes. For each v ∈ S let Uv = {uσ(π)|π = v0a0 . . . vkakv, σ(π) > 0} be a
set of utility points attainable at v. Then |Uv| ≤ |S2| (|S1|+ 1).

Proof: Suppose for contradiction that for a node v we have

|Uv| ≥ |S2| (|S1|+ 1) + 1.

Let us partition the paths leading to v according to the last follower’s node for which
the follower’s maxmin value is obtained. That is, for every n ∈ S2 let π = v0a0 . . . vkakv
belong to Pn iff

. there is an i < k such that n = vi,. σ(π) > 0,. uσ2 (π[i]) = µ(n),
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. for each i < j < k it holds that uσ2 (π[i]) 6= µ(vj)

We can partition Uv according to individual Pn as

Un
v = {uσ(π)|π ∈ Pn} .

Due to definition of Pn, we know that all Un
v partition Uv. Because |Uv| ≥ |S2| |S1| +

1, there has to exist an n ∈ S2 such that |Un
v | ≥ |S1| + 2. Because we are in a

Stackelberg equilibrium, the utility points reached can be differentiated only by different
commitments of the leader (the follower always best responds). But because we have at
least |S1|+2 utility points, there have to be at least two pairs of utility points u1, u2 and
v1, v2 such that the commitments made to obtain u1 and u2 differ in some leader’s node
s1 and the commitments made to obtain v1 and v2 differ in some leader’s node s2. Let
πu1 be the path which reaches the node s1 when playing to achieve utility u1. Similarly,
define πu2 , πv1 , πv2 . On all these paths, node s1 and s2 must be encountered before going
through a follower’s node n with the utility equal to µ(n), because after passing such a
node the strategies coincide due to Lemma 3.11. According to Lemma 3.13, the leader
mixes in at most one of πu1 , πu2 , πv1 , πv2 . Without loss of generality, let πu1 , πu2 be the pair
of histories in whitch the leader does not mix. But we could change the strategies as
in Lemma 3.13 to obtain a dominating strategy, and σ is not an equilibrium. �
Theorem 3.6. Let G be an extensive form game on a DAG with chance nodes. For
every Stackelberg equilibrium σ : Π ×A → [0, 1] there is an equilibrium with memory
σ′ : M × (S ×A)→ [0, 1] such that uσ(G) = uσ

′(G) and |M | ≤ |S2| (|S2|+ |Z|) + 1.
Proof: Let σ : Π×A → [0, 1] be a Stackelberg equilibrium in G. Let v0, . . . v|S| be a

topologic order of nodes in S. We will traverse the nodes in this ordering, creating the
equilibrium with memory σ′, set of memory states M and the memory update function
M. For every vi we will create a number ri (the number of memory states in which
vi can be reached) and a set Ri of tuples (m,u1, u2), where m is a memory state and
u1, u2 are the utilities of leader and the folower which should be obtained when playing
with memory state m.

Initially, let r0 = 1 and R0 = {(0, uσ1 (G), uσ2 (G))}. For all other nodes set ri = 0
and Ri = ∅. In a node vi, do the following for each (m,u1, u2) ∈ Ri. Take any history
π = w0a0 . . . wkakvi with uσ(π) = (u1, u2) and σ(π) > 0. Let σ′(m; vi, a) = σ(π, a) for
all actions a available in vi. For each action a available in vi let na be the node reached
by playing a in vi. If σ(π, a) = 0, we do not need to define a memory transition as
a will never be played. (An exception to this are follower’s nodes, in which we need
to setup threats. We will deal with these later.) Otherwise, there are two options. If
there is a memory state m′ such that (m′, uσ1 (πa), uσ2 (πa)) ∈ Rna , setM(m; vi, a) = m′.
Otherwise, setM(m; vi, a) = ri, add (ri, uσ1 (πa), uσ2 (πa)) to Ri and increment ri by one.
Finally, after v|S| is processed, set M = {0, 1, . . . ,maxi {ri}}.

Now we just have to add one more memory state to signify that the follower’s maxmin
value should be reached if the follower deviates. Let this state be m∗ = maxi {ri}+ 1.
Therefore, for every follower’s node vj and for every 0 ≤ m ≤ rj for each action a
available in vj such that σ′(m; vj , a) = 0 set M(m; vj , a) = m∗. To setup the maxmin
strategy, let σ′(m∗; v, a) = σµ(vj , a) for every v ∈ S and M(m∗; v, a) = m∗. Finally,
add m∗ to M .

To see that σ′ is defined correctly, we have to show that for every vi and every
(m,u1, u2) ∈ Ri there is a history π ending in vi such that uσ(π) = (u1, u2) and
σ(π) > 0. But this is trivially true due to construction of Ri.

We now just have to show that |M | ≤ |S2| (|S2|+ |Z|)+1. Suppose for contradiction
that |M | > |S2| (|S2|+ |Z|)+1. This means there is a node with ri ≥ |S2| (|S2|+ |Z|)+1
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(This shift by one is caused by the one extra memory state m∗). But this means that
|Ri| ≥ |S2| (|S2| + |Z|) + 1, and since a tuple (m,u1, u2) is added to Ri only when it
does not contain another record (m′, u1, u2), we obtain for the set Ui of utility points
attainable at i that |Ui| = |Ri| ≥ |S2| (|S2| + |Z|) + 1, which contradicts Lemma 3.14.
�

Let us now for completeness state the complexity of finding Stackelberg equilibria
with memory. Because finding an equilibrium on trees is NP-hard [7] and finding
an equilibrium on trees is a subproblem of finding an equilibrium on DAGs (as an
equilibrium on trees is always memoryless), we obtain NP-hardness immediately.
Theorem 3.7. Finding a Stackelberg equilibrium with memory in an extensive form
game on a DAG with chance nodes is NP-hard.

3.3.1 Approximating strategies
Due to NP-hardness of finding optimal strategies with memory we turn to approximat-
ing these strategies. Our interest will be in additive approximation - for a game with
utilities in the interval [0, 1] we try to find a strategy such that the expected leader’s
utility obtain by following this strategy differs from the optimal strategy by at most
ε. We adapt the algorithm from [1] to work on DAGs. The upward dynamic pro-
gramming pass remains exactly the same. During downward pass, when the strategy is
retrieved, some additional work has to be done to retrieve the strategy with memory.
The downward pass is closely related to the proof of Theorem 3.6.
Theorem 3.8. In an extensive form game G on a binary DAG with chance nodes with
utilities in [0, 1], a strategy profile σ with memory can be found for which uσ1 (G) ≥
uσ
∗

1 (G)−ε, where σ∗ is a Stackelberg equilibrium. This can be done in O(ε−3(HG)3 |S|+
|S| |S2| |S1|), where HG is the height of the DAG.

Proof: The algorithm consists of two upward passes and a downward pass. During
the first upward pass, the follower’s maxmin value µ(n) is computed for every node.
During the second pass, a table of utilities is constructed for every node, and a downward
pass, during which the strategy is retrieved. Let us summarize how the upward pass
works. First, the utilities are scaled by ((HG + 1)/ε). Let the highest scaled utility be
U . Then, a table AT is created for each subgraph of the game such that

. If AT [k] > −∞, the leader has a strategy for the subgraph that yields the follower
utility AT [k] while the leader’s utility is at least k.. No strategy in the subgraph can offer the follower strictly more than AT [k] while
yielding at least k +HT for the leader.. The entries AT [k] are non-increasing and AT [U + 1] = −∞

To simplify notation, by Av we mean AT where T is the subgraph rooted by v.
Upward pass If v is a leaf with utilities (u1, u2), let

Av[k] =
{
u2 if k ≤ u2,
−∞ otherwise.

If v is a leader’s node with children L and R played with probabilities p and 1− p, let

Av[k] = max
i,j,p
{pAL[i] + (1− p)AR[j]|pi+ (1− p)j ≥ k} .

If v is a chance node, let

Av[k] = max
i,j
{pAL[i] + (1− p)AR[j]|pi+ (1− p)j ≥ k} .
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And finally, if v is a follower’s node, let

Av[k] = max
{
AL[k] ↓µ(R), AR[k] ↓µ(L)

}
,

where
x ↓µ=

{
x if x ≥ µ,
−∞ otherwise.

This dynamic programming algorithm was originally stated for trees. However, when
we consider a DAG and it’s equivalent tree form, whenever a table is computed for two
nodes v′, v′′ which maps onto a node v in a DAG, the subtrees under v′ and v′′ are
identical, hence also the tables Av′ , Av′′ are identical. Therefore, we can compute it on
the DAG directly.

Downward pass During the downward pass, we need to construct the strategy with
memory σ′ : M × (S ×A)→ [0, 1], the memory set M (which will be a set of integers),
the memory update function M and the initial state m0. We proceed analogously to
the proof of Theorem 3.6. For each node we create a set Qi of pairs (m, i), meaning
that in memory state m the strategy corresponding to i should be played. We use one
special value for i - if i = −1, it singnifies that we are off the equilibrium path and
follower’s maxmin value should be achieved.

In the root node n the solution i∗ of the game is l∗ = max {i|AT [i] > −∞}. Hence,
we let Qn = (0, i∗). Set the initial state m0 = 0. We now reason about individual
types of nodes, dealing first with the maxmin strategy. For every (m, k) ∈ Qv, do the
following procedure.

In any node v, if (m,−1) ∈ Rv, the maxmin value for the leader should be played.
Therefore, let σ(m; v, L) = σµ(v, L). If there is a state m′ such that (m′,−1) ∈ RL, set
M(m; v, L) = m′. Otherwise, let m′ = |QL|, set M(m; v, L) = m′ and add (m′,−1) to
QL. The strategy for R is defined analogously.

If v is a leader’s node, let

i, j, p ∈ argmax
i,j,p

{pAL[i] + (1− p)AR[j]|pi+ (1− p)j ≥ k} .

That is, i, j, p are the maximizing values responsible for the table entry Av[i]. Let
σ(m; v, L) = p. If there is a state m′ such that (m′, i) ∈ QR, set M(m; v, L) = m′.
Otherwise, let m′ = |QL|, set M(m; v, L) = m′ and add (m′,−1) to QL. The strategy
for R is defined analogously.

In a chance node, we do not have to define a strategy. However, we still have to
define the memory update function. Let therefore

i, j ∈ argmax
i,j

{pAL[i] + (1− p)AR[j]|pi+ (1− p)j ≥ k}

and defineM as in leader’s node.
In a follower’s node, the value in AT [k] either comes from the left child L, or the

right child R. If the maximum comes from L, set σ(m; v, L) = 1. Again, if there is a
state m′ such that (m′, i) ∈ QL, set M(m; v, L) = m′. Otherwise, let m′ = |QL|, set
M(m; v, L) = m′ and add (m′,−1) to QL. As for the right child, the maxmin value for
the follower should be attained. Therefore, if there is an m′ such that (m′,−1) ∈ QR,
setM(m; v,R) = m′. Otherwise, let m′ = |QR|, setM(m; v,R) = m′ and add (m′,−1)
to RL. If the maximum comes from R, define the strategy analogously.

For each state v, the memory states in Qv are integers from 0 to |Qv| due to the
construction of Qv. Therefore, we can set M = {0 . . .maxv {|Qv|}}.
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Correctness The upward pass was proved correct in [1]. As for the downward pass,

in the rood node we commit to the strategy which yields the solution. Whenever a
pair (m, i) is added to QL (QR) in v, it is because i is a maximizer of some Av[k],
and is a part of optimal strategy. Such a pair is not added only in the case that the
corresponding index i already has some memory state m′ such that (m′, i) ∈ QL. In
such a case, the memory state is changed to m′ when going to L, and therefore yields
correct utility.

Runtime The backwards induction runs in O(|S|) [1]. The upward pass runs in
O(ε−3(HG)3 |S|). As for the downward pass, if we manage to bound the size of M ,
we simultaneously bound the size of every Qv. But the memory bound |S2| |states1|
can be obtained analogously to Theorem 3.6 and Lemma 3.14, except working with
table indices. Because at most |Qv| pairs (m, i) are computed in every state, the
downward pass takes O(|S| |S2| |S1|). The complexity of the whole algorithm is thus
O(ε−3(HG)3 |S|+ |S| |S2| |S1|). �
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Chapter 4
Experiments

We conducted experiments on randomly generated games to evaluate the scalability
of the approximation algorithm from Theorem 3.8. To do so, we implemented a tool
for generated random DAG games. Then, we conducted a series of experiments to
determine how the algorithms behave. We have found that with our hardware we
could solve DAGs with 500 nodes in under two minutes time with approximation factor
ε = 0.05, and around 45 minutes with approximation factor ε = 0.02. We have also
examined the number of nodes of the tree version of the DAG, and compared it with
the output of our algorithm. Also, we have found out that in fact a very small number
of memory state suffices to represent optimal strategies. All experiments were done in
Python 3.5.

4.1 Generating random DAGs
To generate random DAGs we implemented a simple tool. Our tool takes two pa-
rameters, the number of desired nodes n and a leaf probability parameter p, which
controlls the percentage of nodes of the DAG which are terminal. First, we create n
nodes v0, . . . , vn. Because we are generating a DAG, we assume that the nodes are
already topologically ordered. Because we are interested in DAGs in which every node
is reachable from v0, we first traverse the nodes forwards, and generate a parent vj
for each node vi such that j < i. We allow only parents with less than two children
to be generated. Second, we traverse the nodes backwards, and for each node which
has only one child we generate a second one (to ensure that our DAG is binary). And
finally third, we traverse all nodes which have 0 children and for each such node we
generate 2 children with probability 1 − p. This means that such node remains a leaf
with probability p.

After we generate a DAG, we assign each node a player with equal probability.
For chance nodes, we generate probability q of playing the left action from uniform
distribution, letting the probability of going right be 1 − q. For leaves, we generate
utilities of both players from the uniform distribution on [0, 1]. While we considered
some more sophisticated method for generating utilities, where the utilities of the leader
and follower would correlate, we decided not to implement such approach because it
does not affect the actual runtime of the algorithm.

4.2 Scalability
We conducted a series of experiments on our randomly generated DAGS. We considered
graphs with n ∈ {10, 50, 100, 200, 500} nodes, with the leaf probability p ∈ {0.1, 0.5, 0.9}
and the approximation factors ε ∈ {0.1, 0.05, 0.02}. For each combination of parameters,
the algorithm was run 21 times.

In Figures 4.1, 4.2 and 4.3, there are the results of our scalability experiments. As
we can see, the factor that influences the runtime of the algorithm the most is the
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Figure 4.1. The average runtime of the ε aproximation algorithm on a DAG with leaf
probability p = 0.1, for varying number of nodes and the approximation factor ε.

Figure 4.2. The average runtime of the ε aproximation algorithm on aDAG with leaf prob-
ability p = 0.5, for varying number of nodes and the approximation factor ε.

Figure 4.3. The average runtime of the ε aproximation algorithm on a DAG with leaf
probability p = 0.9, for varying number of nodes and the approximation factor ε.

aproximation factor ε. This is however no surprise, because the complexity of the
algorithm depends on ε−3. While for approximation factor 0.1 we obtain 0.1−3 = 1000.
However, for approximation factor 0.02 we obtain a runtime three orders of magnitudes
larger, 0.02−3 = 125000.
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p/n 10 50 100 200 500
0.1 0.96 0.33 0.17 0.13 0.04
0.5 0.97 0.65 0.48 0.45 0.35
0.9 0.92 0.70 0.95 0.80 0.94

Table 4.1. The average reduction of the number of remembered strategies. The members
of this table are computed as the ration of the sum of numbers of memory states achievable

in ever node to the number of the inner nodes in the tree version of a DAG.
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Table 4.2. The number of memory states in the ε approximation of a Stackelberg equilib-
rium for varying ε. All games have n = 500 nodes and the leaf probability p = 0.1.

The computation of the table AT takes a significantly longer time for non-terminal
nodes than for leaf nodes. Therefore, we would expect to see longer runtimes for graphs
with lower ammount of leaf nodes, that is with low leaf probability p. And indeed, our
results show that while the computation of an approximate strategy of games with
500 nodes and an approximation factor 0.02 took on average 374 seconds for games
with leaf probability 0.9, for games with leaf probability 0.1, the computation of the
approximation algorithm took on average 2168 seconds, almost five times as much.

4.2.1 Advantages of strategies with memory

To provide experimental evidence of usefulness of equilibria with memory, we col-
lected some additional data about the strategies found by our algorithm. First, we
examined the advantage obtained by using strategies with memory instead of trans-
forming the DAG into a game tree and computing strategy there. We present the
results of this investigation in Table 4.1. The numbers in the cells were obtained as
follows: first, we computed the actual number of defined strategies, that is for every
node we calculated in how many memory states is this node reachable. We added these
number for every state, obtaining the total number of computed strategies. Then, we
divided it by the number of inner nodes of the tree version of the game.

For games with a big probability that a given state is a leaf, the numbers vary around
0.9. This is caused by the fact that the tree version of the game is not much larger
than the DAG. On the other hand, for games with a small number of leaf nodes there
are many nodes with multiple parents, and therefore the tree transformation is very
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Table 4.3. The number of memory states in the ε approximation of a Stackelberg equilib-
rium for varying leaf probability p. All games have n = 500 nodes and the approximation

factor is ε = 0.02.
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Table 4.4. The number of memory states in the ε approximation of a Stackelberg equi-
librium for varying number of nodes n. All games have leaf probability p = 0.1 and the

approximation factor is ε = 0.02

large. Indeed, for games with 500 nodes the strategies with memory use only 4% of the
memory states which would be needed for remembering the strategy on the tree.

Second, we turned our interest to the number of memory states in the whole game.
The results of these experiments are presented in Figures 4.2, 4.3 and 4.4. In Figure
4.2 are the distributions of memory states for varying approximation factor. These
distributions are very similar, suggesting that the number of memory states does not
depend on the approximation factor. This agrees with our results.

In Figure 4.3 we examine how the number of memory states varies with the leaf
probability. We find out that for games with a lot of internal nodes, that is games with
low leaf probability, the memory requirements are signifficantly higher. Again, this
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experimentally confirms our result that the number of used memory states depends on
the number of internal nodes.

Finally, in Figure 4.4 we see that the average number of memory states grows ap-
proximately linearly with increasing number of states of the game. However, there are
occasional outliers present. This grows suggests that the bound on the memory states
could be perhaps lowered to a linear one, as our bound is quadratic.
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Chapter 5
Conclusion

We have considered the memory requirements of representation of Stackelberg equilibria
of different kinds of games. We have found out that for games on directed acyclic graphs
without chance nodes the needed memory is linear in the size of the game. We have
devised an algorithm which finds this equilibrium in polynomial time.

For stochastic games on graphs without chance nodes, we have shown that the mem-
ory bound is the same as with directed acyclic graphs. We have also shown that the
Stackelberg equilibria in such games consist of paths with length bounded by the size
of the game.

Fo games on directed acyclic graphs with chance nodes, we have provided a quadratic
bound on the memory states needed to represent an equilbrium. However, we show that
finding such an equilibrium is NP-hard. This motivates an approximation algorithm
which for arbitrary ε computes a strategy which is at most ε alway from a Stackelberg
equilibrium. The runtime of this algorithm depends cubically on the inverse of such ε.

By experimentally evaluating the approximation algorithm we tested it’s scalability.
We have found out that the bounds on memory are quite loose when considering ran-
domly generated DAGs. It would be interesting to consider whether these bounds can
be made tighter.

We left unadressed the problem of memory requirements for stochastic games with
chance nodes. For pure strategies, it seems a reduction can be made from discounted
sum games.
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Appendix A
Notation

. S,S1,S2,Z the sets of inner nodes, leader’s nodess, follower’s nodes and leaves. A,A1,A2 the sets of all actions, actions of the leader and actions of the follower. A(s) are the actions available in a given state. π = v0a0 . . . vk−1ak−1vk where v0 is the root note is a history. πa history derived from π by playing a after playing π. π[j] is the prefix of π up to vj (but without aj). π[i:j] is the subsequence of π from vi to vj. σ(π) probability that π results when playing according to strategy profile σ. σ(π ↓) the strategy profile in the supgraph rooted by the last node of π, which follows
after playing π. µ(n) maxmin value of n. M the set of memory states. m0 the initial memory state.M : M × (N ×A)→M the memory update function. uσi (π) utility of history π when playing according to σ. uσi (n) utility of a node n if the strategy after n is independent of the history (the
strategy is positional). uσi (m,n) utility of the node n reached with memory state m if the play continues
according to σ.. Πi is the set of probability mixtures over strategies. BR(σ−i) is the set of best responses of player i to strategy profile σ−i. � the proof is finished. Or also Elementary, my dear Watson.
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